LUMEN–A deep learning pipeline for analysis of the 3D morphology of the cerebral lenticulostriate arteries from time-of-flight 7T MRI
•3D morphology of lenticulostriate arteries may indicate early CSVD pathology.•Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD from 7T TOF-MRA.•Fine-tuned DL model achieved a test Dice score of 0.814±0.029 in LSA segmentation.•Showed limitations of 2D MIP analysis of LSA morpholog...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 318; p. 121377 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2025
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2025.121377 |
Cover
Abstract | •3D morphology of lenticulostriate arteries may indicate early CSVD pathology.•Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD from 7T TOF-MRA.•Fine-tuned DL model achieved a test Dice score of 0.814±0.029 in LSA segmentation.•Showed limitations of 2D MIP analysis of LSA morphology compared to 3D analysis.
The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their morphology are linked to cardiovascular risk factors and may indicate early pathology. 7T Time-of-Flight MR angiography (TOF-MRA) enables clear LSA visualisation. We aimed to develop a semi-automated pipeline for quantifying 3D LSA morphology from 7T TOF-MRA in CSVD patients.
We used data from a local 7T CSVD study to create a pipeline, LUMEN, comprising two stages: vessel segmentation and LSA quantification. For segmentation, we fine-tuned a deep learning model, DS6, and compared it against nnU-Net and a Frangi-filter pipeline, MSFDF. For quantification, centrelines of LSAs within basal ganglia were extracted to compute branch counts, length, tortuosity, and maximum curvature. This pipeline was applied to 69 subjects, with results compared to traditional analysis measuring LSA morphology on 2D coronal maximum intensity projection (MIP) images.
For vessel segmentation, fine-tuned DS6 achieved the highest test Dice score (0.814±0.029) and sensitivity, whereas nnU-Net achieved the best balanced average Hausdorff distance and precision. Visual inspection confirmed that DS6 was most sensitive in detecting LSAs with weak signals. Across 69 subjects, the pipeline with DS6 identified 23.5 ± 8.5 LSA branches. Branch length inside the basal ganglia was 26.4 ± 3.5 mm, and tortuosity was 1.5 ± 0.1. Extracted LSA metrics from 2D MIP analysis and our 3D analysis showed fair-to-moderate correlations. Outliers highlighted the added value of 3D analysis.
This open-source deep-learning-based pipeline offers a validated tool quantifying 3D LSA morphology in CSVD patients from 7T-TOF-MRA for clinical research.
[Display omitted] |
---|---|
AbstractList | •3D morphology of lenticulostriate arteries may indicate early CSVD pathology.•Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD from 7T TOF-MRA.•Fine-tuned DL model achieved a test Dice score of 0.814±0.029 in LSA segmentation.•Showed limitations of 2D MIP analysis of LSA morphology compared to 3D analysis.
The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their morphology are linked to cardiovascular risk factors and may indicate early pathology. 7T Time-of-Flight MR angiography (TOF-MRA) enables clear LSA visualisation. We aimed to develop a semi-automated pipeline for quantifying 3D LSA morphology from 7T TOF-MRA in CSVD patients.
We used data from a local 7T CSVD study to create a pipeline, LUMEN, comprising two stages: vessel segmentation and LSA quantification. For segmentation, we fine-tuned a deep learning model, DS6, and compared it against nnU-Net and a Frangi-filter pipeline, MSFDF. For quantification, centrelines of LSAs within basal ganglia were extracted to compute branch counts, length, tortuosity, and maximum curvature. This pipeline was applied to 69 subjects, with results compared to traditional analysis measuring LSA morphology on 2D coronal maximum intensity projection (MIP) images.
For vessel segmentation, fine-tuned DS6 achieved the highest test Dice score (0.814±0.029) and sensitivity, whereas nnU-Net achieved the best balanced average Hausdorff distance and precision. Visual inspection confirmed that DS6 was most sensitive in detecting LSAs with weak signals. Across 69 subjects, the pipeline with DS6 identified 23.5 ± 8.5 LSA branches. Branch length inside the basal ganglia was 26.4 ± 3.5 mm, and tortuosity was 1.5 ± 0.1. Extracted LSA metrics from 2D MIP analysis and our 3D analysis showed fair-to-moderate correlations. Outliers highlighted the added value of 3D analysis.
This open-source deep-learning-based pipeline offers a validated tool quantifying 3D LSA morphology in CSVD patients from 7T-TOF-MRA for clinical research.
[Display omitted] The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their morphology are linked to cardiovascular risk factors and may indicate early pathology. 7T Time-of-Flight MR angiography (TOF-MRA) enables clear LSA visualisation. We aimed to develop a semi-automated pipeline for quantifying 3D LSA morphology from 7T TOF-MRA in CSVD patients. We used data from a local 7T CSVD study to create a pipeline, LUMEN, comprising two stages: vessel segmentation and LSA quantification. For segmentation, we fine-tuned a deep learning model, DS6, and compared it against nnU-Net and a Frangi-filter pipeline, MSFDF. For quantification, centrelines of LSAs within basal ganglia were extracted to compute branch counts, length, tortuosity, and maximum curvature. This pipeline was applied to 69 subjects, with results compared to traditional analysis measuring LSA morphology on 2D coronal maximum intensity projection (MIP) images. For vessel segmentation, fine-tuned DS6 achieved the highest test Dice score (0.814±0.029) and sensitivity, whereas nnU-Net achieved the best balanced average Hausdorff distance and precision. Visual inspection confirmed that DS6 was most sensitive in detecting LSAs with weak signals. Across 69 subjects, the pipeline with DS6 identified 23.5±8.5 LSA branches. Branch length inside the basal ganglia was 26.4±3.5 mm, and tortuosity was 1.5±0.1. Extracted LSA metrics from 2D MIP analysis and our 3D analysis showed fair-to-moderate correlations. Outliers highlighted the added value of 3D analysis. This open-source deep-learning-based pipeline offers a validated tool quantifying 3D LSA morphology in CSVD patients from 7T-TOF-MRA for clinical research.The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their morphology are linked to cardiovascular risk factors and may indicate early pathology. 7T Time-of-Flight MR angiography (TOF-MRA) enables clear LSA visualisation. We aimed to develop a semi-automated pipeline for quantifying 3D LSA morphology from 7T TOF-MRA in CSVD patients. We used data from a local 7T CSVD study to create a pipeline, LUMEN, comprising two stages: vessel segmentation and LSA quantification. For segmentation, we fine-tuned a deep learning model, DS6, and compared it against nnU-Net and a Frangi-filter pipeline, MSFDF. For quantification, centrelines of LSAs within basal ganglia were extracted to compute branch counts, length, tortuosity, and maximum curvature. This pipeline was applied to 69 subjects, with results compared to traditional analysis measuring LSA morphology on 2D coronal maximum intensity projection (MIP) images. For vessel segmentation, fine-tuned DS6 achieved the highest test Dice score (0.814±0.029) and sensitivity, whereas nnU-Net achieved the best balanced average Hausdorff distance and precision. Visual inspection confirmed that DS6 was most sensitive in detecting LSAs with weak signals. Across 69 subjects, the pipeline with DS6 identified 23.5±8.5 LSA branches. Branch length inside the basal ganglia was 26.4±3.5 mm, and tortuosity was 1.5±0.1. Extracted LSA metrics from 2D MIP analysis and our 3D analysis showed fair-to-moderate correlations. Outliers highlighted the added value of 3D analysis. This open-source deep-learning-based pipeline offers a validated tool quantifying 3D LSA morphology in CSVD patients from 7T-TOF-MRA for clinical research. Highlights•3D morphology of lenticulostriate arteries may indicate early CSVD pathology. •Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD from 7T TOF-MRA. •Fine-tuned DL model achieved a test Dice score of 0.814±0.029 in LSA segmentation. •Showed limitations of 2D MIP analysis of LSA morphology compared to 3D analysis. The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their morphology are linked to cardiovascular risk factors and may indicate early pathology. 7T Time-of-Flight MR angiography (TOF-MRA) enables clear LSA visualisation. We aimed to develop a semi-automated pipeline for quantifying 3D LSA morphology from 7T TOF-MRA in CSVD patients. We used data from a local 7T CSVD study to create a pipeline, LUMEN, comprising two stages: vessel segmentation and LSA quantification. For segmentation, we fine-tuned a deep learning model, DS6, and compared it against nnU-Net and a Frangi-filter pipeline, MSFDF. For quantification, centrelines of LSAs within basal ganglia were extracted to compute branch counts, length, tortuosity, and maximum curvature. This pipeline was applied to 69 subjects, with results compared to traditional analysis measuring LSA morphology on 2D coronal maximum intensity projection (MIP) images. For vessel segmentation, fine-tuned DS6 achieved the highest test Dice score (0.814±0.029) and sensitivity, whereas nnU-Net achieved the best balanced average Hausdorff distance and precision. Visual inspection confirmed that DS6 was most sensitive in detecting LSAs with weak signals. Across 69 subjects, the pipeline with DS6 identified 23.5 ± 8.5 LSA branches. Branch length inside the basal ganglia was 26.4 ± 3.5 mm, and tortuosity was 1.5 ± 0.1. Extracted LSA metrics from 2D MIP analysis and our 3D analysis showed fair-to-moderate correlations. Outliers highlighted the added value of 3D analysis. This open-source deep-learning-based pipeline offers a validated tool quantifying 3D LSA morphology in CSVD patients from 7T-TOF-MRA for clinical research. |
ArticleNumber | 121377 |
Author | Nannoni, Stefania Tozer, Daniel J. Jiaerken, Yeerfan Li, Rui Zhou, Xia Benjamin, Philip Rodgers, Christopher T. Chatterjee, Soumick Radhakrishna, Chethan Markus, Hugh S. |
Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0003-0555-3176 surname: Li fullname: Li, Rui email: rl574@cam.ac.uk organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 2 givenname: Soumick orcidid: 0000-0001-7594-1188 surname: Chatterjee fullname: Chatterjee, Soumick organization: Genomics Research Centre, Human Technopole, Milan, Italy – sequence: 3 givenname: Yeerfan orcidid: 0000-0002-0734-4012 surname: Jiaerken fullname: Jiaerken, Yeerfan organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 4 givenname: Xia surname: Zhou fullname: Zhou, Xia organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 5 givenname: Chethan surname: Radhakrishna fullname: Radhakrishna, Chethan organization: Faculty of Computer Science, Otto von Guericke University Magdeburg, Magdeburg, Germany – sequence: 6 givenname: Philip surname: Benjamin fullname: Benjamin, Philip organization: Atkinson Morley Regional Neuroscience Centre, St George’s University Hospitals NHS Foundation Trust, London, UK – sequence: 7 givenname: Stefania surname: Nannoni fullname: Nannoni, Stefania organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 8 givenname: Daniel J. surname: Tozer fullname: Tozer, Daniel J. organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 9 givenname: Hugh S. surname: Markus fullname: Markus, Hugh S. organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 10 givenname: Christopher T. orcidid: 0000-0003-1275-1197 surname: Rodgers fullname: Rodgers, Christopher T. organization: Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40675425$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URH_gFZAlNmwy2E7sJBtEKaVUmhYJ2rXlONczHhw72AnS7NjxALxhn4RE0x-pElJXtqzvHvmccw_Rng8eEMKULCih4t1m4WGMwXZqBQtGGF9QRvOyfIYOKKl5VvOS7c13nmcVpfU-OkxpQwipaVG9QPsFESUvGD9Af5bXF6eXN7__HuMWoMcOVPTWr3Bve3DWAzYhYuWV2yabcDB4WAPOP-EuxH4dXFht7x41RGiicpOGH6weXUhDtGoArOIA0ULCJoYOD7aDLJjMOLtaD7i8whffzl-i50a5BK9uzyN0_fn06uRLtvx6dn5yvMx0wUSZCWC6bVolGuAVVZU2k--CGMq5qOq6KEnd1JrlQrV10-ZQKl5qU_FCldQQJfIj9Han28fwc4Q0yM4mDc4pD2FMMmc5ZYIXnE7om0foJoxxSmKmCkEqThmZqNe31Nh00Mo-Tq3ErbyLeAKqHaBjSCmCuUcokXObciMf2pRzm3LX5jT6cTcKUyK_LESZtAWvobUR9CDbYJ8i8v6RiJ56tVq5H7CFdO-JysQkkd_npZl3hnFC8orMBj78X-Bpf_gHKFvX_A |
Cites_doi | 10.1016/j.jns.2012.05.032 10.1162/imag_a_00203 10.1016/j.jocn.2011.10.025 10.5551/jat.43869 10.3390/jimaging8100291 10.1109/ACCESS.2023.3249759 10.1038/s41598-021-87564-6 10.1016/j.neuroimage.2019.05.065 10.1002/ca.1032 10.1016/j.nicl.2021.102573 10.1161/STR.0b013e3182299496 10.3389/fneur.2022.944863 10.1177/0271678X21992622 10.1016/j.tjem.2018.08.001 10.17219/acem/131216 10.3389/fnins.2020.592352 10.1016/j.mri.2012.05.001 10.1109/TIP.2015.2499085 10.1016/S1474-4422(19)30079-1 10.1097/00004728-199803000-00032 10.1177/17474930221081639 10.1007/978-3-031-72114-4_47 10.3389/fneur.2021.700476 10.1007/s00330-020-07642-7 10.1161/JAHA.123.032856 10.1155/2013/873434 10.1109/JSTARS.2014.2309613 10.1186/s41747-020-00200-2 10.1038/s41592-020-01008-z 10.1016/S1361-8415(98)80009-1 10.1007/s00530-017-0580-7 10.3390/jimaging8100259 10.1109/TMI.2022.3186731 10.1016/j.compmedimag.2020.101830 10.1002/hbm.24337 10.3389/fnins.2019.00097 10.3389/fnagi.2021.685571 10.2307/2529310 10.1007/978-3-031-72980-5_13 10.1016/j.neuroimage.2024.120597 10.1038/sdata.2014.3 10.1161/STROKEAHA.107.508002 10.1109/TMI.2016.2550102 |
ContentType | Journal Article |
Copyright | 2025 Copyright © 2025. Published by Elsevier Inc. Copyright Elsevier Limited 2025 |
Copyright_xml | – notice: 2025 – notice: Copyright © 2025. Published by Elsevier Inc. – notice: Copyright Elsevier Limited 2025 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7TK 8FD FR3 K9. P64 RC3 7X8 |
DOI | 10.1016/j.neuroimage.2025.121377 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 121377 |
ExternalDocumentID | 40675425 10_1016_j_neuroimage_2025_121377 S1053811925003805 1_s2_0_S1053811925003805 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 6I. AAFTH AAYXX CITATION AGRNS ALIPV NPM 7TK 8FD FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4267-6e2cdbda6be581a8cf21340f15568994709b9c236ad9bd3e7a57cf854a71f0a63 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Sep 05 15:38:48 EDT 2025 Thu Sep 04 04:35:01 EDT 2025 Sat Jul 26 01:47:25 EDT 2025 Wed Aug 27 16:26:52 EDT 2025 Sat Aug 23 17:12:02 EDT 2025 Sat Aug 23 01:30:43 EDT 2025 Tue Aug 26 17:21:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | nnU-Net Cerebral Small Vessel Disease Contrast-Enhanced 7T-TOF-MRA CSVD MSFDF MRI DS6 DL MCA CamSVD ROI Deep Learning TOF-MRA MIP bAHD Lenticulostriate Arteries LSA LUMEN ACA Multi-Scale Frangi Diffusive Filter Name of the self-configuring segmentation toolbox Middle cerebral artery Anterior cerebral artery Balanced average Hausdorff distance Time-of-Flight magnetic resonance angiography Name of the Cambridge 7T Cerebral Small Vessel Disease study cohort Lenticulostriate artery Maximum intensity projection Name of deep-learning vessel segmentation model Lenticulostriate artery Ultra-high-field Morphology Extraction and quantificatioN (i.e. this toolbox) Region-of-interest |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4267-6e2cdbda6be581a8cf21340f15568994709b9c236ad9bd3e7a57cf854a71f0a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7594-1188 0000-0003-0555-3176 0000-0003-1275-1197 0000-0002-0734-4012 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811925003805 |
PMID | 40675425 |
PQID | 3246085120 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3231265451 proquest_journals_3246085120 pubmed_primary_40675425 crossref_primary_10_1016_j_neuroimage_2025_121377 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2025_121377 elsevier_clinicalkeyesjournals_1_s2_0_S1053811925003805 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2025_121377 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Zhao, Chen, Hou, He (bib0052) 2019; 25 Liao, Rohr, Kang, Cho, Fellow, Wörz (bib0028) 2016; 25 Rodrigues, Rodrigues, Machado, Casanova, Teixeira, Oliva, Bernardes, Liatsis (bib0035) 2022; 8 Zhou, Wu, Luo, Zhou (bib0054) 2024; 15 Ronneberger, Fischer, Brox (bib0037) 2015; 9351 Chojdak-Łukasiewicz, Dziadkowiak, Zimny, Paradowski (bib0009) 2021; 30 Gorelick, Scuteri, Black, Decarli, Greenberg, Iadecola, Launer, Laurent, Lopez, Nyenhuis, Petersen, Schneider, Tzourio, Arnett, Bennett, Chui, Higashida, Lindquist, Nilsson, Roman, Sellke, Seshadri (bib0016) 2011; 42 Jiang, Cao, Yan, Yang, Yuan, Deng, Wu, Sun, Wu, Hao, Anderson, Wu (bib0023) 2021; 41 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0042) 2017; 30 Chen, Jin, Guo, Bai (bib0007) 2022; 41 Roefs, Schellekens, Báez-Yáñez, Bhogal, Groen, van Osch, Siero, Petridou (bib0036) 2024; 2 Fedorov, Beichel, Kalpathy-Cramer, Finet, Fillion-Robin, Pujol, Bauer, Jennings, Fennessy, Sonka, Buatti, Aylward, Miller, Pieper, Kikinis (bib0014) 2012; 30 Zeng, Yang, Li, Yu, Heng, Zheng (bib0051) 2017 Li, Bian, Wu, Fan, Zhang, Zhao, Ji, Yang (bib0027) 2024; 13 . Osuafor, Rua, Mackinnon, Egle, Benjamin, Tozer, Rodgers, Markus (bib0034) 2022; 12 Aydin, Taha, Hilbert, Khalil, Galinovic, Fiebach, Frey, Madai (bib0002) 2021; 5 Isensee, Jaeger, Kohl, Petersen, Maier-Hein (bib0020) 2020; 18 Frangi, Niessen, Vincken, Viergever (bib0015) 1998 Wei, Jing, Zhuo, Zhang (bib0044) 2022; 13 Bortsova, Dubost, Hogeweg, Katramados, de Bruijne (bib0004) 2019; 11769 Cho, Kang, Han, Kim, Kim, Hong, Park, Kim (bib0008) 2008; 39 Akoglu (bib0001) 2018; 18 El Falougy, Selmeciova, Kubikova, Haviarová (bib0012) 2013; 2013 Jerman, Pernus, Likar, Spiclin (bib0022) 2016; 35 Wei, Zhang, An, Zhuo, Zhang (bib0045) 2021; 12 Deshpande, Jamilpour, Jiang, Michel, Eskandari, Kidwell, Wintermark, Laksari (bib0010) 2021; 30 Seo, Kang, Kim, Yoon, Liao, Wörz, Rohr, Kim, Na, Cho (bib0039) 2012; 322 Wardlaw, Smith, Dichgans (bib0043) 2019; 18 Djulejić, Marinković, Maliković, Jovanović, Djordjević, Ćetković, Todorović, Milisavljević (bib0011) 2012; 19 Chatterjee, Prabhu, Pattadkal, Bortsova, Sarasaen, Dubost, Mattern, de Bruijne, Speck, Nürnberger (bib0006) 2022; 8 Holmes, Hoge, Collins, Woods, Toga, Evans (bib0019) 1998; 22 Yashiro, Kameda, Chida, Todate, Hasegawa, Nagasawa, Uwano, Sasaki, Ogasawara, Ishigaki (bib0050) 2018; 25 Kirchhoff, Y., Rokuss, M.R., Roy, S., Kovacs, B., Ulrich, C., Wald, T., Zenk, M., Vollmuth, P., Kleesiek, J., Isensee, F., Maier-Hein, K., 2024. Skeleton recall loss for connectivity conserving and resource efficient segmentation of thin tubular structures. Fan, Bian, Chen, Kang, Yang, Tan (bib0013) 2019; 13 Yang, Zamzmi, Angara, Rajaraman, Aquilina, Xue, Jaeger, Papagiannakis, Antani (bib0049) 2023; 11 He, Nath, Yang, Tang, Myronenko, Xu (bib0018) 2023 Li, Buch, Sun, Muccio, Jiang, Chen, Haacke, Zhang, Wisniewski, Ge (bib0026) 2024; 291 Marinković, Gibo, Milisavljević, Ćetković (bib55) 2001; 14 Hanke, Baumgartner, Ibe, Kaule, Pollmann, Speck, Zinke, Stadler (bib0017) 2014; 1 Xie, Wang, Liu, Tang, Chai, Guo, Qian, Chang, Yang, Fan, Xia (bib0046) 2021; 31 Chatterjee, S., Mattern, H., Dörner, M., Sciarra, A., Dubost, F., Schnurre, H., Khatun, R., Yu, C.-C., Hsieh, T.-L., Tsai, Y.-S., Fang, Y.-Z., Yang, Y.-C., Huang, J.-D., Xu, M., Liu, S., Ribeiro, F.L., Bollmann, S., Chintalapati, K.V., Radhakrishna, C.M., Kumara, S.C.H.R., Sutrave, R., Qayyum, A., Mazher, M., Razzak, I., Rodero, C., Niederren, S., Lin, F., Xia, Y., Wang, J., Qiu, R., Wang, L., Panah, A.Y., Jurdi, R.El, Fu, G., Arslan, J., Vaillant, G., Valabregue, R., Dormont, D., Stankoff, B., Colliot, O., Vargas, L., Chacón, I.D., Pitsiorlas, I., Arbeláez, P., Zuluaga, M.A., Schreiber, S., Speck, O., Nürnberger, A., 2024. SMILE-UHURA Challenge – Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms. Bernier, Cunnane, Whittingstall (bib0003) 2018; 39 Tetteh, Efremov, Forkert, Schneider, Kirschke, Weber, Zimmer, Piraud, Menze (bib0040) 2020; 14 Isensee, F., Wald, T., Ulrich, C., Baumgartner, M., Roy, S., Maier-Hein, K., Jäger, P., 2024. nnU-Net revisited: a call for rigorous validation in 3D medical image segmentation. Miao, Wang, Shi, Wu (bib0033) 2014; 7 Tustison, Cook, Holbrook, Johnson, Muschelli, Devenyi, Duda, Das, Cullen, Gillen, Yassa, Stone, Gee, Avants (bib0041) 2021; 11 Liu, Chen, Wang, Zhang, Sun, Xue, Liao (bib0029) 2021; 89 Landis, Koch (bib0025) 1977; 33 Livne, Rieger, Aydin, Taha, Akay, Kossen, Sobesky, Kelleher, Hildebrand, Frey, Madai (bib0030) 2019; 13 Xu, Wu, Zhu, Zhang, Jiaerken, Wang, Hong, Yu, Li, Zeng, Luo, Yu, Sun, Zhang, Huang (bib0047) 2021; 13 Sato, Nakajima, Shiraga, Atsumi, Yoshida, Koller, Gerig, Kikinis (bib0038) 1998; 2 Zhong, Tong, Chen (bib0053) 2024; 2 Ma, Sarabi, Yan, Shao, Chen, Yang, Jann, Toga, Shi, Wang (bib0031) 2019; 199 Yan, Jiang, Yang, Yuan, Wang, Deng, Wu, Tang, Wu, Sun, Wu (bib0048) 2023; 18 Gorelick (10.1016/j.neuroimage.2025.121377_bib0016) 2011; 42 Marinković (10.1016/j.neuroimage.2025.121377_bib55) 2001; 14 Zeng (10.1016/j.neuroimage.2025.121377_bib0051) 2017 Tustison (10.1016/j.neuroimage.2025.121377_bib0041) 2021; 11 Osuafor (10.1016/j.neuroimage.2025.121377_bib0034) 2022; 12 Yashiro (10.1016/j.neuroimage.2025.121377_bib0050) 2018; 25 10.1016/j.neuroimage.2025.121377_bib0024 Liao (10.1016/j.neuroimage.2025.121377_bib0028) 2016; 25 Deshpande (10.1016/j.neuroimage.2025.121377_bib0010) 2021; 30 Li (10.1016/j.neuroimage.2025.121377_bib0027) 2024; 13 Wei (10.1016/j.neuroimage.2025.121377_bib0045) 2021; 12 Xu (10.1016/j.neuroimage.2025.121377_bib0047) 2021; 13 Fan (10.1016/j.neuroimage.2025.121377_bib0013) 2019; 13 Ronneberger (10.1016/j.neuroimage.2025.121377_bib0037) 2015; 9351 Seo (10.1016/j.neuroimage.2025.121377_bib0039) 2012; 322 Fedorov (10.1016/j.neuroimage.2025.121377_bib0014) 2012; 30 Xie (10.1016/j.neuroimage.2025.121377_bib0046) 2021; 31 Frangi (10.1016/j.neuroimage.2025.121377_bib0015) 1998 Tetteh (10.1016/j.neuroimage.2025.121377_bib0040) 2020; 14 Wei (10.1016/j.neuroimage.2025.121377_bib0044) 2022; 13 Miao (10.1016/j.neuroimage.2025.121377_bib0033) 2014; 7 Isensee (10.1016/j.neuroimage.2025.121377_bib0020) 2020; 18 Zhao (10.1016/j.neuroimage.2025.121377_bib0052) 2019; 25 Roefs (10.1016/j.neuroimage.2025.121377_bib0036) 2024; 2 Landis (10.1016/j.neuroimage.2025.121377_bib0025) 1977; 33 Bernier (10.1016/j.neuroimage.2025.121377_bib0003) 2018; 39 Zhong (10.1016/j.neuroimage.2025.121377_bib0053) 2024; 2 10.1016/j.neuroimage.2025.121377_bib0005 Ma (10.1016/j.neuroimage.2025.121377_bib0031) 2019; 199 Cho (10.1016/j.neuroimage.2025.121377_bib0008) 2008; 39 El Falougy (10.1016/j.neuroimage.2025.121377_bib0012) 2013; 2013 Yan (10.1016/j.neuroimage.2025.121377_bib0048) 2023; 18 Jiang (10.1016/j.neuroimage.2025.121377_bib0023) 2021; 41 Jerman (10.1016/j.neuroimage.2025.121377_bib0022) 2016; 35 Aydin (10.1016/j.neuroimage.2025.121377_bib0002) 2021; 5 Chatterjee (10.1016/j.neuroimage.2025.121377_bib0006) 2022; 8 Chojdak-Łukasiewicz (10.1016/j.neuroimage.2025.121377_bib0009) 2021; 30 Sato (10.1016/j.neuroimage.2025.121377_bib0038) 1998; 2 Chen (10.1016/j.neuroimage.2025.121377_bib0007) 2022; 41 Zhou (10.1016/j.neuroimage.2025.121377_bib0054) 2024; 15 Bortsova (10.1016/j.neuroimage.2025.121377_bib0004) 2019; 11769 Liu (10.1016/j.neuroimage.2025.121377_bib0029) 2021; 89 Rodrigues (10.1016/j.neuroimage.2025.121377_bib0035) 2022; 8 Wardlaw (10.1016/j.neuroimage.2025.121377_bib0043) 2019; 18 Li (10.1016/j.neuroimage.2025.121377_bib0026) 2024; 291 Akoglu (10.1016/j.neuroimage.2025.121377_bib0001) 2018; 18 10.1016/j.neuroimage.2025.121377_bib0021 Livne (10.1016/j.neuroimage.2025.121377_bib0030) 2019; 13 Yang (10.1016/j.neuroimage.2025.121377_bib0049) 2023; 11 Holmes (10.1016/j.neuroimage.2025.121377_bib0019) 1998; 22 Djulejić (10.1016/j.neuroimage.2025.121377_bib0011) 2012; 19 He (10.1016/j.neuroimage.2025.121377_bib0018) 2023 Hanke (10.1016/j.neuroimage.2025.121377_bib0017) 2014; 1 Vaswani (10.1016/j.neuroimage.2025.121377_bib0042) 2017; 30 |
References_xml | – volume: 13 year: 2024 ident: bib0027 article-title: Association of morphology of lenticulostriate arteries and proximal plaque characteristics with single subcortical infarction: a whole-brain high-resolution vessel wall imaging study publication-title: J. Am. Heart Assoc.: Cardiovasc. Cerebrovasc. Dis. – volume: 15 start-page: 1 year: 2024 end-page: 11 ident: bib0054 article-title: Deep learning-based 3D cerebrovascular segmentation workflow on bright and black blood sequences magnetic resonance angiography publication-title: Insights Imag. – volume: 42 start-page: 2672 year: 2011 ident: bib0016 article-title: Vascular Contributions to cognitive impairment and Dementia: a statement for Healthcare professionals from the American Heart Association/American Stroke Association publication-title: Stroke – volume: 41 start-page: 3520 year: 2022 end-page: 3532 ident: bib0007 article-title: Attention-assisted adversarial model for cerebrovascular segmentation in 3D TOF-MRA volumes publication-title: IEEe Trans. Med. ImAging – volume: 13 year: 2022 ident: bib0044 article-title: Morphological characteristics of lenticulostriate arteries in a large age-span population: results from 7T TOF-MRA publication-title: Front. Neurol. – volume: 2 start-page: 143 year: 1998 end-page: 168 ident: bib0038 article-title: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images publication-title: Med. Image Anal. – volume: 12 start-page: 1 year: 2022 end-page: 9 ident: bib0034 article-title: Visualisation of lenticulostriate arteries using contrast-enhanced time-of-flight magnetic resonance angiography at 7 publication-title: Tesla. Sci Rep – volume: 18 start-page: 91 year: 2018 ident: bib0001 article-title: User’s guide to correlation coefficients publication-title: Turk. J. Emerg. Med. – volume: 13 year: 2021 ident: bib0047 article-title: Characterization of lenticulostriate arteries and its associations with vascular risk factors in community-dwelling elderly publication-title: Front. Aging Neurosci. – volume: 41 start-page: 2105 year: 2021 ident: bib0023 article-title: Lenticulostriate artery combined with neuroimaging markers of cerebral small vessel disease differentiate the pathogenesis of recent subcortical infarction publication-title: J. Cereb. Blood Flow Metab. – volume: 14 start-page: 1285 year: 2020 ident: bib0040 article-title: DeepVesselNet: vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes publication-title: Front. Neurosci. – volume: 291 year: 2024 ident: bib0026 article-title: In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T publication-title: Neuroimage – volume: 22 start-page: 324 year: 1998 end-page: 333 ident: bib0019 article-title: Enhancement of MR images using registration for signal averaging publication-title: J. Comput. Assist. Tomogr. – start-page: 416 year: 2023 end-page: 426 ident: bib0018 article-title: SwinUNETR-V2: stronger swin transformers with stagewise convolutions for 3D medical image segmentation publication-title: Lect. Notes Comput. Sci. (incl. subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 14223 LNCS – volume: 39 start-page: 1604 year: 2008 end-page: 1606 ident: bib0008 article-title: Observation of the lenticulostriate arteries in the human brain in vivo using 7.0T MR angiography publication-title: Stroke – volume: 18 start-page: 95 year: 2023 end-page: 101 ident: bib0048 article-title: Lenticulostriate artery length and middle cerebral artery plaque as predictors of early neurological deterioration in single subcortical infarction publication-title: Int. J. Stroke – volume: 2 start-page: 1 year: 2024 end-page: 20 ident: bib0053 article-title: Assessment of the macrovascular contribution to resting-state fMRI functional connectivity at 3 tesla publication-title: Imaging Neurosci. – volume: 30 start-page: 349 year: 2021 end-page: 356 ident: bib0009 article-title: Cerebral small vessel disease: a review publication-title: Adv. Clin. Exp. Med. – volume: 33 start-page: 159 year: 1977 ident: bib0025 article-title: The measurement of Observer agreement for categorical data publication-title: Biometrics – volume: 2 start-page: 1 year: 2024 end-page: 19 ident: bib0036 article-title: The contribution of the vascular architecture and cerebrovascular reactivity to the BOLD signal formation across cortical depth publication-title: Imaging Neurosci. – volume: 25 start-page: 1067 year: 2018 end-page: 1075 ident: bib0050 article-title: Evaluation of lenticulostriate arteries changes by 7 T magnetic resonance angiography in type 2 diabetes publication-title: J. Atheroscler. Thromb. – volume: 19 start-page: 1416 year: 2012 end-page: 1421 ident: bib0011 article-title: Morphometric analysis, region of supply and microanatomy of the lenticulostriate arteries and their clinical significance publication-title: J. Clin. Neurosci. – volume: 25 start-page: 400 year: 2016 end-page: 413 ident: bib0028 article-title: Automatic 3D segmentation and quantification of lenticulostriate arteries from high-resolution 7 tesla MRA images publication-title: IEEe Trans. Image Process. – volume: 13 start-page: 97 year: 2019 ident: bib0030 article-title: A U-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease publication-title: Front. Neurosci. – volume: 199 start-page: 184 year: 2019 end-page: 193 ident: bib0031 article-title: Characterization of lenticulostriate arteries with high resolution black-blood T1-weighted turbo spin echo with variable flip angles at 3 and 7 tesla publication-title: Neuroimage – volume: 30 year: 2021 ident: bib0010 article-title: Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature publication-title: Neuroimage Clin. – volume: 35 start-page: 2107 year: 2016 end-page: 2118 ident: bib0022 article-title: Enhancement of vascular structures in 3D and 2D angiographic images publication-title: IEEe Trans. Med. ImAging – volume: 30 start-page: 5999 year: 2017 end-page: 6009 ident: bib0042 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 18 start-page: 684 year: 2019 end-page: 696 ident: bib0043 article-title: Small vessel disease: mechanisms and clinical implications publication-title: Lancet Neurol. – volume: 7 start-page: 4762 year: 2014 end-page: 4771 ident: bib0033 article-title: A method for accurate road centerline extraction from a classified image publication-title: IEEe J. Sel. Top. Appl. Earth. Obs. Remote Sens. – volume: 9351 start-page: 234 year: 2015 end-page: 241 ident: bib0037 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: Med. Image Comput. Comput.-Assist. Interv. – MICCAI 2015. MICCAI 2015. Lect. Notes Comput. Sci. – volume: 13 year: 2019 ident: bib0013 article-title: Unsupervised cerebrovascular segmentation of TOF-MRA images based on deep neural network and hidden Markov random field model publication-title: Front. Neuroinform. – volume: 11769 start-page: 810 year: 2019 end-page: 818 ident: bib0004 article-title: Semi-supervised medical image segmentation via learning consistency under transformations publication-title: Med. Image Comput. Comput. Assist. Interv. – MICCAI 2019. MICCAI 2019. Lect. Notes Comput. Sci. – volume: 11 start-page: 21300 year: 2023 end-page: 21312 ident: bib0049 article-title: Assessing inter-annotator agreement for medical image segmentation publication-title: IEEe Access. – start-page: 274 year: 2017 end-page: 282 ident: bib0051 article-title: 3D U-net with multi-level deep supervision: fully automatic segmentation of proximal femur in 3D MR images publication-title: Mach. Learn. Med. Imaging. MLMI 2017. Lect. Notes Comput. Sci. 10541 LNCS – volume: 12 year: 2021 ident: bib0045 article-title: A processing pipeline for quantifying lenticulostriate artery vascular volume in subcortical nuclei publication-title: Front. Neurol. – volume: 39 start-page: 4962 year: 2018 end-page: 4975 ident: bib0003 article-title: The morphology of the human cerebrovascular system publication-title: Hum. Brain Mapp. – volume: 2013 year: 2013 ident: bib0012 article-title: The variable origin of the recurrent artery of heubner: an anatomical and morphometric study publication-title: Biomed. Res. Int. – volume: 30 start-page: 1323 year: 2012 end-page: 1341 ident: bib0014 article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network publication-title: Magn. Reson. ImAging – volume: 31 start-page: 5629 year: 2021 end-page: 5639 ident: bib0046 article-title: Visualization of lenticulostriate artery by intracranial dark-blood vessel wall imaging and its relationships with lacunar infarction in basal ganglia: a retrospective study publication-title: Eur. Radiol. – reference: Kirchhoff, Y., Rokuss, M.R., Roy, S., Kovacs, B., Ulrich, C., Wald, T., Zenk, M., Vollmuth, P., Kleesiek, J., Isensee, F., Maier-Hein, K., 2024. Skeleton recall loss for connectivity conserving and resource efficient segmentation of thin tubular structures. – volume: 11 start-page: 1 year: 2021 end-page: 13 ident: bib0041 article-title: The ANTsX ecosystem for quantitative biological and medical imaging publication-title: Sci. Rep. – reference: Chatterjee, S., Mattern, H., Dörner, M., Sciarra, A., Dubost, F., Schnurre, H., Khatun, R., Yu, C.-C., Hsieh, T.-L., Tsai, Y.-S., Fang, Y.-Z., Yang, Y.-C., Huang, J.-D., Xu, M., Liu, S., Ribeiro, F.L., Bollmann, S., Chintalapati, K.V., Radhakrishna, C.M., Kumara, S.C.H.R., Sutrave, R., Qayyum, A., Mazher, M., Razzak, I., Rodero, C., Niederren, S., Lin, F., Xia, Y., Wang, J., Qiu, R., Wang, L., Panah, A.Y., Jurdi, R.El, Fu, G., Arslan, J., Vaillant, G., Valabregue, R., Dormont, D., Stankoff, B., Colliot, O., Vargas, L., Chacón, I.D., Pitsiorlas, I., Arbeláez, P., Zuluaga, M.A., Schreiber, S., Speck, O., Nürnberger, A., 2024. SMILE-UHURA Challenge – Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms. – volume: 8 start-page: 291 year: 2022 ident: bib0035 article-title: Local-sensitive connectivity filter (LS-CF): a post-processing unsupervised improvement of the Frangi, Hessian and vesselness filters for multimodal vessel segmentation publication-title: J. ImAging – volume: 89 year: 2021 ident: bib0029 article-title: A comparative analysis framework of 3T and 7T TOF-MRA based on automated cerebrovascular segmentation publication-title: Comput. Med. Imaging Graph. – reference: . – volume: 322 start-page: 200 year: 2012 end-page: 205 ident: bib0039 article-title: Measurements of lenticulostriate arteries using 7T MRI: new imaging markers for subcortical vascular dementia publication-title: J. Neurol. Sci. – volume: 5 start-page: 1 year: 2021 end-page: 7 ident: bib0002 article-title: On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking publication-title: Eur. Radiol. Exp. – volume: 18 start-page: 203 year: 2020 end-page: 211 ident: bib0020 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods – volume: 8 start-page: 259 year: 2022 ident: bib0006 article-title: DS6, Deformation-aware Semi-supervised learning: application to small vessel segmentation with noisy training data publication-title: J. ImAging – start-page: 1496 year: 1998 ident: bib0015 article-title: Multiscale vessel enhancement filtering. Medical Image Computing and Computer-assisted Intervention — MICCAI’98. MICCAI 1998 publication-title: Lect. Notes Comput. Sci. – volume: 14 start-page: 190 year: 2001 end-page: 195 ident: bib55 article-title: Anatomic and clinical correlations of the lenticulostriate arteries publication-title: Clinical Anatomy – reference: Isensee, F., Wald, T., Ulrich, C., Baumgartner, M., Roy, S., Maier-Hein, K., Jäger, P., 2024. nnU-Net revisited: a call for rigorous validation in 3D medical image segmentation. – volume: 1 start-page: 1 year: 2014 end-page: 18 ident: bib0017 article-title: A high-resolution 7-tesla fMRI dataset from complex natural stimulation with an audio movie publication-title: Sci. Data – volume: 25 start-page: 109 year: 2019 end-page: 118 ident: bib0052 article-title: Segmentation of blood vessels using rule-based and machine-learning-based methods: a review publication-title: Multimed. Syst. – volume: 322 start-page: 200 year: 2012 ident: 10.1016/j.neuroimage.2025.121377_bib0039 article-title: Measurements of lenticulostriate arteries using 7T MRI: new imaging markers for subcortical vascular dementia publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2012.05.032 – volume: 2 start-page: 1 year: 2024 ident: 10.1016/j.neuroimage.2025.121377_bib0036 article-title: The contribution of the vascular architecture and cerebrovascular reactivity to the BOLD signal formation across cortical depth publication-title: Imaging Neurosci. doi: 10.1162/imag_a_00203 – volume: 19 start-page: 1416 year: 2012 ident: 10.1016/j.neuroimage.2025.121377_bib0011 article-title: Morphometric analysis, region of supply and microanatomy of the lenticulostriate arteries and their clinical significance publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2011.10.025 – volume: 25 start-page: 1067 year: 2018 ident: 10.1016/j.neuroimage.2025.121377_bib0050 article-title: Evaluation of lenticulostriate arteries changes by 7 T magnetic resonance angiography in type 2 diabetes publication-title: J. Atheroscler. Thromb. doi: 10.5551/jat.43869 – volume: 8 start-page: 291 year: 2022 ident: 10.1016/j.neuroimage.2025.121377_bib0035 article-title: Local-sensitive connectivity filter (LS-CF): a post-processing unsupervised improvement of the Frangi, Hessian and vesselness filters for multimodal vessel segmentation publication-title: J. ImAging doi: 10.3390/jimaging8100291 – volume: 11 start-page: 21300 year: 2023 ident: 10.1016/j.neuroimage.2025.121377_bib0049 article-title: Assessing inter-annotator agreement for medical image segmentation publication-title: IEEe Access. doi: 10.1109/ACCESS.2023.3249759 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.neuroimage.2025.121377_bib0041 article-title: The ANTsX ecosystem for quantitative biological and medical imaging publication-title: Sci. Rep. doi: 10.1038/s41598-021-87564-6 – volume: 199 start-page: 184 year: 2019 ident: 10.1016/j.neuroimage.2025.121377_bib0031 article-title: Characterization of lenticulostriate arteries with high resolution black-blood T1-weighted turbo spin echo with variable flip angles at 3 and 7 tesla publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.065 – volume: 14 start-page: 190 year: 2001 ident: 10.1016/j.neuroimage.2025.121377_bib55 article-title: Anatomic and clinical correlations of the lenticulostriate arteries publication-title: Clinical Anatomy doi: 10.1002/ca.1032 – volume: 30 year: 2021 ident: 10.1016/j.neuroimage.2025.121377_bib0010 article-title: Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2021.102573 – volume: 42 start-page: 2672 year: 2011 ident: 10.1016/j.neuroimage.2025.121377_bib0016 article-title: Vascular Contributions to cognitive impairment and Dementia: a statement for Healthcare professionals from the American Heart Association/American Stroke Association publication-title: Stroke doi: 10.1161/STR.0b013e3182299496 – volume: 13 year: 2022 ident: 10.1016/j.neuroimage.2025.121377_bib0044 article-title: Morphological characteristics of lenticulostriate arteries in a large age-span population: results from 7T TOF-MRA publication-title: Front. Neurol. doi: 10.3389/fneur.2022.944863 – volume: 41 start-page: 2105 year: 2021 ident: 10.1016/j.neuroimage.2025.121377_bib0023 article-title: Lenticulostriate artery combined with neuroimaging markers of cerebral small vessel disease differentiate the pathogenesis of recent subcortical infarction publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X21992622 – volume: 18 start-page: 91 year: 2018 ident: 10.1016/j.neuroimage.2025.121377_bib0001 article-title: User’s guide to correlation coefficients publication-title: Turk. J. Emerg. Med. doi: 10.1016/j.tjem.2018.08.001 – volume: 30 start-page: 349 year: 2021 ident: 10.1016/j.neuroimage.2025.121377_bib0009 article-title: Cerebral small vessel disease: a review publication-title: Adv. Clin. Exp. Med. doi: 10.17219/acem/131216 – volume: 14 start-page: 1285 year: 2020 ident: 10.1016/j.neuroimage.2025.121377_bib0040 article-title: DeepVesselNet: vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.592352 – volume: 11769 start-page: 810 year: 2019 ident: 10.1016/j.neuroimage.2025.121377_bib0004 article-title: Semi-supervised medical image segmentation via learning consistency under transformations publication-title: Med. Image Comput. Comput. Assist. Interv. – MICCAI 2019. MICCAI 2019. Lect. Notes Comput. Sci. – volume: 30 start-page: 1323 year: 2012 ident: 10.1016/j.neuroimage.2025.121377_bib0014 article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network publication-title: Magn. Reson. ImAging doi: 10.1016/j.mri.2012.05.001 – volume: 25 start-page: 400 year: 2016 ident: 10.1016/j.neuroimage.2025.121377_bib0028 article-title: Automatic 3D segmentation and quantification of lenticulostriate arteries from high-resolution 7 tesla MRA images publication-title: IEEe Trans. Image Process. doi: 10.1109/TIP.2015.2499085 – volume: 15 start-page: 1 year: 2024 ident: 10.1016/j.neuroimage.2025.121377_bib0054 article-title: Deep learning-based 3D cerebrovascular segmentation workflow on bright and black blood sequences magnetic resonance angiography publication-title: Insights Imag. – volume: 18 start-page: 684 year: 2019 ident: 10.1016/j.neuroimage.2025.121377_bib0043 article-title: Small vessel disease: mechanisms and clinical implications publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(19)30079-1 – start-page: 274 year: 2017 ident: 10.1016/j.neuroimage.2025.121377_bib0051 article-title: 3D U-net with multi-level deep supervision: fully automatic segmentation of proximal femur in 3D MR images publication-title: Mach. Learn. Med. Imaging. MLMI 2017. Lect. Notes Comput. Sci. 10541 LNCS – volume: 22 start-page: 324 year: 1998 ident: 10.1016/j.neuroimage.2025.121377_bib0019 article-title: Enhancement of MR images using registration for signal averaging publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199803000-00032 – volume: 18 start-page: 95 year: 2023 ident: 10.1016/j.neuroimage.2025.121377_bib0048 article-title: Lenticulostriate artery length and middle cerebral artery plaque as predictors of early neurological deterioration in single subcortical infarction publication-title: Int. J. Stroke doi: 10.1177/17474930221081639 – ident: 10.1016/j.neuroimage.2025.121377_bib0021 doi: 10.1007/978-3-031-72114-4_47 – ident: 10.1016/j.neuroimage.2025.121377_bib0005 – volume: 13 year: 2019 ident: 10.1016/j.neuroimage.2025.121377_bib0013 article-title: Unsupervised cerebrovascular segmentation of TOF-MRA images based on deep neural network and hidden Markov random field model publication-title: Front. Neuroinform. – volume: 12 year: 2021 ident: 10.1016/j.neuroimage.2025.121377_bib0045 article-title: A processing pipeline for quantifying lenticulostriate artery vascular volume in subcortical nuclei publication-title: Front. Neurol. doi: 10.3389/fneur.2021.700476 – volume: 2 start-page: 1 year: 2024 ident: 10.1016/j.neuroimage.2025.121377_bib0053 article-title: Assessment of the macrovascular contribution to resting-state fMRI functional connectivity at 3 tesla publication-title: Imaging Neurosci. – volume: 31 start-page: 5629 year: 2021 ident: 10.1016/j.neuroimage.2025.121377_bib0046 article-title: Visualization of lenticulostriate artery by intracranial dark-blood vessel wall imaging and its relationships with lacunar infarction in basal ganglia: a retrospective study publication-title: Eur. Radiol. doi: 10.1007/s00330-020-07642-7 – volume: 13 year: 2024 ident: 10.1016/j.neuroimage.2025.121377_bib0027 article-title: Association of morphology of lenticulostriate arteries and proximal plaque characteristics with single subcortical infarction: a whole-brain high-resolution vessel wall imaging study publication-title: J. Am. Heart Assoc.: Cardiovasc. Cerebrovasc. Dis. doi: 10.1161/JAHA.123.032856 – volume: 2013 year: 2013 ident: 10.1016/j.neuroimage.2025.121377_bib0012 article-title: The variable origin of the recurrent artery of heubner: an anatomical and morphometric study publication-title: Biomed. Res. Int. doi: 10.1155/2013/873434 – start-page: 416 year: 2023 ident: 10.1016/j.neuroimage.2025.121377_bib0018 article-title: SwinUNETR-V2: stronger swin transformers with stagewise convolutions for 3D medical image segmentation publication-title: Lect. Notes Comput. Sci. (incl. subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 14223 LNCS – volume: 7 start-page: 4762 year: 2014 ident: 10.1016/j.neuroimage.2025.121377_bib0033 article-title: A method for accurate road centerline extraction from a classified image publication-title: IEEe J. Sel. Top. Appl. Earth. Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2309613 – volume: 9351 start-page: 234 year: 2015 ident: 10.1016/j.neuroimage.2025.121377_bib0037 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: Med. Image Comput. Comput.-Assist. Interv. – MICCAI 2015. MICCAI 2015. Lect. Notes Comput. Sci. – volume: 5 start-page: 1 year: 2021 ident: 10.1016/j.neuroimage.2025.121377_bib0002 article-title: On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-020-00200-2 – volume: 18 start-page: 203 year: 2020 ident: 10.1016/j.neuroimage.2025.121377_bib0020 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – volume: 30 start-page: 5999 year: 2017 ident: 10.1016/j.neuroimage.2025.121377_bib0042 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 2 start-page: 143 year: 1998 ident: 10.1016/j.neuroimage.2025.121377_bib0038 article-title: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(98)80009-1 – volume: 25 start-page: 109 year: 2019 ident: 10.1016/j.neuroimage.2025.121377_bib0052 article-title: Segmentation of blood vessels using rule-based and machine-learning-based methods: a review publication-title: Multimed. Syst. doi: 10.1007/s00530-017-0580-7 – volume: 8 start-page: 259 year: 2022 ident: 10.1016/j.neuroimage.2025.121377_bib0006 article-title: DS6, Deformation-aware Semi-supervised learning: application to small vessel segmentation with noisy training data publication-title: J. ImAging doi: 10.3390/jimaging8100259 – volume: 41 start-page: 3520 year: 2022 ident: 10.1016/j.neuroimage.2025.121377_bib0007 article-title: Attention-assisted adversarial model for cerebrovascular segmentation in 3D TOF-MRA volumes publication-title: IEEe Trans. Med. ImAging doi: 10.1109/TMI.2022.3186731 – volume: 89 year: 2021 ident: 10.1016/j.neuroimage.2025.121377_bib0029 article-title: A comparative analysis framework of 3T and 7T TOF-MRA based on automated cerebrovascular segmentation publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2020.101830 – volume: 12 start-page: 1 year: 2022 ident: 10.1016/j.neuroimage.2025.121377_bib0034 article-title: Visualisation of lenticulostriate arteries using contrast-enhanced time-of-flight magnetic resonance angiography at 7 publication-title: Tesla. Sci Rep – volume: 39 start-page: 4962 year: 2018 ident: 10.1016/j.neuroimage.2025.121377_bib0003 article-title: The morphology of the human cerebrovascular system publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24337 – volume: 13 start-page: 97 year: 2019 ident: 10.1016/j.neuroimage.2025.121377_bib0030 article-title: A U-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00097 – volume: 13 year: 2021 ident: 10.1016/j.neuroimage.2025.121377_bib0047 article-title: Characterization of lenticulostriate arteries and its associations with vascular risk factors in community-dwelling elderly publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2021.685571 – volume: 33 start-page: 159 year: 1977 ident: 10.1016/j.neuroimage.2025.121377_bib0025 article-title: The measurement of Observer agreement for categorical data publication-title: Biometrics doi: 10.2307/2529310 – ident: 10.1016/j.neuroimage.2025.121377_bib0024 doi: 10.1007/978-3-031-72980-5_13 – volume: 291 year: 2024 ident: 10.1016/j.neuroimage.2025.121377_bib0026 article-title: In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2024.120597 – volume: 1 start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2025.121377_bib0017 article-title: A high-resolution 7-tesla fMRI dataset from complex natural stimulation with an audio movie publication-title: Sci. Data doi: 10.1038/sdata.2014.3 – start-page: 1496 year: 1998 ident: 10.1016/j.neuroimage.2025.121377_bib0015 article-title: Multiscale vessel enhancement filtering. Medical Image Computing and Computer-assisted Intervention — MICCAI’98. MICCAI 1998 publication-title: Lect. Notes Comput. Sci. – volume: 39 start-page: 1604 year: 2008 ident: 10.1016/j.neuroimage.2025.121377_bib0008 article-title: Observation of the lenticulostriate arteries in the human brain in vivo using 7.0T MR angiography publication-title: Stroke doi: 10.1161/STROKEAHA.107.508002 – volume: 35 start-page: 2107 year: 2016 ident: 10.1016/j.neuroimage.2025.121377_bib0022 article-title: Enhancement of vascular structures in 3D and 2D angiographic images publication-title: IEEe Trans. Med. ImAging doi: 10.1109/TMI.2016.2550102 |
SSID | ssj0009148 |
Score | 2.4861255 |
Snippet | •3D morphology of lenticulostriate arteries may indicate early CSVD pathology.•Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD from 7T... Highlights•3D morphology of lenticulostriate arteries may indicate early CSVD pathology. •Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD... The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 121377 |
SubjectTerms | Algorithms Angiography Arteries Automation Basal ganglia Cardiovascular diseases Cerebral Small Vessel Disease Contrast agents Contrast-Enhanced 7T-TOF-MRA Deep Learning Disease Image processing Lenticulostriate Arteries Morphology MRI Radiology/Diagnostic Imaging Risk factors Segmentation Stroke Vascular diseases Veins & arteries |
Title | LUMEN–A deep learning pipeline for analysis of the 3D morphology of the cerebral lenticulostriate arteries from time-of-flight 7T MRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811925003805 https://www.clinicalkey.es/playcontent/1-s2.0-S1053811925003805 https://dx.doi.org/10.1016/j.neuroimage.2025.121377 https://www.ncbi.nlm.nih.gov/pubmed/40675425 https://www.proquest.com/docview/3246085120 https://www.proquest.com/docview/3231265451 |
Volume | 318 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELbKVkJcEP8slJWRuJqNndiOxWlVWm2B3QN0pd4sx3GqRe0m6m6vVW88AG_IkzCTOFshqFSJY5xYjmzPzDeemc-EvBOmCLrwOQPrLFnmM8Vy5zwLIFhaqUL6lr54NlfTRfbpRJ7skP2-FgbTKqPu73R6q61jyzjO5rhZLsffABmAuQGEIjG8hTymuyI1Sg7I7uTo83R-w73Ls64iTqYMO8SEni7Nq6WNXJ6D8IKzKCSyLaRa32albkOhrTU6fEQeRhhJJ92fPiY7YfWE3J_FQPlT8uPLYnYw_3X9c0LLEBoaL4c4pc2ywQr0QAGsUhcZSWhdUQCCNP1Iz2uY-PaovW_04QKDy2cU7ROeFtbtVR-bQNt0UPC0KdaoULylntUVq87Q36f6mM6-Hj0ji8OD4_0pi3cuMA-2WjMVhC-L0qkiyJy73FdI-ZZUHJnKjMl0YgrjRapcaYoyDdpJ7atcZk7zKnEqfU4Gq3oVXhKaGB8AvZRCFDwrtTTGpUkoRZIHD25ZNiS8n2PbdNQats85-25v1sXiuthuXYbE9Ith-9JRUHYW9P8d-up_9Q3rKLVry-1a2MT-tbOG5MO25x-b847j7vW7xm6HAhyrEO2KZEjebl-DaGO8xq1CfYnfpFwoECI-JC-63badqAw9PdC3r_7r116TB_jU5cztkcHm4jK8AZC1KUbk3vsrPoqiNGqPKn4D8mYn4Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLaqIgEXxE6ggJG4mkkcL7E4VaXVFGbmADNSb5bjONWgdhJ1plfEjR_AP-SX8F7iTIWgUiWuXmTLfsv37LcQ8pabMujSFwy0s2TCC8UK5zwLwFhaqVL6Ln3xdKbGC_HxRJ7skIMhFgbdKqPs72V6J61jyyie5qhdLkdfABmAugGEIvF7C_OY3hIy1-jX9-7blZ-HyUQfDydzhsOjO0_v5NUljVyeA-uCqcgl5lrItb5OR12HQTtddHSf3Isgku73-3xAdsLqIbk9jd_kj8iPyWJ6OPv1_ec-rUJoaSwNcUrbZYvx54ECVKUu5iOhTU0BBtL8Az1v4Ni7h_ah0YcL_Fo-o6id8K2w6Qp9bALtnEHBzqYYoUKxRj1ralafobVP9ZxOPx8_Joujw_nBmMWKC8yDptZMBe6rsnKqDLLIXOFrTPiW1hnmKTNG6NSUxvNcucqUVR60k9rXhRROZ3XqVP6E7K6aVXhGaGp8AOxScV5motLSGJenoeJpETwYZSIh2XDGtu0Ta9jB4-yrvboXi_di-3tJiBkuww6BoyDqLEj_G8zV_5ob1pFn1zaza25T-xddJeT9duYfpHnDdfcGqrHbpQDFKsS6PE3Im203MDb-1rhVaC5xTJ5xBSyUJeRpT23bgxJo54G0ff5fW3tN7ozn04mdHM8-vSB3saf3ntsju5uLy_AS4NamfNWx02-M4ye3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LUMEN-A+Deep+Learning+Pipeline+for+Analysis+of+the+3D+Morphology+of+the+Cerebral+Lenticulostriate+Arteries+from+Time-of-Flight+7T+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Li%2C+Rui&rft.au=Chatterjee%2C+Soumick&rft.au=Jiaerken%2C+Yeerfan&rft.au=Zhou%2C+Xia&rft.date=2025-09-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.spage=121377&rft_id=info:doi/10.1016%2Fj.neuroimage.2025.121377&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10538119%2Fcov200h.gif |