LUMEN–A deep learning pipeline for analysis of the 3D morphology of the cerebral lenticulostriate arteries from time-of-flight 7T MRI

•3D morphology of lenticulostriate arteries may indicate early CSVD pathology.•Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD from 7T TOF-MRA.•Fine-tuned DL model achieved a test Dice score of 0.814±0.029 in LSA segmentation.•Showed limitations of 2D MIP analysis of LSA morpholog...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 318; p. 121377
Main Authors Li, Rui, Chatterjee, Soumick, Jiaerken, Yeerfan, Zhou, Xia, Radhakrishna, Chethan, Benjamin, Philip, Nannoni, Stefania, Tozer, Daniel J., Markus, Hugh S., Rodgers, Christopher T.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2025
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2025.121377

Cover

Abstract •3D morphology of lenticulostriate arteries may indicate early CSVD pathology.•Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD from 7T TOF-MRA.•Fine-tuned DL model achieved a test Dice score of 0.814±0.029 in LSA segmentation.•Showed limitations of 2D MIP analysis of LSA morphology compared to 3D analysis. The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their morphology are linked to cardiovascular risk factors and may indicate early pathology. 7T Time-of-Flight MR angiography (TOF-MRA) enables clear LSA visualisation. We aimed to develop a semi-automated pipeline for quantifying 3D LSA morphology from 7T TOF-MRA in CSVD patients. We used data from a local 7T CSVD study to create a pipeline, LUMEN, comprising two stages: vessel segmentation and LSA quantification. For segmentation, we fine-tuned a deep learning model, DS6, and compared it against nnU-Net and a Frangi-filter pipeline, MSFDF. For quantification, centrelines of LSAs within basal ganglia were extracted to compute branch counts, length, tortuosity, and maximum curvature. This pipeline was applied to 69 subjects, with results compared to traditional analysis measuring LSA morphology on 2D coronal maximum intensity projection (MIP) images. For vessel segmentation, fine-tuned DS6 achieved the highest test Dice score (0.814±0.029) and sensitivity, whereas nnU-Net achieved the best balanced average Hausdorff distance and precision. Visual inspection confirmed that DS6 was most sensitive in detecting LSAs with weak signals. Across 69 subjects, the pipeline with DS6 identified 23.5 ± 8.5 LSA branches. Branch length inside the basal ganglia was 26.4 ± 3.5 mm, and tortuosity was 1.5 ± 0.1. Extracted LSA metrics from 2D MIP analysis and our 3D analysis showed fair-to-moderate correlations. Outliers highlighted the added value of 3D analysis. This open-source deep-learning-based pipeline offers a validated tool quantifying 3D LSA morphology in CSVD patients from 7T-TOF-MRA for clinical research. [Display omitted]
AbstractList •3D morphology of lenticulostriate arteries may indicate early CSVD pathology.•Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD from 7T TOF-MRA.•Fine-tuned DL model achieved a test Dice score of 0.814±0.029 in LSA segmentation.•Showed limitations of 2D MIP analysis of LSA morphology compared to 3D analysis. The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their morphology are linked to cardiovascular risk factors and may indicate early pathology. 7T Time-of-Flight MR angiography (TOF-MRA) enables clear LSA visualisation. We aimed to develop a semi-automated pipeline for quantifying 3D LSA morphology from 7T TOF-MRA in CSVD patients. We used data from a local 7T CSVD study to create a pipeline, LUMEN, comprising two stages: vessel segmentation and LSA quantification. For segmentation, we fine-tuned a deep learning model, DS6, and compared it against nnU-Net and a Frangi-filter pipeline, MSFDF. For quantification, centrelines of LSAs within basal ganglia were extracted to compute branch counts, length, tortuosity, and maximum curvature. This pipeline was applied to 69 subjects, with results compared to traditional analysis measuring LSA morphology on 2D coronal maximum intensity projection (MIP) images. For vessel segmentation, fine-tuned DS6 achieved the highest test Dice score (0.814±0.029) and sensitivity, whereas nnU-Net achieved the best balanced average Hausdorff distance and precision. Visual inspection confirmed that DS6 was most sensitive in detecting LSAs with weak signals. Across 69 subjects, the pipeline with DS6 identified 23.5 ± 8.5 LSA branches. Branch length inside the basal ganglia was 26.4 ± 3.5 mm, and tortuosity was 1.5 ± 0.1. Extracted LSA metrics from 2D MIP analysis and our 3D analysis showed fair-to-moderate correlations. Outliers highlighted the added value of 3D analysis. This open-source deep-learning-based pipeline offers a validated tool quantifying 3D LSA morphology in CSVD patients from 7T-TOF-MRA for clinical research. [Display omitted]
The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their morphology are linked to cardiovascular risk factors and may indicate early pathology. 7T Time-of-Flight MR angiography (TOF-MRA) enables clear LSA visualisation. We aimed to develop a semi-automated pipeline for quantifying 3D LSA morphology from 7T TOF-MRA in CSVD patients. We used data from a local 7T CSVD study to create a pipeline, LUMEN, comprising two stages: vessel segmentation and LSA quantification. For segmentation, we fine-tuned a deep learning model, DS6, and compared it against nnU-Net and a Frangi-filter pipeline, MSFDF. For quantification, centrelines of LSAs within basal ganglia were extracted to compute branch counts, length, tortuosity, and maximum curvature. This pipeline was applied to 69 subjects, with results compared to traditional analysis measuring LSA morphology on 2D coronal maximum intensity projection (MIP) images. For vessel segmentation, fine-tuned DS6 achieved the highest test Dice score (0.814±0.029) and sensitivity, whereas nnU-Net achieved the best balanced average Hausdorff distance and precision. Visual inspection confirmed that DS6 was most sensitive in detecting LSAs with weak signals. Across 69 subjects, the pipeline with DS6 identified 23.5±8.5 LSA branches. Branch length inside the basal ganglia was 26.4±3.5 mm, and tortuosity was 1.5±0.1. Extracted LSA metrics from 2D MIP analysis and our 3D analysis showed fair-to-moderate correlations. Outliers highlighted the added value of 3D analysis. This open-source deep-learning-based pipeline offers a validated tool quantifying 3D LSA morphology in CSVD patients from 7T-TOF-MRA for clinical research.The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their morphology are linked to cardiovascular risk factors and may indicate early pathology. 7T Time-of-Flight MR angiography (TOF-MRA) enables clear LSA visualisation. We aimed to develop a semi-automated pipeline for quantifying 3D LSA morphology from 7T TOF-MRA in CSVD patients. We used data from a local 7T CSVD study to create a pipeline, LUMEN, comprising two stages: vessel segmentation and LSA quantification. For segmentation, we fine-tuned a deep learning model, DS6, and compared it against nnU-Net and a Frangi-filter pipeline, MSFDF. For quantification, centrelines of LSAs within basal ganglia were extracted to compute branch counts, length, tortuosity, and maximum curvature. This pipeline was applied to 69 subjects, with results compared to traditional analysis measuring LSA morphology on 2D coronal maximum intensity projection (MIP) images. For vessel segmentation, fine-tuned DS6 achieved the highest test Dice score (0.814±0.029) and sensitivity, whereas nnU-Net achieved the best balanced average Hausdorff distance and precision. Visual inspection confirmed that DS6 was most sensitive in detecting LSAs with weak signals. Across 69 subjects, the pipeline with DS6 identified 23.5±8.5 LSA branches. Branch length inside the basal ganglia was 26.4±3.5 mm, and tortuosity was 1.5±0.1. Extracted LSA metrics from 2D MIP analysis and our 3D analysis showed fair-to-moderate correlations. Outliers highlighted the added value of 3D analysis. This open-source deep-learning-based pipeline offers a validated tool quantifying 3D LSA morphology in CSVD patients from 7T-TOF-MRA for clinical research.
Highlights•3D morphology of lenticulostriate arteries may indicate early CSVD pathology. •Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD from 7T TOF-MRA. •Fine-tuned DL model achieved a test Dice score of 0.814±0.029 in LSA segmentation. •Showed limitations of 2D MIP analysis of LSA morphology compared to 3D analysis.
The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their morphology are linked to cardiovascular risk factors and may indicate early pathology. 7T Time-of-Flight MR angiography (TOF-MRA) enables clear LSA visualisation. We aimed to develop a semi-automated pipeline for quantifying 3D LSA morphology from 7T TOF-MRA in CSVD patients. We used data from a local 7T CSVD study to create a pipeline, LUMEN, comprising two stages: vessel segmentation and LSA quantification. For segmentation, we fine-tuned a deep learning model, DS6, and compared it against nnU-Net and a Frangi-filter pipeline, MSFDF. For quantification, centrelines of LSAs within basal ganglia were extracted to compute branch counts, length, tortuosity, and maximum curvature. This pipeline was applied to 69 subjects, with results compared to traditional analysis measuring LSA morphology on 2D coronal maximum intensity projection (MIP) images. For vessel segmentation, fine-tuned DS6 achieved the highest test Dice score (0.814±0.029) and sensitivity, whereas nnU-Net achieved the best balanced average Hausdorff distance and precision. Visual inspection confirmed that DS6 was most sensitive in detecting LSAs with weak signals. Across 69 subjects, the pipeline with DS6 identified 23.5 ± 8.5 LSA branches. Branch length inside the basal ganglia was 26.4 ± 3.5 mm, and tortuosity was 1.5 ± 0.1. Extracted LSA metrics from 2D MIP analysis and our 3D analysis showed fair-to-moderate correlations. Outliers highlighted the added value of 3D analysis. This open-source deep-learning-based pipeline offers a validated tool quantifying 3D LSA morphology in CSVD patients from 7T-TOF-MRA for clinical research.
ArticleNumber 121377
Author Nannoni, Stefania
Tozer, Daniel J.
Jiaerken, Yeerfan
Li, Rui
Zhou, Xia
Benjamin, Philip
Rodgers, Christopher T.
Chatterjee, Soumick
Radhakrishna, Chethan
Markus, Hugh S.
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0003-0555-3176
  surname: Li
  fullname: Li, Rui
  email: rl574@cam.ac.uk
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 2
  givenname: Soumick
  orcidid: 0000-0001-7594-1188
  surname: Chatterjee
  fullname: Chatterjee, Soumick
  organization: Genomics Research Centre, Human Technopole, Milan, Italy
– sequence: 3
  givenname: Yeerfan
  orcidid: 0000-0002-0734-4012
  surname: Jiaerken
  fullname: Jiaerken, Yeerfan
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 4
  givenname: Xia
  surname: Zhou
  fullname: Zhou, Xia
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 5
  givenname: Chethan
  surname: Radhakrishna
  fullname: Radhakrishna, Chethan
  organization: Faculty of Computer Science, Otto von Guericke University Magdeburg, Magdeburg, Germany
– sequence: 6
  givenname: Philip
  surname: Benjamin
  fullname: Benjamin, Philip
  organization: Atkinson Morley Regional Neuroscience Centre, St George’s University Hospitals NHS Foundation Trust, London, UK
– sequence: 7
  givenname: Stefania
  surname: Nannoni
  fullname: Nannoni, Stefania
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 8
  givenname: Daniel J.
  surname: Tozer
  fullname: Tozer, Daniel J.
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 9
  givenname: Hugh S.
  surname: Markus
  fullname: Markus, Hugh S.
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 10
  givenname: Christopher T.
  orcidid: 0000-0003-1275-1197
  surname: Rodgers
  fullname: Rodgers, Christopher T.
  organization: Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40675425$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URH_gFZAlNmwy2E7sJBtEKaVUmhYJ2rXlONczHhw72AnS7NjxALxhn4RE0x-pElJXtqzvHvmccw_Rng8eEMKULCih4t1m4WGMwXZqBQtGGF9QRvOyfIYOKKl5VvOS7c13nmcVpfU-OkxpQwipaVG9QPsFESUvGD9Af5bXF6eXN7__HuMWoMcOVPTWr3Bve3DWAzYhYuWV2yabcDB4WAPOP-EuxH4dXFht7x41RGiicpOGH6weXUhDtGoArOIA0ULCJoYOD7aDLJjMOLtaD7i8whffzl-i50a5BK9uzyN0_fn06uRLtvx6dn5yvMx0wUSZCWC6bVolGuAVVZU2k--CGMq5qOq6KEnd1JrlQrV10-ZQKl5qU_FCldQQJfIj9Han28fwc4Q0yM4mDc4pD2FMMmc5ZYIXnE7om0foJoxxSmKmCkEqThmZqNe31Nh00Mo-Tq3ErbyLeAKqHaBjSCmCuUcokXObciMf2pRzm3LX5jT6cTcKUyK_LESZtAWvobUR9CDbYJ8i8v6RiJ56tVq5H7CFdO-JysQkkd_npZl3hnFC8orMBj78X-Bpf_gHKFvX_A
Cites_doi 10.1016/j.jns.2012.05.032
10.1162/imag_a_00203
10.1016/j.jocn.2011.10.025
10.5551/jat.43869
10.3390/jimaging8100291
10.1109/ACCESS.2023.3249759
10.1038/s41598-021-87564-6
10.1016/j.neuroimage.2019.05.065
10.1002/ca.1032
10.1016/j.nicl.2021.102573
10.1161/STR.0b013e3182299496
10.3389/fneur.2022.944863
10.1177/0271678X21992622
10.1016/j.tjem.2018.08.001
10.17219/acem/131216
10.3389/fnins.2020.592352
10.1016/j.mri.2012.05.001
10.1109/TIP.2015.2499085
10.1016/S1474-4422(19)30079-1
10.1097/00004728-199803000-00032
10.1177/17474930221081639
10.1007/978-3-031-72114-4_47
10.3389/fneur.2021.700476
10.1007/s00330-020-07642-7
10.1161/JAHA.123.032856
10.1155/2013/873434
10.1109/JSTARS.2014.2309613
10.1186/s41747-020-00200-2
10.1038/s41592-020-01008-z
10.1016/S1361-8415(98)80009-1
10.1007/s00530-017-0580-7
10.3390/jimaging8100259
10.1109/TMI.2022.3186731
10.1016/j.compmedimag.2020.101830
10.1002/hbm.24337
10.3389/fnins.2019.00097
10.3389/fnagi.2021.685571
10.2307/2529310
10.1007/978-3-031-72980-5_13
10.1016/j.neuroimage.2024.120597
10.1038/sdata.2014.3
10.1161/STROKEAHA.107.508002
10.1109/TMI.2016.2550102
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier Inc.
Copyright Elsevier Limited 2025
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited 2025
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7TK
8FD
FR3
K9.
P64
RC3
7X8
DOI 10.1016/j.neuroimage.2025.121377
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 121377
ExternalDocumentID 40675425
10_1016_j_neuroimage_2025_121377
S1053811925003805
1_s2_0_S1053811925003805
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
6I.
AAFTH
AAYXX
CITATION
AGRNS
ALIPV
NPM
7TK
8FD
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4267-6e2cdbda6be581a8cf21340f15568994709b9c236ad9bd3e7a57cf854a71f0a63
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Fri Sep 05 15:38:48 EDT 2025
Thu Sep 04 04:35:01 EDT 2025
Sat Jul 26 01:47:25 EDT 2025
Wed Aug 27 16:26:52 EDT 2025
Sat Aug 23 17:12:02 EDT 2025
Sat Aug 23 01:30:43 EDT 2025
Tue Aug 26 17:21:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords nnU-Net
Cerebral Small Vessel Disease
Contrast-Enhanced 7T-TOF-MRA
CSVD
MSFDF
MRI
DS6
DL
MCA
CamSVD
ROI
Deep Learning
TOF-MRA
MIP
bAHD
Lenticulostriate Arteries
LSA
LUMEN
ACA
Multi-Scale Frangi Diffusive Filter
Name of the self-configuring segmentation toolbox
Middle cerebral artery
Anterior cerebral artery
Balanced average Hausdorff distance
Time-of-Flight magnetic resonance angiography
Name of the Cambridge 7T Cerebral Small Vessel Disease study cohort
Lenticulostriate artery
Maximum intensity projection
Name of deep-learning vessel segmentation model
Lenticulostriate artery Ultra-high-field Morphology Extraction and quantificatioN (i.e. this toolbox)
Region-of-interest
Language English
License This is an open access article under the CC BY license.
Copyright © 2025. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4267-6e2cdbda6be581a8cf21340f15568994709b9c236ad9bd3e7a57cf854a71f0a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7594-1188
0000-0003-0555-3176
0000-0003-1275-1197
0000-0002-0734-4012
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811925003805
PMID 40675425
PQID 3246085120
PQPubID 2031077
PageCount 1
ParticipantIDs proquest_miscellaneous_3231265451
proquest_journals_3246085120
pubmed_primary_40675425
crossref_primary_10_1016_j_neuroimage_2025_121377
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2025_121377
elsevier_clinicalkeyesjournals_1_s2_0_S1053811925003805
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2025_121377
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2025
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Zhao, Chen, Hou, He (bib0052) 2019; 25
Liao, Rohr, Kang, Cho, Fellow, Wörz (bib0028) 2016; 25
Rodrigues, Rodrigues, Machado, Casanova, Teixeira, Oliva, Bernardes, Liatsis (bib0035) 2022; 8
Zhou, Wu, Luo, Zhou (bib0054) 2024; 15
Ronneberger, Fischer, Brox (bib0037) 2015; 9351
Chojdak-Łukasiewicz, Dziadkowiak, Zimny, Paradowski (bib0009) 2021; 30
Gorelick, Scuteri, Black, Decarli, Greenberg, Iadecola, Launer, Laurent, Lopez, Nyenhuis, Petersen, Schneider, Tzourio, Arnett, Bennett, Chui, Higashida, Lindquist, Nilsson, Roman, Sellke, Seshadri (bib0016) 2011; 42
Jiang, Cao, Yan, Yang, Yuan, Deng, Wu, Sun, Wu, Hao, Anderson, Wu (bib0023) 2021; 41
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0042) 2017; 30
Chen, Jin, Guo, Bai (bib0007) 2022; 41
Roefs, Schellekens, Báez-Yáñez, Bhogal, Groen, van Osch, Siero, Petridou (bib0036) 2024; 2
Fedorov, Beichel, Kalpathy-Cramer, Finet, Fillion-Robin, Pujol, Bauer, Jennings, Fennessy, Sonka, Buatti, Aylward, Miller, Pieper, Kikinis (bib0014) 2012; 30
Zeng, Yang, Li, Yu, Heng, Zheng (bib0051) 2017
Li, Bian, Wu, Fan, Zhang, Zhao, Ji, Yang (bib0027) 2024; 13
.
Osuafor, Rua, Mackinnon, Egle, Benjamin, Tozer, Rodgers, Markus (bib0034) 2022; 12
Aydin, Taha, Hilbert, Khalil, Galinovic, Fiebach, Frey, Madai (bib0002) 2021; 5
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (bib0020) 2020; 18
Frangi, Niessen, Vincken, Viergever (bib0015) 1998
Wei, Jing, Zhuo, Zhang (bib0044) 2022; 13
Bortsova, Dubost, Hogeweg, Katramados, de Bruijne (bib0004) 2019; 11769
Cho, Kang, Han, Kim, Kim, Hong, Park, Kim (bib0008) 2008; 39
Akoglu (bib0001) 2018; 18
El Falougy, Selmeciova, Kubikova, Haviarová (bib0012) 2013; 2013
Jerman, Pernus, Likar, Spiclin (bib0022) 2016; 35
Wei, Zhang, An, Zhuo, Zhang (bib0045) 2021; 12
Deshpande, Jamilpour, Jiang, Michel, Eskandari, Kidwell, Wintermark, Laksari (bib0010) 2021; 30
Seo, Kang, Kim, Yoon, Liao, Wörz, Rohr, Kim, Na, Cho (bib0039) 2012; 322
Wardlaw, Smith, Dichgans (bib0043) 2019; 18
Djulejić, Marinković, Maliković, Jovanović, Djordjević, Ćetković, Todorović, Milisavljević (bib0011) 2012; 19
Chatterjee, Prabhu, Pattadkal, Bortsova, Sarasaen, Dubost, Mattern, de Bruijne, Speck, Nürnberger (bib0006) 2022; 8
Holmes, Hoge, Collins, Woods, Toga, Evans (bib0019) 1998; 22
Yashiro, Kameda, Chida, Todate, Hasegawa, Nagasawa, Uwano, Sasaki, Ogasawara, Ishigaki (bib0050) 2018; 25
Kirchhoff, Y., Rokuss, M.R., Roy, S., Kovacs, B., Ulrich, C., Wald, T., Zenk, M., Vollmuth, P., Kleesiek, J., Isensee, F., Maier-Hein, K., 2024. Skeleton recall loss for connectivity conserving and resource efficient segmentation of thin tubular structures.
Fan, Bian, Chen, Kang, Yang, Tan (bib0013) 2019; 13
Yang, Zamzmi, Angara, Rajaraman, Aquilina, Xue, Jaeger, Papagiannakis, Antani (bib0049) 2023; 11
He, Nath, Yang, Tang, Myronenko, Xu (bib0018) 2023
Li, Buch, Sun, Muccio, Jiang, Chen, Haacke, Zhang, Wisniewski, Ge (bib0026) 2024; 291
Marinković, Gibo, Milisavljević, Ćetković (bib55) 2001; 14
Hanke, Baumgartner, Ibe, Kaule, Pollmann, Speck, Zinke, Stadler (bib0017) 2014; 1
Xie, Wang, Liu, Tang, Chai, Guo, Qian, Chang, Yang, Fan, Xia (bib0046) 2021; 31
Chatterjee, S., Mattern, H., Dörner, M., Sciarra, A., Dubost, F., Schnurre, H., Khatun, R., Yu, C.-C., Hsieh, T.-L., Tsai, Y.-S., Fang, Y.-Z., Yang, Y.-C., Huang, J.-D., Xu, M., Liu, S., Ribeiro, F.L., Bollmann, S., Chintalapati, K.V., Radhakrishna, C.M., Kumara, S.C.H.R., Sutrave, R., Qayyum, A., Mazher, M., Razzak, I., Rodero, C., Niederren, S., Lin, F., Xia, Y., Wang, J., Qiu, R., Wang, L., Panah, A.Y., Jurdi, R.El, Fu, G., Arslan, J., Vaillant, G., Valabregue, R., Dormont, D., Stankoff, B., Colliot, O., Vargas, L., Chacón, I.D., Pitsiorlas, I., Arbeláez, P., Zuluaga, M.A., Schreiber, S., Speck, O., Nürnberger, A., 2024. SMILE-UHURA Challenge – Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms.
Bernier, Cunnane, Whittingstall (bib0003) 2018; 39
Tetteh, Efremov, Forkert, Schneider, Kirschke, Weber, Zimmer, Piraud, Menze (bib0040) 2020; 14
Isensee, F., Wald, T., Ulrich, C., Baumgartner, M., Roy, S., Maier-Hein, K., Jäger, P., 2024. nnU-Net revisited: a call for rigorous validation in 3D medical image segmentation.
Miao, Wang, Shi, Wu (bib0033) 2014; 7
Tustison, Cook, Holbrook, Johnson, Muschelli, Devenyi, Duda, Das, Cullen, Gillen, Yassa, Stone, Gee, Avants (bib0041) 2021; 11
Liu, Chen, Wang, Zhang, Sun, Xue, Liao (bib0029) 2021; 89
Landis, Koch (bib0025) 1977; 33
Livne, Rieger, Aydin, Taha, Akay, Kossen, Sobesky, Kelleher, Hildebrand, Frey, Madai (bib0030) 2019; 13
Xu, Wu, Zhu, Zhang, Jiaerken, Wang, Hong, Yu, Li, Zeng, Luo, Yu, Sun, Zhang, Huang (bib0047) 2021; 13
Sato, Nakajima, Shiraga, Atsumi, Yoshida, Koller, Gerig, Kikinis (bib0038) 1998; 2
Zhong, Tong, Chen (bib0053) 2024; 2
Ma, Sarabi, Yan, Shao, Chen, Yang, Jann, Toga, Shi, Wang (bib0031) 2019; 199
Yan, Jiang, Yang, Yuan, Wang, Deng, Wu, Tang, Wu, Sun, Wu (bib0048) 2023; 18
Gorelick (10.1016/j.neuroimage.2025.121377_bib0016) 2011; 42
Marinković (10.1016/j.neuroimage.2025.121377_bib55) 2001; 14
Zeng (10.1016/j.neuroimage.2025.121377_bib0051) 2017
Tustison (10.1016/j.neuroimage.2025.121377_bib0041) 2021; 11
Osuafor (10.1016/j.neuroimage.2025.121377_bib0034) 2022; 12
Yashiro (10.1016/j.neuroimage.2025.121377_bib0050) 2018; 25
10.1016/j.neuroimage.2025.121377_bib0024
Liao (10.1016/j.neuroimage.2025.121377_bib0028) 2016; 25
Deshpande (10.1016/j.neuroimage.2025.121377_bib0010) 2021; 30
Li (10.1016/j.neuroimage.2025.121377_bib0027) 2024; 13
Wei (10.1016/j.neuroimage.2025.121377_bib0045) 2021; 12
Xu (10.1016/j.neuroimage.2025.121377_bib0047) 2021; 13
Fan (10.1016/j.neuroimage.2025.121377_bib0013) 2019; 13
Ronneberger (10.1016/j.neuroimage.2025.121377_bib0037) 2015; 9351
Seo (10.1016/j.neuroimage.2025.121377_bib0039) 2012; 322
Fedorov (10.1016/j.neuroimage.2025.121377_bib0014) 2012; 30
Xie (10.1016/j.neuroimage.2025.121377_bib0046) 2021; 31
Frangi (10.1016/j.neuroimage.2025.121377_bib0015) 1998
Tetteh (10.1016/j.neuroimage.2025.121377_bib0040) 2020; 14
Wei (10.1016/j.neuroimage.2025.121377_bib0044) 2022; 13
Miao (10.1016/j.neuroimage.2025.121377_bib0033) 2014; 7
Isensee (10.1016/j.neuroimage.2025.121377_bib0020) 2020; 18
Zhao (10.1016/j.neuroimage.2025.121377_bib0052) 2019; 25
Roefs (10.1016/j.neuroimage.2025.121377_bib0036) 2024; 2
Landis (10.1016/j.neuroimage.2025.121377_bib0025) 1977; 33
Bernier (10.1016/j.neuroimage.2025.121377_bib0003) 2018; 39
Zhong (10.1016/j.neuroimage.2025.121377_bib0053) 2024; 2
10.1016/j.neuroimage.2025.121377_bib0005
Ma (10.1016/j.neuroimage.2025.121377_bib0031) 2019; 199
Cho (10.1016/j.neuroimage.2025.121377_bib0008) 2008; 39
El Falougy (10.1016/j.neuroimage.2025.121377_bib0012) 2013; 2013
Yan (10.1016/j.neuroimage.2025.121377_bib0048) 2023; 18
Jiang (10.1016/j.neuroimage.2025.121377_bib0023) 2021; 41
Jerman (10.1016/j.neuroimage.2025.121377_bib0022) 2016; 35
Aydin (10.1016/j.neuroimage.2025.121377_bib0002) 2021; 5
Chatterjee (10.1016/j.neuroimage.2025.121377_bib0006) 2022; 8
Chojdak-Łukasiewicz (10.1016/j.neuroimage.2025.121377_bib0009) 2021; 30
Sato (10.1016/j.neuroimage.2025.121377_bib0038) 1998; 2
Chen (10.1016/j.neuroimage.2025.121377_bib0007) 2022; 41
Zhou (10.1016/j.neuroimage.2025.121377_bib0054) 2024; 15
Bortsova (10.1016/j.neuroimage.2025.121377_bib0004) 2019; 11769
Liu (10.1016/j.neuroimage.2025.121377_bib0029) 2021; 89
Rodrigues (10.1016/j.neuroimage.2025.121377_bib0035) 2022; 8
Wardlaw (10.1016/j.neuroimage.2025.121377_bib0043) 2019; 18
Li (10.1016/j.neuroimage.2025.121377_bib0026) 2024; 291
Akoglu (10.1016/j.neuroimage.2025.121377_bib0001) 2018; 18
10.1016/j.neuroimage.2025.121377_bib0021
Livne (10.1016/j.neuroimage.2025.121377_bib0030) 2019; 13
Yang (10.1016/j.neuroimage.2025.121377_bib0049) 2023; 11
Holmes (10.1016/j.neuroimage.2025.121377_bib0019) 1998; 22
Djulejić (10.1016/j.neuroimage.2025.121377_bib0011) 2012; 19
He (10.1016/j.neuroimage.2025.121377_bib0018) 2023
Hanke (10.1016/j.neuroimage.2025.121377_bib0017) 2014; 1
Vaswani (10.1016/j.neuroimage.2025.121377_bib0042) 2017; 30
References_xml – volume: 13
  year: 2024
  ident: bib0027
  article-title: Association of morphology of lenticulostriate arteries and proximal plaque characteristics with single subcortical infarction: a whole-brain high-resolution vessel wall imaging study
  publication-title: J. Am. Heart Assoc.: Cardiovasc. Cerebrovasc. Dis.
– volume: 15
  start-page: 1
  year: 2024
  end-page: 11
  ident: bib0054
  article-title: Deep learning-based 3D cerebrovascular segmentation workflow on bright and black blood sequences magnetic resonance angiography
  publication-title: Insights Imag.
– volume: 42
  start-page: 2672
  year: 2011
  ident: bib0016
  article-title: Vascular Contributions to cognitive impairment and Dementia: a statement for Healthcare professionals from the American Heart Association/American Stroke Association
  publication-title: Stroke
– volume: 41
  start-page: 3520
  year: 2022
  end-page: 3532
  ident: bib0007
  article-title: Attention-assisted adversarial model for cerebrovascular segmentation in 3D TOF-MRA volumes
  publication-title: IEEe Trans. Med. ImAging
– volume: 13
  year: 2022
  ident: bib0044
  article-title: Morphological characteristics of lenticulostriate arteries in a large age-span population: results from 7T TOF-MRA
  publication-title: Front. Neurol.
– volume: 2
  start-page: 143
  year: 1998
  end-page: 168
  ident: bib0038
  article-title: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images
  publication-title: Med. Image Anal.
– volume: 12
  start-page: 1
  year: 2022
  end-page: 9
  ident: bib0034
  article-title: Visualisation of lenticulostriate arteries using contrast-enhanced time-of-flight magnetic resonance angiography at 7
  publication-title: Tesla. Sci Rep
– volume: 18
  start-page: 91
  year: 2018
  ident: bib0001
  article-title: User’s guide to correlation coefficients
  publication-title: Turk. J. Emerg. Med.
– volume: 13
  year: 2021
  ident: bib0047
  article-title: Characterization of lenticulostriate arteries and its associations with vascular risk factors in community-dwelling elderly
  publication-title: Front. Aging Neurosci.
– volume: 41
  start-page: 2105
  year: 2021
  ident: bib0023
  article-title: Lenticulostriate artery combined with neuroimaging markers of cerebral small vessel disease differentiate the pathogenesis of recent subcortical infarction
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 14
  start-page: 1285
  year: 2020
  ident: bib0040
  article-title: DeepVesselNet: vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes
  publication-title: Front. Neurosci.
– volume: 291
  year: 2024
  ident: bib0026
  article-title: In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T
  publication-title: Neuroimage
– volume: 22
  start-page: 324
  year: 1998
  end-page: 333
  ident: bib0019
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
– start-page: 416
  year: 2023
  end-page: 426
  ident: bib0018
  article-title: SwinUNETR-V2: stronger swin transformers with stagewise convolutions for 3D medical image segmentation
  publication-title: Lect. Notes Comput. Sci. (incl. subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 14223 LNCS
– volume: 39
  start-page: 1604
  year: 2008
  end-page: 1606
  ident: bib0008
  article-title: Observation of the lenticulostriate arteries in the human brain in vivo using 7.0T MR angiography
  publication-title: Stroke
– volume: 18
  start-page: 95
  year: 2023
  end-page: 101
  ident: bib0048
  article-title: Lenticulostriate artery length and middle cerebral artery plaque as predictors of early neurological deterioration in single subcortical infarction
  publication-title: Int. J. Stroke
– volume: 2
  start-page: 1
  year: 2024
  end-page: 20
  ident: bib0053
  article-title: Assessment of the macrovascular contribution to resting-state fMRI functional connectivity at 3 tesla
  publication-title: Imaging Neurosci.
– volume: 30
  start-page: 349
  year: 2021
  end-page: 356
  ident: bib0009
  article-title: Cerebral small vessel disease: a review
  publication-title: Adv. Clin. Exp. Med.
– volume: 33
  start-page: 159
  year: 1977
  ident: bib0025
  article-title: The measurement of Observer agreement for categorical data
  publication-title: Biometrics
– volume: 2
  start-page: 1
  year: 2024
  end-page: 19
  ident: bib0036
  article-title: The contribution of the vascular architecture and cerebrovascular reactivity to the BOLD signal formation across cortical depth
  publication-title: Imaging Neurosci.
– volume: 25
  start-page: 1067
  year: 2018
  end-page: 1075
  ident: bib0050
  article-title: Evaluation of lenticulostriate arteries changes by 7 T magnetic resonance angiography in type 2 diabetes
  publication-title: J. Atheroscler. Thromb.
– volume: 19
  start-page: 1416
  year: 2012
  end-page: 1421
  ident: bib0011
  article-title: Morphometric analysis, region of supply and microanatomy of the lenticulostriate arteries and their clinical significance
  publication-title: J. Clin. Neurosci.
– volume: 25
  start-page: 400
  year: 2016
  end-page: 413
  ident: bib0028
  article-title: Automatic 3D segmentation and quantification of lenticulostriate arteries from high-resolution 7 tesla MRA images
  publication-title: IEEe Trans. Image Process.
– volume: 13
  start-page: 97
  year: 2019
  ident: bib0030
  article-title: A U-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease
  publication-title: Front. Neurosci.
– volume: 199
  start-page: 184
  year: 2019
  end-page: 193
  ident: bib0031
  article-title: Characterization of lenticulostriate arteries with high resolution black-blood T1-weighted turbo spin echo with variable flip angles at 3 and 7 tesla
  publication-title: Neuroimage
– volume: 30
  year: 2021
  ident: bib0010
  article-title: Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature
  publication-title: Neuroimage Clin.
– volume: 35
  start-page: 2107
  year: 2016
  end-page: 2118
  ident: bib0022
  article-title: Enhancement of vascular structures in 3D and 2D angiographic images
  publication-title: IEEe Trans. Med. ImAging
– volume: 30
  start-page: 5999
  year: 2017
  end-page: 6009
  ident: bib0042
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 18
  start-page: 684
  year: 2019
  end-page: 696
  ident: bib0043
  article-title: Small vessel disease: mechanisms and clinical implications
  publication-title: Lancet Neurol.
– volume: 7
  start-page: 4762
  year: 2014
  end-page: 4771
  ident: bib0033
  article-title: A method for accurate road centerline extraction from a classified image
  publication-title: IEEe J. Sel. Top. Appl. Earth. Obs. Remote Sens.
– volume: 9351
  start-page: 234
  year: 2015
  end-page: 241
  ident: bib0037
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: Med. Image Comput. Comput.-Assist. Interv. – MICCAI 2015. MICCAI 2015. Lect. Notes Comput. Sci.
– volume: 13
  year: 2019
  ident: bib0013
  article-title: Unsupervised cerebrovascular segmentation of TOF-MRA images based on deep neural network and hidden Markov random field model
  publication-title: Front. Neuroinform.
– volume: 11769
  start-page: 810
  year: 2019
  end-page: 818
  ident: bib0004
  article-title: Semi-supervised medical image segmentation via learning consistency under transformations
  publication-title: Med. Image Comput. Comput. Assist. Interv. – MICCAI 2019. MICCAI 2019. Lect. Notes Comput. Sci.
– volume: 11
  start-page: 21300
  year: 2023
  end-page: 21312
  ident: bib0049
  article-title: Assessing inter-annotator agreement for medical image segmentation
  publication-title: IEEe Access.
– start-page: 274
  year: 2017
  end-page: 282
  ident: bib0051
  article-title: 3D U-net with multi-level deep supervision: fully automatic segmentation of proximal femur in 3D MR images
  publication-title: Mach. Learn. Med. Imaging. MLMI 2017. Lect. Notes Comput. Sci. 10541 LNCS
– volume: 12
  year: 2021
  ident: bib0045
  article-title: A processing pipeline for quantifying lenticulostriate artery vascular volume in subcortical nuclei
  publication-title: Front. Neurol.
– volume: 39
  start-page: 4962
  year: 2018
  end-page: 4975
  ident: bib0003
  article-title: The morphology of the human cerebrovascular system
  publication-title: Hum. Brain Mapp.
– volume: 2013
  year: 2013
  ident: bib0012
  article-title: The variable origin of the recurrent artery of heubner: an anatomical and morphometric study
  publication-title: Biomed. Res. Int.
– volume: 30
  start-page: 1323
  year: 2012
  end-page: 1341
  ident: bib0014
  article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network
  publication-title: Magn. Reson. ImAging
– volume: 31
  start-page: 5629
  year: 2021
  end-page: 5639
  ident: bib0046
  article-title: Visualization of lenticulostriate artery by intracranial dark-blood vessel wall imaging and its relationships with lacunar infarction in basal ganglia: a retrospective study
  publication-title: Eur. Radiol.
– reference: Kirchhoff, Y., Rokuss, M.R., Roy, S., Kovacs, B., Ulrich, C., Wald, T., Zenk, M., Vollmuth, P., Kleesiek, J., Isensee, F., Maier-Hein, K., 2024. Skeleton recall loss for connectivity conserving and resource efficient segmentation of thin tubular structures.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0041
  article-title: The ANTsX ecosystem for quantitative biological and medical imaging
  publication-title: Sci. Rep.
– reference: Chatterjee, S., Mattern, H., Dörner, M., Sciarra, A., Dubost, F., Schnurre, H., Khatun, R., Yu, C.-C., Hsieh, T.-L., Tsai, Y.-S., Fang, Y.-Z., Yang, Y.-C., Huang, J.-D., Xu, M., Liu, S., Ribeiro, F.L., Bollmann, S., Chintalapati, K.V., Radhakrishna, C.M., Kumara, S.C.H.R., Sutrave, R., Qayyum, A., Mazher, M., Razzak, I., Rodero, C., Niederren, S., Lin, F., Xia, Y., Wang, J., Qiu, R., Wang, L., Panah, A.Y., Jurdi, R.El, Fu, G., Arslan, J., Vaillant, G., Valabregue, R., Dormont, D., Stankoff, B., Colliot, O., Vargas, L., Chacón, I.D., Pitsiorlas, I., Arbeláez, P., Zuluaga, M.A., Schreiber, S., Speck, O., Nürnberger, A., 2024. SMILE-UHURA Challenge – Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms.
– volume: 8
  start-page: 291
  year: 2022
  ident: bib0035
  article-title: Local-sensitive connectivity filter (LS-CF): a post-processing unsupervised improvement of the Frangi, Hessian and vesselness filters for multimodal vessel segmentation
  publication-title: J. ImAging
– volume: 89
  year: 2021
  ident: bib0029
  article-title: A comparative analysis framework of 3T and 7T TOF-MRA based on automated cerebrovascular segmentation
  publication-title: Comput. Med. Imaging Graph.
– reference: .
– volume: 322
  start-page: 200
  year: 2012
  end-page: 205
  ident: bib0039
  article-title: Measurements of lenticulostriate arteries using 7T MRI: new imaging markers for subcortical vascular dementia
  publication-title: J. Neurol. Sci.
– volume: 5
  start-page: 1
  year: 2021
  end-page: 7
  ident: bib0002
  article-title: On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking
  publication-title: Eur. Radiol. Exp.
– volume: 18
  start-page: 203
  year: 2020
  end-page: 211
  ident: bib0020
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
– volume: 8
  start-page: 259
  year: 2022
  ident: bib0006
  article-title: DS6, Deformation-aware Semi-supervised learning: application to small vessel segmentation with noisy training data
  publication-title: J. ImAging
– start-page: 1496
  year: 1998
  ident: bib0015
  article-title: Multiscale vessel enhancement filtering. Medical Image Computing and Computer-assisted Intervention — MICCAI’98. MICCAI 1998
  publication-title: Lect. Notes Comput. Sci.
– volume: 14
  start-page: 190
  year: 2001
  end-page: 195
  ident: bib55
  article-title: Anatomic and clinical correlations of the lenticulostriate arteries
  publication-title: Clinical Anatomy
– reference: Isensee, F., Wald, T., Ulrich, C., Baumgartner, M., Roy, S., Maier-Hein, K., Jäger, P., 2024. nnU-Net revisited: a call for rigorous validation in 3D medical image segmentation.
– volume: 1
  start-page: 1
  year: 2014
  end-page: 18
  ident: bib0017
  article-title: A high-resolution 7-tesla fMRI dataset from complex natural stimulation with an audio movie
  publication-title: Sci. Data
– volume: 25
  start-page: 109
  year: 2019
  end-page: 118
  ident: bib0052
  article-title: Segmentation of blood vessels using rule-based and machine-learning-based methods: a review
  publication-title: Multimed. Syst.
– volume: 322
  start-page: 200
  year: 2012
  ident: 10.1016/j.neuroimage.2025.121377_bib0039
  article-title: Measurements of lenticulostriate arteries using 7T MRI: new imaging markers for subcortical vascular dementia
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2012.05.032
– volume: 2
  start-page: 1
  year: 2024
  ident: 10.1016/j.neuroimage.2025.121377_bib0036
  article-title: The contribution of the vascular architecture and cerebrovascular reactivity to the BOLD signal formation across cortical depth
  publication-title: Imaging Neurosci.
  doi: 10.1162/imag_a_00203
– volume: 19
  start-page: 1416
  year: 2012
  ident: 10.1016/j.neuroimage.2025.121377_bib0011
  article-title: Morphometric analysis, region of supply and microanatomy of the lenticulostriate arteries and their clinical significance
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2011.10.025
– volume: 25
  start-page: 1067
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121377_bib0050
  article-title: Evaluation of lenticulostriate arteries changes by 7 T magnetic resonance angiography in type 2 diabetes
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.43869
– volume: 8
  start-page: 291
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121377_bib0035
  article-title: Local-sensitive connectivity filter (LS-CF): a post-processing unsupervised improvement of the Frangi, Hessian and vesselness filters for multimodal vessel segmentation
  publication-title: J. ImAging
  doi: 10.3390/jimaging8100291
– volume: 11
  start-page: 21300
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121377_bib0049
  article-title: Assessing inter-annotator agreement for medical image segmentation
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2023.3249759
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121377_bib0041
  article-title: The ANTsX ecosystem for quantitative biological and medical imaging
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87564-6
– volume: 199
  start-page: 184
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121377_bib0031
  article-title: Characterization of lenticulostriate arteries with high resolution black-blood T1-weighted turbo spin echo with variable flip angles at 3 and 7 tesla
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.065
– volume: 14
  start-page: 190
  year: 2001
  ident: 10.1016/j.neuroimage.2025.121377_bib55
  article-title: Anatomic and clinical correlations of the lenticulostriate arteries
  publication-title: Clinical Anatomy
  doi: 10.1002/ca.1032
– volume: 30
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121377_bib0010
  article-title: Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2021.102573
– volume: 42
  start-page: 2672
  year: 2011
  ident: 10.1016/j.neuroimage.2025.121377_bib0016
  article-title: Vascular Contributions to cognitive impairment and Dementia: a statement for Healthcare professionals from the American Heart Association/American Stroke Association
  publication-title: Stroke
  doi: 10.1161/STR.0b013e3182299496
– volume: 13
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121377_bib0044
  article-title: Morphological characteristics of lenticulostriate arteries in a large age-span population: results from 7T TOF-MRA
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2022.944863
– volume: 41
  start-page: 2105
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121377_bib0023
  article-title: Lenticulostriate artery combined with neuroimaging markers of cerebral small vessel disease differentiate the pathogenesis of recent subcortical infarction
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678X21992622
– volume: 18
  start-page: 91
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121377_bib0001
  article-title: User’s guide to correlation coefficients
  publication-title: Turk. J. Emerg. Med.
  doi: 10.1016/j.tjem.2018.08.001
– volume: 30
  start-page: 349
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121377_bib0009
  article-title: Cerebral small vessel disease: a review
  publication-title: Adv. Clin. Exp. Med.
  doi: 10.17219/acem/131216
– volume: 14
  start-page: 1285
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121377_bib0040
  article-title: DeepVesselNet: vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.592352
– volume: 11769
  start-page: 810
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121377_bib0004
  article-title: Semi-supervised medical image segmentation via learning consistency under transformations
  publication-title: Med. Image Comput. Comput. Assist. Interv. – MICCAI 2019. MICCAI 2019. Lect. Notes Comput. Sci.
– volume: 30
  start-page: 1323
  year: 2012
  ident: 10.1016/j.neuroimage.2025.121377_bib0014
  article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network
  publication-title: Magn. Reson. ImAging
  doi: 10.1016/j.mri.2012.05.001
– volume: 25
  start-page: 400
  year: 2016
  ident: 10.1016/j.neuroimage.2025.121377_bib0028
  article-title: Automatic 3D segmentation and quantification of lenticulostriate arteries from high-resolution 7 tesla MRA images
  publication-title: IEEe Trans. Image Process.
  doi: 10.1109/TIP.2015.2499085
– volume: 15
  start-page: 1
  year: 2024
  ident: 10.1016/j.neuroimage.2025.121377_bib0054
  article-title: Deep learning-based 3D cerebrovascular segmentation workflow on bright and black blood sequences magnetic resonance angiography
  publication-title: Insights Imag.
– volume: 18
  start-page: 684
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121377_bib0043
  article-title: Small vessel disease: mechanisms and clinical implications
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(19)30079-1
– start-page: 274
  year: 2017
  ident: 10.1016/j.neuroimage.2025.121377_bib0051
  article-title: 3D U-net with multi-level deep supervision: fully automatic segmentation of proximal femur in 3D MR images
  publication-title: Mach. Learn. Med. Imaging. MLMI 2017. Lect. Notes Comput. Sci. 10541 LNCS
– volume: 22
  start-page: 324
  year: 1998
  ident: 10.1016/j.neuroimage.2025.121377_bib0019
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199803000-00032
– volume: 18
  start-page: 95
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121377_bib0048
  article-title: Lenticulostriate artery length and middle cerebral artery plaque as predictors of early neurological deterioration in single subcortical infarction
  publication-title: Int. J. Stroke
  doi: 10.1177/17474930221081639
– ident: 10.1016/j.neuroimage.2025.121377_bib0021
  doi: 10.1007/978-3-031-72114-4_47
– ident: 10.1016/j.neuroimage.2025.121377_bib0005
– volume: 13
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121377_bib0013
  article-title: Unsupervised cerebrovascular segmentation of TOF-MRA images based on deep neural network and hidden Markov random field model
  publication-title: Front. Neuroinform.
– volume: 12
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121377_bib0045
  article-title: A processing pipeline for quantifying lenticulostriate artery vascular volume in subcortical nuclei
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2021.700476
– volume: 2
  start-page: 1
  year: 2024
  ident: 10.1016/j.neuroimage.2025.121377_bib0053
  article-title: Assessment of the macrovascular contribution to resting-state fMRI functional connectivity at 3 tesla
  publication-title: Imaging Neurosci.
– volume: 31
  start-page: 5629
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121377_bib0046
  article-title: Visualization of lenticulostriate artery by intracranial dark-blood vessel wall imaging and its relationships with lacunar infarction in basal ganglia: a retrospective study
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07642-7
– volume: 13
  year: 2024
  ident: 10.1016/j.neuroimage.2025.121377_bib0027
  article-title: Association of morphology of lenticulostriate arteries and proximal plaque characteristics with single subcortical infarction: a whole-brain high-resolution vessel wall imaging study
  publication-title: J. Am. Heart Assoc.: Cardiovasc. Cerebrovasc. Dis.
  doi: 10.1161/JAHA.123.032856
– volume: 2013
  year: 2013
  ident: 10.1016/j.neuroimage.2025.121377_bib0012
  article-title: The variable origin of the recurrent artery of heubner: an anatomical and morphometric study
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2013/873434
– start-page: 416
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121377_bib0018
  article-title: SwinUNETR-V2: stronger swin transformers with stagewise convolutions for 3D medical image segmentation
  publication-title: Lect. Notes Comput. Sci. (incl. subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 14223 LNCS
– volume: 7
  start-page: 4762
  year: 2014
  ident: 10.1016/j.neuroimage.2025.121377_bib0033
  article-title: A method for accurate road centerline extraction from a classified image
  publication-title: IEEe J. Sel. Top. Appl. Earth. Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2309613
– volume: 9351
  start-page: 234
  year: 2015
  ident: 10.1016/j.neuroimage.2025.121377_bib0037
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: Med. Image Comput. Comput.-Assist. Interv. – MICCAI 2015. MICCAI 2015. Lect. Notes Comput. Sci.
– volume: 5
  start-page: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121377_bib0002
  article-title: On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-020-00200-2
– volume: 18
  start-page: 203
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121377_bib0020
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 30
  start-page: 5999
  year: 2017
  ident: 10.1016/j.neuroimage.2025.121377_bib0042
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2
  start-page: 143
  year: 1998
  ident: 10.1016/j.neuroimage.2025.121377_bib0038
  article-title: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(98)80009-1
– volume: 25
  start-page: 109
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121377_bib0052
  article-title: Segmentation of blood vessels using rule-based and machine-learning-based methods: a review
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-017-0580-7
– volume: 8
  start-page: 259
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121377_bib0006
  article-title: DS6, Deformation-aware Semi-supervised learning: application to small vessel segmentation with noisy training data
  publication-title: J. ImAging
  doi: 10.3390/jimaging8100259
– volume: 41
  start-page: 3520
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121377_bib0007
  article-title: Attention-assisted adversarial model for cerebrovascular segmentation in 3D TOF-MRA volumes
  publication-title: IEEe Trans. Med. ImAging
  doi: 10.1109/TMI.2022.3186731
– volume: 89
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121377_bib0029
  article-title: A comparative analysis framework of 3T and 7T TOF-MRA based on automated cerebrovascular segmentation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2020.101830
– volume: 12
  start-page: 1
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121377_bib0034
  article-title: Visualisation of lenticulostriate arteries using contrast-enhanced time-of-flight magnetic resonance angiography at 7
  publication-title: Tesla. Sci Rep
– volume: 39
  start-page: 4962
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121377_bib0003
  article-title: The morphology of the human cerebrovascular system
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24337
– volume: 13
  start-page: 97
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121377_bib0030
  article-title: A U-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00097
– volume: 13
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121377_bib0047
  article-title: Characterization of lenticulostriate arteries and its associations with vascular risk factors in community-dwelling elderly
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2021.685571
– volume: 33
  start-page: 159
  year: 1977
  ident: 10.1016/j.neuroimage.2025.121377_bib0025
  article-title: The measurement of Observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– ident: 10.1016/j.neuroimage.2025.121377_bib0024
  doi: 10.1007/978-3-031-72980-5_13
– volume: 291
  year: 2024
  ident: 10.1016/j.neuroimage.2025.121377_bib0026
  article-title: In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2024.120597
– volume: 1
  start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2025.121377_bib0017
  article-title: A high-resolution 7-tesla fMRI dataset from complex natural stimulation with an audio movie
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.3
– start-page: 1496
  year: 1998
  ident: 10.1016/j.neuroimage.2025.121377_bib0015
  article-title: Multiscale vessel enhancement filtering. Medical Image Computing and Computer-assisted Intervention — MICCAI’98. MICCAI 1998
  publication-title: Lect. Notes Comput. Sci.
– volume: 39
  start-page: 1604
  year: 2008
  ident: 10.1016/j.neuroimage.2025.121377_bib0008
  article-title: Observation of the lenticulostriate arteries in the human brain in vivo using 7.0T MR angiography
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.508002
– volume: 35
  start-page: 2107
  year: 2016
  ident: 10.1016/j.neuroimage.2025.121377_bib0022
  article-title: Enhancement of vascular structures in 3D and 2D angiographic images
  publication-title: IEEe Trans. Med. ImAging
  doi: 10.1109/TMI.2016.2550102
SSID ssj0009148
Score 2.4861255
Snippet •3D morphology of lenticulostriate arteries may indicate early CSVD pathology.•Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD from 7T...
Highlights•3D morphology of lenticulostriate arteries may indicate early CSVD pathology. •Present LUMEN pipeline for analysing 3D morphology of LSAs in CSVD...
The lenticulostriate arteries (LSAs) supply critical subcortical brain structures and are affected in cerebral small vessel disease (CSVD). Changes in their...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 121377
SubjectTerms Algorithms
Angiography
Arteries
Automation
Basal ganglia
Cardiovascular diseases
Cerebral Small Vessel Disease
Contrast agents
Contrast-Enhanced 7T-TOF-MRA
Deep Learning
Disease
Image processing
Lenticulostriate Arteries
Morphology
MRI
Radiology/Diagnostic Imaging
Risk factors
Segmentation
Stroke
Vascular diseases
Veins & arteries
Title LUMEN–A deep learning pipeline for analysis of the 3D morphology of the cerebral lenticulostriate arteries from time-of-flight 7T MRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811925003805
https://www.clinicalkey.es/playcontent/1-s2.0-S1053811925003805
https://dx.doi.org/10.1016/j.neuroimage.2025.121377
https://www.ncbi.nlm.nih.gov/pubmed/40675425
https://www.proquest.com/docview/3246085120
https://www.proquest.com/docview/3231265451
Volume 318
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELbKVkJcEP8slJWRuJqNndiOxWlVWm2B3QN0pd4sx3GqRe0m6m6vVW88AG_IkzCTOFshqFSJY5xYjmzPzDeemc-EvBOmCLrwOQPrLFnmM8Vy5zwLIFhaqUL6lr54NlfTRfbpRJ7skP2-FgbTKqPu73R6q61jyzjO5rhZLsffABmAuQGEIjG8hTymuyI1Sg7I7uTo83R-w73Ls64iTqYMO8SEni7Nq6WNXJ6D8IKzKCSyLaRa32albkOhrTU6fEQeRhhJJ92fPiY7YfWE3J_FQPlT8uPLYnYw_3X9c0LLEBoaL4c4pc2ywQr0QAGsUhcZSWhdUQCCNP1Iz2uY-PaovW_04QKDy2cU7ROeFtbtVR-bQNt0UPC0KdaoULylntUVq87Q36f6mM6-Hj0ji8OD4_0pi3cuMA-2WjMVhC-L0qkiyJy73FdI-ZZUHJnKjMl0YgrjRapcaYoyDdpJ7atcZk7zKnEqfU4Gq3oVXhKaGB8AvZRCFDwrtTTGpUkoRZIHD25ZNiS8n2PbdNQats85-25v1sXiuthuXYbE9Ith-9JRUHYW9P8d-up_9Q3rKLVry-1a2MT-tbOG5MO25x-b847j7vW7xm6HAhyrEO2KZEjebl-DaGO8xq1CfYnfpFwoECI-JC-63badqAw9PdC3r_7r116TB_jU5cztkcHm4jK8AZC1KUbk3vsrPoqiNGqPKn4D8mYn4Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLaqIgEXxE6ggJG4mkkcL7E4VaXVFGbmADNSb5bjONWgdhJ1plfEjR_AP-SX8F7iTIWgUiWuXmTLfsv37LcQ8pabMujSFwy0s2TCC8UK5zwLwFhaqVL6Ln3xdKbGC_HxRJ7skIMhFgbdKqPs72V6J61jyyie5qhdLkdfABmAugGEIvF7C_OY3hIy1-jX9-7blZ-HyUQfDydzhsOjO0_v5NUljVyeA-uCqcgl5lrItb5OR12HQTtddHSf3Isgku73-3xAdsLqIbk9jd_kj8iPyWJ6OPv1_ec-rUJoaSwNcUrbZYvx54ECVKUu5iOhTU0BBtL8Az1v4Ni7h_ah0YcL_Fo-o6id8K2w6Qp9bALtnEHBzqYYoUKxRj1ralafobVP9ZxOPx8_Joujw_nBmMWKC8yDptZMBe6rsnKqDLLIXOFrTPiW1hnmKTNG6NSUxvNcucqUVR60k9rXhRROZ3XqVP6E7K6aVXhGaGp8AOxScV5motLSGJenoeJpETwYZSIh2XDGtu0Ta9jB4-yrvboXi_di-3tJiBkuww6BoyDqLEj_G8zV_5ob1pFn1zaza25T-xddJeT9duYfpHnDdfcGqrHbpQDFKsS6PE3Im203MDb-1rhVaC5xTJ5xBSyUJeRpT23bgxJo54G0ff5fW3tN7ozn04mdHM8-vSB3saf3ntsju5uLy_AS4NamfNWx02-M4ye3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LUMEN-A+Deep+Learning+Pipeline+for+Analysis+of+the+3D+Morphology+of+the+Cerebral+Lenticulostriate+Arteries+from+Time-of-Flight+7T+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Li%2C+Rui&rft.au=Chatterjee%2C+Soumick&rft.au=Jiaerken%2C+Yeerfan&rft.au=Zhou%2C+Xia&rft.date=2025-09-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.spage=121377&rft_id=info:doi/10.1016%2Fj.neuroimage.2025.121377&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10538119%2Fcov200h.gif