Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time?

Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal‐to‐noise ratio, longer acquisition time or both. This study investigates whether so‐called super‐resolution reconstruction methods can increase the resolution in the slice selection direction and, as such...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 68; no. 6; pp. 1983 - 1993
Main Authors Plenge, Esben, Poot, Dirk H. J., Bernsen, Monique, Kotek, Gyula, Houston, Gavin, Wielopolski, Piotr, van der Weerd, Louise, Niessen, Wiro J., Meijering, Erik
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.24187

Cover

Loading…
Abstract Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal‐to‐noise ratio, longer acquisition time or both. This study investigates whether so‐called super‐resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high‐resolution acquisition in terms of the signal‐to‐noise ratio and acquisition time trade‐offs. The performance of six super‐resolution reconstruction methods and direct high‐resolution acquisitions was compared with respect to these trade‐offs. The methods are based on iterative back‐projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low‐resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super‐resolution reconstruction can indeed improve the resolution, signal‐to‐noise ratio and acquisition time trade‐offs compared with direct high‐resolution acquisition. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.
AbstractList Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal‐to‐noise ratio, longer acquisition time or both. This study investigates whether so‐called super‐resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high‐resolution acquisition in terms of the signal‐to‐noise ratio and acquisition time trade‐offs. The performance of six super‐resolution reconstruction methods and direct high‐resolution acquisitions was compared with respect to these trade‐offs. The methods are based on iterative back‐projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low‐resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super‐resolution reconstruction can indeed improve the resolution, signal‐to‐noise ratio and acquisition time trade‐offs compared with direct high‐resolution acquisition. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.
Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal-to-noise ratio, longer acquisition time or both. This study investigates whether so-called super-resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high-resolution acquisition in terms of the signal-to-noise ratio and acquisition time trade-offs. The performance of six super-resolution reconstruction methods and direct high-resolution acquisitions was compared with respect to these trade-offs. The methods are based on iterative back-projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low-resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super-resolution reconstruction can indeed improve the resolution, signal-to-noise ratio and acquisition time trade-offs compared with direct high-resolution acquisition. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal-to-noise ratio, longer acquisition time or both. This study investigates whether so-called super-resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high-resolution acquisition in terms of the signal-to-noise ratio and acquisition time trade-offs. The performance of six super-resolution reconstruction methods and direct high-resolution acquisitions was compared with respect to these trade-offs. The methods are based on iterative back-projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low-resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super-resolution reconstruction can indeed improve the resolution, signal-to-noise ratio and acquisition time trade-offs compared with direct high-resolution acquisition.
Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal-to-noise ratio, longer acquisition time or both. This study investigates whether so-called super-resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high-resolution acquisition in terms of the signal-to-noise ratio and acquisition time trade-offs. The performance of six super-resolution reconstruction methods and direct high-resolution acquisitions was compared with respect to these trade-offs. The methods are based on iterative back-projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low-resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super-resolution reconstruction can indeed improve the resolution, signal-to-noise ratio and acquisition time trade-offs compared with direct high-resolution acquisition.Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal-to-noise ratio, longer acquisition time or both. This study investigates whether so-called super-resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high-resolution acquisition in terms of the signal-to-noise ratio and acquisition time trade-offs. The performance of six super-resolution reconstruction methods and direct high-resolution acquisitions was compared with respect to these trade-offs. The methods are based on iterative back-projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low-resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super-resolution reconstruction can indeed improve the resolution, signal-to-noise ratio and acquisition time trade-offs compared with direct high-resolution acquisition.
Author Wielopolski, Piotr
Bernsen, Monique
Kotek, Gyula
Meijering, Erik
Houston, Gavin
van der Weerd, Louise
Plenge, Esben
Niessen, Wiro J.
Poot, Dirk H. J.
Author_xml – sequence: 1
  givenname: Esben
  surname: Plenge
  fullname: Plenge, Esben
  email: e.plenge@erasmusmc.nl
  organization: Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC - University Medical Center, Rotterdam, Rotterdam, The Netherlands
– sequence: 2
  givenname: Dirk H. J.
  surname: Poot
  fullname: Poot, Dirk H. J.
  organization: Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC - University Medical Center, Rotterdam, Rotterdam, The Netherlands
– sequence: 3
  givenname: Monique
  surname: Bernsen
  fullname: Bernsen, Monique
  organization: Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
– sequence: 4
  givenname: Gyula
  surname: Kotek
  fullname: Kotek, Gyula
  organization: Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
– sequence: 5
  givenname: Gavin
  surname: Houston
  fullname: Houston, Gavin
  organization: Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
– sequence: 6
  givenname: Piotr
  surname: Wielopolski
  fullname: Wielopolski, Piotr
  organization: Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
– sequence: 7
  givenname: Louise
  surname: van der Weerd
  fullname: van der Weerd, Louise
  organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
– sequence: 8
  givenname: Wiro J.
  surname: Niessen
  fullname: Niessen, Wiro J.
  organization: Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC - University Medical Center, Rotterdam, Rotterdam, The Netherlands
– sequence: 9
  givenname: Erik
  surname: Meijering
  fullname: Meijering, Erik
  organization: Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC - University Medical Center, Rotterdam, Rotterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22298247$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAUhS1URKeFBX8AWWIDUtP6lcRhg9CIPqSZgobX0nKcG-qS2FM7aZkdPx1PZwakClZXtr9zrHvOAdpz3gFCzyk5poSwkz70x0xQWT5CE5ozlrG8EntoQkpBMk4rsY8OYrwmhFRVKZ6gfcZYJZkoJ-jXp3EJIQsQfTcO1jvcw3Dlm4itw_PFxRs81Q4PV7DCtl8GfwvrAx6CbiDzbYtrGO4AHP7rcISj_e50lw0-c95GwEGn-yOsXYO1uRlttPc_DbaHt0_R41Z3EZ5t5yH6cvr-8_Q8m304u5i-m2VGsKLMCspNmWtuctkQMBI4LyThRQsGeN2ymmigdXoxNUiq08h5LQotWWsIbyg_RK82vmmJmxHioHobDXSdduDHqChN0UhBc5nQlw_Qaz-GtNGaKmVVSJGzRL3YUmPdQ6OWwfY6rNQu2wScbAATfIwBWmXssE7CpfRspyhR6_ZUak_dt5cUrx8odqb_Yrfud7aD1f9BNV_Md4pso7BxgJ9_FDr8UEXJy1x9uzxTXxdidl5cluoj_w2di7mV
CODEN MRMEEN
CitedBy_id crossref_primary_10_1002_hbm_26640
crossref_primary_10_1016_j_compmedimag_2022_102071
crossref_primary_10_1088_1361_6560_ad33b6
crossref_primary_10_1007_s11760_020_01817_x
crossref_primary_10_3390_app14114420
crossref_primary_10_1088_1361_6560_ad0b65
crossref_primary_10_3390_diagnostics12040877
crossref_primary_10_1109_JBHI_2015_2470682
crossref_primary_10_3390_s24206639
crossref_primary_10_1002_mrm_29273
crossref_primary_10_1016_j_compbiomed_2023_107605
crossref_primary_10_1016_j_eij_2013_03_003
crossref_primary_10_1016_j_mri_2022_01_016
crossref_primary_10_1088_1742_6596_1903_1_012050
crossref_primary_10_3390_bioengineering11020186
crossref_primary_10_1002_mp_13717
crossref_primary_10_1002_mrm_25597
crossref_primary_10_1016_j_radonc_2020_01_026
crossref_primary_10_1002_mrm_28743
crossref_primary_10_1016_j_mri_2017_03_008
crossref_primary_10_1007_s12652_024_04751_9
crossref_primary_10_1016_j_neuroimage_2021_118673
crossref_primary_10_1016_j_neuroimage_2024_120506
crossref_primary_10_1109_JBHI_2023_3271815
crossref_primary_10_1016_j_neuroimage_2013_06_030
crossref_primary_10_1097_RMR_0000000000000249
crossref_primary_10_1109_TMI_2017_2656907
crossref_primary_10_1016_j_acra_2024_02_049
crossref_primary_10_3389_fnins_2021_636268
crossref_primary_10_1002_nbm_5130
crossref_primary_10_3390_app122211758
crossref_primary_10_1109_TIP_2019_2921882
crossref_primary_10_1109_TMI_2016_2549918
crossref_primary_10_1088_1361_6560_aab9e9
crossref_primary_10_1002_jmri_24759
crossref_primary_10_1109_ACCESS_2022_3140810
crossref_primary_10_3934_mbe_2024326
crossref_primary_10_1002_mrm_26715
crossref_primary_10_1097_RLI_0000000000000769
crossref_primary_10_1007_s11265_018_1408_1
crossref_primary_10_1007_s11042_023_16478_4
crossref_primary_10_1016_j_media_2020_101941
crossref_primary_10_31159_ksmrt_2017_27_2_13
crossref_primary_10_1016_j_bspc_2024_106154
crossref_primary_10_3103_S0735272721060017
crossref_primary_10_1002_mp_14152
crossref_primary_10_1118_1_4935149
crossref_primary_10_3390_rs12050810
crossref_primary_10_1002_mp_17306
crossref_primary_10_1016_j_cviu_2020_103075
crossref_primary_10_1109_TNNLS_2023_3250491
crossref_primary_10_1002_mp_12132
crossref_primary_10_1002_nbm_3108
crossref_primary_10_1016_j_media_2023_102831
crossref_primary_10_1111_vru_13279
crossref_primary_10_1111_jon_12929
crossref_primary_10_1016_j_media_2023_103000
crossref_primary_10_1002_advs_202301232
crossref_primary_10_1016_j_ymeth_2020_09_007
crossref_primary_10_1007_s00330_020_07051_w
crossref_primary_10_1016_j_knosys_2022_108669
crossref_primary_10_1111_jon_13234
crossref_primary_10_1016_j_bspc_2020_101941
crossref_primary_10_3390_jcm11092526
crossref_primary_10_1007_s00261_024_04256_1
crossref_primary_10_1111_exsy_13564
crossref_primary_10_1016_j_compmedimag_2021_101973
crossref_primary_10_1109_TMI_2020_3037187
crossref_primary_10_1109_TCI_2022_3208511
crossref_primary_10_1002_mrm_29447
crossref_primary_10_1007_s12194_019_00520_y
crossref_primary_10_1109_TCI_2020_2964201
crossref_primary_10_1016_j_compeleceng_2015_09_011
crossref_primary_10_1016_j_neuroimage_2023_120419
crossref_primary_10_1002_mrm_28518
crossref_primary_10_1007_s12149_021_01600_z
crossref_primary_10_1016_j_artmed_2021_102196
crossref_primary_10_1016_j_mri_2016_10_009
crossref_primary_10_1038_s41551_024_01283_7
crossref_primary_10_2214_AJR_20_24172
crossref_primary_10_1002_mp_15380
crossref_primary_10_3389_fnins_2022_1044510
crossref_primary_10_3390_app11219802
crossref_primary_10_1016_j_media_2025_103549
crossref_primary_10_1002_mrm_27178
crossref_primary_10_1109_TMI_2018_2807451
crossref_primary_10_4236_jbise_2012_512A109
crossref_primary_10_1109_TMM_2023_3330085
crossref_primary_10_1186_s12870_021_03161_9
crossref_primary_10_1109_TMI_2020_2974858
crossref_primary_10_1002_mrm_25157
crossref_primary_10_1002_mrm_27852
crossref_primary_10_1088_2057_1976_ac1c51
crossref_primary_10_1097_RLI_0000000000000676
crossref_primary_10_1155_2013_820874
crossref_primary_10_1002_mrm_26923
crossref_primary_10_1088_1361_6560_ad209c
crossref_primary_10_1109_TMI_2015_2497159
crossref_primary_10_1016_j_ins_2022_05_061
crossref_primary_10_1088_1742_6596_2089_1_012029
crossref_primary_10_1007_s10994_025_06744_x
crossref_primary_10_1109_JBHI_2018_2843819
crossref_primary_10_1016_j_diii_2022_06_006
crossref_primary_10_54294_lskxqm
crossref_primary_10_1088_1361_6560_ac9c40
crossref_primary_10_1109_TIM_2023_3346519
crossref_primary_10_1088_1361_6560_aaec91
crossref_primary_10_3389_fradi_2023_1155866
crossref_primary_10_1109_ACCESS_2020_3020133
crossref_primary_10_1109_JTEHM_2021_3076152
crossref_primary_10_3390_s21092978
crossref_primary_10_1049_iet_ipr_2017_0517
crossref_primary_10_1002_mrm_30365
crossref_primary_10_1016_j_neuroimage_2015_06_018
crossref_primary_10_1002_mrm_26262
crossref_primary_10_1002_mrm_29377
crossref_primary_10_1016_j_mri_2024_110239
crossref_primary_10_1002_nbm_4474
crossref_primary_10_1002_mrm_27591
crossref_primary_10_1109_TCSVT_2021_3070489
crossref_primary_10_1016_j_zemedi_2018_11_002
crossref_primary_10_1002_cmr_a_21249
crossref_primary_10_34133_plantphenomics_0076
crossref_primary_10_1109_TCI_2024_3393723
crossref_primary_10_1038_s41598_022_13658_4
crossref_primary_10_1371_journal_pone_0108730
crossref_primary_10_1002_jmri_27324
crossref_primary_10_1016_j_jmr_2019_07_020
crossref_primary_10_2174_1874120702115010170
crossref_primary_10_3390_jimaging7060101
crossref_primary_10_1002_mrm_27981
crossref_primary_10_20862_0042_4676_2020_101_2_103_112
crossref_primary_10_1142_S2424905X2140002X
crossref_primary_10_32604_cmes_2023_021438
crossref_primary_10_1016_j_neuroimage_2021_118869
crossref_primary_10_1109_TMI_2022_3142610
crossref_primary_10_1038_s41598_021_00558_2
crossref_primary_10_1088_1361_6560_ac232e
crossref_primary_10_3389_fradi_2021_713681
crossref_primary_10_1002_mrm_28315
crossref_primary_10_1016_j_media_2024_103359
crossref_primary_10_1016_j_ejro_2024_100617
crossref_primary_10_1016_j_radonc_2019_04_005
crossref_primary_10_1007_s10334_025_01234_6
crossref_primary_10_1109_TNNLS_2022_3153088
crossref_primary_10_1002_jmri_29061
crossref_primary_10_1097_RLI_0000000000001118
crossref_primary_10_1002_jmri_29062
Cites_doi 10.1002/mrm.10203
10.1109/TMI.2010.2051680
10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
10.1002/mrm.10237
10.1364/JOSAA.6.001715
10.1093/comjnl/bxm075
10.1002/nbm.1042
10.1002/mrm.21391
10.1155/2007/43953
10.1109/MSP.2003.1203207
10.1109/TPAMI.2004.1261081
10.1016/j.acra.2006.05.003
10.1109/TMI.2008.2007348
10.1016/1049-9652(91)90045-L
10.1007/s00330-003-1992-7
10.1002/ima.20016
10.1016/0022-5193(70)90109-8
10.1109/83.650118
10.1007/978-3-540-79490-5_8
10.1109/TIP.2006.871079
10.1002/mrm.1910340618
10.1016/0022-5193(73)90145-8
10.1002/1522-2594(200101)45:1<29::AID-MRM1005>3.0.CO;2-Z
10.1016/S0730-725X(02)00511-8
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.24187
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Biochemistry Abstracts 1
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1993
ExternalDocumentID 2821437671
22298247
10_1002_mrm_24187
MRM24187
ark_67375_WNG_VR4LH6N7_P
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Medical Delta (HST‐Klein project), European Commission in the Seventh Framework Programme (ENCITE project)
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c4267-613c75a3c58d0ec8e3368036fece3bf2b0ae1b0eccbe81accb53b46a82fc03d13
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 02:22:06 EDT 2025
Fri Jul 25 12:25:27 EDT 2025
Mon Jul 21 05:58:34 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Tue Jul 01 01:20:50 EDT 2025
Wed Jan 22 16:54:11 EST 2025
Wed Oct 30 09:56:19 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4267-613c75a3c58d0ec8e3368036fece3bf2b0ae1b0eccbe81accb53b46a82fc03d13
Notes istex:98C7018B1AF1EE9583A9BEF8E4266A696AD00CFB
ArticleID:MRM24187
Medical Delta (HST-Klein project), European Commission in the Seventh Framework Programme (ENCITE project)
ark:/67375/WNG-VR4LH6N7-P
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.24187
PMID 22298247
PQID 1178968452
PQPubID 1016391
PageCount 11
ParticipantIDs proquest_miscellaneous_1197484158
proquest_journals_1178968452
pubmed_primary_22298247
crossref_citationtrail_10_1002_mrm_24187
crossref_primary_10_1002_mrm_24187
wiley_primary_10_1002_mrm_24187_MRM24187
istex_primary_ark_67375_WNG_VR4LH6N7_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Pipe JG. Motion correction with PROPELLER MRI: Application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42: 963-969.
Kaczmarz S. Angenäherte Auflösung von Systemen linearer Gleichungen. Bull Acad Pol Sci Lett A 1937; 355-357.
Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 1970; 29: 471-481.
Park S, Park M, Kang M. Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 2003; 20: 21-36.
Lin Z, Shum HY. Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Trans Pattern Anal Mach Intell 2004; 26: 83-97.
Irani M, Peleg S. Improving resolution by image registration. CVGIP: Graph Models Image Process 1991; 53: 231-239.
Pruessmann K. Encoding and reconstruction in parallel MRI. NMR Biomed 2006; 19: 288-299.
Peled S, Yeshurun Y. Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med 2001; 45: 29-35.
van Eekeren AWM, Schutte K, Oudegeest OR, van Vliet LJ. Performance evaluation of super-resolution reconstruction methods on real-world data. EURASIP J Adv Signal Process 2007; 2007: 1-12.
Shilling RZ, Robbie TQ, Bailloeul T, Mewes K, Mersereau RM, Brummer ME. A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI. IEEE Trans Med Imaging 2009; 28: 633-644.
Greenspan H, Oz G, Kiryati N, Peled S. MRI inter-slice reconstruction using super-resolution. Magn Reson Imaging 2002; 20: 437-446.
Elad M, Feuer A. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans Image Process 1997; 6: 1646-1658.
Scheffler K. Superresolution in MRI? Magn Reson Med 2002; 48: 408.
Stark H, Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections. J Opt Soc Am A 1989; 6: 1715-1726.
Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995; 34: 910-914.
Haacke EM, Brown RW, Thomson MR, Venkatesan R. Magnetic resonance imaging. Physical principles and sequence design. New York: Wiley; 1999.
Herman GT, Lent A, Rowland SW. ART: Mathematics and applications. A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques. J Theor Biol 1973; 42: 1-32.
Gholipour A, Estroff J, Warfield S. Robust super-resolution volume reconstruction from slice acquisitions: Application to fetal brain MRI. IEEE Trans Med Imaging 2010; 29: 1739-1758.
Rousseau F, Glenn OA, Iordanova B, Rodriguez-Carranza C, Vigneron DB, Barkovich JA, Studholme C. Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad Radiol 2006; 13: 1072-1081.
Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182-1195.
Robinson D, Milanfar P. Statistical performance analysis of super-resolution. IEEE Trans Image Process 2006; 15: 1413-1428.
Greenspan H. Super-resolution in medical imaging. Comput J 2009; 52: 43-63.
Peled S, Yeshurun Y. Superresolution in MRI - Perhaps sometimes. Magn Reson Med 2002; 48: 409-409.
Heidemann RM, Özsarlak O, Parizel PM, Michiels J, Kiefer B, Jellus V, Müller M, Breuer F, Blaimer M, Griswold MA, Jakob PM. A brief review of parallel magnetic resonance imaging. Eur Radiol 2003; 13: 2323-2337.
Peeters RR, Kornprobst P, Nikolova M, Sunaert S, Vieville T, Malandain G, Deriche R, Faugeras O, Ng M, Hecke PV. The use of superresolution techniques to reduce slice thickness in functional MRI. Int J Imag Syst Tech 2004; 14: 131-138.
2006; 13
2010
2004; 26
1995; 34
1991; 53
1989; 6
2006; 15
2003; 13
1998
2008
2006; 19
1999; 42
1997; 6
2001; 45
1937
2007; 58
1999
2009; 28
2002; 48
2009; 52
1973; 42
2001
2002; 20
2010; 29
1984; 1
2007; 2007
2004; 14
1970; 29
2003; 20
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
Kaczmarz S (e_1_2_7_29_2) 1937
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_6_2
Tsai RY (e_1_2_7_7_2) 1984
e_1_2_7_19_2
e_1_2_7_18_2
Haacke EM (e_1_2_7_2_2) 1999
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
Zomet A (e_1_2_7_28_2) 2001
Rousseau F (e_1_2_7_17_2) 2010
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
Poot DHJ (e_1_2_7_22_2) 2010
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
References_xml – reference: Kaczmarz S. Angenäherte Auflösung von Systemen linearer Gleichungen. Bull Acad Pol Sci Lett A 1937; 355-357.
– reference: Greenspan H, Oz G, Kiryati N, Peled S. MRI inter-slice reconstruction using super-resolution. Magn Reson Imaging 2002; 20: 437-446.
– reference: Peeters RR, Kornprobst P, Nikolova M, Sunaert S, Vieville T, Malandain G, Deriche R, Faugeras O, Ng M, Hecke PV. The use of superresolution techniques to reduce slice thickness in functional MRI. Int J Imag Syst Tech 2004; 14: 131-138.
– reference: Pruessmann K. Encoding and reconstruction in parallel MRI. NMR Biomed 2006; 19: 288-299.
– reference: Shilling RZ, Robbie TQ, Bailloeul T, Mewes K, Mersereau RM, Brummer ME. A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI. IEEE Trans Med Imaging 2009; 28: 633-644.
– reference: Herman GT, Lent A, Rowland SW. ART: Mathematics and applications. A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques. J Theor Biol 1973; 42: 1-32.
– reference: Stark H, Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections. J Opt Soc Am A 1989; 6: 1715-1726.
– reference: Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182-1195.
– reference: Pipe JG. Motion correction with PROPELLER MRI: Application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42: 963-969.
– reference: Park S, Park M, Kang M. Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 2003; 20: 21-36.
– reference: Gholipour A, Estroff J, Warfield S. Robust super-resolution volume reconstruction from slice acquisitions: Application to fetal brain MRI. IEEE Trans Med Imaging 2010; 29: 1739-1758.
– reference: Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995; 34: 910-914.
– reference: Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 1970; 29: 471-481.
– reference: van Eekeren AWM, Schutte K, Oudegeest OR, van Vliet LJ. Performance evaluation of super-resolution reconstruction methods on real-world data. EURASIP J Adv Signal Process 2007; 2007: 1-12.
– reference: Rousseau F, Glenn OA, Iordanova B, Rodriguez-Carranza C, Vigneron DB, Barkovich JA, Studholme C. Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad Radiol 2006; 13: 1072-1081.
– reference: Heidemann RM, Özsarlak O, Parizel PM, Michiels J, Kiefer B, Jellus V, Müller M, Breuer F, Blaimer M, Griswold MA, Jakob PM. A brief review of parallel magnetic resonance imaging. Eur Radiol 2003; 13: 2323-2337.
– reference: Peled S, Yeshurun Y. Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med 2001; 45: 29-35.
– reference: Greenspan H. Super-resolution in medical imaging. Comput J 2009; 52: 43-63.
– reference: Robinson D, Milanfar P. Statistical performance analysis of super-resolution. IEEE Trans Image Process 2006; 15: 1413-1428.
– reference: Haacke EM, Brown RW, Thomson MR, Venkatesan R. Magnetic resonance imaging. Physical principles and sequence design. New York: Wiley; 1999.
– reference: Irani M, Peleg S. Improving resolution by image registration. CVGIP: Graph Models Image Process 1991; 53: 231-239.
– reference: Peled S, Yeshurun Y. Superresolution in MRI - Perhaps sometimes. Magn Reson Med 2002; 48: 409-409.
– reference: Elad M, Feuer A. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans Image Process 1997; 6: 1646-1658.
– reference: Lin Z, Shum HY. Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Trans Pattern Anal Mach Intell 2004; 26: 83-97.
– reference: Scheffler K. Superresolution in MRI? Magn Reson Med 2002; 48: 408.
– start-page: 615
  year: 2010
  end-page: 622
– volume: 29
  start-page: 471
  year: 1970
  end-page: 481
  article-title: Algebraic reconstruction techniques (ART) for three‐dimensional electron microscopy and X‐ray photography
  publication-title: J Theor Biol
– volume: 42
  start-page: 963
  year: 1999
  end-page: 969
  article-title: Motion correction with PROPELLER MRI: Application to head motion and free‐breathing cardiac imaging
  publication-title: Magn Reson Med
– volume: 13
  start-page: 2323
  year: 2003
  end-page: 2337
  article-title: A brief review of parallel magnetic resonance imaging
  publication-title: Eur Radiol
– volume: 6
  start-page: 1715
  year: 1989
  end-page: 1726
  article-title: High‐resolution image recovery from image‐plane arrays, using convex projections
  publication-title: J Opt Soc Am A
– year: 2001
– volume: 20
  start-page: 437
  year: 2002
  end-page: 446
  article-title: MRI inter‐slice reconstruction using super‐resolution
  publication-title: Magn Reson Imaging
– volume: 14
  start-page: 131
  year: 2004
  end-page: 138
  article-title: The use of superresolution techniques to reduce slice thickness in functional MRI
  publication-title: Int J Imag Syst Tech
– start-page: 355
  year: 2010
  end-page: 362
– volume: 1
  start-page: 317
  year: 1984
  end-page: 339
– volume: 26
  start-page: 83
  year: 2004
  end-page: 97
  article-title: Fundamental limits of reconstruction‐based superresolution algorithms under local translation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 48
  start-page: 408
  year: 2002
  article-title: Superresolution in MRI?
  publication-title: Magn Reson Med
– volume: 52
  start-page: 43
  year: 2009
  end-page: 63
  article-title: Super‐resolution in medical imaging
  publication-title: Comput J
– volume: 19
  start-page: 288
  year: 2006
  end-page: 299
  article-title: Encoding and reconstruction in parallel MRI
  publication-title: NMR Biomed
– year: 1998
– volume: 20
  start-page: 21
  year: 2003
  end-page: 36
  article-title: Super‐resolution image reconstruction: a technical overview
  publication-title: IEEE Signal Process Mag
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 15
  start-page: 1413
  year: 2006
  end-page: 1428
  article-title: Statistical performance analysis of super‐resolution
  publication-title: IEEE Trans Image Process
– start-page: 355
  year: 1937
  end-page: 357
  article-title: Angenäherte Auflösung von Systemen linearer Gleichungen
  publication-title: Bull Acad Pol Sci Lett A
– volume: 45
  start-page: 29
  year: 2001
  end-page: 35
  article-title: Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging
  publication-title: Magn Reson Med
– start-page: 51
  year: 2008
  end-page: 56
– volume: 2007
  start-page: 1
  year: 2007
  end-page: 12
  article-title: Performance evaluation of super‐resolution reconstruction methods on real‐world data
  publication-title: EURASIP J Adv Signal Process
– volume: 28
  start-page: 633
  year: 2009
  end-page: 644
  article-title: A super‐resolution framework for 3‐D high‐resolution and high‐contrast imaging using 2‐D multislice MRI
  publication-title: IEEE Trans Med Imaging
– volume: 6
  start-page: 1646
  year: 1997
  end-page: 1658
  article-title: Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images
  publication-title: IEEE Trans Image Process
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  article-title: The Rician distribution of noisy MRI data
  publication-title: Magn Reson Med
– volume: 48
  start-page: 409
  year: 2002
  end-page: 409
  article-title: Superresolution in MRI — Perhaps sometimes
  publication-title: Magn Reson Med
– volume: 13
  start-page: 1072
  year: 2006
  end-page: 1081
  article-title: Registration‐based approach for reconstruction of high‐resolution in utero fetal MR brain images
  publication-title: Acad Radiol
– volume: 29
  start-page: 1739
  year: 2010
  end-page: 1758
  article-title: Robust super‐resolution volume reconstruction from slice acquisitions: Application to fetal brain MRI
  publication-title: IEEE Trans Med Imaging
– year: 1999
– volume: 53
  start-page: 231
  year: 1991
  end-page: 239
  article-title: Improving resolution by image registration
  publication-title: CVGIP: Graph Models Image Process
– start-page: 645
  year: 2001
  end-page: 650
– volume: 42
  start-page: 1
  year: 1973
  end-page: 32
  article-title: ART: Mathematics and applications. A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques
  publication-title: J Theor Biol
– start-page: 355
  year: 1937
  ident: e_1_2_7_29_2
  article-title: Angenäherte Auflösung von Systemen linearer Gleichungen
  publication-title: Bull Acad Pol Sci Lett A
– ident: e_1_2_7_24_2
  doi: 10.1002/mrm.10203
– ident: e_1_2_7_18_2
  doi: 10.1109/TMI.2010.2051680
– ident: e_1_2_7_5_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
– ident: e_1_2_7_25_2
  doi: 10.1002/mrm.10237
– start-page: 355
  volume-title: Proceedings of the 13th International Conference on Medical Image Computing and Computer‐Assisted Intervention: Part II
  year: 2010
  ident: e_1_2_7_17_2
– ident: e_1_2_7_30_2
  doi: 10.1364/JOSAA.6.001715
– ident: e_1_2_7_8_2
– ident: e_1_2_7_23_2
  doi: 10.1093/comjnl/bxm075
– ident: e_1_2_7_4_2
  doi: 10.1002/nbm.1042
– ident: e_1_2_7_6_2
  doi: 10.1002/mrm.21391
– ident: e_1_2_7_33_2
  doi: 10.1155/2007/43953
– ident: e_1_2_7_10_2
  doi: 10.1109/MSP.2003.1203207
– ident: e_1_2_7_20_2
  doi: 10.1109/TPAMI.2004.1261081
– start-page: 317
  volume-title: Advances in computer vision and image processing
  year: 1984
  ident: e_1_2_7_7_2
– ident: e_1_2_7_16_2
  doi: 10.1016/j.acra.2006.05.003
– ident: e_1_2_7_21_2
  doi: 10.1109/TMI.2008.2007348
– ident: e_1_2_7_27_2
  doi: 10.1016/1049-9652(91)90045-L
– ident: e_1_2_7_3_2
  doi: 10.1007/s00330-003-1992-7
– ident: e_1_2_7_14_2
  doi: 10.1002/ima.20016
– start-page: 645
  volume-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2001
  ident: e_1_2_7_28_2
– ident: e_1_2_7_31_2
  doi: 10.1016/0022-5193(70)90109-8
– start-page: 615
  volume-title: Proceedings of the 13th International Conference on Medical Image Computing and Computer‐Assisted Intervention: Part I
  year: 2010
  ident: e_1_2_7_22_2
– ident: e_1_2_7_9_2
  doi: 10.1109/83.650118
– ident: e_1_2_7_15_2
  doi: 10.1007/978-3-540-79490-5_8
– ident: e_1_2_7_19_2
  doi: 10.1109/TIP.2006.871079
– ident: e_1_2_7_26_2
  doi: 10.1002/mrm.1910340618
– ident: e_1_2_7_11_2
– ident: e_1_2_7_32_2
  doi: 10.1016/0022-5193(73)90145-8
– ident: e_1_2_7_12_2
  doi: 10.1002/1522-2594(200101)45:1<29::AID-MRM1005>3.0.CO;2-Z
– ident: e_1_2_7_13_2
  doi: 10.1016/S0730-725X(02)00511-8
– volume-title: Magnetic resonance imaging. Physical principles and sequence design
  year: 1999
  ident: e_1_2_7_2_2
SSID ssj0009974
Score 2.4968562
Snippet Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal‐to‐noise ratio, longer acquisition time or both. This study...
Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal-to-noise ratio, longer acquisition time or both. This study...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1983
SubjectTerms Algorithms
Image Enhancement - instrumentation
Image Enhancement - methods
Image Interpretation, Computer-Assisted - instrumentation
Image Interpretation, Computer-Assisted - methods
image quality
magnetic resonance imaging
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Phantoms, Imaging
reconstruction
Reproducibility of Results
Sensitivity and Specificity
Signal-To-Noise Ratio
super-resolution
Title Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time?
URI https://api.istex.fr/ark:/67375/WNG-VR4LH6N7-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24187
https://www.ncbi.nlm.nih.gov/pubmed/22298247
https://www.proquest.com/docview/1178968452
https://www.proquest.com/docview/1197484158
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIhAXCuW1pSCDEOqh2ebhJA4cEKooCyIrtFDaA1LkV6So3aTkIQEnjhz5jfwSxnaSVVGREJc85Eni2DP2Z3v8DUKPSRx6kYqlA9BeOEQQ3-GSMCd3OSeBKxNhJtzSeTQ7JG-Ow-M19GzYC2P5IcYJN20Zpr3WBs54s7ciDV3Wyyl0P1TvJNe-WhoQLVbUUUliGZhjotuZhAysQq6_Nz55ri-6pIv1y0VA8zxuNR3PwQb6NGTZ-pucTLuWT8W3P9gc__OfrqNrPSDFL6wG3UBrqtxEV9J-yX0TXTY-oqK5iX68785U_ev7Txih9wqLbQDqBhclThevn-J9VmKAlF9xYSYrlL7Bbc2kgueqPMe9XxhevWMXax8SdgoCbQWHsioahY1i7mJWSszE566wrmW4LZbq-S10ePDyw_7M6QM5OFD3kd6GGECVs0CEVLpKUBUEEYWuM1dCBTz3ucuUxyFFcEU9Bqcw4CRi1M-FG0gvuI3Wy6pUdxGOOGgdjOGEkjCQ434iJUjyPAfomVPXn6CdoUoz0bOc62Abp5nlZ_YzKOPMlPEEPRpFzyy1x0VCT4xejBKsPtG-cHGYHc1fZR8X5O0smsfZuwnaHhQn65uBRjOp0ySiJIR8PRyTwYD1qgwrVdVpmUTzuXohnaA7VuHGj-lg69QnkIsdozZ_z2eWLlJzsfXvovfQVYB_vnXO2Ubrbd2p-wCxWv7A2NJvbVIndw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKKx4XHuW1UMAghHpotnk4iYOQEKooW9is0LaFXpBlO44UtZuU3UQCThw58hv5JYztJKuiIiEueciTZGLPeMb2-BuEnpI49CIVZw649tIhkviOyAh3clcIErhZIs2EWzqJRofk7VF4tIJedHthLD5EP-GmNcP011rB9YT09hI1dDafDcH-0PgCWtMZvc2AaroEj0oSi8EcE93TJKTDFXL97f7RM9ZoTVfsl_NczbOeqzE9u9fQp45pG3FyPGxqMZTf_sBz_N-_uo6utj4pfmWF6AZaUeU6upS2q-7r6KIJE5WLm-jHfnOq5r--_4RBeiuz2OagXuCixOl07zne4SUGr_IrLsx8hdI3uJ7zTMFzVZ7jNjQML9-xhXUYCT8BgrqCQ1kVC4WNbG5hXmaYy89NYaPLcF3M1Mtb6HD39cHOyGlzOTjQ_JHeiRhAq_NAhjRzlaQqCCIK1jNXUgUi94XLlSegRApFPQ6nMBAk4tTPpRtkXnAbrZZVqe4iHAkQPBjGSZXBWE74SZYBpchz8D5z6voDtNm1KZMt0LnOt3HCLESzz6COmanjAXrSk55adI_ziJ4Zwegp-PxYh8PFIfs4ecM-TMl4FE1i9n6ANjrJYW1PsNBg6jSJKAmBr8d9MeiwXpjhpaoaTZNoSFcvpAN0x0pc_zGdb536BLjYNHLzdz5ZOk3Nxb1_J32ELo8O0jEb703e3UdXwBv0bazOBlqt5416AB5XLR4axfoNs1Urkg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKKyouLGUbKGAQQj000yxO4sABoZZhCs2omlLoASnyFilqJxkyiQScOHLkN_JLeHaWUVGREJcs8kvi2N-zn-3n7yH0lIS-E6hQWmDaC4sI4lpcEmalNufEs2UkzIRbPAnGx-TtiX-ygl50e2Eafoh-wk1rhmmvtYLPZbqzJA2dlbMhdD80vITWSGBTDem96ZI7KooaCuaQ6IYmIh2tkO3u9I-e64zWdLl-ucjSPG-4mp5ndA196vLcOJycDuuKD8W3P-gc__OnrqOrrUWKXzUQuoFWVL6B1uN2zX0DXTZOomJxE_04queq_PX9JwzRW8TiJgL1Amc5jqf7z_EuyzHYlF9xZmYrlL7BVcmkgueKNMWtYxhevmMbaycSdgYCVQGHvMgWChtkbmOWS8zE5zprfMtwlc3Uy1voePT6_e7YaiM5WFD5gd6H6EGdM0_4VNpKUOV5AYW-M1VCeTx1uc2UwyFFcEUdBiff4yRg1E2F7UnHu41W8yJXdxEOOMAOBnFCSRjJcTeSEiR5moLtmVLbHaCtrkoT0dKc62gbZ0lD0OwmUMaJKeMBetKLzhtuj4uEnhlc9BKsPNXOcKGffJy8ST5MycE4mITJ4QBtdsBJ2nZgoanUaRRQ4kO-HvfJoMF6WYblqqi1TKQJXR2fDtCdBnD9x3S0deoSyMWWgc3f85nE09hc3Pt30Udo_XBvlBzsT97dR1fAFHQbR51NtFqVtXoA5lbFHxq1-g1AYypK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-resolution+methods+in+MRI%3A+Can+they+improve+the+trade-off+between+resolution%2C+signal-to-noise+ratio%2C+and+acquisition+time%3F&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Plenge%2C+Esben&rft.au=Poot%2C+Dirk+H.+J&rft.au=Bernsen%2C+Monique&rft.au=Kotek%2C+Gyula&rft.date=2012-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=68&rft.issue=6&rft.spage=1983&rft_id=info:doi/10.1002%2Fmrm.24187&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2821437671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon