Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time?
Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal‐to‐noise ratio, longer acquisition time or both. This study investigates whether so‐called super‐resolution reconstruction methods can increase the resolution in the slice selection direction and, as such...
Saved in:
Published in | Magnetic resonance in medicine Vol. 68; no. 6; pp. 1983 - 1993 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.12.2012
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.24187 |
Cover
Loading…
Abstract | Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal‐to‐noise ratio, longer acquisition time or both. This study investigates whether so‐called super‐resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high‐resolution acquisition in terms of the signal‐to‐noise ratio and acquisition time trade‐offs. The performance of six super‐resolution reconstruction methods and direct high‐resolution acquisitions was compared with respect to these trade‐offs. The methods are based on iterative back‐projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low‐resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super‐resolution reconstruction can indeed improve the resolution, signal‐to‐noise ratio and acquisition time trade‐offs compared with direct high‐resolution acquisition. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc. |
---|---|
AbstractList | Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal‐to‐noise ratio, longer acquisition time or both. This study investigates whether so‐called super‐resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high‐resolution acquisition in terms of the signal‐to‐noise ratio and acquisition time trade‐offs. The performance of six super‐resolution reconstruction methods and direct high‐resolution acquisitions was compared with respect to these trade‐offs. The methods are based on iterative back‐projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low‐resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super‐resolution reconstruction can indeed improve the resolution, signal‐to‐noise ratio and acquisition time trade‐offs compared with direct high‐resolution acquisition. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc. Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal-to-noise ratio, longer acquisition time or both. This study investigates whether so-called super-resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high-resolution acquisition in terms of the signal-to-noise ratio and acquisition time trade-offs. The performance of six super-resolution reconstruction methods and direct high-resolution acquisitions was compared with respect to these trade-offs. The methods are based on iterative back-projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low-resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super-resolution reconstruction can indeed improve the resolution, signal-to-noise ratio and acquisition time trade-offs compared with direct high-resolution acquisition. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal-to-noise ratio, longer acquisition time or both. This study investigates whether so-called super-resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high-resolution acquisition in terms of the signal-to-noise ratio and acquisition time trade-offs. The performance of six super-resolution reconstruction methods and direct high-resolution acquisitions was compared with respect to these trade-offs. The methods are based on iterative back-projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low-resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super-resolution reconstruction can indeed improve the resolution, signal-to-noise ratio and acquisition time trade-offs compared with direct high-resolution acquisition. Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal-to-noise ratio, longer acquisition time or both. This study investigates whether so-called super-resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high-resolution acquisition in terms of the signal-to-noise ratio and acquisition time trade-offs. The performance of six super-resolution reconstruction methods and direct high-resolution acquisitions was compared with respect to these trade-offs. The methods are based on iterative back-projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low-resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super-resolution reconstruction can indeed improve the resolution, signal-to-noise ratio and acquisition time trade-offs compared with direct high-resolution acquisition.Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal-to-noise ratio, longer acquisition time or both. This study investigates whether so-called super-resolution reconstruction methods can increase the resolution in the slice selection direction and, as such, are a viable alternative to direct high-resolution acquisition in terms of the signal-to-noise ratio and acquisition time trade-offs. The performance of six super-resolution reconstruction methods and direct high-resolution acquisitions was compared with respect to these trade-offs. The methods are based on iterative back-projection, algebraic reconstruction, and regularized least squares. The algorithms were applied to low-resolution data sets within which the images were rotated relative to each other. Quantitative experiments involved a computational phantom and a physical phantom containing structures of known dimensions. To visually validate the quantitative evaluations, qualitative experiments were performed, in which images of three different subjects (a phantom, an ex vivo rat knee, and a postmortem mouse) were acquired with different magnetic resonance imaging scanners. The results show that super-resolution reconstruction can indeed improve the resolution, signal-to-noise ratio and acquisition time trade-offs compared with direct high-resolution acquisition. |
Author | Wielopolski, Piotr Bernsen, Monique Kotek, Gyula Meijering, Erik Houston, Gavin van der Weerd, Louise Plenge, Esben Niessen, Wiro J. Poot, Dirk H. J. |
Author_xml | – sequence: 1 givenname: Esben surname: Plenge fullname: Plenge, Esben email: e.plenge@erasmusmc.nl organization: Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC - University Medical Center, Rotterdam, Rotterdam, The Netherlands – sequence: 2 givenname: Dirk H. J. surname: Poot fullname: Poot, Dirk H. J. organization: Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC - University Medical Center, Rotterdam, Rotterdam, The Netherlands – sequence: 3 givenname: Monique surname: Bernsen fullname: Bernsen, Monique organization: Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands – sequence: 4 givenname: Gyula surname: Kotek fullname: Kotek, Gyula organization: Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands – sequence: 5 givenname: Gavin surname: Houston fullname: Houston, Gavin organization: Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands – sequence: 6 givenname: Piotr surname: Wielopolski fullname: Wielopolski, Piotr organization: Department of Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands – sequence: 7 givenname: Louise surname: van der Weerd fullname: van der Weerd, Louise organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 8 givenname: Wiro J. surname: Niessen fullname: Niessen, Wiro J. organization: Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC - University Medical Center, Rotterdam, Rotterdam, The Netherlands – sequence: 9 givenname: Erik surname: Meijering fullname: Meijering, Erik organization: Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC - University Medical Center, Rotterdam, Rotterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22298247$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv1DAUhS1URKeFBX8AWWIDUtP6lcRhg9CIPqSZgobX0nKcG-qS2FM7aZkdPx1PZwakClZXtr9zrHvOAdpz3gFCzyk5poSwkz70x0xQWT5CE5ozlrG8EntoQkpBMk4rsY8OYrwmhFRVKZ6gfcZYJZkoJ-jXp3EJIQsQfTcO1jvcw3Dlm4itw_PFxRs81Q4PV7DCtl8GfwvrAx6CbiDzbYtrGO4AHP7rcISj_e50lw0-c95GwEGn-yOsXYO1uRlttPc_DbaHt0_R41Z3EZ5t5yH6cvr-8_Q8m304u5i-m2VGsKLMCspNmWtuctkQMBI4LyThRQsGeN2ymmigdXoxNUiq08h5LQotWWsIbyg_RK82vmmJmxHioHobDXSdduDHqChN0UhBc5nQlw_Qaz-GtNGaKmVVSJGzRL3YUmPdQ6OWwfY6rNQu2wScbAATfIwBWmXssE7CpfRspyhR6_ZUak_dt5cUrx8odqb_Yrfud7aD1f9BNV_Md4pso7BxgJ9_FDr8UEXJy1x9uzxTXxdidl5cluoj_w2di7mV |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1002_hbm_26640 crossref_primary_10_1016_j_compmedimag_2022_102071 crossref_primary_10_1088_1361_6560_ad33b6 crossref_primary_10_1007_s11760_020_01817_x crossref_primary_10_3390_app14114420 crossref_primary_10_1088_1361_6560_ad0b65 crossref_primary_10_3390_diagnostics12040877 crossref_primary_10_1109_JBHI_2015_2470682 crossref_primary_10_3390_s24206639 crossref_primary_10_1002_mrm_29273 crossref_primary_10_1016_j_compbiomed_2023_107605 crossref_primary_10_1016_j_eij_2013_03_003 crossref_primary_10_1016_j_mri_2022_01_016 crossref_primary_10_1088_1742_6596_1903_1_012050 crossref_primary_10_3390_bioengineering11020186 crossref_primary_10_1002_mp_13717 crossref_primary_10_1002_mrm_25597 crossref_primary_10_1016_j_radonc_2020_01_026 crossref_primary_10_1002_mrm_28743 crossref_primary_10_1016_j_mri_2017_03_008 crossref_primary_10_1007_s12652_024_04751_9 crossref_primary_10_1016_j_neuroimage_2021_118673 crossref_primary_10_1016_j_neuroimage_2024_120506 crossref_primary_10_1109_JBHI_2023_3271815 crossref_primary_10_1016_j_neuroimage_2013_06_030 crossref_primary_10_1097_RMR_0000000000000249 crossref_primary_10_1109_TMI_2017_2656907 crossref_primary_10_1016_j_acra_2024_02_049 crossref_primary_10_3389_fnins_2021_636268 crossref_primary_10_1002_nbm_5130 crossref_primary_10_3390_app122211758 crossref_primary_10_1109_TIP_2019_2921882 crossref_primary_10_1109_TMI_2016_2549918 crossref_primary_10_1088_1361_6560_aab9e9 crossref_primary_10_1002_jmri_24759 crossref_primary_10_1109_ACCESS_2022_3140810 crossref_primary_10_3934_mbe_2024326 crossref_primary_10_1002_mrm_26715 crossref_primary_10_1097_RLI_0000000000000769 crossref_primary_10_1007_s11265_018_1408_1 crossref_primary_10_1007_s11042_023_16478_4 crossref_primary_10_1016_j_media_2020_101941 crossref_primary_10_31159_ksmrt_2017_27_2_13 crossref_primary_10_1016_j_bspc_2024_106154 crossref_primary_10_3103_S0735272721060017 crossref_primary_10_1002_mp_14152 crossref_primary_10_1118_1_4935149 crossref_primary_10_3390_rs12050810 crossref_primary_10_1002_mp_17306 crossref_primary_10_1016_j_cviu_2020_103075 crossref_primary_10_1109_TNNLS_2023_3250491 crossref_primary_10_1002_mp_12132 crossref_primary_10_1002_nbm_3108 crossref_primary_10_1016_j_media_2023_102831 crossref_primary_10_1111_vru_13279 crossref_primary_10_1111_jon_12929 crossref_primary_10_1016_j_media_2023_103000 crossref_primary_10_1002_advs_202301232 crossref_primary_10_1016_j_ymeth_2020_09_007 crossref_primary_10_1007_s00330_020_07051_w crossref_primary_10_1016_j_knosys_2022_108669 crossref_primary_10_1111_jon_13234 crossref_primary_10_1016_j_bspc_2020_101941 crossref_primary_10_3390_jcm11092526 crossref_primary_10_1007_s00261_024_04256_1 crossref_primary_10_1111_exsy_13564 crossref_primary_10_1016_j_compmedimag_2021_101973 crossref_primary_10_1109_TMI_2020_3037187 crossref_primary_10_1109_TCI_2022_3208511 crossref_primary_10_1002_mrm_29447 crossref_primary_10_1007_s12194_019_00520_y crossref_primary_10_1109_TCI_2020_2964201 crossref_primary_10_1016_j_compeleceng_2015_09_011 crossref_primary_10_1016_j_neuroimage_2023_120419 crossref_primary_10_1002_mrm_28518 crossref_primary_10_1007_s12149_021_01600_z crossref_primary_10_1016_j_artmed_2021_102196 crossref_primary_10_1016_j_mri_2016_10_009 crossref_primary_10_1038_s41551_024_01283_7 crossref_primary_10_2214_AJR_20_24172 crossref_primary_10_1002_mp_15380 crossref_primary_10_3389_fnins_2022_1044510 crossref_primary_10_3390_app11219802 crossref_primary_10_1016_j_media_2025_103549 crossref_primary_10_1002_mrm_27178 crossref_primary_10_1109_TMI_2018_2807451 crossref_primary_10_4236_jbise_2012_512A109 crossref_primary_10_1109_TMM_2023_3330085 crossref_primary_10_1186_s12870_021_03161_9 crossref_primary_10_1109_TMI_2020_2974858 crossref_primary_10_1002_mrm_25157 crossref_primary_10_1002_mrm_27852 crossref_primary_10_1088_2057_1976_ac1c51 crossref_primary_10_1097_RLI_0000000000000676 crossref_primary_10_1155_2013_820874 crossref_primary_10_1002_mrm_26923 crossref_primary_10_1088_1361_6560_ad209c crossref_primary_10_1109_TMI_2015_2497159 crossref_primary_10_1016_j_ins_2022_05_061 crossref_primary_10_1088_1742_6596_2089_1_012029 crossref_primary_10_1007_s10994_025_06744_x crossref_primary_10_1109_JBHI_2018_2843819 crossref_primary_10_1016_j_diii_2022_06_006 crossref_primary_10_54294_lskxqm crossref_primary_10_1088_1361_6560_ac9c40 crossref_primary_10_1109_TIM_2023_3346519 crossref_primary_10_1088_1361_6560_aaec91 crossref_primary_10_3389_fradi_2023_1155866 crossref_primary_10_1109_ACCESS_2020_3020133 crossref_primary_10_1109_JTEHM_2021_3076152 crossref_primary_10_3390_s21092978 crossref_primary_10_1049_iet_ipr_2017_0517 crossref_primary_10_1002_mrm_30365 crossref_primary_10_1016_j_neuroimage_2015_06_018 crossref_primary_10_1002_mrm_26262 crossref_primary_10_1002_mrm_29377 crossref_primary_10_1016_j_mri_2024_110239 crossref_primary_10_1002_nbm_4474 crossref_primary_10_1002_mrm_27591 crossref_primary_10_1109_TCSVT_2021_3070489 crossref_primary_10_1016_j_zemedi_2018_11_002 crossref_primary_10_1002_cmr_a_21249 crossref_primary_10_34133_plantphenomics_0076 crossref_primary_10_1109_TCI_2024_3393723 crossref_primary_10_1038_s41598_022_13658_4 crossref_primary_10_1371_journal_pone_0108730 crossref_primary_10_1002_jmri_27324 crossref_primary_10_1016_j_jmr_2019_07_020 crossref_primary_10_2174_1874120702115010170 crossref_primary_10_3390_jimaging7060101 crossref_primary_10_1002_mrm_27981 crossref_primary_10_20862_0042_4676_2020_101_2_103_112 crossref_primary_10_1142_S2424905X2140002X crossref_primary_10_32604_cmes_2023_021438 crossref_primary_10_1016_j_neuroimage_2021_118869 crossref_primary_10_1109_TMI_2022_3142610 crossref_primary_10_1038_s41598_021_00558_2 crossref_primary_10_1088_1361_6560_ac232e crossref_primary_10_3389_fradi_2021_713681 crossref_primary_10_1002_mrm_28315 crossref_primary_10_1016_j_media_2024_103359 crossref_primary_10_1016_j_ejro_2024_100617 crossref_primary_10_1016_j_radonc_2019_04_005 crossref_primary_10_1007_s10334_025_01234_6 crossref_primary_10_1109_TNNLS_2022_3153088 crossref_primary_10_1002_jmri_29061 crossref_primary_10_1097_RLI_0000000000001118 crossref_primary_10_1002_jmri_29062 |
Cites_doi | 10.1002/mrm.10203 10.1109/TMI.2010.2051680 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L 10.1002/mrm.10237 10.1364/JOSAA.6.001715 10.1093/comjnl/bxm075 10.1002/nbm.1042 10.1002/mrm.21391 10.1155/2007/43953 10.1109/MSP.2003.1203207 10.1109/TPAMI.2004.1261081 10.1016/j.acra.2006.05.003 10.1109/TMI.2008.2007348 10.1016/1049-9652(91)90045-L 10.1007/s00330-003-1992-7 10.1002/ima.20016 10.1016/0022-5193(70)90109-8 10.1109/83.650118 10.1007/978-3-540-79490-5_8 10.1109/TIP.2006.871079 10.1002/mrm.1910340618 10.1016/0022-5193(73)90145-8 10.1002/1522-2594(200101)45:1<29::AID-MRM1005>3.0.CO;2-Z 10.1016/S0730-725X(02)00511-8 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.24187 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Biochemistry Abstracts 1 MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1993 |
ExternalDocumentID | 2821437671 22298247 10_1002_mrm_24187 MRM24187 ark_67375_WNG_VR4LH6N7_P |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: Medical Delta (HST‐Klein project), European Commission in the Seventh Framework Programme (ENCITE project) |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c4267-613c75a3c58d0ec8e3368036fece3bf2b0ae1b0eccbe81accb53b46a82fc03d13 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 02:22:06 EDT 2025 Fri Jul 25 12:25:27 EDT 2025 Mon Jul 21 05:58:34 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Tue Jul 01 01:20:50 EDT 2025 Wed Jan 22 16:54:11 EST 2025 Wed Oct 30 09:56:19 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright © 2012 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4267-613c75a3c58d0ec8e3368036fece3bf2b0ae1b0eccbe81accb53b46a82fc03d13 |
Notes | istex:98C7018B1AF1EE9583A9BEF8E4266A696AD00CFB ArticleID:MRM24187 Medical Delta (HST-Klein project), European Commission in the Seventh Framework Programme (ENCITE project) ark:/67375/WNG-VR4LH6N7-P ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.24187 |
PMID | 22298247 |
PQID | 1178968452 |
PQPubID | 1016391 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1197484158 proquest_journals_1178968452 pubmed_primary_22298247 crossref_citationtrail_10_1002_mrm_24187 crossref_primary_10_1002_mrm_24187 wiley_primary_10_1002_mrm_24187_MRM24187 istex_primary_ark_67375_WNG_VR4LH6N7_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | Pipe JG. Motion correction with PROPELLER MRI: Application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42: 963-969. Kaczmarz S. Angenäherte Auflösung von Systemen linearer Gleichungen. Bull Acad Pol Sci Lett A 1937; 355-357. Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 1970; 29: 471-481. Park S, Park M, Kang M. Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 2003; 20: 21-36. Lin Z, Shum HY. Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Trans Pattern Anal Mach Intell 2004; 26: 83-97. Irani M, Peleg S. Improving resolution by image registration. CVGIP: Graph Models Image Process 1991; 53: 231-239. Pruessmann K. Encoding and reconstruction in parallel MRI. NMR Biomed 2006; 19: 288-299. Peled S, Yeshurun Y. Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med 2001; 45: 29-35. van Eekeren AWM, Schutte K, Oudegeest OR, van Vliet LJ. Performance evaluation of super-resolution reconstruction methods on real-world data. EURASIP J Adv Signal Process 2007; 2007: 1-12. Shilling RZ, Robbie TQ, Bailloeul T, Mewes K, Mersereau RM, Brummer ME. A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI. IEEE Trans Med Imaging 2009; 28: 633-644. Greenspan H, Oz G, Kiryati N, Peled S. MRI inter-slice reconstruction using super-resolution. Magn Reson Imaging 2002; 20: 437-446. Elad M, Feuer A. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans Image Process 1997; 6: 1646-1658. Scheffler K. Superresolution in MRI? Magn Reson Med 2002; 48: 408. Stark H, Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections. J Opt Soc Am A 1989; 6: 1715-1726. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995; 34: 910-914. Haacke EM, Brown RW, Thomson MR, Venkatesan R. Magnetic resonance imaging. Physical principles and sequence design. New York: Wiley; 1999. Herman GT, Lent A, Rowland SW. ART: Mathematics and applications. A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques. J Theor Biol 1973; 42: 1-32. Gholipour A, Estroff J, Warfield S. Robust super-resolution volume reconstruction from slice acquisitions: Application to fetal brain MRI. IEEE Trans Med Imaging 2010; 29: 1739-1758. Rousseau F, Glenn OA, Iordanova B, Rodriguez-Carranza C, Vigneron DB, Barkovich JA, Studholme C. Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad Radiol 2006; 13: 1072-1081. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182-1195. Robinson D, Milanfar P. Statistical performance analysis of super-resolution. IEEE Trans Image Process 2006; 15: 1413-1428. Greenspan H. Super-resolution in medical imaging. Comput J 2009; 52: 43-63. Peled S, Yeshurun Y. Superresolution in MRI - Perhaps sometimes. Magn Reson Med 2002; 48: 409-409. Heidemann RM, Özsarlak O, Parizel PM, Michiels J, Kiefer B, Jellus V, Müller M, Breuer F, Blaimer M, Griswold MA, Jakob PM. A brief review of parallel magnetic resonance imaging. Eur Radiol 2003; 13: 2323-2337. Peeters RR, Kornprobst P, Nikolova M, Sunaert S, Vieville T, Malandain G, Deriche R, Faugeras O, Ng M, Hecke PV. The use of superresolution techniques to reduce slice thickness in functional MRI. Int J Imag Syst Tech 2004; 14: 131-138. 2006; 13 2010 2004; 26 1995; 34 1991; 53 1989; 6 2006; 15 2003; 13 1998 2008 2006; 19 1999; 42 1997; 6 2001; 45 1937 2007; 58 1999 2009; 28 2002; 48 2009; 52 1973; 42 2001 2002; 20 2010; 29 1984; 1 2007; 2007 2004; 14 1970; 29 2003; 20 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 Kaczmarz S (e_1_2_7_29_2) 1937 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_6_2 Tsai RY (e_1_2_7_7_2) 1984 e_1_2_7_19_2 e_1_2_7_18_2 Haacke EM (e_1_2_7_2_2) 1999 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 Zomet A (e_1_2_7_28_2) 2001 Rousseau F (e_1_2_7_17_2) 2010 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 Poot DHJ (e_1_2_7_22_2) 2010 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 |
References_xml | – reference: Kaczmarz S. Angenäherte Auflösung von Systemen linearer Gleichungen. Bull Acad Pol Sci Lett A 1937; 355-357. – reference: Greenspan H, Oz G, Kiryati N, Peled S. MRI inter-slice reconstruction using super-resolution. Magn Reson Imaging 2002; 20: 437-446. – reference: Peeters RR, Kornprobst P, Nikolova M, Sunaert S, Vieville T, Malandain G, Deriche R, Faugeras O, Ng M, Hecke PV. The use of superresolution techniques to reduce slice thickness in functional MRI. Int J Imag Syst Tech 2004; 14: 131-138. – reference: Pruessmann K. Encoding and reconstruction in parallel MRI. NMR Biomed 2006; 19: 288-299. – reference: Shilling RZ, Robbie TQ, Bailloeul T, Mewes K, Mersereau RM, Brummer ME. A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI. IEEE Trans Med Imaging 2009; 28: 633-644. – reference: Herman GT, Lent A, Rowland SW. ART: Mathematics and applications. A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques. J Theor Biol 1973; 42: 1-32. – reference: Stark H, Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections. J Opt Soc Am A 1989; 6: 1715-1726. – reference: Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182-1195. – reference: Pipe JG. Motion correction with PROPELLER MRI: Application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42: 963-969. – reference: Park S, Park M, Kang M. Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 2003; 20: 21-36. – reference: Gholipour A, Estroff J, Warfield S. Robust super-resolution volume reconstruction from slice acquisitions: Application to fetal brain MRI. IEEE Trans Med Imaging 2010; 29: 1739-1758. – reference: Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995; 34: 910-914. – reference: Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 1970; 29: 471-481. – reference: van Eekeren AWM, Schutte K, Oudegeest OR, van Vliet LJ. Performance evaluation of super-resolution reconstruction methods on real-world data. EURASIP J Adv Signal Process 2007; 2007: 1-12. – reference: Rousseau F, Glenn OA, Iordanova B, Rodriguez-Carranza C, Vigneron DB, Barkovich JA, Studholme C. Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad Radiol 2006; 13: 1072-1081. – reference: Heidemann RM, Özsarlak O, Parizel PM, Michiels J, Kiefer B, Jellus V, Müller M, Breuer F, Blaimer M, Griswold MA, Jakob PM. A brief review of parallel magnetic resonance imaging. Eur Radiol 2003; 13: 2323-2337. – reference: Peled S, Yeshurun Y. Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med 2001; 45: 29-35. – reference: Greenspan H. Super-resolution in medical imaging. Comput J 2009; 52: 43-63. – reference: Robinson D, Milanfar P. Statistical performance analysis of super-resolution. IEEE Trans Image Process 2006; 15: 1413-1428. – reference: Haacke EM, Brown RW, Thomson MR, Venkatesan R. Magnetic resonance imaging. Physical principles and sequence design. New York: Wiley; 1999. – reference: Irani M, Peleg S. Improving resolution by image registration. CVGIP: Graph Models Image Process 1991; 53: 231-239. – reference: Peled S, Yeshurun Y. Superresolution in MRI - Perhaps sometimes. Magn Reson Med 2002; 48: 409-409. – reference: Elad M, Feuer A. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans Image Process 1997; 6: 1646-1658. – reference: Lin Z, Shum HY. Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Trans Pattern Anal Mach Intell 2004; 26: 83-97. – reference: Scheffler K. Superresolution in MRI? Magn Reson Med 2002; 48: 408. – start-page: 615 year: 2010 end-page: 622 – volume: 29 start-page: 471 year: 1970 end-page: 481 article-title: Algebraic reconstruction techniques (ART) for three‐dimensional electron microscopy and X‐ray photography publication-title: J Theor Biol – volume: 42 start-page: 963 year: 1999 end-page: 969 article-title: Motion correction with PROPELLER MRI: Application to head motion and free‐breathing cardiac imaging publication-title: Magn Reson Med – volume: 13 start-page: 2323 year: 2003 end-page: 2337 article-title: A brief review of parallel magnetic resonance imaging publication-title: Eur Radiol – volume: 6 start-page: 1715 year: 1989 end-page: 1726 article-title: High‐resolution image recovery from image‐plane arrays, using convex projections publication-title: J Opt Soc Am A – year: 2001 – volume: 20 start-page: 437 year: 2002 end-page: 446 article-title: MRI inter‐slice reconstruction using super‐resolution publication-title: Magn Reson Imaging – volume: 14 start-page: 131 year: 2004 end-page: 138 article-title: The use of superresolution techniques to reduce slice thickness in functional MRI publication-title: Int J Imag Syst Tech – start-page: 355 year: 2010 end-page: 362 – volume: 1 start-page: 317 year: 1984 end-page: 339 – volume: 26 start-page: 83 year: 2004 end-page: 97 article-title: Fundamental limits of reconstruction‐based superresolution algorithms under local translation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 48 start-page: 408 year: 2002 article-title: Superresolution in MRI? publication-title: Magn Reson Med – volume: 52 start-page: 43 year: 2009 end-page: 63 article-title: Super‐resolution in medical imaging publication-title: Comput J – volume: 19 start-page: 288 year: 2006 end-page: 299 article-title: Encoding and reconstruction in parallel MRI publication-title: NMR Biomed – year: 1998 – volume: 20 start-page: 21 year: 2003 end-page: 36 article-title: Super‐resolution image reconstruction: a technical overview publication-title: IEEE Signal Process Mag – volume: 58 start-page: 1182 year: 2007 end-page: 1195 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn Reson Med – volume: 15 start-page: 1413 year: 2006 end-page: 1428 article-title: Statistical performance analysis of super‐resolution publication-title: IEEE Trans Image Process – start-page: 355 year: 1937 end-page: 357 article-title: Angenäherte Auflösung von Systemen linearer Gleichungen publication-title: Bull Acad Pol Sci Lett A – volume: 45 start-page: 29 year: 2001 end-page: 35 article-title: Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging publication-title: Magn Reson Med – start-page: 51 year: 2008 end-page: 56 – volume: 2007 start-page: 1 year: 2007 end-page: 12 article-title: Performance evaluation of super‐resolution reconstruction methods on real‐world data publication-title: EURASIP J Adv Signal Process – volume: 28 start-page: 633 year: 2009 end-page: 644 article-title: A super‐resolution framework for 3‐D high‐resolution and high‐contrast imaging using 2‐D multislice MRI publication-title: IEEE Trans Med Imaging – volume: 6 start-page: 1646 year: 1997 end-page: 1658 article-title: Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images publication-title: IEEE Trans Image Process – volume: 34 start-page: 910 year: 1995 end-page: 914 article-title: The Rician distribution of noisy MRI data publication-title: Magn Reson Med – volume: 48 start-page: 409 year: 2002 end-page: 409 article-title: Superresolution in MRI — Perhaps sometimes publication-title: Magn Reson Med – volume: 13 start-page: 1072 year: 2006 end-page: 1081 article-title: Registration‐based approach for reconstruction of high‐resolution in utero fetal MR brain images publication-title: Acad Radiol – volume: 29 start-page: 1739 year: 2010 end-page: 1758 article-title: Robust super‐resolution volume reconstruction from slice acquisitions: Application to fetal brain MRI publication-title: IEEE Trans Med Imaging – year: 1999 – volume: 53 start-page: 231 year: 1991 end-page: 239 article-title: Improving resolution by image registration publication-title: CVGIP: Graph Models Image Process – start-page: 645 year: 2001 end-page: 650 – volume: 42 start-page: 1 year: 1973 end-page: 32 article-title: ART: Mathematics and applications. A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques publication-title: J Theor Biol – start-page: 355 year: 1937 ident: e_1_2_7_29_2 article-title: Angenäherte Auflösung von Systemen linearer Gleichungen publication-title: Bull Acad Pol Sci Lett A – ident: e_1_2_7_24_2 doi: 10.1002/mrm.10203 – ident: e_1_2_7_18_2 doi: 10.1109/TMI.2010.2051680 – ident: e_1_2_7_5_2 doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L – ident: e_1_2_7_25_2 doi: 10.1002/mrm.10237 – start-page: 355 volume-title: Proceedings of the 13th International Conference on Medical Image Computing and Computer‐Assisted Intervention: Part II year: 2010 ident: e_1_2_7_17_2 – ident: e_1_2_7_30_2 doi: 10.1364/JOSAA.6.001715 – ident: e_1_2_7_8_2 – ident: e_1_2_7_23_2 doi: 10.1093/comjnl/bxm075 – ident: e_1_2_7_4_2 doi: 10.1002/nbm.1042 – ident: e_1_2_7_6_2 doi: 10.1002/mrm.21391 – ident: e_1_2_7_33_2 doi: 10.1155/2007/43953 – ident: e_1_2_7_10_2 doi: 10.1109/MSP.2003.1203207 – ident: e_1_2_7_20_2 doi: 10.1109/TPAMI.2004.1261081 – start-page: 317 volume-title: Advances in computer vision and image processing year: 1984 ident: e_1_2_7_7_2 – ident: e_1_2_7_16_2 doi: 10.1016/j.acra.2006.05.003 – ident: e_1_2_7_21_2 doi: 10.1109/TMI.2008.2007348 – ident: e_1_2_7_27_2 doi: 10.1016/1049-9652(91)90045-L – ident: e_1_2_7_3_2 doi: 10.1007/s00330-003-1992-7 – ident: e_1_2_7_14_2 doi: 10.1002/ima.20016 – start-page: 645 volume-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) year: 2001 ident: e_1_2_7_28_2 – ident: e_1_2_7_31_2 doi: 10.1016/0022-5193(70)90109-8 – start-page: 615 volume-title: Proceedings of the 13th International Conference on Medical Image Computing and Computer‐Assisted Intervention: Part I year: 2010 ident: e_1_2_7_22_2 – ident: e_1_2_7_9_2 doi: 10.1109/83.650118 – ident: e_1_2_7_15_2 doi: 10.1007/978-3-540-79490-5_8 – ident: e_1_2_7_19_2 doi: 10.1109/TIP.2006.871079 – ident: e_1_2_7_26_2 doi: 10.1002/mrm.1910340618 – ident: e_1_2_7_11_2 – ident: e_1_2_7_32_2 doi: 10.1016/0022-5193(73)90145-8 – ident: e_1_2_7_12_2 doi: 10.1002/1522-2594(200101)45:1<29::AID-MRM1005>3.0.CO;2-Z – ident: e_1_2_7_13_2 doi: 10.1016/S0730-725X(02)00511-8 – volume-title: Magnetic resonance imaging. Physical principles and sequence design year: 1999 ident: e_1_2_7_2_2 |
SSID | ssj0009974 |
Score | 2.4968562 |
Snippet | Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal‐to‐noise ratio, longer acquisition time or both. This study... Improving the resolution in magnetic resonance imaging comes at the cost of either lower signal-to-noise ratio, longer acquisition time or both. This study... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1983 |
SubjectTerms | Algorithms Image Enhancement - instrumentation Image Enhancement - methods Image Interpretation, Computer-Assisted - instrumentation Image Interpretation, Computer-Assisted - methods image quality magnetic resonance imaging Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Phantoms, Imaging reconstruction Reproducibility of Results Sensitivity and Specificity Signal-To-Noise Ratio super-resolution |
Title | Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? |
URI | https://api.istex.fr/ark:/67375/WNG-VR4LH6N7-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.24187 https://www.ncbi.nlm.nih.gov/pubmed/22298247 https://www.proquest.com/docview/1178968452 https://www.proquest.com/docview/1197484158 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIhAXCuW1pSCDEOqh2ebhJA4cEKooCyIrtFDaA1LkV6So3aTkIQEnjhz5jfwSxnaSVVGREJc85Eni2DP2Z3v8DUKPSRx6kYqlA9BeOEQQ3-GSMCd3OSeBKxNhJtzSeTQ7JG-Ow-M19GzYC2P5IcYJN20Zpr3WBs54s7ciDV3Wyyl0P1TvJNe-WhoQLVbUUUliGZhjotuZhAysQq6_Nz55ri-6pIv1y0VA8zxuNR3PwQb6NGTZ-pucTLuWT8W3P9gc__OfrqNrPSDFL6wG3UBrqtxEV9J-yX0TXTY-oqK5iX68785U_ev7Txih9wqLbQDqBhclThevn-J9VmKAlF9xYSYrlL7Bbc2kgueqPMe9XxhevWMXax8SdgoCbQWHsioahY1i7mJWSszE566wrmW4LZbq-S10ePDyw_7M6QM5OFD3kd6GGECVs0CEVLpKUBUEEYWuM1dCBTz3ucuUxyFFcEU9Bqcw4CRi1M-FG0gvuI3Wy6pUdxGOOGgdjOGEkjCQ434iJUjyPAfomVPXn6CdoUoz0bOc62Abp5nlZ_YzKOPMlPEEPRpFzyy1x0VCT4xejBKsPtG-cHGYHc1fZR8X5O0smsfZuwnaHhQn65uBRjOp0ySiJIR8PRyTwYD1qgwrVdVpmUTzuXohnaA7VuHGj-lg69QnkIsdozZ_z2eWLlJzsfXvovfQVYB_vnXO2Ubrbd2p-wCxWv7A2NJvbVIndw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKKx4XHuW1UMAghHpotnk4iYOQEKooW9is0LaFXpBlO44UtZuU3UQCThw58hv5JYztJKuiIiEueciTZGLPeMb2-BuEnpI49CIVZw649tIhkviOyAh3clcIErhZIs2EWzqJRofk7VF4tIJedHthLD5EP-GmNcP011rB9YT09hI1dDafDcH-0PgCWtMZvc2AaroEj0oSi8EcE93TJKTDFXL97f7RM9ZoTVfsl_NczbOeqzE9u9fQp45pG3FyPGxqMZTf_sBz_N-_uo6utj4pfmWF6AZaUeU6upS2q-7r6KIJE5WLm-jHfnOq5r--_4RBeiuz2OagXuCixOl07zne4SUGr_IrLsx8hdI3uJ7zTMFzVZ7jNjQML9-xhXUYCT8BgrqCQ1kVC4WNbG5hXmaYy89NYaPLcF3M1Mtb6HD39cHOyGlzOTjQ_JHeiRhAq_NAhjRzlaQqCCIK1jNXUgUi94XLlSegRApFPQ6nMBAk4tTPpRtkXnAbrZZVqe4iHAkQPBjGSZXBWE74SZYBpchz8D5z6voDtNm1KZMt0LnOt3HCLESzz6COmanjAXrSk55adI_ziJ4Zwegp-PxYh8PFIfs4ecM-TMl4FE1i9n6ANjrJYW1PsNBg6jSJKAmBr8d9MeiwXpjhpaoaTZNoSFcvpAN0x0pc_zGdb536BLjYNHLzdz5ZOk3Nxb1_J32ELo8O0jEb703e3UdXwBv0bazOBlqt5416AB5XLR4axfoNs1Urkg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKKyouLGUbKGAQQj000yxO4sABoZZhCs2omlLoASnyFilqJxkyiQScOHLkN_JLeHaWUVGREJcs8kvi2N-zn-3n7yH0lIS-E6hQWmDaC4sI4lpcEmalNufEs2UkzIRbPAnGx-TtiX-ygl50e2Eafoh-wk1rhmmvtYLPZbqzJA2dlbMhdD80vITWSGBTDem96ZI7KooaCuaQ6IYmIh2tkO3u9I-e64zWdLl-ucjSPG-4mp5ndA196vLcOJycDuuKD8W3P-gc__OnrqOrrUWKXzUQuoFWVL6B1uN2zX0DXTZOomJxE_04queq_PX9JwzRW8TiJgL1Amc5jqf7z_EuyzHYlF9xZmYrlL7BVcmkgueKNMWtYxhevmMbaycSdgYCVQGHvMgWChtkbmOWS8zE5zprfMtwlc3Uy1voePT6_e7YaiM5WFD5gd6H6EGdM0_4VNpKUOV5AYW-M1VCeTx1uc2UwyFFcEUdBiff4yRg1E2F7UnHu41W8yJXdxEOOMAOBnFCSRjJcTeSEiR5moLtmVLbHaCtrkoT0dKc62gbZ0lD0OwmUMaJKeMBetKLzhtuj4uEnhlc9BKsPNXOcKGffJy8ST5MycE4mITJ4QBtdsBJ2nZgoanUaRRQ4kO-HvfJoMF6WYblqqi1TKQJXR2fDtCdBnD9x3S0deoSyMWWgc3f85nE09hc3Pt30Udo_XBvlBzsT97dR1fAFHQbR51NtFqVtXoA5lbFHxq1-g1AYypK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-resolution+methods+in+MRI%3A+Can+they+improve+the+trade-off+between+resolution%2C+signal-to-noise+ratio%2C+and+acquisition+time%3F&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Plenge%2C+Esben&rft.au=Poot%2C+Dirk+H.+J&rft.au=Bernsen%2C+Monique&rft.au=Kotek%2C+Gyula&rft.date=2012-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=68&rft.issue=6&rft.spage=1983&rft_id=info:doi/10.1002%2Fmrm.24187&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2821437671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |