Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression
1. Apex predators can benefit ecosystems through top—down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could i...
Saved in:
Published in | The Journal of applied ecology Vol. 49; no. 6; pp. 1278 - 1286 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing
01.12.2012
Blackwell Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0021-8901 1365-2664 |
DOI | 10.1111/j.1365-2664.2012.02207.x |
Cover
Loading…
Abstract | 1. Apex predators can benefit ecosystems through top—down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators. 2. We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus. 3. Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn. 4. Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk. 5. Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations. 6. Synthesis and applications. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. |
---|---|
AbstractList | Apex predators can benefit ecosystems through top-down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators.We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus.Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn.Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk.Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations.Synthesis and applications. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. Apex predators can benefit ecosystems through top–down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators. We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus . Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn. Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk. Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations. Synthesis and applications . Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. 1. Apex predators can benefit ecosystems through top—down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators. 2. We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus. 3. Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn. 4. Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk. 5. Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations. 6. Synthesis and applications. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. Apex predators can benefit ecosystems through top-down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators. We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus. Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn. Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk. Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. Summary Apex predators can benefit ecosystems through top–down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators. We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus. Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn. Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk. Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations. Synthesis and applications. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. |
Author | Brook, Leila A. Ritchie, Euan G. Johnson, Christopher N. |
Author_xml | – sequence: 1 givenname: Leila A. surname: Brook fullname: Brook, Leila A. – sequence: 2 givenname: Christopher N. surname: Johnson fullname: Johnson, Christopher N. – sequence: 3 givenname: Euan G. surname: Ritchie fullname: Ritchie, Euan G. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26664358$$DView record in Pascal Francis |
BookMark | eNqNkV1rFDEUhoNUcFv9CUJABG9mzPfMXihI2aqloBd6HbL5wAyzyZgzq9t_30y3bKFXzc0JnOd9c07ec3SWcvIIYUpaWs_HoaVcyYYpJVpGKGsJY6RrDy_Q6tQ4QytCGG36NaGv0DnAQAhZS85XCDYheDsDzgFPxTsz54JtTnPJI84Jb_0f8y_mfVkAk7CZ_OERNMnhmFws1WJRgf-798l6wKF2dx7yCYX9VO8AMafX6GUwI_g3D_UC_b7a_Lr81tz8-Pr98stNYwVTXSOVsNutV_26c8IZLwl3zgrOaxHUGuGpcEL1wShLe2kJ8XTLSJBS1kUd4xfow9F3KrnOBbPeRbB-HE3yeQ-aMtl1HZOcVPTdE3SoO6c6XaUY73kn6bpS7x8oA9aMoZhkI-ipxJ0pt7p-tRJc9pXrj5wtGaD4cEIo0UtqetBLOItC6CU1fZ-aPlTp5ydSG2czxyURE8fnGHw6GvyPo7999sP6-udmuVX926N-gBrb426cSy5r_w7f_72E |
CODEN | JAPEAI |
CitedBy_id | crossref_primary_10_1016_j_anbehav_2024_09_007 crossref_primary_10_1111_jzo_13229 crossref_primary_10_1071_AM20025 crossref_primary_10_1080_10871209_2017_1397824 crossref_primary_10_1071_WR14193 crossref_primary_10_1111_emr_12210 crossref_primary_10_1002_jwmg_21675 crossref_primary_10_1111_ele_13473 crossref_primary_10_1002_ece3_5203 crossref_primary_10_1016_j_tree_2015_01_006 crossref_primary_10_1098_rspb_2015_1602 crossref_primary_10_1111_ecog_04485 crossref_primary_10_1016_j_biocon_2015_05_013 crossref_primary_10_3390_microorganisms9071362 crossref_primary_10_1111_rec_12396 crossref_primary_10_1080_14486563_2014_985267 crossref_primary_10_1016_j_ecoinf_2017_05_002 crossref_primary_10_1371_journal_pone_0092341 crossref_primary_10_3390_ani13040688 crossref_primary_10_1007_s00265_014_1748_1 crossref_primary_10_1080_03014223_2020_1784241 crossref_primary_10_1111_1365_2664_13514 crossref_primary_10_1093_beheco_arz080 crossref_primary_10_1371_journal_pone_0094248 crossref_primary_10_1111_oik_09059 crossref_primary_10_1038_s41559_017_0220_9 crossref_primary_10_1111_1365_2664_12838 crossref_primary_10_1111_ele_13124 crossref_primary_10_1111_brv_12054 crossref_primary_10_1214_21_AOAS1584 crossref_primary_10_1093_jmammal_gyac083 crossref_primary_10_1371_journal_pone_0120975 crossref_primary_10_1186_s40462_020_00203_z crossref_primary_10_1038_s41598_018_23495_z crossref_primary_10_1038_ncomms10698 crossref_primary_10_1016_j_biocon_2023_110234 crossref_primary_10_1016_j_gecco_2025_e03411 crossref_primary_10_1016_j_biocon_2016_09_023 crossref_primary_10_1111_csp2_204 crossref_primary_10_1038_s41598_022_09694_9 crossref_primary_10_1111_1365_2664_13125 crossref_primary_10_1016_j_biocon_2020_108635 crossref_primary_10_3390_d14030158 crossref_primary_10_1111_jzo_13200 crossref_primary_10_1071_WR23128 crossref_primary_10_1016_j_cub_2024_09_049 crossref_primary_10_1016_j_biocon_2020_108638 crossref_primary_10_1071_WR24059 crossref_primary_10_1111_emr_12035 crossref_primary_10_1007_s11252_019_00886_2 crossref_primary_10_1111_acv_12429 crossref_primary_10_1111_oik_08821 crossref_primary_10_1007_s00435_019_00475_z crossref_primary_10_3390_ani14162431 crossref_primary_10_1007_BF03544404 crossref_primary_10_1093_jmammal_gyz040 crossref_primary_10_1111_mam_12139 crossref_primary_10_1007_s10531_019_01734_7 crossref_primary_10_1071_WR15011 crossref_primary_10_1111_1365_2664_12369 crossref_primary_10_1007_s00265_016_2162_7 crossref_primary_10_1071_WR19217 crossref_primary_10_1038_s41598_021_97634_4 crossref_primary_10_1111_ele_13344 crossref_primary_10_1071_WR24102 crossref_primary_10_1071_WR19175 crossref_primary_10_1002_eap_2644 crossref_primary_10_1098_rspb_2016_1625 crossref_primary_10_1111_jzo_12100 crossref_primary_10_1071_ZO13025 crossref_primary_10_1071_AM20034 crossref_primary_10_1016_j_biocon_2012_12_004 crossref_primary_10_1002_jwmg_687 crossref_primary_10_1016_j_biocon_2015_07_030 crossref_primary_10_1071_AM14038 crossref_primary_10_1080_14486563_2017_1369465 crossref_primary_10_1111_oik_05546 crossref_primary_10_1016_j_biocon_2019_04_004 crossref_primary_10_1002_2688_8319_12018 crossref_primary_10_1007_s00442_014_2977_8 crossref_primary_10_1016_j_rbe_2017_07_001 crossref_primary_10_1071_WR15123 crossref_primary_10_1071_WR16058 crossref_primary_10_1098_rspb_2013_3094 crossref_primary_10_1186_s12983_014_0056_y crossref_primary_10_1002_eap_2482 crossref_primary_10_1163_15707563_17000110 crossref_primary_10_1371_journal_pone_0093666 crossref_primary_10_1071_WR14159 crossref_primary_10_1186_1742_9994_11_17 crossref_primary_10_1007_s10530_017_1449_6 crossref_primary_10_1371_journal_pone_0059846 crossref_primary_10_1071_WR21083 crossref_primary_10_1093_beheco_arw178 crossref_primary_10_1111_1365_2656_12493 crossref_primary_10_1111_mam_12080 crossref_primary_10_1071_AM21036 crossref_primary_10_1007_s13364_020_00496_w crossref_primary_10_1111_mec_13416 crossref_primary_10_1007_s00265_023_03405_8 crossref_primary_10_1111_2041_210X_13905 crossref_primary_10_1080_03014223_2014_898667 crossref_primary_10_1111_cobi_13280 crossref_primary_10_1016_j_biocon_2018_10_011 crossref_primary_10_1007_s10980_017_0517_8 crossref_primary_10_1016_j_jasrep_2017_05_035 crossref_primary_10_1111_mam_12115 crossref_primary_10_3390_ani12010051 crossref_primary_10_1071_PC17036 crossref_primary_10_1093_jue_juab019 crossref_primary_10_1007_s10530_025_03544_1 crossref_primary_10_1371_journal_pone_0111444 crossref_primary_10_1007_s13364_020_00507_w crossref_primary_10_1093_biosci_bix091 crossref_primary_10_1007_s10530_021_02718_x crossref_primary_10_1080_00063657_2017_1387517 crossref_primary_10_1007_s00114_021_01772_8 crossref_primary_10_1093_beheco_arab053 crossref_primary_10_1007_s00265_017_2271_y crossref_primary_10_1111_jbi_12563 crossref_primary_10_1002_ecs2_4383 crossref_primary_10_1111_rssc_12561 crossref_primary_10_1111_2041_210X_12711 crossref_primary_10_1080_03014223_2015_1103761 crossref_primary_10_1071_AM19069 crossref_primary_10_1111_ddi_13182 crossref_primary_10_1111_cobi_12525 crossref_primary_10_1098_rspb_2022_2113 crossref_primary_10_7717_peerj_2288 crossref_primary_10_1186_s13071_024_06330_5 crossref_primary_10_1111_ddi_13065 crossref_primary_10_1016_j_mambio_2018_07_003 crossref_primary_10_1111_emr_12118 crossref_primary_10_1007_s10530_023_03152_x crossref_primary_10_1002_eap_1483 crossref_primary_10_1111_aec_13182 crossref_primary_10_1007_s00442_016_3729_8 crossref_primary_10_1016_j_ecoser_2017_12_006 crossref_primary_10_1098_rspb_2014_2870 crossref_primary_10_1371_journal_pone_0137169 crossref_primary_10_1007_s10531_017_1309_9 crossref_primary_10_1016_j_agee_2024_109095 crossref_primary_10_1080_01584197_2017_1388744 crossref_primary_10_1111_1365_2656_12231 crossref_primary_10_1111_aec_12138 crossref_primary_10_1007_s11356_013_2118_7 crossref_primary_10_1016_j_baae_2018_12_001 crossref_primary_10_1016_j_fooweb_2020_e00173 crossref_primary_10_1371_journal_pone_0097937 crossref_primary_10_3390_ani13142257 crossref_primary_10_1007_s10530_014_0767_1 crossref_primary_10_1093_beheco_arx122 crossref_primary_10_1111_1365_2664_12323 crossref_primary_10_1007_s10021_019_00360_2 crossref_primary_10_1111_oik_07251 crossref_primary_10_1890_15_0204_1 crossref_primary_10_1371_journal_pone_0109097 crossref_primary_10_1371_journal_pone_0133915 crossref_primary_10_1016_j_jocm_2023_100415 crossref_primary_10_1038_s41598_023_37166_1 crossref_primary_10_1111_emr_12524 crossref_primary_10_7717_peerj_15887 crossref_primary_10_1002_ece3_8267 crossref_primary_10_1007_s13364_020_00504_z crossref_primary_10_1002_eap_2566 crossref_primary_10_1111_emr_12407 crossref_primary_10_1080_14888386_2019_1585289 crossref_primary_10_1002_rse2_60 crossref_primary_10_1007_s42991_022_00311_w crossref_primary_10_1017_S0030605322001661 crossref_primary_10_1016_j_jaridenv_2019_03_002 crossref_primary_10_1002_fee_1922 crossref_primary_10_3390_ani9121050 crossref_primary_10_1111_acv_12756 crossref_primary_10_1111_aec_12427 crossref_primary_10_1016_j_biocon_2015_05_007 crossref_primary_10_1086_702250 crossref_primary_10_1134_S1062359022090242 crossref_primary_10_1071_WR19004 crossref_primary_10_1126_science_aar7121 crossref_primary_10_1016_j_biocon_2013_09_024 crossref_primary_10_2981_wlb_00683 |
Cites_doi | 10.1155/2012/250352. 10.1071/WR9920519 10.1016/0306-4565(87)90020-9 10.1071/AM09030 10.1111/j.1523-1739.2003.00059.x 10.1139/z01-094 10.1111/j.1461-0248.2010.01492.x 10.1016/0022-1902(81)80263-1 10.1046/j.1523-1739.1996.10020526.x 10.1146/annurev.ecolsys.34.011802.132435 10.1111/j.1439-0310.2009.01653.x 10.1046/j.1523-1739.2003.01599.x 10.1086/283009 10.1016/0169-5347(92)90208-S 10.1111/j.1469-185X.2011.00203.x 10.1073/pnas.0401814101 10.1071/9780643095595 10.1071/WR9850025 10.1111/j.1365-2664.2009.01705.x 10.1017/S0266467410000052 10.1071/WR01011 10.1016/j.actao.2010.04.001 10.1111/j.1365-2664.2006.01218.x 10.1111/j.1748-7692.2007.00167.x 10.1071/WR9820409 10.1111/j.1755-263X.2011.00164.x 10.1111/j.1466-8238.2010.00600.x 10.1016/j.ecolmodel.2011.05.002 10.3957/056.039.0207 10.1071/WR11134 10.1111/j.1469-7998.1988.tb04986.x 10.1080/08927014.2008.9522514 10.1016/j.biocon.2012.04.006 10.1016/j.foreco.2009.05.030 10.1890/08-0302.1 10.1371/journal.pone.0006861 10.1071/WR04093 10.1071/WR10169 10.1016/S0140-1963(02)00317-8 10.1071/WR03050 10.1086/321991 10.1890/03-0369 10.1046/j.1365-2664.2001.00569.x 10.1111/j.1365-2656.2008.01430.x 10.1890/07-0193.1 10.1093/beheco/11.6.624 10.1146/annurev.es.20.110189.001501 10.1525/bio.2009.59.9.9 10.1111/j.1469-7998.2011.00874.x 10.1111/j.1365-2664.2009.01650.x 10.1038/23028 10.1126/science.1205106 10.1139/z00-003 10.1071/WR9920707 10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2 10.2307/1383287 10.2307/3544413 10.2307/3801987 10.1016/j.tree.2012.01.001 10.2307/1441885 10.1098/rspb.2009.0574 10.1071/WR08098 10.1111/j.1365-2656.2010.01678.x 10.1071/AM94011 10.1111/j.1523-1739.1988.tb00337.x 10.1111/j.1461-0248.2009.01347.x 10.1890/06-1408.1 10.1098/rspb.2006.3711 10.1139/z90-092 |
ContentType | Journal Article |
Copyright | 2012 British Ecological Society 2012 The Authors. Journal of Applied Ecology © 2012 British Ecological Society 2014 INIST-CNRS Copyright Blackwell Publishing Ltd. Dec 2012 |
Copyright_xml | – notice: 2012 British Ecological Society – notice: 2012 The Authors. Journal of Applied Ecology © 2012 British Ecological Society – notice: 2014 INIST-CNRS – notice: Copyright Blackwell Publishing Ltd. Dec 2012 |
DBID | AAYXX CITATION IQODW 7SN 7SS 7T7 7U7 8FD C1K FR3 M7N P64 RC3 7ST 7U6 |
DOI | 10.1111/j.1365-2664.2012.02207.x |
DatabaseName | CrossRef Pascal-Francis Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Sustainability Science Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Toxicology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Environment Abstracts Sustainability Science Abstracts |
DatabaseTitleList | Ecology Abstracts CrossRef Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Ecology |
EISSN | 1365-2664 |
EndPage | 1286 |
ExternalDocumentID | 2836286051 26664358 10_1111_j_1365_2664_2012_02207_x JPE2207 23353507 |
Genre | article Feature |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GrantInformation_xml | – fundername: Department of Environment and Resource Management funderid: WITK06493009 – fundername: James Cook University Animal Ethics Committee – fundername: Australian Research Council Discovery funderid: DP0877398 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29J 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABPLY ABPPZ ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YQT ZZTAW ~02 ~IA ~KM ~WT 24P 31~ 42X 53G AAHHS AAYJJ ABEFU ABTAH ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AI. AIWBW AJBDE AS~ CAG DOOOF EQZMY ESX GTFYD HGD HQ2 HTVGU JSODD VH1 VOH WHG WRC XIH YYP ZY4 AAYXX AGHNM CITATION IQODW 7SN 7SS 7T7 7U7 8FD C1K FR3 M7N P64 RC3 7ST 7U6 |
ID | FETCH-LOGICAL-c4267-564cbbe6897d4dae503ddc4333dd41ca4e14d468fa6c185c00e1b20f555890d23 |
IEDL.DBID | DR2 |
ISSN | 0021-8901 |
IngestDate | Fri Jul 11 06:13:59 EDT 2025 Fri Jul 25 10:52:39 EDT 2025 Wed Apr 02 07:26:15 EDT 2025 Tue Jul 01 02:58:33 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Wed Jan 22 16:22:46 EST 2025 Thu Jul 03 21:07:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Competition interference competition Landscape intraguild interactions Interaction Suppression risk effects Predatory behavior Interference Risk Carnivorous animal Guild Mesopredator Invasive species Pest management carnivore Predator Apex landscape of fear |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4267-564cbbe6897d4dae503ddc4333dd41ca4e14d468fa6c185c00e1b20f555890d23 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1223837519 |
PQPubID | 37791 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1257772530 proquest_journals_1223837519 pascalfrancis_primary_26664358 crossref_primary_10_1111_j_1365_2664_2012_02207_x crossref_citationtrail_10_1111_j_1365_2664_2012_02207_x wiley_primary_10_1111_j_1365_2664_2012_02207_x_JPE2207 jstor_primary_23353507 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of applied ecology |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Blackwell Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing – name: Blackwell – name: Blackwell Publishing Ltd |
References | 2009; 46 2012; 2012 2010; 13 2009; 276 1992; 19 2003; 17 1999; 400 2008; 77 1999; 80 2009; 115 2003; 55 1967; 1967 2009; 12 1992; 7 2004; 31 2010; 26 2001 2000; 11 2009; 90 1982; 9 2011; 20 2005; 32 2008; 24 1983 1981 2012; 27 2008; 20 1985; 12 1975; 109 2009; 59 2011; 286 1988; 214 2004; 101 2010; 32 1984; 42 2011; 333 1987; 12 2010; 36 1989; 20 2010; 79 2011 2010 1998 2008 2007 1996 2005; 86 2006 1995 2011; 4 2011; 38 1998; 62 1996; 10 2009; 258 2003; 34 1988; 2 2009; 36 2012; 152 2002; 29 1990; 68 2000; 78 2006; 43 2007; 274 2008; 89 2001; 38 1994; 17 2009; 4 2007; 88 2001; 79 2012; 87 2011; 222 2001; 158 2009; 39 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 Bennett A.F. (e_1_2_6_7_1) 1983 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_41_1 e_1_2_6_60_1 Gibson D.F. (e_1_2_6_27_1) 1994; 17 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_68_1 R Development Core Team (e_1_2_6_59_1) 2011 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Denny E. (e_1_2_6_20_1) 2008 Fleming P.J.S. (e_1_2_6_26_1) 2001 Kitchener A.C. (e_1_2_6_40_1) 2010 e_1_2_6_14_1 e_1_2_6_35_1 Van Dyck S. (e_1_2_6_76_1) 2008 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 Williams C.K. (e_1_2_6_79_1) 1995 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_61_1 Coulson G. (e_1_2_6_17_1) 1996 e_1_2_6_8_1 Johnson C.N. (e_1_2_6_34_1) 2006 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – year: 2011 – volume: 29 start-page: 51 year: 2002 end-page: 74 article-title: Origin and spread of the cat, , on mainland Australia, with a discussion of the magnitude of its early impact on native fauna publication-title: Wildlife Research – volume: 12 start-page: 27 year: 1987 end-page: 37 article-title: A 2‐peak circadian system in body temperature and activity in the domestic cat L publication-title: Journal of Thermal Biology – start-page: 1 year: 1983 end-page: 23 – year: 1981 – volume: 1967 start-page: 753 year: 1967 end-page: 758 article-title: Activity cycle and thermoregulation in the Australian gecko publication-title: Copeia – volume: 38 start-page: 76 year: 2001 end-page: 87 article-title: The effect of dingo control on sheep and beef cattle in Queensland publication-title: Journal of Applied Ecology – volume: 38 start-page: 732 year: 2011 end-page: 739 article-title: Estimating and indexing feral cat population abundances using camera traps publication-title: Wildlife Research – volume: 77 start-page: 1092 year: 2008 end-page: 1098 article-title: Risk induced by a native top predator reduces alien mink movements publication-title: Journal of Animal Ecology – start-page: 742 year: 2008 end-page: 744 – year: 2001 – volume: 276 start-page: 3249 year: 2009 end-page: 3256 article-title: Keystone effects of an alien top‐predator stem extinctions of native mammals publication-title: Proceedings of the Royal Society B‐Biological Sciences – volume: 333 start-page: 301 year: 2011 end-page: 306 article-title: Trophic downgrading of Planet Earth publication-title: Science – volume: 79 start-page: 1401 year: 2001 end-page: 1409 article-title: Wolves, elk and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A publication-title: Canadian Journal of Zoology – volume: 12 start-page: 982 year: 2009 end-page: 998 article-title: Predator interactions, mesopredator release and biodiversity conservation publication-title: Ecology Letters – volume: 46 start-page: 641 year: 2009 end-page: 646 article-title: Evidence that dingoes limit abundance of a mesopredator in eastern Australian forests publication-title: Journal of Applied Ecology – volume: 42 start-page: 403 year: 1984 end-page: 406 article-title: Time as a niche difference – the role of interference competition publication-title: Oikos – volume: 20 start-page: 295 year: 2008 end-page: 324 article-title: Interspecific competition and predation in American carnivore families publication-title: Ethology Ecology & Evolution – volume: 88 start-page: 2713 year: 2007 end-page: 2719 article-title: Habitat structure affects intraguild predation publication-title: Ecology – volume: 32 start-page: 23 year: 2010 end-page: 32 article-title: Movements and habitat selection by wild dogs in eastern Victoria publication-title: Australian Mammalogy – volume: 400 start-page: 563 year: 1999 end-page: 566 article-title: Mesopredator release and avifaunal extinctions in a fragmented system publication-title: Nature – volume: 258 start-page: 814 year: 2009 end-page: 822 article-title: Satellite tracking of wild dogs in south‐eastern mainland Australian forests: implications for management of a problematic top‐order carnivore publication-title: Forest Ecology and Management – volume: 17 start-page: 1491 year: 2003 end-page: 1499 article-title: Human‐carnivore conflict and perspectives on carnivore management worldwide publication-title: Conservation Biology – volume: 109 start-page: 391 year: 1975 end-page: 418 article-title: Influences of light on activity and phasing of carnivores publication-title: The American Naturalist – volume: 17 start-page: 1238 year: 2003 end-page: 1250 article-title: Ecological effectiveness: conservation goals for interactive species publication-title: Conservation Biology – volume: 26 start-page: 303 year: 2010 end-page: 311 article-title: Temporal separation between jaguar and puma in the dry forests of southern Bolivia publication-title: Journal of Tropical Ecology – volume: 87 start-page: 390 year: 2012 end-page: 413 article-title: Top predators as biodiversity regulators: the dingo as a case study publication-title: Biological Reviews – volume: 2012 year: 2012 article-title: Interactions between a top order predator and exotic mesopredators in the Australian rangelands publication-title: International Journal of Ecology – volume: 90 start-page: 1207 year: 2009 end-page: 1216 article-title: The impact of native competitors on an alien invasive: temporal niche shifts to avoid interspecific aggression? publication-title: Ecology – volume: 274 start-page: 341 year: 2007 end-page: 346 article-title: Rarity of a top predator triggers continent‐wide collapse of mammal prey: dingoes and marsupials in Australia publication-title: Proceedings of the Royal Society B‐Biological Sciences – volume: 9 start-page: 409 year: 1982 end-page: 420 article-title: Ecology of the feral cat, (L) in southeastern Australia III. Home ranges and population ecology in semi‐arid northwest Victoria publication-title: Australian Wildlife Research – year: 2008 – volume: 17 start-page: 103 year: 1994 end-page: 107 article-title: Predation by feral cats, , on the rufous hare‐wallaby, , in the Tanami Desert publication-title: Australian Mammalogy – volume: 115 start-page: 649 year: 2009 end-page: 657 article-title: What drives wolves: fear or hunger? Humans, diet, climate and wolf activity patterns publication-title: Ethology – volume: 78 start-page: 853 year: 2000 end-page: 857 article-title: Changes in coyote activity patterns due to reduced exposure to human persecution publication-title: Canadian Journal of Zoology – volume: 13 start-page: 1008 year: 2010 end-page: 1018 article-title: Predator control promotes invasive dominated ecological states publication-title: Ecology Letters – volume: 152 start-page: 21 year: 2012 end-page: 28 article-title: Do bears know they are being hunted? publication-title: Biological Conservation – volume: 7 start-page: 151 year: 1992 end-page: 154 article-title: Intraguild predation: the dynamics of complex trophic interactions publication-title: Trends in Ecology & Evolution – start-page: 83 year: 2010 end-page: 106 – volume: 19 start-page: 519 year: 1992 end-page: 530 article-title: The behavioral ecology of dingoes in north‐western Australia 2. Activity patterns, breeding season and pup rearing publication-title: Wildlife Research – volume: 31 start-page: 421 year: 2004 end-page: 432 article-title: An experimental translocation of brush‐tailed bettongs ( ) to western New South Wales publication-title: Wildlife Research – volume: 43 start-page: 1049 year: 2006 end-page: 1055 article-title: Ecologically justified charisma: preservation of top predators delivers biodiversity conservation publication-title: Journal of Applied Ecology – volume: 12 start-page: 25 year: 1985 end-page: 37 article-title: The ecology of the dingo in northeastern New South Wales 1. Movements and home range publication-title: Australian Wildlife Research – volume: 158 start-page: 451 year: 2001 end-page: 457 article-title: On the use of the time axis for ecological separation: diel rhythms as an evolutionary constraint publication-title: The American Naturalist – start-page: 158 year: 1996 end-page: 186 – volume: 59 start-page: 779 year: 2009 end-page: 791 article-title: The rise of the mesopredator publication-title: BioScience – volume: 36 start-page: 403 year: 2010 end-page: 412 article-title: Niche partitioning and species coexistence in a Neotropical felid assemblage publication-title: Acta Oecologica – volume: 4 start-page: 192 year: 2011 end-page: 201 article-title: The disappearing mammal fauna of northern Australia: context, cause, and response publication-title: Conservation Letters – volume: 101 start-page: 12387 year: 2004 end-page: 12390 article-title: A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA publication-title: Proceedings of the National Academy of Sciences – volume: 38 start-page: 426 year: 2011 end-page: 436 article-title: Is water the key? Dingo management, intraguild interactions and predator distribution around water points in arid Australia publication-title: Wildlife Research – year: 2007 – volume: 286 start-page: 232 year: 2011 end-page: 242 article-title: Masking of the zeitgeber: African wild dogs mitigate persecution by balancing time publication-title: Journal of Zoology – volume: 32 start-page: 587 year: 2005 end-page: 595 article-title: Home ranges of feral cats ( ) in central‐western New South Wales, Australia publication-title: Wildlife Research – volume: 86 start-page: 164 year: 2005 end-page: 173 article-title: Temporal partitioning: an experiment with two species of spiny mice publication-title: Ecology – volume: 68 start-page: 619 year: 1990 end-page: 640 article-title: Behavioural decisions made under the risk of predation: a review and prospectus publication-title: Canadian Journal of Zoology – volume: 19 start-page: 707 year: 1992 end-page: 720 article-title: Feral cats ( L.) on New Zealand farmland 2. Seasonal activity publication-title: Wildlife Research – volume: 24 start-page: 1 year: 2008 end-page: 15 article-title: Seascapes of fear: evaluating sublethal predator effects experienced and generated by marine mammals publication-title: Marine Mammal Science – volume: 20 start-page: 343 year: 2011 end-page: 353 article-title: Does a top predator suppress the abundance of an invasive mesopredator at a continental scale? publication-title: Global Ecology and Biogeography – volume: 4 start-page: 1 year: 2009 end-page: 8 article-title: More than mere numbers: the impact of lethal control on the social stability of a top‐order predator publication-title: PLoS One – volume: 89 start-page: 818 year: 2008 end-page: 828 article-title: Indirect effects and traditional trophic cascades: a test involving wolves, coyotes, and pronghorn publication-title: Ecology – volume: 27 start-page: 265 year: 2012 end-page: 271 article-title: Ecosystem restoration with teeth: what role for predators? publication-title: Trends in Ecology & Evolution – volume: 79 start-page: 785 year: 2010 end-page: 794 article-title: Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients publication-title: Journal of Animal Ecology – volume: 39 start-page: 109 year: 2009 end-page: 125 article-title: Temporal partitioning of activity in large African carnivores: tests of multiple hypotheses publication-title: South African Journal of Wildlife Research – volume: 34 start-page: 153 year: 2003 end-page: 181 article-title: Partitioning of time as an ecological resource publication-title: Annual Review of Ecology Evolution and Systematics – volume: 11 start-page: 624 year: 2000 end-page: 632 article-title: Living with the enemy: avoidance of hyenas and lions by cheetahs in the Serengeti publication-title: Behavioral Ecology – volume: 55 start-page: 691 year: 2003 end-page: 713 article-title: Controlling introduced predators in the Gibson Desert of Western Australia publication-title: Journal of Arid Environments – volume: 2 start-page: 75 year: 1988 end-page: 92 article-title: Reconstructed dynamics of rapid extinctions of chaparral‐requiring birds in urban habitat islands publication-title: Conservation Biology – volume: 36 start-page: 422 year: 2009 end-page: 435 article-title: Movement patterns of feral predators in an arid environment – implications for control through poison baiting publication-title: Wildlife Research – volume: 62 start-page: 1235 year: 1998 end-page: 1245 article-title: Interpreting carnivore scent‐station surveys publication-title: Journal of Wildlife Management – year: 2006 – volume: 80 start-page: 311 year: 1999 end-page: 323 article-title: Estimating effects of limiting factors with regression quantiles publication-title: Ecology – volume: 10 start-page: 526 year: 1996 end-page: 538 article-title: Limitation of African wild dogs by competition with larger carnivores publication-title: Conservation Biology – volume: 222 start-page: 2761 year: 2011 end-page: 2769 article-title: Using simulation to explore the functional relationships of terrestrial carnivore population indices publication-title: Ecological Modelling – volume: 46 start-page: 1011 year: 2009 end-page: 1017 article-title: Camera trapping photographic rate as an index of density in forest ungulates publication-title: Journal of Applied Ecology – year: 1995 – volume: 214 start-page: 55 year: 1988 end-page: 69 article-title: Factors affecting the activity patterns of black‐backed jackals publication-title: Journal of Zoology – volume: 80 start-page: 385 year: 1999 end-page: 399 article-title: The ecology of fear: optimal foraging, game theory, and trophic interactions publication-title: Journal of Mammalogy – start-page: 421 year: 1998 end-page: 428 – volume: 20 start-page: 297 year: 1989 end-page: 330 article-title: The ecology and evolution of intraguild predation: potential competitors that eat each other publication-title: Annual Review of Ecology and Systematics – ident: e_1_2_6_53_1 doi: 10.1155/2012/250352. – ident: e_1_2_6_74_1 doi: 10.1071/WR9920519 – ident: e_1_2_6_60_1 doi: 10.1016/0306-4565(87)90020-9 – ident: e_1_2_6_64_1 doi: 10.1071/AM09030 – ident: e_1_2_6_75_1 doi: 10.1111/j.1523-1739.2003.00059.x – ident: e_1_2_6_45_1 doi: 10.1139/z01-094 – ident: e_1_2_6_78_1 doi: 10.1111/j.1461-0248.2010.01492.x – ident: e_1_2_6_5_1 doi: 10.1016/0022-1902(81)80263-1 – volume-title: R: A Language and Environment for Statistical Computing. Version 2.14.1 year: 2011 ident: e_1_2_6_59_1 – ident: e_1_2_6_18_1 doi: 10.1046/j.1523-1739.1996.10020526.x – ident: e_1_2_6_42_1 doi: 10.1146/annurev.ecolsys.34.011802.132435 – ident: e_1_2_6_73_1 doi: 10.1111/j.1439-0310.2009.01653.x – ident: e_1_2_6_72_1 doi: 10.1046/j.1523-1739.2003.01599.x – ident: e_1_2_6_38_1 doi: 10.1086/283009 – ident: e_1_2_6_55_1 doi: 10.1016/0169-5347(92)90208-S – volume-title: The Mammals of Australia year: 2008 ident: e_1_2_6_76_1 – ident: e_1_2_6_46_1 doi: 10.1111/j.1469-185X.2011.00203.x – ident: e_1_2_6_69_1 doi: 10.1073/pnas.0401814101 – ident: e_1_2_6_10_1 doi: 10.1071/9780643095595 – ident: e_1_2_6_29_1 doi: 10.1071/WR9850025 – ident: e_1_2_6_66_1 doi: 10.1111/j.1365-2664.2009.01705.x – volume-title: Australia's Mammal Extinctions: A 50,000 Year History year: 2006 ident: e_1_2_6_34_1 – ident: e_1_2_6_65_1 doi: 10.1017/S0266467410000052 – ident: e_1_2_6_2_1 doi: 10.1071/WR01011 – ident: e_1_2_6_21_1 doi: 10.1016/j.actao.2010.04.001 – ident: e_1_2_6_70_1 doi: 10.1111/j.1365-2664.2006.01218.x – ident: e_1_2_6_80_1 doi: 10.1111/j.1748-7692.2007.00167.x – start-page: 158 volume-title: Comparison of Marsupial and Placental Behaviour year: 1996 ident: e_1_2_6_17_1 – ident: e_1_2_6_37_1 doi: 10.1071/WR9820409 – ident: e_1_2_6_81_1 doi: 10.1111/j.1755-263X.2011.00164.x – ident: e_1_2_6_48_1 doi: 10.1111/j.1466-8238.2010.00600.x – ident: e_1_2_6_3_1 – volume-title: Managing the Impacts of Dingoes and Other Wild Dogs year: 2001 ident: e_1_2_6_26_1 – ident: e_1_2_6_50_1 doi: 10.1016/j.ecolmodel.2011.05.002 – ident: e_1_2_6_31_1 doi: 10.3957/056.039.0207 – ident: e_1_2_6_6_1 doi: 10.1071/WR11134 – ident: e_1_2_6_25_1 doi: 10.1111/j.1469-7998.1988.tb04986.x – ident: e_1_2_6_32_1 doi: 10.1080/08927014.2008.9522514 – ident: e_1_2_6_54_1 doi: 10.1016/j.biocon.2012.04.006 – start-page: 742 volume-title: The Mammals of Australia year: 2008 ident: e_1_2_6_20_1 – ident: e_1_2_6_16_1 doi: 10.1016/j.foreco.2009.05.030 – ident: e_1_2_6_30_1 doi: 10.1890/08-0302.1 – ident: e_1_2_6_77_1 doi: 10.1371/journal.pone.0006861 – ident: e_1_2_6_51_1 doi: 10.1071/WR04093 – ident: e_1_2_6_9_1 doi: 10.1071/WR10169 – ident: e_1_2_6_12_1 doi: 10.1016/S0140-1963(02)00317-8 – ident: e_1_2_6_57_1 doi: 10.1071/WR03050 – ident: e_1_2_6_43_1 doi: 10.1086/321991 – ident: e_1_2_6_28_1 doi: 10.1890/03-0369 – ident: e_1_2_6_4_1 doi: 10.1046/j.1365-2664.2001.00569.x – start-page: 1 volume-title: Lizard Ecology: Studies of a Model Organism year: 1983 ident: e_1_2_6_7_1 – ident: e_1_2_6_67_1 doi: 10.1111/j.1365-2656.2008.01430.x – ident: e_1_2_6_8_1 doi: 10.1890/07-0193.1 – ident: e_1_2_6_22_1 doi: 10.1093/beheco/11.6.624 – start-page: 83 volume-title: Biology and Conservation of Wild Felids year: 2010 ident: e_1_2_6_40_1 – volume-title: Managing Vertebrate Pests: Rabbits year: 1995 ident: e_1_2_6_79_1 – ident: e_1_2_6_56_1 doi: 10.1146/annurev.es.20.110189.001501 – ident: e_1_2_6_58_1 doi: 10.1525/bio.2009.59.9.9 – ident: e_1_2_6_41_1 – ident: e_1_2_6_61_1 doi: 10.1111/j.1469-7998.2011.00874.x – ident: e_1_2_6_36_1 doi: 10.1111/j.1365-2664.2009.01650.x – ident: e_1_2_6_19_1 doi: 10.1038/23028 – ident: e_1_2_6_24_1 doi: 10.1126/science.1205106 – ident: e_1_2_6_39_1 doi: 10.1139/z00-003 – ident: e_1_2_6_44_1 doi: 10.1071/WR9920707 – ident: e_1_2_6_14_1 doi: 10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2 – ident: e_1_2_6_11_1 doi: 10.2307/1383287 – ident: e_1_2_6_15_1 doi: 10.2307/3544413 – ident: e_1_2_6_68_1 doi: 10.2307/3801987 – ident: e_1_2_6_63_1 doi: 10.1016/j.tree.2012.01.001 – ident: e_1_2_6_13_1 doi: 10.2307/1441885 – ident: e_1_2_6_47_1 doi: 10.1098/rspb.2009.0574 – ident: e_1_2_6_52_1 doi: 10.1071/WR08098 – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-2656.2010.01678.x – volume: 17 start-page: 103 year: 1994 ident: e_1_2_6_27_1 article-title: Predation by feral cats, Felis catus, on the rufous hare‐wallaby, Lagorchestes hirsutus, in the Tanami Desert publication-title: Australian Mammalogy doi: 10.1071/AM94011 – ident: e_1_2_6_71_1 doi: 10.1111/j.1523-1739.1988.tb00337.x – ident: e_1_2_6_62_1 doi: 10.1111/j.1461-0248.2009.01347.x – ident: e_1_2_6_33_1 doi: 10.1890/06-1408.1 – ident: e_1_2_6_35_1 doi: 10.1098/rspb.2006.3711 – ident: e_1_2_6_49_1 doi: 10.1139/z90-092 |
SSID | ssj0009533 |
Score | 2.4936395 |
Snippet | 1. Apex predators can benefit ecosystems through top—down control of mesopredators and herbivores. However, apex predators are often subject to lethal control... Summary Apex predators can benefit ecosystems through top–down control of mesopredators and herbivores. However, apex predators are often subject to lethal... Apex predators can benefit ecosystems through top–down control of mesopredators and herbivores. However, apex predators are often subject to lethal control... Apex predators can benefit ecosystems through top-down control of mesopredators and herbivores. However, apex predators are often subject to lethal control... |
SourceID | proquest pascalfrancis crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1278 |
SubjectTerms | Abundance Animal, plant and microbial ecology Apex predators Applied ecology Biological and medical sciences Cameras Canis lupus carnivore Cats Conservation Conservation biology Control of invasives Dingoes Dogs Ecological competition Ecology Ecosystems Fundamental and applied biological sciences. Psychology General aspects Herbivores Human ecology interference competition intraguild interactions invasive species landscape of fear Livestock Mammals pest management Predation Predator control Predators Prey Rangelands risk effects Wildlife ecology |
Title | Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression |
URI | https://www.jstor.org/stable/23353507 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2664.2012.02207.x https://www.proquest.com/docview/1223837519 https://www.proquest.com/docview/1257772530 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kIOiD1WoxtpYVfL2SzX4k91ikpRQUEQt9W_bTh2pyXC5Q_evdye6lF_GhiE8XLjMhmczO_nb2lxmA976puKZNuTD47QcXAePgErfYnYkTCG9EwIT-x0_y8ppf3YibzH_Cb2FSfYgp4YYjY4zXOMC16eeDPDG0JKZGMKVXYbYE8SSeQHz0pdqpv5u6yiMjoYlz4JzU89cLzWaqRFZE5qTuo_FC6noxg6W74HacnS724Xb7XImUcns6bMyp_fVHycf_8-DP4VkGseQsed0LeOTbA3h69m2dC3n4A3icmlz-fAl9KpDcky6Q1do7XOWTzJAnXUtyoYBhjQK6JXrl7-4FdesIbqtjYEatifpNItomP3zfTaL9sMqs3vYVXF-cf_1wucitHhY2QoR6ISS3xnjZLGvHnfaiZM5Zzlj84dRq7il3XDZBSxsRhi1LT01VBqxWtixdxQ5hr-1a_xpIBKi1qLjXFQs8SKFp0KV1xlFaM-lDAfX2tSqb66BjO47vamc9FA2s0MAKDaxGA6u7AuikuUq1QB6gczh6zqRQMSZYBOEFnMxc6V4gLigjhm0KON76lspxpVc0ormG1RF2F_BuOh0jAm7z6NZ3A8qIOq6ZBCsLkKMjPfhu1dXnczx686-KR_AE_058n2PY26wH_zaito05Gcfjb-yPMZU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kRdSHqtVitNYVfL2SZD-Seyzacta2iLTQt2WzH32wJsflAtW_3p3sXnopfSjiUwKZCclkdva3s7_MAHyyZc5UVqaTCv_9YNxhHJziFrup_ATCSu4woX96JmYX7PiSX8Z2QPgvTKgPMSTccGT08RoHOCakx6M8ULQE5kYwp5djusQDyk1s8I3tDL78yNcq8Ia-8shJKP0sOKb13Hun0VwV6IrInVStN58LfS9GwHQd3vbz09FzuF69WaCl_NzvltW-_nOn6ON_evUXsBVxLDkIjvcSHtl6G54dXC1iLQ-7DY9Dn8vfr6ANNZJb0jgyX1iDC30SSfKkqUmsFdAtUEDVRM3tza2gqg3BnXWMzag1sL-JB9zkl22bQbTt5pHYW7-Gi6PD88-zSez2MNEeJRQTLpiuKivKaWGYUZan1BjNKPUHlmnFbMYME6VTQnuQodPUZlWeOixYNk1NTndgo25q-waIx6gFz5lVOXXMCa4yp1JtKpNlBRXWJVCsvqvUsRQ6duS4lmtLIm9giQaWaGDZG1jeJJANmvNQDuQBOju96wwKOaWcehyewN7Il24F_JrSw9gygd2Vc8kYWlqZeUBX0sIj7wQ-Dpd9UMCdHlXbpkMZXvhlE6dpAqL3pAc_rTz-fohnb_9V8QM8mZ2fnsiTr2ff3sFTFAn0n13YWC46-96DuGW11w_Ov_5DNa8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kouiDH9VitNYVfL2SZD-Seyzao1YtRSz0bdlkd_tQTcLlAm3_emeyufQiPhTx6QI3c1wmM7O_nf1lBuCDy1NhkjyeFfTuh5Ce8uCcjthtgQuIyKWngv63E3V0Jo7P5fnAf6J3YUJ_iLHgRpHR52sK8Mb6aZAHhpai0giV9FKqliCevC8Uxg4BpO_pRgPeMFaeKAk5LoJTVs9ff2myVAW2IlEnTYvW82HsxQSXbqLbfnlaPIXL9Y0FVsrlfrcq9subP3o-_p87fwZPBhTLDoLbPYd7rtqGxwcXy6GTh9uGB2HK5fULaEOH5JbVnjVLZ2mbzwaKPKsrNnQK6JYkYCpmGnd1K2gqy-hcnTIzaY3cb4Zwm_1ybT2Ktl0z0Hqrl3C2OPzx8Wg2zHqYlYgRsplUoiwKp_J5ZoU1Tsbc2lJwjh8iKY1wibBC5d6oEiFGGccuKdLYU7uyeWxTvgNbVV25V8AQoWYyFc6k3AuvpEm8iUtb2CTJuHI-gmz9WHU5NEKneRw_9caGCA2sycCaDKx7A-urCJJRswnNQO6gs9N7zqiQci45ovAI9iaudCuAO0oEsXkEu2vf0kNiaXWCcC7nGeLuCN6PX2NKoHMeU7m6IxmZ4aZJ8jgC1TvSnf-tPj49pKvX_6r4Dh6eflror59PvryBRyQRuD-7sLVadu4tIrhVsdeH5m8_VjRn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+predator+control+on+behaviour+of+an+apex+predator+and+indirect+consequences+for+mesopredator+suppression&rft.jtitle=The+Journal+of+applied+ecology&rft.au=Brook%2C+Leila+A&rft.au=Johnson%2C+Christopher+N&rft.au=Ritchie%2C+Euan+G&rft.date=2012-12-01&rft.issn=0021-8901&rft.eissn=1365-2664&rft.volume=49&rft.issue=6&rft.spage=1278&rft.epage=1286&rft_id=info:doi/10.1111%2Fj.1365-2664.2012.02207.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8901&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8901&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8901&client=summon |