Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression

1. Apex predators can benefit ecosystems through top—down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could i...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of applied ecology Vol. 49; no. 6; pp. 1278 - 1286
Main Authors Brook, Leila A., Johnson, Christopher N., Ritchie, Euan G.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing 01.12.2012
Blackwell
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0021-8901
1365-2664
DOI10.1111/j.1365-2664.2012.02207.x

Cover

Loading…
Abstract 1. Apex predators can benefit ecosystems through top—down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators. 2. We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus. 3. Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn. 4. Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk. 5. Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations. 6. Synthesis and applications. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey.
AbstractList Apex predators can benefit ecosystems through top-down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators.We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus.Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn.Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk.Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations.Synthesis and applications. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey.
Apex predators can benefit ecosystems through top–down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators. We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus . Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn. Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk. Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations.   Synthesis and applications . Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey.
1. Apex predators can benefit ecosystems through top—down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators. 2. We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus. 3. Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn. 4. Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk. 5. Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations. 6. Synthesis and applications. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey.
Apex predators can benefit ecosystems through top-down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators. We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus. Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn. Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk. Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey.
Summary Apex predators can benefit ecosystems through top–down control of mesopredators and herbivores. However, apex predators are often subject to lethal control aimed at minimizing attacks on livestock. Lethal control can affect both the abundance and behaviour of apex predators. These changes could in turn influence the abundance and behaviour of mesopredators. We used remote camera surveys at nine pairs of large Australian rangeland properties, comparing properties that controlled dingoes Canis lupus dingo with properties that did not, to test the effects of predator control on dingo activity and to evaluate the responses of a mesopredator, the feral cat Felis catus. Indices of dingo abundance were generally reduced on properties that practiced dingo control, in comparison with paired properties that did not, although the effect size of control was variable. Dingoes in uncontrolled populations were crepuscular, similar to major prey. In populations subject to control, dingoes became less active around dusk, and activity was concentrated in the period shortly before dawn. Shifts in feral cat abundance indices between properties with and without dingo control were inversely related to corresponding shifts in indices of dingo abundance. There was also a negative relationship between predator visitation rates at individual camera stations, suggesting cats avoided areas where dingoes were locally common. Reduced activity by dingoes at dusk was associated with higher activity of cats at dusk. Our results suggest that effective dingo control not only leads to higher abundance of feral cats, but allows them to optimize hunting behaviour when dingoes are less active. This double effect could amplify the impacts of dingo control on prey species selected by cats. In areas managed for conservation, stable dingo populations may thus contribute to management objectives by restricting feral cat access to prey populations.  Synthesis and applications. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey. Predator control not only reduces indices of apex predator abundance but can also modify their behaviour. Hence, indicators other than abundance, such as behavioural patterns, should be considered when estimating a predator's capacity to effectively interact with lower trophic guilds. Changes to apex predator behaviour may relax limitations on the behaviour of mesopredators, providing enhanced access to resources and prey.
Author Brook, Leila A.
Ritchie, Euan G.
Johnson, Christopher N.
Author_xml – sequence: 1
  givenname: Leila A.
  surname: Brook
  fullname: Brook, Leila A.
– sequence: 2
  givenname: Christopher N.
  surname: Johnson
  fullname: Johnson, Christopher N.
– sequence: 3
  givenname: Euan G.
  surname: Ritchie
  fullname: Ritchie, Euan G.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26664358$$DView record in Pascal Francis
BookMark eNqNkV1rFDEUhoNUcFv9CUJABG9mzPfMXihI2aqloBd6HbL5wAyzyZgzq9t_30y3bKFXzc0JnOd9c07ec3SWcvIIYUpaWs_HoaVcyYYpJVpGKGsJY6RrDy_Q6tQ4QytCGG36NaGv0DnAQAhZS85XCDYheDsDzgFPxTsz54JtTnPJI84Jb_0f8y_mfVkAk7CZ_OERNMnhmFws1WJRgf-798l6wKF2dx7yCYX9VO8AMafX6GUwI_g3D_UC_b7a_Lr81tz8-Pr98stNYwVTXSOVsNutV_26c8IZLwl3zgrOaxHUGuGpcEL1wShLe2kJ8XTLSJBS1kUd4xfow9F3KrnOBbPeRbB-HE3yeQ-aMtl1HZOcVPTdE3SoO6c6XaUY73kn6bpS7x8oA9aMoZhkI-ipxJ0pt7p-tRJc9pXrj5wtGaD4cEIo0UtqetBLOItC6CU1fZ-aPlTp5ydSG2czxyURE8fnGHw6GvyPo7999sP6-udmuVX926N-gBrb426cSy5r_w7f_72E
CODEN JAPEAI
CitedBy_id crossref_primary_10_1016_j_anbehav_2024_09_007
crossref_primary_10_1111_jzo_13229
crossref_primary_10_1071_AM20025
crossref_primary_10_1080_10871209_2017_1397824
crossref_primary_10_1071_WR14193
crossref_primary_10_1111_emr_12210
crossref_primary_10_1002_jwmg_21675
crossref_primary_10_1111_ele_13473
crossref_primary_10_1002_ece3_5203
crossref_primary_10_1016_j_tree_2015_01_006
crossref_primary_10_1098_rspb_2015_1602
crossref_primary_10_1111_ecog_04485
crossref_primary_10_1016_j_biocon_2015_05_013
crossref_primary_10_3390_microorganisms9071362
crossref_primary_10_1111_rec_12396
crossref_primary_10_1080_14486563_2014_985267
crossref_primary_10_1016_j_ecoinf_2017_05_002
crossref_primary_10_1371_journal_pone_0092341
crossref_primary_10_3390_ani13040688
crossref_primary_10_1007_s00265_014_1748_1
crossref_primary_10_1080_03014223_2020_1784241
crossref_primary_10_1111_1365_2664_13514
crossref_primary_10_1093_beheco_arz080
crossref_primary_10_1371_journal_pone_0094248
crossref_primary_10_1111_oik_09059
crossref_primary_10_1038_s41559_017_0220_9
crossref_primary_10_1111_1365_2664_12838
crossref_primary_10_1111_ele_13124
crossref_primary_10_1111_brv_12054
crossref_primary_10_1214_21_AOAS1584
crossref_primary_10_1093_jmammal_gyac083
crossref_primary_10_1371_journal_pone_0120975
crossref_primary_10_1186_s40462_020_00203_z
crossref_primary_10_1038_s41598_018_23495_z
crossref_primary_10_1038_ncomms10698
crossref_primary_10_1016_j_biocon_2023_110234
crossref_primary_10_1016_j_gecco_2025_e03411
crossref_primary_10_1016_j_biocon_2016_09_023
crossref_primary_10_1111_csp2_204
crossref_primary_10_1038_s41598_022_09694_9
crossref_primary_10_1111_1365_2664_13125
crossref_primary_10_1016_j_biocon_2020_108635
crossref_primary_10_3390_d14030158
crossref_primary_10_1111_jzo_13200
crossref_primary_10_1071_WR23128
crossref_primary_10_1016_j_cub_2024_09_049
crossref_primary_10_1016_j_biocon_2020_108638
crossref_primary_10_1071_WR24059
crossref_primary_10_1111_emr_12035
crossref_primary_10_1007_s11252_019_00886_2
crossref_primary_10_1111_acv_12429
crossref_primary_10_1111_oik_08821
crossref_primary_10_1007_s00435_019_00475_z
crossref_primary_10_3390_ani14162431
crossref_primary_10_1007_BF03544404
crossref_primary_10_1093_jmammal_gyz040
crossref_primary_10_1111_mam_12139
crossref_primary_10_1007_s10531_019_01734_7
crossref_primary_10_1071_WR15011
crossref_primary_10_1111_1365_2664_12369
crossref_primary_10_1007_s00265_016_2162_7
crossref_primary_10_1071_WR19217
crossref_primary_10_1038_s41598_021_97634_4
crossref_primary_10_1111_ele_13344
crossref_primary_10_1071_WR24102
crossref_primary_10_1071_WR19175
crossref_primary_10_1002_eap_2644
crossref_primary_10_1098_rspb_2016_1625
crossref_primary_10_1111_jzo_12100
crossref_primary_10_1071_ZO13025
crossref_primary_10_1071_AM20034
crossref_primary_10_1016_j_biocon_2012_12_004
crossref_primary_10_1002_jwmg_687
crossref_primary_10_1016_j_biocon_2015_07_030
crossref_primary_10_1071_AM14038
crossref_primary_10_1080_14486563_2017_1369465
crossref_primary_10_1111_oik_05546
crossref_primary_10_1016_j_biocon_2019_04_004
crossref_primary_10_1002_2688_8319_12018
crossref_primary_10_1007_s00442_014_2977_8
crossref_primary_10_1016_j_rbe_2017_07_001
crossref_primary_10_1071_WR15123
crossref_primary_10_1071_WR16058
crossref_primary_10_1098_rspb_2013_3094
crossref_primary_10_1186_s12983_014_0056_y
crossref_primary_10_1002_eap_2482
crossref_primary_10_1163_15707563_17000110
crossref_primary_10_1371_journal_pone_0093666
crossref_primary_10_1071_WR14159
crossref_primary_10_1186_1742_9994_11_17
crossref_primary_10_1007_s10530_017_1449_6
crossref_primary_10_1371_journal_pone_0059846
crossref_primary_10_1071_WR21083
crossref_primary_10_1093_beheco_arw178
crossref_primary_10_1111_1365_2656_12493
crossref_primary_10_1111_mam_12080
crossref_primary_10_1071_AM21036
crossref_primary_10_1007_s13364_020_00496_w
crossref_primary_10_1111_mec_13416
crossref_primary_10_1007_s00265_023_03405_8
crossref_primary_10_1111_2041_210X_13905
crossref_primary_10_1080_03014223_2014_898667
crossref_primary_10_1111_cobi_13280
crossref_primary_10_1016_j_biocon_2018_10_011
crossref_primary_10_1007_s10980_017_0517_8
crossref_primary_10_1016_j_jasrep_2017_05_035
crossref_primary_10_1111_mam_12115
crossref_primary_10_3390_ani12010051
crossref_primary_10_1071_PC17036
crossref_primary_10_1093_jue_juab019
crossref_primary_10_1007_s10530_025_03544_1
crossref_primary_10_1371_journal_pone_0111444
crossref_primary_10_1007_s13364_020_00507_w
crossref_primary_10_1093_biosci_bix091
crossref_primary_10_1007_s10530_021_02718_x
crossref_primary_10_1080_00063657_2017_1387517
crossref_primary_10_1007_s00114_021_01772_8
crossref_primary_10_1093_beheco_arab053
crossref_primary_10_1007_s00265_017_2271_y
crossref_primary_10_1111_jbi_12563
crossref_primary_10_1002_ecs2_4383
crossref_primary_10_1111_rssc_12561
crossref_primary_10_1111_2041_210X_12711
crossref_primary_10_1080_03014223_2015_1103761
crossref_primary_10_1071_AM19069
crossref_primary_10_1111_ddi_13182
crossref_primary_10_1111_cobi_12525
crossref_primary_10_1098_rspb_2022_2113
crossref_primary_10_7717_peerj_2288
crossref_primary_10_1186_s13071_024_06330_5
crossref_primary_10_1111_ddi_13065
crossref_primary_10_1016_j_mambio_2018_07_003
crossref_primary_10_1111_emr_12118
crossref_primary_10_1007_s10530_023_03152_x
crossref_primary_10_1002_eap_1483
crossref_primary_10_1111_aec_13182
crossref_primary_10_1007_s00442_016_3729_8
crossref_primary_10_1016_j_ecoser_2017_12_006
crossref_primary_10_1098_rspb_2014_2870
crossref_primary_10_1371_journal_pone_0137169
crossref_primary_10_1007_s10531_017_1309_9
crossref_primary_10_1016_j_agee_2024_109095
crossref_primary_10_1080_01584197_2017_1388744
crossref_primary_10_1111_1365_2656_12231
crossref_primary_10_1111_aec_12138
crossref_primary_10_1007_s11356_013_2118_7
crossref_primary_10_1016_j_baae_2018_12_001
crossref_primary_10_1016_j_fooweb_2020_e00173
crossref_primary_10_1371_journal_pone_0097937
crossref_primary_10_3390_ani13142257
crossref_primary_10_1007_s10530_014_0767_1
crossref_primary_10_1093_beheco_arx122
crossref_primary_10_1111_1365_2664_12323
crossref_primary_10_1007_s10021_019_00360_2
crossref_primary_10_1111_oik_07251
crossref_primary_10_1890_15_0204_1
crossref_primary_10_1371_journal_pone_0109097
crossref_primary_10_1371_journal_pone_0133915
crossref_primary_10_1016_j_jocm_2023_100415
crossref_primary_10_1038_s41598_023_37166_1
crossref_primary_10_1111_emr_12524
crossref_primary_10_7717_peerj_15887
crossref_primary_10_1002_ece3_8267
crossref_primary_10_1007_s13364_020_00504_z
crossref_primary_10_1002_eap_2566
crossref_primary_10_1111_emr_12407
crossref_primary_10_1080_14888386_2019_1585289
crossref_primary_10_1002_rse2_60
crossref_primary_10_1007_s42991_022_00311_w
crossref_primary_10_1017_S0030605322001661
crossref_primary_10_1016_j_jaridenv_2019_03_002
crossref_primary_10_1002_fee_1922
crossref_primary_10_3390_ani9121050
crossref_primary_10_1111_acv_12756
crossref_primary_10_1111_aec_12427
crossref_primary_10_1016_j_biocon_2015_05_007
crossref_primary_10_1086_702250
crossref_primary_10_1134_S1062359022090242
crossref_primary_10_1071_WR19004
crossref_primary_10_1126_science_aar7121
crossref_primary_10_1016_j_biocon_2013_09_024
crossref_primary_10_2981_wlb_00683
Cites_doi 10.1155/2012/250352.
10.1071/WR9920519
10.1016/0306-4565(87)90020-9
10.1071/AM09030
10.1111/j.1523-1739.2003.00059.x
10.1139/z01-094
10.1111/j.1461-0248.2010.01492.x
10.1016/0022-1902(81)80263-1
10.1046/j.1523-1739.1996.10020526.x
10.1146/annurev.ecolsys.34.011802.132435
10.1111/j.1439-0310.2009.01653.x
10.1046/j.1523-1739.2003.01599.x
10.1086/283009
10.1016/0169-5347(92)90208-S
10.1111/j.1469-185X.2011.00203.x
10.1073/pnas.0401814101
10.1071/9780643095595
10.1071/WR9850025
10.1111/j.1365-2664.2009.01705.x
10.1017/S0266467410000052
10.1071/WR01011
10.1016/j.actao.2010.04.001
10.1111/j.1365-2664.2006.01218.x
10.1111/j.1748-7692.2007.00167.x
10.1071/WR9820409
10.1111/j.1755-263X.2011.00164.x
10.1111/j.1466-8238.2010.00600.x
10.1016/j.ecolmodel.2011.05.002
10.3957/056.039.0207
10.1071/WR11134
10.1111/j.1469-7998.1988.tb04986.x
10.1080/08927014.2008.9522514
10.1016/j.biocon.2012.04.006
10.1016/j.foreco.2009.05.030
10.1890/08-0302.1
10.1371/journal.pone.0006861
10.1071/WR04093
10.1071/WR10169
10.1016/S0140-1963(02)00317-8
10.1071/WR03050
10.1086/321991
10.1890/03-0369
10.1046/j.1365-2664.2001.00569.x
10.1111/j.1365-2656.2008.01430.x
10.1890/07-0193.1
10.1093/beheco/11.6.624
10.1146/annurev.es.20.110189.001501
10.1525/bio.2009.59.9.9
10.1111/j.1469-7998.2011.00874.x
10.1111/j.1365-2664.2009.01650.x
10.1038/23028
10.1126/science.1205106
10.1139/z00-003
10.1071/WR9920707
10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2
10.2307/1383287
10.2307/3544413
10.2307/3801987
10.1016/j.tree.2012.01.001
10.2307/1441885
10.1098/rspb.2009.0574
10.1071/WR08098
10.1111/j.1365-2656.2010.01678.x
10.1071/AM94011
10.1111/j.1523-1739.1988.tb00337.x
10.1111/j.1461-0248.2009.01347.x
10.1890/06-1408.1
10.1098/rspb.2006.3711
10.1139/z90-092
ContentType Journal Article
Copyright 2012 British Ecological Society
2012 The Authors. Journal of Applied Ecology © 2012 British Ecological Society
2014 INIST-CNRS
Copyright Blackwell Publishing Ltd. Dec 2012
Copyright_xml – notice: 2012 British Ecological Society
– notice: 2012 The Authors. Journal of Applied Ecology © 2012 British Ecological Society
– notice: 2014 INIST-CNRS
– notice: Copyright Blackwell Publishing Ltd. Dec 2012
DBID AAYXX
CITATION
IQODW
7SN
7SS
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
7ST
7U6
DOI 10.1111/j.1365-2664.2012.02207.x
DatabaseName CrossRef
Pascal-Francis
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList Ecology Abstracts
CrossRef

Entomology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Ecology
EISSN 1365-2664
EndPage 1286
ExternalDocumentID 2836286051
26664358
10_1111_j_1365_2664_2012_02207_x
JPE2207
23353507
Genre article
Feature
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – fundername: Department of Environment and Resource Management
  funderid: WITK06493009
– fundername: James Cook University Animal Ethics Committee
– fundername: Australian Research Council Discovery
  funderid: DP0877398
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29J
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABPLY
ABPPZ
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
24P
31~
42X
53G
AAHHS
AAYJJ
ABEFU
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AI.
AIWBW
AJBDE
AS~
CAG
DOOOF
EQZMY
ESX
GTFYD
HGD
HQ2
HTVGU
JSODD
VH1
VOH
WHG
WRC
XIH
YYP
ZY4
AAYXX
AGHNM
CITATION
IQODW
7SN
7SS
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
7ST
7U6
ID FETCH-LOGICAL-c4267-564cbbe6897d4dae503ddc4333dd41ca4e14d468fa6c185c00e1b20f555890d23
IEDL.DBID DR2
ISSN 0021-8901
IngestDate Fri Jul 11 06:13:59 EDT 2025
Fri Jul 25 10:52:39 EDT 2025
Wed Apr 02 07:26:15 EDT 2025
Tue Jul 01 02:58:33 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Wed Jan 22 16:22:46 EST 2025
Thu Jul 03 21:07:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Competition
interference competition
Landscape
intraguild interactions
Interaction
Suppression
risk effects
Predatory behavior
Interference
Risk
Carnivorous animal
Guild
Mesopredator
Invasive species
Pest management
carnivore
Predator
Apex
landscape of fear
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4267-564cbbe6897d4dae503ddc4333dd41ca4e14d468fa6c185c00e1b20f555890d23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1223837519
PQPubID 37791
PageCount 9
ParticipantIDs proquest_miscellaneous_1257772530
proquest_journals_1223837519
pascalfrancis_primary_26664358
crossref_primary_10_1111_j_1365_2664_2012_02207_x
crossref_citationtrail_10_1111_j_1365_2664_2012_02207_x
wiley_primary_10_1111_j_1365_2664_2012_02207_x_JPE2207
jstor_primary_23353507
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of applied ecology
PublicationYear 2012
Publisher Blackwell Publishing
Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing
– name: Blackwell
– name: Blackwell Publishing Ltd
References 2009; 46
2012; 2012
2010; 13
2009; 276
1992; 19
2003; 17
1999; 400
2008; 77
1999; 80
2009; 115
2003; 55
1967; 1967
2009; 12
1992; 7
2004; 31
2010; 26
2001
2000; 11
2009; 90
1982; 9
2011; 20
2005; 32
2008; 24
1983
1981
2012; 27
2008; 20
1985; 12
1975; 109
2009; 59
2011; 286
1988; 214
2004; 101
2010; 32
1984; 42
2011; 333
1987; 12
2010; 36
1989; 20
2010; 79
2011
2010
1998
2008
2007
1996
2005; 86
2006
1995
2011; 4
2011; 38
1998; 62
1996; 10
2009; 258
2003; 34
1988; 2
2009; 36
2012; 152
2002; 29
1990; 68
2000; 78
2006; 43
2007; 274
2008; 89
2001; 38
1994; 17
2009; 4
2007; 88
2001; 79
2012; 87
2011; 222
2001; 158
2009; 39
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
Bennett A.F. (e_1_2_6_7_1) 1983
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_41_1
e_1_2_6_60_1
Gibson D.F. (e_1_2_6_27_1) 1994; 17
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_68_1
R Development Core Team (e_1_2_6_59_1) 2011
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Denny E. (e_1_2_6_20_1) 2008
Fleming P.J.S. (e_1_2_6_26_1) 2001
Kitchener A.C. (e_1_2_6_40_1) 2010
e_1_2_6_14_1
e_1_2_6_35_1
Van Dyck S. (e_1_2_6_76_1) 2008
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
Williams C.K. (e_1_2_6_79_1) 1995
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_61_1
Coulson G. (e_1_2_6_17_1) 1996
e_1_2_6_8_1
Johnson C.N. (e_1_2_6_34_1) 2006
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – year: 2011
– volume: 29
  start-page: 51
  year: 2002
  end-page: 74
  article-title: Origin and spread of the cat, , on mainland Australia, with a discussion of the magnitude of its early impact on native fauna
  publication-title: Wildlife Research
– volume: 12
  start-page: 27
  year: 1987
  end-page: 37
  article-title: A 2‐peak circadian system in body temperature and activity in the domestic cat L
  publication-title: Journal of Thermal Biology
– start-page: 1
  year: 1983
  end-page: 23
– year: 1981
– volume: 1967
  start-page: 753
  year: 1967
  end-page: 758
  article-title: Activity cycle and thermoregulation in the Australian gecko
  publication-title: Copeia
– volume: 38
  start-page: 76
  year: 2001
  end-page: 87
  article-title: The effect of dingo control on sheep and beef cattle in Queensland
  publication-title: Journal of Applied Ecology
– volume: 38
  start-page: 732
  year: 2011
  end-page: 739
  article-title: Estimating and indexing feral cat population abundances using camera traps
  publication-title: Wildlife Research
– volume: 77
  start-page: 1092
  year: 2008
  end-page: 1098
  article-title: Risk induced by a native top predator reduces alien mink movements
  publication-title: Journal of Animal Ecology
– start-page: 742
  year: 2008
  end-page: 744
– year: 2001
– volume: 276
  start-page: 3249
  year: 2009
  end-page: 3256
  article-title: Keystone effects of an alien top‐predator stem extinctions of native mammals
  publication-title: Proceedings of the Royal Society B‐Biological Sciences
– volume: 333
  start-page: 301
  year: 2011
  end-page: 306
  article-title: Trophic downgrading of Planet Earth
  publication-title: Science
– volume: 79
  start-page: 1401
  year: 2001
  end-page: 1409
  article-title: Wolves, elk and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A
  publication-title: Canadian Journal of Zoology
– volume: 12
  start-page: 982
  year: 2009
  end-page: 998
  article-title: Predator interactions, mesopredator release and biodiversity conservation
  publication-title: Ecology Letters
– volume: 46
  start-page: 641
  year: 2009
  end-page: 646
  article-title: Evidence that dingoes limit abundance of a mesopredator in eastern Australian forests
  publication-title: Journal of Applied Ecology
– volume: 42
  start-page: 403
  year: 1984
  end-page: 406
  article-title: Time as a niche difference – the role of interference competition
  publication-title: Oikos
– volume: 20
  start-page: 295
  year: 2008
  end-page: 324
  article-title: Interspecific competition and predation in American carnivore families
  publication-title: Ethology Ecology & Evolution
– volume: 88
  start-page: 2713
  year: 2007
  end-page: 2719
  article-title: Habitat structure affects intraguild predation
  publication-title: Ecology
– volume: 32
  start-page: 23
  year: 2010
  end-page: 32
  article-title: Movements and habitat selection by wild dogs in eastern Victoria
  publication-title: Australian Mammalogy
– volume: 400
  start-page: 563
  year: 1999
  end-page: 566
  article-title: Mesopredator release and avifaunal extinctions in a fragmented system
  publication-title: Nature
– volume: 258
  start-page: 814
  year: 2009
  end-page: 822
  article-title: Satellite tracking of wild dogs in south‐eastern mainland Australian forests: implications for management of a problematic top‐order carnivore
  publication-title: Forest Ecology and Management
– volume: 17
  start-page: 1491
  year: 2003
  end-page: 1499
  article-title: Human‐carnivore conflict and perspectives on carnivore management worldwide
  publication-title: Conservation Biology
– volume: 109
  start-page: 391
  year: 1975
  end-page: 418
  article-title: Influences of light on activity and phasing of carnivores
  publication-title: The American Naturalist
– volume: 17
  start-page: 1238
  year: 2003
  end-page: 1250
  article-title: Ecological effectiveness: conservation goals for interactive species
  publication-title: Conservation Biology
– volume: 26
  start-page: 303
  year: 2010
  end-page: 311
  article-title: Temporal separation between jaguar and puma in the dry forests of southern Bolivia
  publication-title: Journal of Tropical Ecology
– volume: 87
  start-page: 390
  year: 2012
  end-page: 413
  article-title: Top predators as biodiversity regulators: the dingo as a case study
  publication-title: Biological Reviews
– volume: 2012
  year: 2012
  article-title: Interactions between a top order predator and exotic mesopredators in the Australian rangelands
  publication-title: International Journal of Ecology
– volume: 90
  start-page: 1207
  year: 2009
  end-page: 1216
  article-title: The impact of native competitors on an alien invasive: temporal niche shifts to avoid interspecific aggression?
  publication-title: Ecology
– volume: 274
  start-page: 341
  year: 2007
  end-page: 346
  article-title: Rarity of a top predator triggers continent‐wide collapse of mammal prey: dingoes and marsupials in Australia
  publication-title: Proceedings of the Royal Society B‐Biological Sciences
– volume: 9
  start-page: 409
  year: 1982
  end-page: 420
  article-title: Ecology of the feral cat, (L) in southeastern Australia III. Home ranges and population ecology in semi‐arid northwest Victoria
  publication-title: Australian Wildlife Research
– year: 2008
– volume: 17
  start-page: 103
  year: 1994
  end-page: 107
  article-title: Predation by feral cats, , on the rufous hare‐wallaby, , in the Tanami Desert
  publication-title: Australian Mammalogy
– volume: 115
  start-page: 649
  year: 2009
  end-page: 657
  article-title: What drives wolves: fear or hunger? Humans, diet, climate and wolf activity patterns
  publication-title: Ethology
– volume: 78
  start-page: 853
  year: 2000
  end-page: 857
  article-title: Changes in coyote activity patterns due to reduced exposure to human persecution
  publication-title: Canadian Journal of Zoology
– volume: 13
  start-page: 1008
  year: 2010
  end-page: 1018
  article-title: Predator control promotes invasive dominated ecological states
  publication-title: Ecology Letters
– volume: 152
  start-page: 21
  year: 2012
  end-page: 28
  article-title: Do bears know they are being hunted?
  publication-title: Biological Conservation
– volume: 7
  start-page: 151
  year: 1992
  end-page: 154
  article-title: Intraguild predation: the dynamics of complex trophic interactions
  publication-title: Trends in Ecology & Evolution
– start-page: 83
  year: 2010
  end-page: 106
– volume: 19
  start-page: 519
  year: 1992
  end-page: 530
  article-title: The behavioral ecology of dingoes in north‐western Australia 2. Activity patterns, breeding season and pup rearing
  publication-title: Wildlife Research
– volume: 31
  start-page: 421
  year: 2004
  end-page: 432
  article-title: An experimental translocation of brush‐tailed bettongs ( ) to western New South Wales
  publication-title: Wildlife Research
– volume: 43
  start-page: 1049
  year: 2006
  end-page: 1055
  article-title: Ecologically justified charisma: preservation of top predators delivers biodiversity conservation
  publication-title: Journal of Applied Ecology
– volume: 12
  start-page: 25
  year: 1985
  end-page: 37
  article-title: The ecology of the dingo in northeastern New South Wales 1. Movements and home range
  publication-title: Australian Wildlife Research
– volume: 158
  start-page: 451
  year: 2001
  end-page: 457
  article-title: On the use of the time axis for ecological separation: diel rhythms as an evolutionary constraint
  publication-title: The American Naturalist
– start-page: 158
  year: 1996
  end-page: 186
– volume: 59
  start-page: 779
  year: 2009
  end-page: 791
  article-title: The rise of the mesopredator
  publication-title: BioScience
– volume: 36
  start-page: 403
  year: 2010
  end-page: 412
  article-title: Niche partitioning and species coexistence in a Neotropical felid assemblage
  publication-title: Acta Oecologica
– volume: 4
  start-page: 192
  year: 2011
  end-page: 201
  article-title: The disappearing mammal fauna of northern Australia: context, cause, and response
  publication-title: Conservation Letters
– volume: 101
  start-page: 12387
  year: 2004
  end-page: 12390
  article-title: A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA
  publication-title: Proceedings of the National Academy of Sciences
– volume: 38
  start-page: 426
  year: 2011
  end-page: 436
  article-title: Is water the key? Dingo management, intraguild interactions and predator distribution around water points in arid Australia
  publication-title: Wildlife Research
– year: 2007
– volume: 286
  start-page: 232
  year: 2011
  end-page: 242
  article-title: Masking of the zeitgeber: African wild dogs mitigate persecution by balancing time
  publication-title: Journal of Zoology
– volume: 32
  start-page: 587
  year: 2005
  end-page: 595
  article-title: Home ranges of feral cats ( ) in central‐western New South Wales, Australia
  publication-title: Wildlife Research
– volume: 86
  start-page: 164
  year: 2005
  end-page: 173
  article-title: Temporal partitioning: an experiment with two species of spiny mice
  publication-title: Ecology
– volume: 68
  start-page: 619
  year: 1990
  end-page: 640
  article-title: Behavioural decisions made under the risk of predation: a review and prospectus
  publication-title: Canadian Journal of Zoology
– volume: 19
  start-page: 707
  year: 1992
  end-page: 720
  article-title: Feral cats ( L.) on New Zealand farmland 2. Seasonal activity
  publication-title: Wildlife Research
– volume: 24
  start-page: 1
  year: 2008
  end-page: 15
  article-title: Seascapes of fear: evaluating sublethal predator effects experienced and generated by marine mammals
  publication-title: Marine Mammal Science
– volume: 20
  start-page: 343
  year: 2011
  end-page: 353
  article-title: Does a top predator suppress the abundance of an invasive mesopredator at a continental scale?
  publication-title: Global Ecology and Biogeography
– volume: 4
  start-page: 1
  year: 2009
  end-page: 8
  article-title: More than mere numbers: the impact of lethal control on the social stability of a top‐order predator
  publication-title: PLoS One
– volume: 89
  start-page: 818
  year: 2008
  end-page: 828
  article-title: Indirect effects and traditional trophic cascades: a test involving wolves, coyotes, and pronghorn
  publication-title: Ecology
– volume: 27
  start-page: 265
  year: 2012
  end-page: 271
  article-title: Ecosystem restoration with teeth: what role for predators?
  publication-title: Trends in Ecology & Evolution
– volume: 79
  start-page: 785
  year: 2010
  end-page: 794
  article-title: Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients
  publication-title: Journal of Animal Ecology
– volume: 39
  start-page: 109
  year: 2009
  end-page: 125
  article-title: Temporal partitioning of activity in large African carnivores: tests of multiple hypotheses
  publication-title: South African Journal of Wildlife Research
– volume: 34
  start-page: 153
  year: 2003
  end-page: 181
  article-title: Partitioning of time as an ecological resource
  publication-title: Annual Review of Ecology Evolution and Systematics
– volume: 11
  start-page: 624
  year: 2000
  end-page: 632
  article-title: Living with the enemy: avoidance of hyenas and lions by cheetahs in the Serengeti
  publication-title: Behavioral Ecology
– volume: 55
  start-page: 691
  year: 2003
  end-page: 713
  article-title: Controlling introduced predators in the Gibson Desert of Western Australia
  publication-title: Journal of Arid Environments
– volume: 2
  start-page: 75
  year: 1988
  end-page: 92
  article-title: Reconstructed dynamics of rapid extinctions of chaparral‐requiring birds in urban habitat islands
  publication-title: Conservation Biology
– volume: 36
  start-page: 422
  year: 2009
  end-page: 435
  article-title: Movement patterns of feral predators in an arid environment – implications for control through poison baiting
  publication-title: Wildlife Research
– volume: 62
  start-page: 1235
  year: 1998
  end-page: 1245
  article-title: Interpreting carnivore scent‐station surveys
  publication-title: Journal of Wildlife Management
– year: 2006
– volume: 80
  start-page: 311
  year: 1999
  end-page: 323
  article-title: Estimating effects of limiting factors with regression quantiles
  publication-title: Ecology
– volume: 10
  start-page: 526
  year: 1996
  end-page: 538
  article-title: Limitation of African wild dogs by competition with larger carnivores
  publication-title: Conservation Biology
– volume: 222
  start-page: 2761
  year: 2011
  end-page: 2769
  article-title: Using simulation to explore the functional relationships of terrestrial carnivore population indices
  publication-title: Ecological Modelling
– volume: 46
  start-page: 1011
  year: 2009
  end-page: 1017
  article-title: Camera trapping photographic rate as an index of density in forest ungulates
  publication-title: Journal of Applied Ecology
– year: 1995
– volume: 214
  start-page: 55
  year: 1988
  end-page: 69
  article-title: Factors affecting the activity patterns of black‐backed jackals
  publication-title: Journal of Zoology
– volume: 80
  start-page: 385
  year: 1999
  end-page: 399
  article-title: The ecology of fear: optimal foraging, game theory, and trophic interactions
  publication-title: Journal of Mammalogy
– start-page: 421
  year: 1998
  end-page: 428
– volume: 20
  start-page: 297
  year: 1989
  end-page: 330
  article-title: The ecology and evolution of intraguild predation: potential competitors that eat each other
  publication-title: Annual Review of Ecology and Systematics
– ident: e_1_2_6_53_1
  doi: 10.1155/2012/250352.
– ident: e_1_2_6_74_1
  doi: 10.1071/WR9920519
– ident: e_1_2_6_60_1
  doi: 10.1016/0306-4565(87)90020-9
– ident: e_1_2_6_64_1
  doi: 10.1071/AM09030
– ident: e_1_2_6_75_1
  doi: 10.1111/j.1523-1739.2003.00059.x
– ident: e_1_2_6_45_1
  doi: 10.1139/z01-094
– ident: e_1_2_6_78_1
  doi: 10.1111/j.1461-0248.2010.01492.x
– ident: e_1_2_6_5_1
  doi: 10.1016/0022-1902(81)80263-1
– volume-title: R: A Language and Environment for Statistical Computing. Version 2.14.1
  year: 2011
  ident: e_1_2_6_59_1
– ident: e_1_2_6_18_1
  doi: 10.1046/j.1523-1739.1996.10020526.x
– ident: e_1_2_6_42_1
  doi: 10.1146/annurev.ecolsys.34.011802.132435
– ident: e_1_2_6_73_1
  doi: 10.1111/j.1439-0310.2009.01653.x
– ident: e_1_2_6_72_1
  doi: 10.1046/j.1523-1739.2003.01599.x
– ident: e_1_2_6_38_1
  doi: 10.1086/283009
– ident: e_1_2_6_55_1
  doi: 10.1016/0169-5347(92)90208-S
– volume-title: The Mammals of Australia
  year: 2008
  ident: e_1_2_6_76_1
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1469-185X.2011.00203.x
– ident: e_1_2_6_69_1
  doi: 10.1073/pnas.0401814101
– ident: e_1_2_6_10_1
  doi: 10.1071/9780643095595
– ident: e_1_2_6_29_1
  doi: 10.1071/WR9850025
– ident: e_1_2_6_66_1
  doi: 10.1111/j.1365-2664.2009.01705.x
– volume-title: Australia's Mammal Extinctions: A 50,000 Year History
  year: 2006
  ident: e_1_2_6_34_1
– ident: e_1_2_6_65_1
  doi: 10.1017/S0266467410000052
– ident: e_1_2_6_2_1
  doi: 10.1071/WR01011
– ident: e_1_2_6_21_1
  doi: 10.1016/j.actao.2010.04.001
– ident: e_1_2_6_70_1
  doi: 10.1111/j.1365-2664.2006.01218.x
– ident: e_1_2_6_80_1
  doi: 10.1111/j.1748-7692.2007.00167.x
– start-page: 158
  volume-title: Comparison of Marsupial and Placental Behaviour
  year: 1996
  ident: e_1_2_6_17_1
– ident: e_1_2_6_37_1
  doi: 10.1071/WR9820409
– ident: e_1_2_6_81_1
  doi: 10.1111/j.1755-263X.2011.00164.x
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1466-8238.2010.00600.x
– ident: e_1_2_6_3_1
– volume-title: Managing the Impacts of Dingoes and Other Wild Dogs
  year: 2001
  ident: e_1_2_6_26_1
– ident: e_1_2_6_50_1
  doi: 10.1016/j.ecolmodel.2011.05.002
– ident: e_1_2_6_31_1
  doi: 10.3957/056.039.0207
– ident: e_1_2_6_6_1
  doi: 10.1071/WR11134
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1469-7998.1988.tb04986.x
– ident: e_1_2_6_32_1
  doi: 10.1080/08927014.2008.9522514
– ident: e_1_2_6_54_1
  doi: 10.1016/j.biocon.2012.04.006
– start-page: 742
  volume-title: The Mammals of Australia
  year: 2008
  ident: e_1_2_6_20_1
– ident: e_1_2_6_16_1
  doi: 10.1016/j.foreco.2009.05.030
– ident: e_1_2_6_30_1
  doi: 10.1890/08-0302.1
– ident: e_1_2_6_77_1
  doi: 10.1371/journal.pone.0006861
– ident: e_1_2_6_51_1
  doi: 10.1071/WR04093
– ident: e_1_2_6_9_1
  doi: 10.1071/WR10169
– ident: e_1_2_6_12_1
  doi: 10.1016/S0140-1963(02)00317-8
– ident: e_1_2_6_57_1
  doi: 10.1071/WR03050
– ident: e_1_2_6_43_1
  doi: 10.1086/321991
– ident: e_1_2_6_28_1
  doi: 10.1890/03-0369
– ident: e_1_2_6_4_1
  doi: 10.1046/j.1365-2664.2001.00569.x
– start-page: 1
  volume-title: Lizard Ecology: Studies of a Model Organism
  year: 1983
  ident: e_1_2_6_7_1
– ident: e_1_2_6_67_1
  doi: 10.1111/j.1365-2656.2008.01430.x
– ident: e_1_2_6_8_1
  doi: 10.1890/07-0193.1
– ident: e_1_2_6_22_1
  doi: 10.1093/beheco/11.6.624
– start-page: 83
  volume-title: Biology and Conservation of Wild Felids
  year: 2010
  ident: e_1_2_6_40_1
– volume-title: Managing Vertebrate Pests: Rabbits
  year: 1995
  ident: e_1_2_6_79_1
– ident: e_1_2_6_56_1
  doi: 10.1146/annurev.es.20.110189.001501
– ident: e_1_2_6_58_1
  doi: 10.1525/bio.2009.59.9.9
– ident: e_1_2_6_41_1
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1469-7998.2011.00874.x
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1365-2664.2009.01650.x
– ident: e_1_2_6_19_1
  doi: 10.1038/23028
– ident: e_1_2_6_24_1
  doi: 10.1126/science.1205106
– ident: e_1_2_6_39_1
  doi: 10.1139/z00-003
– ident: e_1_2_6_44_1
  doi: 10.1071/WR9920707
– ident: e_1_2_6_14_1
  doi: 10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2
– ident: e_1_2_6_11_1
  doi: 10.2307/1383287
– ident: e_1_2_6_15_1
  doi: 10.2307/3544413
– ident: e_1_2_6_68_1
  doi: 10.2307/3801987
– ident: e_1_2_6_63_1
  doi: 10.1016/j.tree.2012.01.001
– ident: e_1_2_6_13_1
  doi: 10.2307/1441885
– ident: e_1_2_6_47_1
  doi: 10.1098/rspb.2009.0574
– ident: e_1_2_6_52_1
  doi: 10.1071/WR08098
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-2656.2010.01678.x
– volume: 17
  start-page: 103
  year: 1994
  ident: e_1_2_6_27_1
  article-title: Predation by feral cats, Felis catus, on the rufous hare‐wallaby, Lagorchestes hirsutus, in the Tanami Desert
  publication-title: Australian Mammalogy
  doi: 10.1071/AM94011
– ident: e_1_2_6_71_1
  doi: 10.1111/j.1523-1739.1988.tb00337.x
– ident: e_1_2_6_62_1
  doi: 10.1111/j.1461-0248.2009.01347.x
– ident: e_1_2_6_33_1
  doi: 10.1890/06-1408.1
– ident: e_1_2_6_35_1
  doi: 10.1098/rspb.2006.3711
– ident: e_1_2_6_49_1
  doi: 10.1139/z90-092
SSID ssj0009533
Score 2.4936395
Snippet 1. Apex predators can benefit ecosystems through top—down control of mesopredators and herbivores. However, apex predators are often subject to lethal control...
Summary Apex predators can benefit ecosystems through top–down control of mesopredators and herbivores. However, apex predators are often subject to lethal...
Apex predators can benefit ecosystems through top–down control of mesopredators and herbivores. However, apex predators are often subject to lethal control...
Apex predators can benefit ecosystems through top-down control of mesopredators and herbivores. However, apex predators are often subject to lethal control...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1278
SubjectTerms Abundance
Animal, plant and microbial ecology
Apex predators
Applied ecology
Biological and medical sciences
Cameras
Canis lupus
carnivore
Cats
Conservation
Conservation biology
Control of invasives
Dingoes
Dogs
Ecological competition
Ecology
Ecosystems
Fundamental and applied biological sciences. Psychology
General aspects
Herbivores
Human ecology
interference competition
intraguild interactions
invasive species
landscape of fear
Livestock
Mammals
pest management
Predation
Predator control
Predators
Prey
Rangelands
risk effects
Wildlife ecology
Title Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression
URI https://www.jstor.org/stable/23353507
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2664.2012.02207.x
https://www.proquest.com/docview/1223837519
https://www.proquest.com/docview/1257772530
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kIOiD1WoxtpYVfL2SzX4k91ikpRQUEQt9W_bTh2pyXC5Q_evdye6lF_GhiE8XLjMhmczO_nb2lxmA976puKZNuTD47QcXAePgErfYnYkTCG9EwIT-x0_y8ppf3YibzH_Cb2FSfYgp4YYjY4zXOMC16eeDPDG0JKZGMKVXYbYE8SSeQHz0pdqpv5u6yiMjoYlz4JzU89cLzWaqRFZE5qTuo_FC6noxg6W74HacnS724Xb7XImUcns6bMyp_fVHycf_8-DP4VkGseQsed0LeOTbA3h69m2dC3n4A3icmlz-fAl9KpDcky6Q1do7XOWTzJAnXUtyoYBhjQK6JXrl7-4FdesIbqtjYEatifpNItomP3zfTaL9sMqs3vYVXF-cf_1wucitHhY2QoR6ISS3xnjZLGvHnfaiZM5Zzlj84dRq7il3XDZBSxsRhi1LT01VBqxWtixdxQ5hr-1a_xpIBKi1qLjXFQs8SKFp0KV1xlFaM-lDAfX2tSqb66BjO47vamc9FA2s0MAKDaxGA6u7AuikuUq1QB6gczh6zqRQMSZYBOEFnMxc6V4gLigjhm0KON76lspxpVc0ormG1RF2F_BuOh0jAm7z6NZ3A8qIOq6ZBCsLkKMjPfhu1dXnczx686-KR_AE_058n2PY26wH_zaito05Gcfjb-yPMZU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kRdSHqtVitNYVfL2SZD-Seyzacta2iLTQt2WzH32wJsflAtW_3p3sXnopfSjiUwKZCclkdva3s7_MAHyyZc5UVqaTCv_9YNxhHJziFrup_ATCSu4woX96JmYX7PiSX8Z2QPgvTKgPMSTccGT08RoHOCakx6M8ULQE5kYwp5djusQDyk1s8I3tDL78yNcq8Ia-8shJKP0sOKb13Hun0VwV6IrInVStN58LfS9GwHQd3vbz09FzuF69WaCl_NzvltW-_nOn6ON_evUXsBVxLDkIjvcSHtl6G54dXC1iLQ-7DY9Dn8vfr6ANNZJb0jgyX1iDC30SSfKkqUmsFdAtUEDVRM3tza2gqg3BnXWMzag1sL-JB9zkl22bQbTt5pHYW7-Gi6PD88-zSez2MNEeJRQTLpiuKivKaWGYUZan1BjNKPUHlmnFbMYME6VTQnuQodPUZlWeOixYNk1NTndgo25q-waIx6gFz5lVOXXMCa4yp1JtKpNlBRXWJVCsvqvUsRQ6duS4lmtLIm9giQaWaGDZG1jeJJANmvNQDuQBOju96wwKOaWcehyewN7Il24F_JrSw9gygd2Vc8kYWlqZeUBX0sIj7wQ-Dpd9UMCdHlXbpkMZXvhlE6dpAqL3pAc_rTz-fohnb_9V8QM8mZ2fnsiTr2ff3sFTFAn0n13YWC46-96DuGW11w_Ov_5DNa8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kouiDH9VitNYVfL2SZD-Seyzao1YtRSz0bdlkd_tQTcLlAm3_emeyufQiPhTx6QI3c1wmM7O_nf1lBuCDy1NhkjyeFfTuh5Ce8uCcjthtgQuIyKWngv63E3V0Jo7P5fnAf6J3YUJ_iLHgRpHR52sK8Mb6aZAHhpai0giV9FKqliCevC8Uxg4BpO_pRgPeMFaeKAk5LoJTVs9ff2myVAW2IlEnTYvW82HsxQSXbqLbfnlaPIXL9Y0FVsrlfrcq9subP3o-_p87fwZPBhTLDoLbPYd7rtqGxwcXy6GTh9uGB2HK5fULaEOH5JbVnjVLZ2mbzwaKPKsrNnQK6JYkYCpmGnd1K2gqy-hcnTIzaY3cb4Zwm_1ybT2Ktl0z0Hqrl3C2OPzx8Wg2zHqYlYgRsplUoiwKp_J5ZoU1Tsbc2lJwjh8iKY1wibBC5d6oEiFGGccuKdLYU7uyeWxTvgNbVV25V8AQoWYyFc6k3AuvpEm8iUtb2CTJuHI-gmz9WHU5NEKneRw_9caGCA2sycCaDKx7A-urCJJRswnNQO6gs9N7zqiQci45ovAI9iaudCuAO0oEsXkEu2vf0kNiaXWCcC7nGeLuCN6PX2NKoHMeU7m6IxmZ4aZJ8jgC1TvSnf-tPj49pKvX_6r4Dh6eflror59PvryBRyQRuD-7sLVadu4tIrhVsdeH5m8_VjRn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+predator+control+on+behaviour+of+an+apex+predator+and+indirect+consequences+for+mesopredator+suppression&rft.jtitle=The+Journal+of+applied+ecology&rft.au=Brook%2C+Leila+A&rft.au=Johnson%2C+Christopher+N&rft.au=Ritchie%2C+Euan+G&rft.date=2012-12-01&rft.issn=0021-8901&rft.eissn=1365-2664&rft.volume=49&rft.issue=6&rft.spage=1278&rft.epage=1286&rft_id=info:doi/10.1111%2Fj.1365-2664.2012.02207.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8901&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8901&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8901&client=summon