Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails
Pond snails have long been the subject of intense scrutiny by researchers interested in general principles of development and also cellular and molecular neurobiology. Recent work has exploited both these fields of study by examining the ontogeny of the nervous system in these animals. Much of this...
Saved in:
Published in | Microscopy research and technique Vol. 49; no. 6; pp. 570 - 578 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
15.06.2000
|
Subjects | |
Online Access | Get full text |
ISSN | 1059-910X 1097-0029 |
DOI | 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q |
Cover
Loading…
Abstract | Pond snails have long been the subject of intense scrutiny by researchers interested in general principles of development and also cellular and molecular neurobiology. Recent work has exploited both these fields of study by examining the ontogeny of the nervous system in these animals. Much of this work has focussed upon the development of specific transmitter phenotypes to provide vignettes of neuronal subpopulations that can be traced from early embryonic life through to adulthood. While such studies have generally confirmed previous explanations of gangliogenesis in gastropods, they have also indicated the presence of several neurons that appear earlier and in positions inconsistent with classical views of gastropods neurogenesis. The earliest of these cells contain FMRFamide‐related peptides and have anteriorly projections that mark the future locations of ganglia and interconnecting pathways that will comprise the postembryonic central nervous system. These posterior, peptidergic cells, as well as certain, apical, monoaminergic neurons, disappear and apparently die near the end of embryonic life. Finally, populations of what appear to be peripheral sensory neurons begin to express catecholamines by around midway through embryonic life. Like several of the neurons expressing a variety of transmitters in the developing central ganglia, the catecholaminergic peripheral cells persist into postembryonic life. Transmitter phenotypes, cell shapes and locations, and neuritic morphologies all suggest that many of the neurons observed in early embryonic pond snails have recognizable homologues across the molluscs. Such observations have profoundly altered our views of neurogenesis in gastropods over the last few years. They also suggest the promise for pond snails as fruitful models for studying the roles and mechanisms for pioneering fibres, cues triggering apoptosis, and contrasting origins and mechanisms employed for generating central vs. peripheral neurons within a single organism. Microsc. Res. Tech. 49:570–578, 2000. © 2000 Wiley‐Liss, Inc. |
---|---|
AbstractList | Pond snails have long been the subject of intense scrutiny by researchers interested in general principles of development and also cellular and molecular neurobiology. Recent work has exploited both these fields of study by examining the ontogeny of the nervous system in these animals. Much of this work has focussed upon the development of specific transmitter phenotypes to provide vignettes of neuronal subpopulations that can be traced from early embryonic life through to adulthood. While such studies have generally confirmed previous explanations of gangliogenesis in gastropods, they have also indicated the presence of several neurons that appear earlier and in positions inconsistent with classical views of gastropods neurogenesis. The earliest of these cells contain FMRFamide-related peptides and have anteriorly projections that mark the future locations of ganglia and interconnecting pathways that will comprise the postembryonic central nervous system. These posterior, peptidergic cells, as well as certain, apical, monoaminergic neurons, disappear and apparently die near the end of embryonic life. Finally, populations of what appear to be peripheral sensory neurons begin to express catecholamines by around midway through embryonic life. Like several of the neurons expressing a variety of transmitters in the developing central ganglia, the catecholaminergic peripheral cells persist into postembryonic life. Transmitter phenotypes, cell shapes and locations, and neuritic morphologies all suggest that many of the neurons observed in early embryonic pond snails have recognizable homologues across the molluscs. Such observations have profoundly altered our views of neurogenesis in gastropods over the last few years. They also suggest the promise for pond snails as fruitful models for studying the roles and mechanisms for pioneering fibres, cues triggering apoptosis, and contrasting origins and mechanisms employed for generating central vs. peripheral neurons within a single organism. Pond snails have long been the subject of intense scrutiny by researchers interested in general principles of development and also cellular and molecular neurobiology. Recent work has exploited both these fields of study by examining the ontogeny of the nervous system in these animals. Much of this work has focussed upon the development of specific transmitter phenotypes to provide vignettes of neuronal subpopulations that can be traced from early embryonic life through to adulthood. While such studies have generally confirmed previous explanations of gangliogenesis in gastropods, they have also indicated the presence of several neurons that appear earlier and in positions inconsistent with classical views of gastropods neurogenesis. The earliest of these cells contain FMRFamide-related peptides and have anteriorly projections that mark the future locations of ganglia and interconnecting pathways that will comprise the postembryonic central nervous system. These posterior, peptidergic cells, as well as certain, apical, monoaminergic neurons, disappear and apparently die near the end of embryonic life. Finally, populations of what appear to be peripheral sensory neurons begin to express catecholamines by around midway through embryonic life. Like several of the neurons expressing a variety of transmitters in the developing central ganglia, the catecholaminergic peripheral cells persist into postembryonic life. Transmitter phenotypes, cell shapes and locations, and neuritic morphologies all suggest that many of the neurons observed in early embryonic pond snails have recognizable homologues across the molluscs. Such observations have profoundly altered our views of neurogenesis in gastropods over the last few years. They also suggest the promise for pond snails as fruitful models for studying the roles and mechanisms for pioneering fibres, cues triggering apoptosis, and contrasting origins and mechanisms employed for generating central vs. peripheral neurons within a single organism.Pond snails have long been the subject of intense scrutiny by researchers interested in general principles of development and also cellular and molecular neurobiology. Recent work has exploited both these fields of study by examining the ontogeny of the nervous system in these animals. Much of this work has focussed upon the development of specific transmitter phenotypes to provide vignettes of neuronal subpopulations that can be traced from early embryonic life through to adulthood. While such studies have generally confirmed previous explanations of gangliogenesis in gastropods, they have also indicated the presence of several neurons that appear earlier and in positions inconsistent with classical views of gastropods neurogenesis. The earliest of these cells contain FMRFamide-related peptides and have anteriorly projections that mark the future locations of ganglia and interconnecting pathways that will comprise the postembryonic central nervous system. These posterior, peptidergic cells, as well as certain, apical, monoaminergic neurons, disappear and apparently die near the end of embryonic life. Finally, populations of what appear to be peripheral sensory neurons begin to express catecholamines by around midway through embryonic life. Like several of the neurons expressing a variety of transmitters in the developing central ganglia, the catecholaminergic peripheral cells persist into postembryonic life. Transmitter phenotypes, cell shapes and locations, and neuritic morphologies all suggest that many of the neurons observed in early embryonic pond snails have recognizable homologues across the molluscs. Such observations have profoundly altered our views of neurogenesis in gastropods over the last few years. They also suggest the promise for pond snails as fruitful models for studying the roles and mechanisms for pioneering fibres, cues triggering apoptosis, and contrasting origins and mechanisms employed for generating central vs. peripheral neurons within a single organism. Pond snails have long been the subject of intense scrutiny by researchers interested in general principles of development and also cellular and molecular neurobiology. Recent work has exploited both these fields of study by examining the ontogeny of the nervous system in these animals. Much of this work has focussed upon the development of specific transmitter phenotypes to provide vignettes of neuronal subpopulations that can be traced from early embryonic life through to adulthood. While such studies have generally confirmed previous explanations of gangliogenesis in gastropods, they have also indicated the presence of several neurons that appear earlier and in positions inconsistent with classical views of gastropods neurogenesis. The earliest of these cells contain FMRFamide‐related peptides and have anteriorly projections that mark the future locations of ganglia and interconnecting pathways that will comprise the postembryonic central nervous system. These posterior, peptidergic cells, as well as certain, apical, monoaminergic neurons, disappear and apparently die near the end of embryonic life. Finally, populations of what appear to be peripheral sensory neurons begin to express catecholamines by around midway through embryonic life. Like several of the neurons expressing a variety of transmitters in the developing central ganglia, the catecholaminergic peripheral cells persist into postembryonic life. Transmitter phenotypes, cell shapes and locations, and neuritic morphologies all suggest that many of the neurons observed in early embryonic pond snails have recognizable homologues across the molluscs. Such observations have profoundly altered our views of neurogenesis in gastropods over the last few years. They also suggest the promise for pond snails as fruitful models for studying the roles and mechanisms for pioneering fibres, cues triggering apoptosis, and contrasting origins and mechanisms employed for generating central vs. peripheral neurons within a single organism. Microsc. Res. Tech. 49:570–578, 2000. © 2000 Wiley‐Liss, Inc. |
Author | Croll, Roger P. |
Author_xml | – sequence: 1 givenname: Roger P. surname: Croll fullname: Croll, Roger P. organization: Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10862113$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkV1v0zAUQCM0xD7gLyA_IXhIsZ3EdgpCGmWUToOqYmi8XbnJzRpI7GA7QP49Cd0mHpAQfvGVdXwk-xxHB8YajKKc0RmjlD9nNJfxOORPOR2XYNmzNJ-Ll5mk8_np6k18fvb-Ur5KZnS2WL_g8eZedHR352CaszwebZ8Po2Pvv1DKWMbSB9Eho0pwxpKjqF8ZX1_vgie1CZagds1AWts0vS-0IQZ7Z41uSInfsbFdiyaQsHO2v94RH_qyRk9sRYLTxrd1COhIt0Njw9Dh5CTYbt1gTV2QzpqSeKPrxj-M7le68fjoZj-JPr09u1y8iy_Wy9Xi9CIuUi5kzFOpKtwySSuUVOeqrEohMqFzzqqMjc9DVSimeckSladFqQSVQmVIRaWSLU1Ooid7b-fstx59gLb2BTaNNmh7D5JxylXK_gkyKYRK-WR8fAP22xZL6FzdajfA7Y-OwGYPFM5677D6A4GpKkyFYCoEt1UhzUHAWBVgrAq_q0ICFBZr4LAZnR_3zh91g8N_Cf_m2x-M1nhvrX3An3dW7b6CkInM4OrDEpKrhaSv1Tksk1-A6sKz |
Cites_doi | 10.1002/(SICI)1096-9861(19990215)404:3<285::AID-CNE1>3.0.CO;2-S 10.1016/0022-0981(86)90209-1 10.1007/BF00417868 10.1139/z98-063 10.1007/978-1-4684-1027-3_6 10.1016/S0092-8674(05)80030-3 10.1523/JNEUROSCI.17-20-07796.1997 10.2307/1542749 10.1007/978-1-4613-0503-3_5 10.1016/S0079-6123(08)61162-0 10.1111/j.1460-9568.1995.tb01021.x 10.1111/j.1460-9568.1996.tb01584.x 10.1016/0012-1606(88)90246-1 10.1002/cne.903220211 10.1016/0168-9525(89)90097-8 10.2307/1542748 10.2307/1542255 10.1002/neu.480230705 10.1111/j.1460-9568.1995.tb01059.x 10.1002/neu.480230918 10.1007/978-1-4613-1955-9_4 10.1242/jeb.90.1.283 10.1016/0040-8166(78)90014-9 10.1007/BF02151903 10.1046/j.1471-4159.1996.67030932.x 10.1016/0306-4522(80)90123-2 10.2307/1542948 10.1016/0012-1606(85)90445-2 10.1016/S0012-1606(89)80019-3 10.1016/0301-0082(95)80014-Y 10.1111/j.1463-6395.1995.tb00987.x 10.1016/B978-0-08-092659-9.50011-9 10.1006/dbio.1996.0028 10.1002/(SICI)1096-9861(19990215)404:3<297::AID-CNE2>3.0.CO;2-I 10.1098/rstb.1985.0002 10.1523/JNEUROSCI.04-05-01225.1984 10.1002/(SICI)1096-9861(19961014)374:2<180::AID-CNE2>3.0.CO;2-Z 10.1523/JNEUROSCI.10-01-00161.1990 10.1007/s004350050080 10.1002/neu.480220905 10.1002/(SICI)1097-4695(199803)34:4<361::AID-NEU6>3.0.CO;2-4 10.1002/neu.480210710 10.1002/cne.902800109 10.2307/1542757 10.1111/j.1460-9568.1993.tb00952.x 10.1098/rstb.1985.0176 10.1002/(SICI)1096-9861(19970929)386:3<507::AID-CNE12>3.0.CO;2-7 10.1139/z90-226 10.1007/s004410051087 10.1002/(SICI)1096-9861(19970929)386:3<477::AID-CNE10>3.0.CO;2-8 10.1163/187530151X00063 10.1523/JNEUROSCI.17-11-04293.1997 10.1016/0012-1606(80)90362-0 |
ContentType | Journal Article |
Copyright | Copyright © 2000 Wiley‐Liss, Inc. Copyright 2000 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2000 Wiley‐Liss, Inc. – notice: Copyright 2000 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK F1W H95 L.G 7X8 |
DOI | 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Neurosciences Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-0029 |
EndPage | 578 |
ExternalDocumentID | 10862113 10_1002_1097_0029_20000615_49_6_570__AID_JEMT7_3_0_CO_2_Q JEMT7 ark_67375_WNG_3WC70B8J_G |
Genre | article Journal Article Review |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RWR RX1 SUPJJ TWZ UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIK WJL WOHZO WQJ WRC WVDHM WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY F1W H95 L.G 7X8 |
ID | FETCH-LOGICAL-c4267-2478feb170fe70a98dfd6656a921f51105e8c81a2d13894cd8607685e06f83b03 |
IEDL.DBID | DR2 |
ISSN | 1059-910X |
IngestDate | Fri Jul 11 15:32:41 EDT 2025 Fri Jul 11 01:16:59 EDT 2025 Wed Feb 19 01:46:54 EST 2025 Tue Jul 01 02:08:09 EDT 2025 Wed Jan 22 17:08:49 EST 2025 Wed Oct 30 10:05:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 Copyright 2000 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4267-2478feb170fe70a98dfd6656a921f51105e8c81a2d13894cd8607685e06f83b03 |
Notes | ArticleID:JEMT7 ark:/67375/WNG-3WC70B8J-G istex:D6356102002D2C49DA3B8698E6921E10F30A21F1 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 |
PMID | 10862113 |
PQID | 17668420 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_71202841 proquest_miscellaneous_17668420 pubmed_primary_10862113 crossref_primary_10_1002_1097_0029_20000615_49_6_570__AID_JEMT7_3_0_CO_2_Q wiley_primary_10_1002_1097_0029_20000615_49_6_570_AID_JEMT7_3_0_CO_2_Q_JEMT7 istex_primary_ark_67375_WNG_3WC70B8J_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2000-06-15 15 June 2000 2000-Jun-15 20000615 |
PublicationDateYYYYMMDD | 2000-06-15 |
PublicationDate_xml | – month: 06 year: 2000 text: 2000-06-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Microscopy research and technique |
PublicationTitleAlternate | Microsc. Res. Tech |
PublicationYear | 2000 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | Hay-Schmidt A. 1995. The larval nervous system of Polygodius lacteus Schiender, 1868 (Polygordiidae, Polychaeta): Immunocytochemical data. Acta Zool (Stockholm) 76: 121-140. Voronezhskaya EE, Elekes K. 1996. Transient and sustained expression of FMRFamide-like immunoreactivity in the developing nervous system of Lymnaea stagnalis. Cell Mol Neurobiol 16: 661-676. Cumin R. 1972. Normantafel zur Organogenese von Limnaea stagnalis (Gastropoda, Pulmonata) mit besonderer Berücksichtigung der Mittekdarmdrüse Rev Suisse Zool 79: 709-774. Marois R, Carew TJ. 1997b. Ontogeny of serotonergic neurons in Aplysia californica. J Comp Neurol 386: 477-490. Hay-Schmidt A. 1990. Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive neurons and processes in the nervous system of the early actinotroch larva of Phoronis vancouverensis (Phoronida): distribution and development. Can J Zool 68: 1525-1536. Melancon E, Liu DW, Westerfield M, Eisen JS. 1997. Pathfinding by identified zebrafish motoneurons in the absence of muscle pioneers. J Neurosci 17: 7796-7804. Schwartz LM, Oppenheim RW, Shatz CJ, editors. 1992. Neuronal cell death (Special Issue). J Neurobiol 23: 1111-1352. Diefenbach TJ, Koss R, Goldberg JI. 1998. Early development of an identified serotonergic neuron in Helisoma trivolvis embryos: serotonin expression, de-expression, and uptake. J Neurobiol 34: 361-376. Weisblat DA, Shankland M. 1985 Cell lineage and segmentation in the leech. Phil Trans R Soc Lond (Biol) 312: 39-56. Croll RP, Voronezhskaya EE. 1996a. Early elements in gastropod neurogenesis. Dev Biol 173: 344-347. Croll RP, Jackson DL, Voronezhskaya EE. 1997. Catecholamine-containing cells in larval and post-larval bivalve molluscs. Biol Bull 193: 116-124. Marois R, Carew TJ. 1990. The gastropod nervous system in metamorphosis. J Neurobiol 7: 1053-1071. Gan WB, Macagno ER. 1997. Competition among the axonal projections of an identified neuron contributes to the retraction of some of those projections. J. Neurosci. 17: 4293-4301. Greenberg MJ, Price DA. 1992. Relationships among the FMRFamide-like peptides. Prog Brain Res 92: 25-37. Santama N, Li KW, Bright KE, Yeoman M, Geraerts WP, Benjamin PR, Burke JF. 1993. Processing of the FMRFamide precursor protein in the snail Lymnaea stagnalis: characterization and neuronal localization of a novel peptide, "SEEPLY." Eur J Neurosci 5: 1003-1016. Goodman CS, Shatz CJ. 1993. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72: 77-98. Tublitz NJ, Sylwester AW. 1990. Postembryonic alteration of transmitter phenotype in individually identified peptidergic neurons. J Neurosci 10: 161-168. Marois R, Croll RP. 1992. Development of serotonergic cells within the embryonic central nervous system of the pond snail, Lymnaea stagnalis. J Comp Neurol 322: 255-265. Santama N, Benjamin PR, Burke JF. 1995a. Alternative RNA splicing generates diversity of neuropeptide expression in the brain of the snail Lymnaea: in situ analysis of mutually exclusive transcripts of the FMRFamide gene. Eur J Neurosci 7: 65-76. Moffet SB. 1995. Neural regeneration in gastropod molluscs. Prog Neurobiol 46: 289-330. Bonar DB. 1978. Ultrastructure of a cephalic sensory organ in the larvae of the gastropod Phestilla sibogae (Aeolidacea, Nudibranchia). Tissue Cell 10: 153-165. Dyer JR, Sossin WS, Klein M. 1996. Cloning and characterization of aplycalcin and Aplysia neurocalcin, two new members of the calmodulin superfamily of small calcium-binding proteins. J. Neurochem 67: 932-942. Dickinson AJG, Nason J, Croll RP. 1999. Histochemical localization of FMRFamide, serotonin and catecholamine in embryonic Crepidula fornicata (Prosobranchia: Gastropoda). Zoomorphology 119: 49-62. Jacob MH. 1984. Neurogenesis in Aplysia californica resembles nervous system formation in vertebrates. J Neurosci 4: 1225-1239. Santama N, Li KW, Geraerts WPM, Benjamin PR, Burke JF. 1996. Post-translational processing of alternative neuropeptide precursor encoded by the FMRFamide gene in the pulmonate snail, Lymnaea stagnalis. Eur J Neurosci 8: 968-977. Croll RP, Voronezhskaya EE. 1996b. Early neurodevelopment in Aplysia, Lymnaea and Helisoma. Soc Neurosci Abstr 22: 1948. Pentreath VW, Radojcic T, Seal LH, Winstanley EK. 1985. The glial cells and glia-neuron relationships in the buccal ganglia of Planorbis corneus (L.): Cytological, qualitative and quantitative changes during growth and aging. Phil Trans R Soc Lond (Biol) 307: 399-455. Barlow LA, Truman JW. 1992. Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, Haliotus rufescens. J Neurobiol 23: 829-844. Bonar DB, Coon SL, Walch M, Weiner RM, Fitt W. 1990. Control of oyster settlement and metamorphosis by endogenous and exogenous chemical cues. Bull Mar Sci 46: 484-498. Kits KS, Boer HH, Joosse J, editors. 1991. Molluscan neurobiology. Amsterdam: North-Holland. Moran AL. 1999. Intracapsular feeding by embryos of the gastropod genus Littorina. Biol Bull 196: 229-244. Voronezhskaya EE, Elekes K. 1997. Expression of FMRFamide gene neuropeptides is partly different in the embryonic nervous system of the pond snail, Lymnaea stagnalis L. Neurobiology 5: 91-93. Nagy T, Elekes K. 2000. Embryogenesis of the central nervous system of the pond snail Lymnaea stagnalis L. An ultrastructural study. J Neurocytol (in press). Weisblat DA, Harper G, Stent GS, Sawyer RT. 1980. Embryonic cell lineages in the nervous system of the glossophonid leech Helobdella triserialis. Dev Biol 76: 58-78. Raven CP. 1949 On the structure of cyclopic, synophthalmic and anophthalmic embryos, obtained by the action of lithium in Limnaea stagnalis. Arch Neerl Zool 8: 323-353. Serfozo Z, Elekes K, Varga V. 1998. NADPH-diaphorase activity in the nervous system of the embryonic and juvenile pond snail, Lymnaea stagnalis L. Cell Tissue Res 292: 579-586. Landis SC, Schwab M, Siegal RE. 1988. Evidence for neurotransmitter plasticity in vivo. II. Immunocytochemical studies of rat sweat gland innervation. Dev Biol 126: 129-138. Croll RP, Voronezhskaya EE, Hiripi L, Elekes K. 1999. Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis II: Postembryonic development of central and peripheral cells. J Comp Neurol 404: 285-296. Page LR. 1992. New interpretation of a nudibranch central nervous system based on ultrasructural analysis of neurodevelopment in Melibe leonina. I. Cerebral and visceral loop ganglia. Biol Bull 182: 348-365. Smith SA, Nason J, Croll RP. 1998. Distribution of catecholamines in the sea scallop, Placopecten magellanicus. Can J Zool 76: 1254-1262. Granzow B, Rowell CHF. 1981. Further observations on the serotonergic cerebral neurons of Helisoma (Mollusca, Gastropoda): The case for homology with the metacerebral giant cells. J Exp Biol 90: 283-305. Hunter T. 1986. Spinning embryos enhance diffusion through gelatinous egg masses. J Exp Mar Biol Ecol 96: 303-308. Kandel ER, Kriegstein A, Schacher S. 1981. Development of the central nervous system of Aplysia in terms of the differentiation of its specific identifiable cells. Neuroscience 5: 2033-2063. Hadfield MG, Pennington JT. 1990. Nature of the metamorphic signal and its internal transduction in larvae of the nudibranch, Phestilla sibogae. Bull Mar Sci 46: 455-464. Santama N, Wheeler CH, Skingsley DR, Yeoman MS, Bright K, Kaye I, Burke JF, Benjamin PR. 1995b. Identification, distribution and physiological activity of three novel neuropeptides of Lymnaea: EFLRIamide and pQFYRIamide encoded by the FMRFamide gene, and a related peptide. Eur J Neurosci 7: 234-246. Purchon RD. 1977. The biology of the mollusca. Oxford: Pergamon Press. Marois R, Carew TJ. 1997a. Fine structure of the apical ganglion and its serotonergic cells in the larva of Aplysia californica. Biol Bull 192: 388-398. Goldberg JI, Kater SB. 1989. Expression and function of the neurotransmitter serotonin during development of the Helisoma nervous system. Dev Biol 131: 483-495. Hadfield MG, Scheuer D. 1985. Evidence for a soluble metamorphic inducer in Phestilla sibogae: ecological, chemical, and biological data. Bull Mar Sci 37: 556-566. Raven CP. 1966. Morphogenesis: the analysis of molluscan development. Oxford: Pergamon Press. Pires A, Woollacott RM. 1997. Serotonin and dopamine have opposite effects on phootaxis in larvae of the bryozoan Bugula neritina. Biol Bull 192: 399-409. Diefenbach TJ, Koehncke NK, Goldberg JI. 1991. Characterization and development of rotational behavior in Helisoma embryos: role of endogenous serotonin. J Neurobiol 22: 922-934. Kempf SC, Page LR, Pires A. 1997. Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. J Comp Neurol 386: 507-528. Ghysen A, Dambly-Chaudiere C. 1989. Genesis of the Drosophila peripheral nervous system. Trends Genet 5: 251-255. Lin M-F, Leise EM. 1996. Gangliogenesis in the prosobranch gastropod Ilyanassa obsoleta. J Comp Neurol 374: 180-193. Bulloch TH, Horridge GA. 1965. Structure and function in the nervous systems of invertebrates. San Francisco: W.H. Freeman. Voronezhskaya EE, Hiripi L, Elekes K, Croll RP. 1999. Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis I: Embryonic development of dopaminergic neurons and dopamine-dependent behaviors. J Comp Neurol 404: 297-309. Doe CQ, Goodman CS. 1985. Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. Dev Biol 111: 193-205. Voronezhskaya EE, Elekes K. 1993. Distribution of serotonin-like immunoreactive neurons in the embryonic nervous system of lymnaeid and planorbid snails. Neurobiology 1: 371-383. Croll RP, Chiasson BJ. 1989. Post-embryonic development of serotonin-like immunoreactivity in the central nervous system of the snail, Lymnaea stagnalis. J Comp Neurol 280: 122-142. Jackson AR, MacRae TW, Croll RP. 1995. Unusual 1990; 10 1981; 90 1997; 193 1983; 3 1949; 8 1992; 322 1995b; 7 1995; 76 1989; 280 1976 1997a; 192 1997; 5 1999; 404 1993; 1 1978 1993; 5 1977 1987; 38 1998; 292 1992; 92 1990; 46 1996b; 22 1990 2000 1993; 72 1997; 386 1980; 76 1987 1997; 17 2000b 2000a 1996; 374 1982 1980 1997; 192 1996; 8 1995; 281 1996; 67 1989 1989; 5 1992; 182 1986; 96 1985; 307 1978; 10 1989; 131 1981; 5 1991 1996; 16 1997b; 386 1999 1988; 126 1990; 68 1984; 4 1991; 22 1995; 46 1984; 7 1995a; 7 1965 1985; 312 1999; 196 1972; 79 1998; 76 1992; 23 1998; 34 1985; 37 1990; 7 1999; 119 1996a; 173 1985; 111 1966 Salimova (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB63) 1987; 38 Kandel (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB37) 1981; 5 Croll (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB10) 1997; 193 Gan (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB21) 1997; 17 Morse (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB52) 1980 Croll (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB7) 1989; 280 Nagy (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB53) 2000 Goldberg (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB23) 1989; 131 Marois (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB46) 1992; 322 Santama (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB65) 1995a; 7 Dyer (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB20) 1996; 67 Greenberg (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB26) 1992; 92 Jacob (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB36) 1984; 4 Hay-Schmidt (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB33) 1995; 76 Hadfield (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB30) 1984; 7 Melancon (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB47) 1997; 17 Landis (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB40) 1988; 126 Oppenheim (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB54) 1999 Page (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB55) 1992; 182 Hadfield (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB29) 1985; 37 Sakharov (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB62) 1976 Dickinson (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB15) 2000 Marois (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB45) 1997b; 386 Mescheryakov (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB48) 1990 Tublitz (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB71) 1990; 10 Croll (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB9) 1996b; 22 Voronezhskaya (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB72) 1993; 1 Hatten (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB31) 1999 Moffet (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB49) 1995; 46 Bonar (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB3) 1978; 10 Pires (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB58) 1997; 192 Smith (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB70) 1998; 76 Santama (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB67) 1996; 8 Voronezhskaya (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB75) 1999; 404 Dickinson (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB13) 2000a Weisblat (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB76) 1985; 312 Hadfield (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB27) 1978 Croll (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB6) 1987 Santama (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB66) 1995b; 7 Kempf (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB38) 1997; 386 Doe (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB19) 1985; 111 Serfozo (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB69) 1998; 292 Croll (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB8) 1996a; 173 Barlow (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB1) 1992; 23 Cumin (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB12) 1972; 79 Santama (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB64) 1993; 5 Hay-Schmidt (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB32) 1990; 68 Goodman (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB24) 1993; 72 Raven (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB61) 1966 Bulloch (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB5) 1965 Dickinson (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB16) 1999; 119 Hunter (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB34) 1986; 96 Marois (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB43) 1990; 7 Schwartz (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB68) 1992; 23 Moran (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB50) 1999; 196 Pentreath (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB57) 1985; 307 Croll (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB11) 1999; 404 Marois (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB44) 1997a; 192 Lin (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB41) 1996; 374 Hadfield (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB28) 1990; 46 Ghysen (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB22) 1989; 5 Morrill (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB51) 1982 Raven (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB60) 1949; 8 Diefenbach (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB17) 1991; 22 Purchon (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB59) 1977 Jackson (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB35) 1995; 281 Bonar (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB4) 1990; 46 Bayne (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB2) 1983; 3 Voronezhskaya (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB73) 1996; 16 Dickinson (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB14) 2000b Diefenbach (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB18) 1998; 34 Weisblat (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB77) 1980; 76 Granzow (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB25) 1981; 90 Voronezhskaya (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB74) 1997; 5 Pentreath (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB56) 1982 Marois (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB42) 1989 Kits (10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB39) 1991 |
References_xml | – reference: Diefenbach TJ, Koss R, Goldberg JI. 1998. Early development of an identified serotonergic neuron in Helisoma trivolvis embryos: serotonin expression, de-expression, and uptake. J Neurobiol 34: 361-376. – reference: Smith SA, Nason J, Croll RP. 1998. Distribution of catecholamines in the sea scallop, Placopecten magellanicus. Can J Zool 76: 1254-1262. – reference: Nagy T, Elekes K. 2000. Embryogenesis of the central nervous system of the pond snail Lymnaea stagnalis L. An ultrastructural study. J Neurocytol (in press). – reference: Bulloch TH, Horridge GA. 1965. Structure and function in the nervous systems of invertebrates. San Francisco: W.H. Freeman. – reference: Page LR. 1992. New interpretation of a nudibranch central nervous system based on ultrasructural analysis of neurodevelopment in Melibe leonina. I. Cerebral and visceral loop ganglia. Biol Bull 182: 348-365. – reference: Santama N, Wheeler CH, Skingsley DR, Yeoman MS, Bright K, Kaye I, Burke JF, Benjamin PR. 1995b. Identification, distribution and physiological activity of three novel neuropeptides of Lymnaea: EFLRIamide and pQFYRIamide encoded by the FMRFamide gene, and a related peptide. Eur J Neurosci 7: 234-246. – reference: Ghysen A, Dambly-Chaudiere C. 1989. Genesis of the Drosophila peripheral nervous system. Trends Genet 5: 251-255. – reference: Serfozo Z, Elekes K, Varga V. 1998. NADPH-diaphorase activity in the nervous system of the embryonic and juvenile pond snail, Lymnaea stagnalis L. Cell Tissue Res 292: 579-586. – reference: Croll RP, Chiasson BJ. 1989. Post-embryonic development of serotonin-like immunoreactivity in the central nervous system of the snail, Lymnaea stagnalis. J Comp Neurol 280: 122-142. – reference: Kempf SC, Page LR, Pires A. 1997. Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. J Comp Neurol 386: 507-528. – reference: Melancon E, Liu DW, Westerfield M, Eisen JS. 1997. Pathfinding by identified zebrafish motoneurons in the absence of muscle pioneers. J Neurosci 17: 7796-7804. – reference: Diefenbach TJ, Koehncke NK, Goldberg JI. 1991. Characterization and development of rotational behavior in Helisoma embryos: role of endogenous serotonin. J Neurobiol 22: 922-934. – reference: Goldberg JI, Kater SB. 1989. Expression and function of the neurotransmitter serotonin during development of the Helisoma nervous system. Dev Biol 131: 483-495. – reference: Moffet SB. 1995. Neural regeneration in gastropod molluscs. Prog Neurobiol 46: 289-330. – reference: Gan WB, Macagno ER. 1997. Competition among the axonal projections of an identified neuron contributes to the retraction of some of those projections. J. Neurosci. 17: 4293-4301. – reference: Hay-Schmidt A. 1995. The larval nervous system of Polygodius lacteus Schiender, 1868 (Polygordiidae, Polychaeta): Immunocytochemical data. Acta Zool (Stockholm) 76: 121-140. – reference: Weisblat DA, Shankland M. 1985 Cell lineage and segmentation in the leech. Phil Trans R Soc Lond (Biol) 312: 39-56. – reference: Kits KS, Boer HH, Joosse J, editors. 1991. Molluscan neurobiology. Amsterdam: North-Holland. – reference: Bonar DB. 1978. Ultrastructure of a cephalic sensory organ in the larvae of the gastropod Phestilla sibogae (Aeolidacea, Nudibranchia). Tissue Cell 10: 153-165. – reference: Croll RP, Voronezhskaya EE. 1996a. Early elements in gastropod neurogenesis. Dev Biol 173: 344-347. – reference: Dickinson AJG, Nason J, Croll RP. 1999. Histochemical localization of FMRFamide, serotonin and catecholamine in embryonic Crepidula fornicata (Prosobranchia: Gastropoda). Zoomorphology 119: 49-62. – reference: Marois R, Croll RP. 1992. Development of serotonergic cells within the embryonic central nervous system of the pond snail, Lymnaea stagnalis. J Comp Neurol 322: 255-265. – reference: Doe CQ, Goodman CS. 1985. Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. Dev Biol 111: 193-205. – reference: Salimova NB, Sakharov DA, Milosevic I, Rakic L. 1987. Catecholamine-containing neurons in the peripheral nervous system of Aplysia. Acta Biol Hung 38: 203-212. – reference: Pentreath VW, Radojcic T, Seal LH, Winstanley EK. 1985. The glial cells and glia-neuron relationships in the buccal ganglia of Planorbis corneus (L.): Cytological, qualitative and quantitative changes during growth and aging. Phil Trans R Soc Lond (Biol) 307: 399-455. – reference: Jacob MH. 1984. Neurogenesis in Aplysia californica resembles nervous system formation in vertebrates. J Neurosci 4: 1225-1239. – reference: Santama N, Li KW, Bright KE, Yeoman M, Geraerts WP, Benjamin PR, Burke JF. 1993. Processing of the FMRFamide precursor protein in the snail Lymnaea stagnalis: characterization and neuronal localization of a novel peptide, "SEEPLY." Eur J Neurosci 5: 1003-1016. – reference: Marois R, Carew TJ. 1997a. Fine structure of the apical ganglion and its serotonergic cells in the larva of Aplysia californica. Biol Bull 192: 388-398. – reference: Kandel ER, Kriegstein A, Schacher S. 1981. Development of the central nervous system of Aplysia in terms of the differentiation of its specific identifiable cells. Neuroscience 5: 2033-2063. – reference: Croll RP, Voronezhskaya EE. 1996b. Early neurodevelopment in Aplysia, Lymnaea and Helisoma. Soc Neurosci Abstr 22: 1948. – reference: Raven CP. 1949 On the structure of cyclopic, synophthalmic and anophthalmic embryos, obtained by the action of lithium in Limnaea stagnalis. Arch Neerl Zool 8: 323-353. – reference: Schwartz LM, Oppenheim RW, Shatz CJ, editors. 1992. Neuronal cell death (Special Issue). J Neurobiol 23: 1111-1352. – reference: Granzow B, Rowell CHF. 1981. Further observations on the serotonergic cerebral neurons of Helisoma (Mollusca, Gastropoda): The case for homology with the metacerebral giant cells. J Exp Biol 90: 283-305. – reference: Raven CP. 1966. Morphogenesis: the analysis of molluscan development. Oxford: Pergamon Press. – reference: Moran AL. 1999. Intracapsular feeding by embryos of the gastropod genus Littorina. Biol Bull 196: 229-244. – reference: Croll RP, Voronezhskaya EE, Hiripi L, Elekes K. 1999. Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis II: Postembryonic development of central and peripheral cells. J Comp Neurol 404: 285-296. – reference: Marois R, Carew TJ. 1997b. Ontogeny of serotonergic neurons in Aplysia californica. J Comp Neurol 386: 477-490. – reference: Lin M-F, Leise EM. 1996. Gangliogenesis in the prosobranch gastropod Ilyanassa obsoleta. J Comp Neurol 374: 180-193. – reference: Pires A, Woollacott RM. 1997. Serotonin and dopamine have opposite effects on phootaxis in larvae of the bryozoan Bugula neritina. Biol Bull 192: 399-409. – reference: Bonar DB, Coon SL, Walch M, Weiner RM, Fitt W. 1990. Control of oyster settlement and metamorphosis by endogenous and exogenous chemical cues. Bull Mar Sci 46: 484-498. – reference: Hadfield MG, Scheuer D. 1985. Evidence for a soluble metamorphic inducer in Phestilla sibogae: ecological, chemical, and biological data. Bull Mar Sci 37: 556-566. – reference: Jackson AR, MacRae TW, Croll RP. 1995. Unusual distribution of tubulin isoforms in the snail Lymnaea stagnalis. Cell Tissue Res 281: 507-516. – reference: Dyer JR, Sossin WS, Klein M. 1996. Cloning and characterization of aplycalcin and Aplysia neurocalcin, two new members of the calmodulin superfamily of small calcium-binding proteins. J. Neurochem 67: 932-942. – reference: Weisblat DA, Harper G, Stent GS, Sawyer RT. 1980. Embryonic cell lineages in the nervous system of the glossophonid leech Helobdella triserialis. Dev Biol 76: 58-78. – reference: Hay-Schmidt A. 1990. Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive neurons and processes in the nervous system of the early actinotroch larva of Phoronis vancouverensis (Phoronida): distribution and development. Can J Zool 68: 1525-1536. – reference: Hadfield MG, Pennington JT. 1990. Nature of the metamorphic signal and its internal transduction in larvae of the nudibranch, Phestilla sibogae. Bull Mar Sci 46: 455-464. – reference: Greenberg MJ, Price DA. 1992. Relationships among the FMRFamide-like peptides. Prog Brain Res 92: 25-37. – reference: Santama N, Li KW, Geraerts WPM, Benjamin PR, Burke JF. 1996. Post-translational processing of alternative neuropeptide precursor encoded by the FMRFamide gene in the pulmonate snail, Lymnaea stagnalis. Eur J Neurosci 8: 968-977. – reference: Croll RP, Jackson DL, Voronezhskaya EE. 1997. Catecholamine-containing cells in larval and post-larval bivalve molluscs. Biol Bull 193: 116-124. – reference: Tublitz NJ, Sylwester AW. 1990. Postembryonic alteration of transmitter phenotype in individually identified peptidergic neurons. J Neurosci 10: 161-168. – reference: Purchon RD. 1977. The biology of the mollusca. Oxford: Pergamon Press. – reference: Hunter T. 1986. Spinning embryos enhance diffusion through gelatinous egg masses. J Exp Mar Biol Ecol 96: 303-308. – reference: Santama N, Benjamin PR, Burke JF. 1995a. Alternative RNA splicing generates diversity of neuropeptide expression in the brain of the snail Lymnaea: in situ analysis of mutually exclusive transcripts of the FMRFamide gene. Eur J Neurosci 7: 65-76. – reference: Voronezhskaya EE, Hiripi L, Elekes K, Croll RP. 1999. Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis I: Embryonic development of dopaminergic neurons and dopamine-dependent behaviors. J Comp Neurol 404: 297-309. – reference: Barlow LA, Truman JW. 1992. Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, Haliotus rufescens. J Neurobiol 23: 829-844. – reference: Landis SC, Schwab M, Siegal RE. 1988. Evidence for neurotransmitter plasticity in vivo. II. Immunocytochemical studies of rat sweat gland innervation. Dev Biol 126: 129-138. – reference: Voronezhskaya EE, Elekes K. 1993. Distribution of serotonin-like immunoreactive neurons in the embryonic nervous system of lymnaeid and planorbid snails. Neurobiology 1: 371-383. – reference: Voronezhskaya EE, Elekes K. 1996. Transient and sustained expression of FMRFamide-like immunoreactivity in the developing nervous system of Lymnaea stagnalis. Cell Mol Neurobiol 16: 661-676. – reference: Cumin R. 1972. Normantafel zur Organogenese von Limnaea stagnalis (Gastropoda, Pulmonata) mit besonderer Berücksichtigung der Mittekdarmdrüse Rev Suisse Zool 79: 709-774. – reference: Goodman CS, Shatz CJ. 1993. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72: 77-98. – reference: Voronezhskaya EE, Elekes K. 1997. Expression of FMRFamide gene neuropeptides is partly different in the embryonic nervous system of the pond snail, Lymnaea stagnalis L. Neurobiology 5: 91-93. – reference: Marois R, Carew TJ. 1990. The gastropod nervous system in metamorphosis. J Neurobiol 7: 1053-1071. – volume: 193 start-page: 116 year: 1997 end-page: 124 article-title: Catecholamine‐containing cells in larval and post‐larval bivalve molluscs publication-title: Biol Bull – volume: 374 start-page: 180 year: 1996 end-page: 193 article-title: Gangliogenesis in the prosobranch gastropod publication-title: J Comp Neurol – year: 1966 – volume: 5 start-page: 1003 year: 1993 end-page: 1016 article-title: Processing of the FMRFamide precursor protein in the snail : characterization and neuronal localization of a novel peptide, “SEEPLY.” publication-title: Eur J Neurosci – volume: 5 start-page: 251 year: 1989 end-page: 255 article-title: Genesis of the peripheral nervous system publication-title: Trends Genet – year: 1989 – volume: 322 start-page: 255 year: 1992 end-page: 265 article-title: Development of serotonergic cells within the embryonic central nervous system of the pond snail, publication-title: J Comp Neurol – volume: 5 start-page: 91 year: 1997 end-page: 93 article-title: Expression of FMRFamide gene neuropeptides is partly different in the embryonic nervous system of the pond snail, L publication-title: Neurobiology – volume: 126 start-page: 129 year: 1988 end-page: 138 article-title: Evidence for neurotransmitter plasticity in vivo. II. Immunocytochemical studies of rat sweat gland innervation publication-title: Dev Biol – start-page: 581 year: 1999 end-page: 610 – start-page: 457 year: 1982 end-page: 513 – volume: 17 start-page: 7796 year: 1997 end-page: 7804 article-title: Pathfinding by identified zebrafish motoneurons in the absence of muscle pioneers publication-title: J Neurosci – volume: 46 start-page: 455 year: 1990 end-page: 464 article-title: Nature of the metamorphic signal and its internal transduction in larvae of the nudibranch, publication-title: Bull Mar Sci – volume: 292 start-page: 579 year: 1998 end-page: 586 article-title: NADPH‐diaphorase activity in the nervous system of the embryonic and juvenile pond snail, L publication-title: Cell Tissue Res – volume: 46 start-page: 289 year: 1995 end-page: 330 article-title: Neural regeneration in gastropod molluscs publication-title: Prog Neurobiol – volume: 7 start-page: 209 year: 1984 end-page: 350 – volume: 90 start-page: 283 year: 1981 end-page: 305 article-title: Further observations on the serotonergic cerebral neurons of (Mollusca, Gastropoda): The case for homology with the metacerebral giant cells publication-title: J Exp Biol – year: 2000b – volume: 76 start-page: 121 year: 1995 end-page: 140 article-title: The larval nervous system of Schiender, 1868 (Polygordiidae, Polychaeta): Immunocytochemical data publication-title: Acta Zool (Stockholm) – volume: 22 start-page: 1948 year: 1996b article-title: Early neurodevelopment in , and publication-title: Soc Neurosci Abstr – volume: 386 start-page: 477 year: 1997b end-page: 490 article-title: Ontogeny of serotonergic neurons in publication-title: J Comp Neurol – start-page: 451 year: 1999 end-page: 479 – volume: 23 start-page: 829 year: 1992 end-page: 844 article-title: Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, publication-title: J Neurobiol – volume: 386 start-page: 507 year: 1997 end-page: 528 article-title: Development of serotonin‐like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ publication-title: J Comp Neurol – volume: 196 start-page: 229 year: 1999 end-page: 244 article-title: Intracapsular feeding by embryos of the gastropod genus Littorina publication-title: Biol Bull – volume: 67 start-page: 932 year: 1996 end-page: 942 article-title: Cloning and characterization of aplycalcin and neurocalcin, two new members of the calmodulin superfamily of small calcium‐binding proteins. J publication-title: Neurochem – volume: 192 start-page: 388 year: 1997a end-page: 398 article-title: Fine structure of the apical ganglion and its serotonergic cells in the larva of publication-title: Biol Bull – volume: 46 start-page: 484 year: 1990 end-page: 498 article-title: Control of oyster settlement and metamorphosis by endogenous and exogenous chemical cues publication-title: Bull Mar Sci – year: 2000 article-title: Embryogenesis of the central nervous system of the pond snail L. An ultrastructural study publication-title: J Neurocytol – year: 1965 – volume: 111 start-page: 193 year: 1985 end-page: 205 article-title: Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells publication-title: Dev Biol – volume: 7 start-page: 234 year: 1995b end-page: 246 article-title: Identification, distribution and physiological activity of three novel neuropeptides of : EFLRIamide and pQFYRIamide encoded by the FMRFamide gene, and a related peptide publication-title: Eur J Neurosci – volume: 8 start-page: 968 year: 1996 end-page: 977 article-title: Post‐translational processing of alternative neuropeptide precursor encoded by the FMRFamide gene in the pulmonate snail, publication-title: Eur J Neurosci – volume: 76 start-page: 58 year: 1980 end-page: 78 article-title: Embryonic cell lineages in the nervous system of the glossophonid leech publication-title: Dev Biol – start-page: 67 year: 1980 end-page: 86 – start-page: 165 year: 1978 end-page: 175 – volume: 281 start-page: 507 year: 1995 end-page: 516 article-title: Unusual distribution of tubulin isoforms in the snail publication-title: Cell Tissue Res – volume: 3 start-page: 299 year: 1983 end-page: 343 – volume: 68 start-page: 1525 year: 1990 end-page: 1536 article-title: Distribution of catecholamine‐containing, serotonin‐like and neuropeptide FMRFamide‐like immunoreactive neurons and processes in the nervous system of the early actinotroch larva of (Phoronida): distribution and development publication-title: Can J Zool – volume: 182 start-page: 348 year: 1992 end-page: 365 article-title: New interpretation of a nudibranch central nervous system based on ultrasructural analysis of neurodevelopment in . I. Cerebral and visceral loop ganglia publication-title: Biol Bull – volume: 23 start-page: 1111 year: 1992 end-page: 1352 article-title: Neuronal cell death publication-title: J Neurobiol – volume: 96 start-page: 303 year: 1986 end-page: 308 article-title: Spinning embryos enhance diffusion through gelatinous egg masses publication-title: J Exp Mar Biol Ecol – volume: 404 start-page: 285 year: 1999 end-page: 296 article-title: Development of catecholaminergic neurons in the pond snail, II: Postembryonic development of central and peripheral cells publication-title: J Comp Neurol – volume: 76 start-page: 1254 year: 1998 end-page: 1262 article-title: Distribution of catecholamines in the sea scallop, publication-title: Can J Zool – volume: 1 start-page: 371 year: 1993 end-page: 383 article-title: Distribution of serotonin‐like immunoreactive neurons in the embryonic nervous system of lymnaeid and planorbid snails publication-title: Neurobiology – volume: 16 start-page: 661 year: 1996 end-page: 676 article-title: Transient and sustained expression of FMRFamide‐like immunoreactivity in the developing nervous system of publication-title: Cell Mol Neurobiol – year: 2000 – volume: 72 start-page: 77 year: 1993 end-page: 98 article-title: Developmental mechanisms that generate precise patterns of neuronal connectivity publication-title: Cell – volume: 34 start-page: 361 year: 1998 end-page: 376 article-title: Early development of an identified serotonergic neuron in embryos: serotonin expression, de‐expression, and uptake publication-title: J Neurobiol – volume: 10 start-page: 161 year: 1990 end-page: 168 article-title: Postembryonic alteration of transmitter phenotype in individually identified peptidergic neurons publication-title: J Neurosci – volume: 92 start-page: 25 year: 1992 end-page: 37 article-title: Relationships among the FMRFamide‐like peptides publication-title: Prog Brain Res – volume: 4 start-page: 1225 year: 1984 end-page: 1239 article-title: Neurogenesis in resembles nervous system formation in vertebrates publication-title: J Neurosci – volume: 173 start-page: 344 year: 1996a end-page: 347 article-title: Early elements in gastropod neurogenesis publication-title: Dev Biol – volume: 17 start-page: 4293 year: 1997 end-page: 4301 article-title: Competition among the axonal projections of an identified neuron contributes to the retraction of some of those projections publication-title: J. Neurosci. – start-page: 69 year: 1990 end-page: 132 – year: 1977 – volume: 79 start-page: 709 year: 1972 end-page: 774 article-title: Normantafel zur Organogenese von Limnaea stagnalis (Gastropoda, Pulmonata) mit besonderer publication-title: Berücksichtigung der Mittekdarmdrüse Rev Suisse Zool – volume: 8 start-page: 323 year: 1949 end-page: 353 article-title: On the structure of cyclopic, synophthalmic and anophthalmic embryos, obtained by the action of lithium in publication-title: Arch Neerl Zool – volume: 38 start-page: 203 year: 1987 end-page: 212 article-title: Catecholamine‐containing neurons in the peripheral nervous system of publication-title: Acta Biol Hung – volume: 10 start-page: 153 year: 1978 end-page: 165 article-title: Ultrastructure of a cephalic sensory organ in the larvae of the gastropod (Aeolidacea, Nudibranchia) publication-title: Tissue Cell – volume: 7 start-page: 1053 year: 1990 end-page: 1071 article-title: The gastropod nervous system in metamorphosis publication-title: J Neurobiol – volume: 307 start-page: 399 year: 1985 end-page: 455 article-title: The glial cells and glia‐neuron relationships in the buccal ganglia of (L.): Cytological, qualitative and quantitative changes during growth and aging publication-title: Phil Trans R Soc Lond (Biol) – volume: 7 start-page: 65 year: 1995a end-page: 76 article-title: Alternative RNA splicing generates diversity of neuropeptide expression in the brain of the snail : in situ analysis of mutually exclusive transcripts of the FMRFamide gene publication-title: Eur J Neurosci – start-page: 399 year: 1982 end-page: 483 – volume: 192 start-page: 399 year: 1997 end-page: 409 article-title: Serotonin and dopamine have opposite effects on phootaxis in larvae of the bryozoan publication-title: Biol Bull – volume: 22 start-page: 922 year: 1991 end-page: 934 article-title: Characterization and development of rotational behavior in embryos: role of endogenous serotonin publication-title: J Neurobiol – volume: 404 start-page: 297 year: 1999 end-page: 309 article-title: Development of catecholaminergic neurons in the pond snail, I: Embryonic development of dopaminergic neurons and dopamine‐dependent behaviors publication-title: J Comp Neurol – volume: 280 start-page: 122 year: 1989 end-page: 142 article-title: Post‐embryonic development of serotonin‐like immunoreactivity in the central nervous system of the snail, publication-title: J Comp Neurol – volume: 119 start-page: 49 year: 1999 end-page: 62 article-title: Histochemical localization of FMRFamide, serotonin and catecholamine in embryonic (Prosobranchia: Gastropoda) publication-title: Zoomorphology – start-page: 41 year: 1987 end-page: 59 – volume: 131 start-page: 483 year: 1989 end-page: 495 article-title: Expression and function of the neurotransmitter serotonin during development of the nervous system publication-title: Dev Biol – volume: 37 start-page: 556 year: 1985 end-page: 566 article-title: Evidence for a soluble metamorphic inducer in Phestilla sibogae: ecological, chemical, and biological data publication-title: Bull Mar Sci – year: 1991 – start-page: 27 year: 1976 end-page: 40 – year: 2000a – volume: 5 start-page: 2033 year: 1981 end-page: 2063 article-title: Development of the central nervous system of Aplysia in terms of the differentiation of its specific identifiable cells publication-title: Neuroscience – volume: 312 start-page: 39 year: 1985 end-page: 56 article-title: Cell lineage and segmentation in the leech publication-title: Phil Trans R Soc Lond (Biol) – start-page: 27 volume-title: Neurobiology of invertebrates: gastropod brain year: 1976 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB62 – volume: 404 start-page: 297 year: 1999 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB75 publication-title: J Comp Neurol doi: 10.1002/(SICI)1096-9861(19990215)404:3<285::AID-CNE1>3.0.CO;2-S – volume: 96 start-page: 303 year: 1986 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB34 publication-title: J Exp Mar Biol Ecol doi: 10.1016/0022-0981(86)90209-1 – year: 2000 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB15 – volume: 281 start-page: 507 year: 1995 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB35 publication-title: Cell Tissue Res doi: 10.1007/BF00417868 – volume: 76 start-page: 1254 year: 1998 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB70 publication-title: Can J Zool doi: 10.1139/z98-063 – start-page: 67 volume-title: Chemical signaling in vertebrate and aquatic animals year: 1980 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB52 doi: 10.1007/978-1-4684-1027-3_6 – volume: 72 start-page: 77 year: 1993 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB24 publication-title: Cell doi: 10.1016/S0092-8674(05)80030-3 – volume: 17 start-page: 7796 year: 1997 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB47 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-20-07796.1997 – volume: 38 start-page: 203 year: 1987 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB63 publication-title: Acta Biol Hung – volume: 192 start-page: 399 year: 1997 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB58 publication-title: Biol Bull doi: 10.2307/1542749 – start-page: 69 volume-title: Animal species for developmental studies year: 1990 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB48 doi: 10.1007/978-1-4613-0503-3_5 – volume: 22 start-page: 1948 year: 1996b ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB9 publication-title: Soc Neurosci Abstr – start-page: 581 volume-title: Fundamental neuroscience year: 1999 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB54 – start-page: 451 volume-title: Fundamental neuroscience year: 1999 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB31 – start-page: 457 volume-title: Biology of serotonergic transmission year: 1982 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB56 – volume: 92 start-page: 25 year: 1992 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB26 publication-title: Prog Brain Res doi: 10.1016/S0079-6123(08)61162-0 – volume: 7 start-page: 65 year: 1995a ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB65 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.1995.tb01021.x – volume: 8 start-page: 968 year: 1996 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB67 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.1996.tb01584.x – volume: 79 start-page: 709 year: 1972 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB12 publication-title: Berücksichtigung der Mittekdarmdrüse Rev Suisse Zool – volume: 126 start-page: 129 year: 1988 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB40 publication-title: Dev Biol doi: 10.1016/0012-1606(88)90246-1 – volume: 322 start-page: 255 year: 1992 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB46 publication-title: J Comp Neurol doi: 10.1002/cne.903220211 – volume: 5 start-page: 251 year: 1989 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB22 publication-title: Trends Genet doi: 10.1016/0168-9525(89)90097-8 – volume: 192 start-page: 388 year: 1997a ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB44 publication-title: Biol Bull doi: 10.2307/1542748 – volume: 182 start-page: 348 year: 1992 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB55 publication-title: Biol Bull doi: 10.2307/1542255 – volume: 23 start-page: 829 year: 1992 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB1 publication-title: J Neurobiol doi: 10.1002/neu.480230705 – volume: 7 start-page: 234 year: 1995b ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB66 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.1995.tb01059.x – volume: 23 start-page: 1111 year: 1992 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB68 publication-title: J Neurobiol doi: 10.1002/neu.480230918 – start-page: 41 volume-title: Nervous systems in invertebrates year: 1987 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB6 doi: 10.1007/978-1-4613-1955-9_4 – volume: 90 start-page: 283 year: 1981 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB25 publication-title: J Exp Biol doi: 10.1242/jeb.90.1.283 – volume: 10 start-page: 153 year: 1978 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB3 publication-title: Tissue Cell doi: 10.1016/0040-8166(78)90014-9 – volume: 16 start-page: 661 year: 1996 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB73 publication-title: Cell Mol Neurobiol doi: 10.1007/BF02151903 – volume: 67 start-page: 932 year: 1996 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB20 publication-title: Neurochem doi: 10.1046/j.1471-4159.1996.67030932.x – volume: 5 start-page: 2033 year: 1981 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB37 publication-title: Neuroscience doi: 10.1016/0306-4522(80)90123-2 – volume: 196 start-page: 229 year: 1999 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB50 publication-title: Biol Bull doi: 10.2307/1542948 – volume: 3 start-page: 299 volume-title: Development year: 1983 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB2 – volume: 1 start-page: 371 year: 1993 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB72 publication-title: Neurobiology – volume: 111 start-page: 193 year: 1985 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB19 publication-title: Dev Biol doi: 10.1016/0012-1606(85)90445-2 – volume: 131 start-page: 483 year: 1989 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB23 publication-title: Dev Biol doi: 10.1016/S0012-1606(89)80019-3 – volume: 46 start-page: 484 year: 1990 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB4 publication-title: Bull Mar Sci – volume: 46 start-page: 289 year: 1995 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB49 publication-title: Prog Neurobiol doi: 10.1016/0301-0082(95)80014-Y – volume: 37 start-page: 556 year: 1985 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB29 publication-title: Bull Mar Sci – volume: 76 start-page: 121 year: 1995 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB33 publication-title: Acta Zool (Stockholm) doi: 10.1111/j.1463-6395.1995.tb00987.x – volume: 7 start-page: 209 volume-title: Reproduction year: 1984 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB30 doi: 10.1016/B978-0-08-092659-9.50011-9 – volume: 173 start-page: 344 year: 1996a ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB8 publication-title: Dev Biol doi: 10.1006/dbio.1996.0028 – volume: 404 start-page: 285 year: 1999 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB11 publication-title: J Comp Neurol doi: 10.1002/(SICI)1096-9861(19990215)404:3<297::AID-CNE2>3.0.CO;2-I – start-page: 399 volume-title: Developmental biology of the freshwater invertebrates year: 1982 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB51 – volume-title: Structure and function in the nervous systems of invertebrates year: 1965 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB5 – volume: 46 start-page: 455 year: 1990 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB28 publication-title: Bull Mar Sci – volume: 307 start-page: 399 year: 1985 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB57 publication-title: Phil Trans R Soc Lond (Biol) doi: 10.1098/rstb.1985.0002 – volume: 5 start-page: 91 year: 1997 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB74 publication-title: Neurobiology – year: 2000b ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB14 – volume: 4 start-page: 1225 year: 1984 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB36 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.04-05-01225.1984 – year: 1989 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB42 – volume-title: Molluscan neurobiology year: 1991 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB39 – volume: 374 start-page: 180 year: 1996 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB41 publication-title: J Comp Neurol doi: 10.1002/(SICI)1096-9861(19961014)374:2<180::AID-CNE2>3.0.CO;2-Z – volume: 10 start-page: 161 year: 1990 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB71 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.10-01-00161.1990 – volume: 119 start-page: 49 year: 1999 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB16 publication-title: Zoomorphology doi: 10.1007/s004350050080 – start-page: 165 volume-title: Settlement and metamorphosis of marine invertebrate larvae year: 1978 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB27 – volume: 22 start-page: 922 year: 1991 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB17 publication-title: J Neurobiol doi: 10.1002/neu.480220905 – volume: 34 start-page: 361 year: 1998 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB18 publication-title: J Neurobiol doi: 10.1002/(SICI)1097-4695(199803)34:4<361::AID-NEU6>3.0.CO;2-4 – volume: 7 start-page: 1053 year: 1990 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB43 publication-title: J Neurobiol doi: 10.1002/neu.480210710 – volume: 280 start-page: 122 year: 1989 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB7 publication-title: J Comp Neurol doi: 10.1002/cne.902800109 – year: 2000 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB53 publication-title: J Neurocytol – volume: 193 start-page: 116 year: 1997 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB10 publication-title: Biol Bull doi: 10.2307/1542757 – volume: 5 start-page: 1003 year: 1993 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB64 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.1993.tb00952.x – volume: 312 start-page: 39 year: 1985 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB76 publication-title: Phil Trans R Soc Lond (Biol) doi: 10.1098/rstb.1985.0176 – volume: 386 start-page: 507 year: 1997 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB38 publication-title: J Comp Neurol doi: 10.1002/(SICI)1096-9861(19970929)386:3<507::AID-CNE12>3.0.CO;2-7 – volume-title: Morphogenesis: the analysis of molluscan development year: 1966 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB61 – volume: 68 start-page: 1525 year: 1990 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB32 publication-title: Can J Zool doi: 10.1139/z90-226 – year: 2000a ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB13 – volume: 292 start-page: 579 year: 1998 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB69 publication-title: Cell Tissue Res doi: 10.1007/s004410051087 – volume: 386 start-page: 477 year: 1997b ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB45 publication-title: J Comp Neurol doi: 10.1002/(SICI)1096-9861(19970929)386:3<477::AID-CNE10>3.0.CO;2-8 – volume: 8 start-page: 323 year: 1949 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB60 publication-title: Arch Neerl Zool doi: 10.1163/187530151X00063 – volume: 17 start-page: 4293 year: 1997 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB21 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-11-04293.1997 – volume-title: The biology of the mollusca year: 1977 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB59 – volume: 76 start-page: 58 year: 1980 ident: 10.1002/1097-0029(20000615)49:6<570::AID-JEMT7>3.0.CO;2-Q-BIB77 publication-title: Dev Biol doi: 10.1016/0012-1606(80)90362-0 |
SSID | ssj0011514 |
Score | 1.7819321 |
SecondaryResourceType | review_article |
Snippet | Pond snails have long been the subject of intense scrutiny by researchers interested in general principles of development and also cellular and molecular... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 570 |
SubjectTerms | Animals Biomphalaria catecholamine Catecholamines - analysis Embryo, Nonmammalian - metabolism FMRFamide FMRFamide - analysis Ganglia, Invertebrate - metabolism gastropod Gastropoda Helisoma Immunohistochemistry Lymnaea Lymnaea - anatomy & histology Lymnaea - embryology mollusc Mollusca - anatomy & histology Mollusca - embryology Nervous System - anatomy & histology Nervous System - embryology Nervous System - metabolism Neurons - metabolism Neurotransmitter Agents - analysis serotonin |
Title | Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails |
URI | https://api.istex.fr/ark:/67375/WNG-3WC70B8J-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1097-0029%2820000615%2949%3A6%3C570%3A%3AAID-JEMT7%3E3.0.CO%3B2-Q https://www.ncbi.nlm.nih.gov/pubmed/10862113 https://www.proquest.com/docview/17668420 https://www.proquest.com/docview/71202841 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1bb9MwFLamIRAv3BkdNz9QBA_pHF-SuCCkrXSXim0a2rS-WUljS9XWZGpaifE7-MGcEzcdQ-MBCSHlIYoSn_j42Oezz_FnQt4kKnOpTfJAKaEC6aArZs7JQEUZT20khK43ie0fRLsncjBUwxVSNXthPD_EcsENe0Y9XmMHT7Nq44o0FEOnAQaVAIlx5n0zzJ6lhqaN2qKnYgZ3cG3ufQ4G_f3juC36osM6vcO22OLBEYzbmOOFQOrrknIKAFLNB46wAwYCNrxD9ELmxlLiu0bee6m70UeQ1O0upXzyMj6AhGu-7hY227ebgOx1XFw7tu375EejEp_PctaZz7LO6PtvbJH_WWcPyL0FUKab3rIfkhVbPCK3_dGZl4_JfK-ocF2houNiVlKLPM10guc2V2AstKbpxO_zq6QoujiTiFY-d5KWjs7QVU_GuKWJYrZbiUvSWCa1k2x6ibzB9KIscloV6fi8ekJOtvvHvd1gcYREMALoEQdcxokDdxQzZ2OW6iR3eQQQNtU8dIA1mbLJKAlTnmPAVo7yJMLQpLIsconImHhKVouysM8ItVqwHFfJMi1kLnTKXTZSzFrciO_CvEUGTWObC88UYjwnNG_C_FybRutGahMZ0LcxoGtT69oIw0zv0HBz1CJva3NZlpROzzAFL1bm9GDHiNNezLaSgdlpkdeNPRkYGDDakxa2nFcGmT8Tydmf34hDDuhShi2y5g3xl_-GiW4Yihb5UpvTX1Xopvr4B-v_trjn5K4nRoiCUL0gq7Pp3L4EiDjLXtV9-ieqkEfl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1LbxoxELbSRH1c-n7QV3woVXNY4rXXu2taVUooCVAgSkUUbtY-bAml7EbsIjX9H_2_9axZ0lTpoVJViQNC4GHHY8_nmfE3CL0JeawjFaYO54w7njZLMdbac7gf00j5jInqktho7PdOvMGUTzdQWd-FsfwQ64AbrIxqv4YFDgHp3UvWUMidOpBVMlCMEuuczfHZE2Zu_Sbr8ICYd-a11__kDLqjSdBkXdYirc5Rk-1T5_gG2oJO4NVB7MuadMpApIoRHICH2QrI9BYSK6G7a5HvaoE7nmj7H4yodnst5qMV8t6IuOLttmDivl0HZa8i48q1HdxDP2ql2IqWs9ayjFvJ99_4Iv-31u6juyusjPescT9AGyp7iG7a7pkXj9CynxUQWijwLCtzrICqGc-hdXNh7AVXTJ3w-_SyLgqv2hLhwpZP4lzjErz1fAa3mjAUvOUQlYYxsZrHiwugDsbneZbiIotmX4vH6OSgO-n0nFUXCScx6CNwqBeE2nikgGgVkEiEqU59g2IjQV1t4CbhKkxCN6Ip5Gy9JA19yE5yRXwdspiwJ2gzyzP1DGElGEkhUBYL5qVMRFTHCSdKwV187aYNNKhnW55bshBpaaFpnemnQtZal56QvjT6ltLoWla6lkwS2TmSVB430NvKXtYjRYszqMILuDwdH0p22gnIfjiQhw20XRuUNHsDJHyiTOXLQgL5Z-hR8udvBC41ANNzG-iptcRf_rc567oua6BhZU9_9UDXPY_94Pm_HW4b3e5NRkM57I8_v0B3LE-C77j8JdosF0v1yiDGMn5dLfCfP4xMAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1bb9MwFLbGJiZeuF_KbX6gCB7SOb4kTkFIWy9by9ZtaNP6ZiWNLVWjSdW0EuN38IPxiZuOofGAhJDyEEWJT3J8js8Xn-PPCL2RIjGxlqknBBMeN9YVE2O4J4KExjpgLCoXiR0Ogv0z3h-K4RoqqrUwjh9iNeEGnlGO1-Dg09RsX5GGQurUg6SSRWKUuNhs_555ZLs2qLOWCIk9s8dOr-31O4enYZ11WIM0Wkd1tku9k1togwdEgiu0v6w4pyxCKgnBAXfYkYAMN1G0FLq9EvmuEvieR83goxXVbK7EfHJCPlgR14LdBvTbt5uQ7HVgXEa27j30o9KJK2i5aCzmSWP0_Te6yP-stPvo7hIp4x1n2g_Qms4eottu78zLR2jRywqYWCjwOJvnWANRM57Axs2FtRZc8nTC8-lVVRRebkqEC1c8iXOD5xCrJ2NY04Sh3C2HOWloE-tJMrsE4mA8zbMUF1k8_lo8Rmfdzmlr31vuIeGNLPYIPcpDaWw8ConRIYkjmZo0sBg2jqhvLNgkQsuR9GOaQsaWj1IZQG5SaBIYyRLCnqD1LM_0M4R1xEgK02RJxHjKopiaZCSI1rAS3_hpDfWrzlZTRxWiHCk0rfL8NFKV1hWPVKCsvpWyulalrhVTRLWOFFUnNfS2NJdVS_HsAmrwQqHOB3uKnbdCsiv7aq-Gtip7UnZkgHRPnOl8USig_pSckj_fEfrUwkvu19BTZ4i_vLf90_V9VkMHpTn91Qfd9D3uwvN_29wW2jxud9VBb_D5BbrjSBICzxcv0fp8ttCvLFycJ69L9_4JEq5KuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+early+molluscan+neuronal+development+through+studies+of+transmitter+phenotypes+in+embryonic+pond+snails&rft.jtitle=Microscopy+research+and+technique&rft.au=Croll%2C+Roger+P.&rft.date=2000-06-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1059-910X&rft.eissn=1097-0029&rft.volume=49&rft.issue=6&rft.spage=570&rft.epage=578&rft_id=info:doi/10.1002%2F1097-0029%2820000615%2949%3A6%3C570%3A%3AAID-JEMT7%3E3.0.CO%3B2-Q&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_3WC70B8J_G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-910X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-910X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-910X&client=summon |