A range‐expanding butterfly is susceptible to cold and long winters but shows no signs of local adaptation to winter conditions

Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation. The wall brown bu...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 37; no. 12; pp. 3064 - 3078
Main Authors Ittonen, Mats, Roberts, Kevin T., Lehmann, Philipp, Gotthard, Karl
Format Journal Article
LanguageEnglish
Published London Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text
ISSN0269-8463
1365-2435
1365-2435
DOI10.1111/1365-2435.14445

Cover

Abstract Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation. The wall brown butterfly (Lasiommata megera) has expanded northward in Sweden in the years 2000–2020, most likely as a result of climate change, and has previously been shown to have evolved local adaptations to northern daylength conditions. This evolution has occurred despite hypothesised genetic constraints to adaptation at range margins. We studied local adaptation to winter conditions in four of the previously‐studied L. megera populations, using a common garden laboratory experiment with a warm and short, an intermediate, and a cold and long winter treatment. We compared the winter and post‐winter survival of caterpillars from two southern core range and two northern range margin populations in Sweden. During the experiment, we measured metabolic rates of a subset of diapausing caterpillars to test whether populations differ in metabolic suppression during diapause. Further, we measured supercooling points, which reflect lower lethal temperature in L. megera, of the same subset of caterpillars. We also compared supercooling points between L. megera and three closely related species with more northern distributions. Few individuals survived the coldest treatment all the way to successful adult emergence, so L. megera seems susceptible to cold winters. Individuals of northern descent did not survive cold winters any better than individuals from southern populations. Similarly, there were no signs of local adaptation in metabolic rates or supercooling points. The comparison among species did not reveal any clear relationship between geographical distribution and supercooling point. Although northern winters probably exert strong selection on L. megera, we provide comprehensive evidence for the lack of local adaptation to winter conditions. This contrasts with the previous finding of quickly evolved local adaptation in diapause timing, highlighting the need to consider how traits associated with different seasons differ in how they may evolve and facilitate climate change‐induced range expansions. Read the free Plain Language Summary for this article on the Journal blog. Sammanfattning Som en följd av klimatförändringar förflyttar sig eller expanderar många arter mot polerna. Även om en sådan art bara följer sin klimatnisch, är det sannolikt att populationer nära kanten av artens utbredningsområde utsätts för främmande miljöförhållanden och därmed naturligt urval för lokal anpassning. Svingelgräsfjärilen (Lasiommata megera), som – sannolikt till följd av klimatförändringar – expanderat norrut i Sverige under åren 2000–2020, har tidigare visats ha anpassat sig lokalt till nordliga dagslängdsförhållanden. Denna evolution har skett trots hypoteser om att genetiska begränsningar kan hindra evolution vid utbredningskanter. Vi studerade lokal anpassning till olika vinterförhållanden i fyra av de tidigare studerade svingelgräsfjärilspopulationerna. Vi lät larver från olika populationer övervintra i tre olika experimentella vinterförhållanden: en varm och kort, en intermediär och en kall och lång vinter. Vi jämförde överlevnaden av larver från två sydsvenska populationer och två populationer vid artens norra utbredningskant i Sverige. Under experimentets lopp mätte vi ämnesomsättningen hos en del larver för att testa huruvida populationer skiljer sig i hur starkt nedsatt ämnesomsättning diapauserande larver har. Utöver det mätte vi, med samma individer, vid vilken temperatur larvers underkylda kroppsvätskor fryser. Detta reflekterar de lägsta temperaturerna som svingelgräsfjärilslarver kan överleva. Dessutom jämförde vi svingelgräsfjärilens underkylningsförmåga med tre nära besläktade arter med mer nordliga utbredningsområden. Få individer både överlevde den kallaste behandlingen och utvecklades till friska vuxna fjärilar, så svingelgräsfjärilen verkar känslig för kalla vintrar. Individer från nordliga populationer klarade inte vintern bättre än de sydliga. Likaså visar våra resultat inga tecken på lokal anpassning i underkylningsförmåga eller nedsättning av ämnesomsättningen. Jämförelsen mellan arter visade inget tydligt förhållande mellan arters utbredningsområden och underkylningsförmåga. Trots att nordliga vintrar sannolikt medför starkt naturligt urval hos svingelgräsfjärilen, presenterar vi flera belägg för avsaknaden av lokal anpassning till vinterförhållanden. Detta är i motsats till den tidigare upptäckten av snabb evolution av lokal anpassning i diapaustajmning och påvisar att olika årstidsberoende egenskaper kan skilja sig i hur de genom evolution kan utvecklas och främja klimatdrivna utbredningsförändringar. Read the free Plain Language Summary for this article on the Journal blog.
AbstractList Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation. The wall brown butterfly ( Lasiommata megera ) has expanded northward in Sweden in the years 2000–2020, most likely as a result of climate change, and has previously been shown to have evolved local adaptations to northern daylength conditions. This evolution has occurred despite hypothesised genetic constraints to adaptation at range margins. We studied local adaptation to winter conditions in four of the previously‐studied L. megera populations, using a common garden laboratory experiment with a warm and short, an intermediate, and a cold and long winter treatment. We compared the winter and post‐winter survival of caterpillars from two southern core range and two northern range margin populations in Sweden. During the experiment, we measured metabolic rates of a subset of diapausing caterpillars to test whether populations differ in metabolic suppression during diapause. Further, we measured supercooling points, which reflect lower lethal temperature in L. megera , of the same subset of caterpillars. We also compared supercooling points between L. megera and three closely related species with more northern distributions. Few individuals survived the coldest treatment all the way to successful adult emergence, so L. megera seems susceptible to cold winters. Individuals of northern descent did not survive cold winters any better than individuals from southern populations. Similarly, there were no signs of local adaptation in metabolic rates or supercooling points. The comparison among species did not reveal any clear relationship between geographical distribution and supercooling point. Although northern winters probably exert strong selection on L. megera , we provide comprehensive evidence for the lack of local adaptation to winter conditions. This contrasts with the previous finding of quickly evolved local adaptation in diapause timing, highlighting the need to consider how traits associated with different seasons differ in how they may evolve and facilitate climate change‐induced range expansions. Read the free Plain Language Summary for this article on the Journal blog. Som en följd av klimatförändringar förflyttar sig eller expanderar många arter mot polerna. Även om en sådan art bara följer sin klimatnisch, är det sannolikt att populationer nära kanten av artens utbredningsområde utsätts för främmande miljöförhållanden och därmed naturligt urval för lokal anpassning. Svingelgräsfjärilen ( Lasiommata megera ), som – sannolikt till följd av klimatförändringar – expanderat norrut i Sverige under åren 2000–2020, har tidigare visats ha anpassat sig lokalt till nordliga dagslängdsförhållanden. Denna evolution har skett trots hypoteser om att genetiska begränsningar kan hindra evolution vid utbredningskanter. Vi studerade lokal anpassning till olika vinterförhållanden i fyra av de tidigare studerade svingelgräsfjärilspopulationerna. Vi lät larver från olika populationer övervintra i tre olika experimentella vinterförhållanden: en varm och kort, en intermediär och en kall och lång vinter. Vi jämförde överlevnaden av larver från två sydsvenska populationer och två populationer vid artens norra utbredningskant i Sverige. Under experimentets lopp mätte vi ämnesomsättningen hos en del larver för att testa huruvida populationer skiljer sig i hur starkt nedsatt ämnesomsättning diapauserande larver har. Utöver det mätte vi, med samma individer, vid vilken temperatur larvers underkylda kroppsvätskor fryser. Detta reflekterar de lägsta temperaturerna som svingelgräsfjärilslarver kan överleva. Dessutom jämförde vi svingelgräsfjärilens underkylningsförmåga med tre nära besläktade arter med mer nordliga utbredningsområden. Få individer både överlevde den kallaste behandlingen och utvecklades till friska vuxna fjärilar, så svingelgräsfjärilen verkar känslig för kalla vintrar. Individer från nordliga populationer klarade inte vintern bättre än de sydliga. Likaså visar våra resultat inga tecken på lokal anpassning i underkylningsförmåga eller nedsättning av ämnesomsättningen. Jämförelsen mellan arter visade inget tydligt förhållande mellan arters utbredningsområden och underkylningsförmåga. Trots att nordliga vintrar sannolikt medför starkt naturligt urval hos svingelgräsfjärilen, presenterar vi flera belägg för avsaknaden av lokal anpassning till vinterförhållanden. Detta är i motsats till den tidigare upptäckten av snabb evolution av lokal anpassning i diapaustajmning och påvisar att olika årstidsberoende egenskaper kan skilja sig i hur de genom evolution kan utvecklas och främja klimatdrivna utbredningsförändringar.
Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation.The wall brown butterfly (Lasiommata megera) has expanded northward in Sweden in the years 2000–2020, most likely as a result of climate change, and has previously been shown to have evolved local adaptations to northern daylength conditions. This evolution has occurred despite hypothesised genetic constraints to adaptation at range margins.We studied local adaptation to winter conditions in four of the previously‐studied L. megera populations, using a common garden laboratory experiment with a warm and short, an intermediate, and a cold and long winter treatment. We compared the winter and post‐winter survival of caterpillars from two southern core range and two northern range margin populations in Sweden.During the experiment, we measured metabolic rates of a subset of diapausing caterpillars to test whether populations differ in metabolic suppression during diapause. Further, we measured supercooling points, which reflect lower lethal temperature in L. megera, of the same subset of caterpillars. We also compared supercooling points between L. megera and three closely related species with more northern distributions.Few individuals survived the coldest treatment all the way to successful adult emergence, so L. megera seems susceptible to cold winters. Individuals of northern descent did not survive cold winters any better than individuals from southern populations. Similarly, there were no signs of local adaptation in metabolic rates or supercooling points. The comparison among species did not reveal any clear relationship between geographical distribution and supercooling point.Although northern winters probably exert strong selection on L. megera, we provide comprehensive evidence for the lack of local adaptation to winter conditions. This contrasts with the previous finding of quickly evolved local adaptation in diapause timing, highlighting the need to consider how traits associated with different seasons differ in how they may evolve and facilitate climate change‐induced range expansions.Read the free Plain Language Summary for this article on the Journal blog.
Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation. The wall brown butterfly (Lasiommata megera) has expanded northward in Sweden in the years 2000–2020, most likely as a result of climate change, and has previously been shown to have evolved local adaptations to northern daylength conditions. This evolution has occurred despite hypothesised genetic constraints to adaptation at range margins. We studied local adaptation to winter conditions in four of the previously‐studied L. megera populations, using a common garden laboratory experiment with a warm and short, an intermediate, and a cold and long winter treatment. We compared the winter and post‐winter survival of caterpillars from two southern core range and two northern range margin populations in Sweden. During the experiment, we measured metabolic rates of a subset of diapausing caterpillars to test whether populations differ in metabolic suppression during diapause. Further, we measured supercooling points, which reflect lower lethal temperature in L. megera, of the same subset of caterpillars. We also compared supercooling points between L. megera and three closely related species with more northern distributions. Few individuals survived the coldest treatment all the way to successful adult emergence, so L. megera seems susceptible to cold winters. Individuals of northern descent did not survive cold winters any better than individuals from southern populations. Similarly, there were no signs of local adaptation in metabolic rates or supercooling points. The comparison among species did not reveal any clear relationship between geographical distribution and supercooling point. Although northern winters probably exert strong selection on L. megera, we provide comprehensive evidence for the lack of local adaptation to winter conditions. This contrasts with the previous finding of quickly evolved local adaptation in diapause timing, highlighting the need to consider how traits associated with different seasons differ in how they may evolve and facilitate climate change‐induced range expansions. Read the free Plain Language Summary for this article on the Journal blog. Sammanfattning Som en följd av klimatförändringar förflyttar sig eller expanderar många arter mot polerna. Även om en sådan art bara följer sin klimatnisch, är det sannolikt att populationer nära kanten av artens utbredningsområde utsätts för främmande miljöförhållanden och därmed naturligt urval för lokal anpassning. Svingelgräsfjärilen (Lasiommata megera), som – sannolikt till följd av klimatförändringar – expanderat norrut i Sverige under åren 2000–2020, har tidigare visats ha anpassat sig lokalt till nordliga dagslängdsförhållanden. Denna evolution har skett trots hypoteser om att genetiska begränsningar kan hindra evolution vid utbredningskanter. Vi studerade lokal anpassning till olika vinterförhållanden i fyra av de tidigare studerade svingelgräsfjärilspopulationerna. Vi lät larver från olika populationer övervintra i tre olika experimentella vinterförhållanden: en varm och kort, en intermediär och en kall och lång vinter. Vi jämförde överlevnaden av larver från två sydsvenska populationer och två populationer vid artens norra utbredningskant i Sverige. Under experimentets lopp mätte vi ämnesomsättningen hos en del larver för att testa huruvida populationer skiljer sig i hur starkt nedsatt ämnesomsättning diapauserande larver har. Utöver det mätte vi, med samma individer, vid vilken temperatur larvers underkylda kroppsvätskor fryser. Detta reflekterar de lägsta temperaturerna som svingelgräsfjärilslarver kan överleva. Dessutom jämförde vi svingelgräsfjärilens underkylningsförmåga med tre nära besläktade arter med mer nordliga utbredningsområden. Få individer både överlevde den kallaste behandlingen och utvecklades till friska vuxna fjärilar, så svingelgräsfjärilen verkar känslig för kalla vintrar. Individer från nordliga populationer klarade inte vintern bättre än de sydliga. Likaså visar våra resultat inga tecken på lokal anpassning i underkylningsförmåga eller nedsättning av ämnesomsättningen. Jämförelsen mellan arter visade inget tydligt förhållande mellan arters utbredningsområden och underkylningsförmåga. Trots att nordliga vintrar sannolikt medför starkt naturligt urval hos svingelgräsfjärilen, presenterar vi flera belägg för avsaknaden av lokal anpassning till vinterförhållanden. Detta är i motsats till den tidigare upptäckten av snabb evolution av lokal anpassning i diapaustajmning och påvisar att olika årstidsberoende egenskaper kan skilja sig i hur de genom evolution kan utvecklas och främja klimatdrivna utbredningsförändringar. Read the free Plain Language Summary for this article on the Journal blog.
Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation. The wall brown butterfly ( Lasiommata megera ) has expanded northward in Sweden in the years 2000–2020, most likely as a result of climate change, and has previously been shown to have evolved local adaptations to northern daylength conditions. This evolution has occurred despite hypothesised genetic constraints to adaptation at range margins. We studied local adaptation to winter conditions in four of the previously-studied  L. megera  populations, using a common garden laboratory experiment with a warm and short, an intermediate, and a cold and long winter treatment. We compared the winter and post-winter survival of caterpillars from two southern core range and two northern range margin populations in Sweden. During the experiment, we measured metabolic rates of a subset of diapausing caterpillars to test whether populations differ in metabolic suppression during diapause. Further, we measured supercooling points, which reflect lower lethal temperature in  L. megera , of the same subset of caterpillars. We also compared supercooling points between  L. megera  and three closely related species with more northern distributions. Few individuals survived the coldest treatment all the way to successful adult emergence, so  L. megera  seems susceptible to cold winters. Individuals of northern descent did not survive cold winters any better than individuals from southern populations. Similarly, there were no signs of local adaptation in metabolic rates or supercooling points. The comparison among species did not reveal any clear relationship between geographical distribution and supercooling point. Although northern winters probably exert strong selection on  L. megera , we provide comprehensive evidence for the lack of local adaptation to winter conditions. This contrasts with the previous finding of quickly evolved local adaptation in diapause timing, highlighting the need to consider how traits associated with different seasons differ in how they may evolve and facilitate climate change-induced range expansions.
Author Gotthard, Karl
Roberts, Kevin T.
Lehmann, Philipp
Ittonen, Mats
Author_xml – sequence: 1
  givenname: Mats
  orcidid: 0000-0002-4628-0584
  surname: Ittonen
  fullname: Ittonen, Mats
  email: mats.ittonen@zoologi.su.se
  organization: Stockholm university
– sequence: 2
  givenname: Kevin T.
  orcidid: 0000-0003-2785-5108
  surname: Roberts
  fullname: Roberts, Kevin T.
  organization: Stockholm University
– sequence: 3
  givenname: Philipp
  orcidid: 0000-0001-8344-6830
  surname: Lehmann
  fullname: Lehmann, Philipp
  organization: University of Greifswald
– sequence: 4
  givenname: Karl
  orcidid: 0000-0002-4560-6271
  surname: Gotthard
  fullname: Gotthard, Karl
  organization: Stockholm university
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-223873$$DView record from Swedish Publication Index
BookMark eNqFkc9u1DAQhy3USmxLz1wtceHAtv6XxDmulrYgVeJCe7Ucx15cuXbwJFr2Bm_AM_ZJcEjhUAnhiyXr-2Y88ztBRzFFi9BrSs5pOReU19WaCV6dUyFE9QKt_r4coRVhdbuWouYv0QnAPSGkrRhboR8bnHXc2cfvP-23Qcfexx3upnG02YUD9oBhAmOH0XfB4jFhk0KPC4dDKuTex0LCbGD4kvaAY8LgdxFwcgUxOmDd62HUo09x9hejlCmt5jd4hY6dDmDPnu5TdHt1-Xn7YX3z6frjdnOzNoKVOTrXOKeFaQQzvWkl0bWx0lVUNF3NrCZNzWRFqHHMCaspb6qeOG1NW1PbSslP0bulLuztMHVqyP5B54NK2qv3_m6jUt4pmBRjXDa84G8XfMjp62RhVA--LCIEHW2aQLFWMNI2kouCvnmG3qcpxzKMYrKVnHAqq0JVC2VyAsjWKeOXtYxZ-6AoUXOOak5Nzamp3zkW7-KZ9-fn_zaeOu19sIf_4erqcrt4vwB6GrK7
CitedBy_id crossref_primary_10_1111_1365_2435_14445
Cites_doi 10.1371/journal.pone.0031446
10.1002/fee.2160
10.1139/z89‐121
10.1890/04‐1903
10.1111/phen.12095
10.1016/j.jtherbio.2014.07.007
10.1016/S0022‐1910(97)00025‐5
10.1017/9781108609364
10.1016/j.biocon.2007.03.018
10.1111/1365‐2435.13525
10.1242/jeb.059956
10.1016/j.tree.2015.09.011
10.1111/1365‐2664.13480
10.1111/ele.12262
10.1016/j.jtherbio.2015.11.003
10.1146/annurev.ecolsys.38.091206.095622
10.1111/j.1365‐2311.2008.01021.x
10.1017/CBO9780511675997.012
10.3390/insects13040369
10.14411/eje.2008.080
10.1146/annurev.ecolsys.37.091305.110100
10.1111/1365‐2435.14037
10.1146/annurev‐ento‐120120‐095233
10.1007/s00040‐014‐0351‐9
10.1111/1365-2435.14445
10.1016/j.cois.2020.06.003
10.1098/rspb.2000.1065
10.1093/biolinnean/blw047
10.1111/ele.12189
10.1146/annurev.ecolsys.37.091305.110115
10.2307/1311113
10.14411/eje.2000.027
10.1111/ele.14085
10.1111/evo.14029
10.14411/eje.2017.060
10.1093/icb/icw009
10.1111/brv.12105
10.1111/bij.12574
10.1016/j.aquatox.2015.07.018
10.1111/een.13140
10.1101/2021.11.04.467261
10.1289/ehp.0901389
10.1073/pnas.0900284106
10.3390/insects9040144
10.1242/jeb.243118
10.1029/2011GL047103
10.1098/rspb.2013.1800
10.1111/1365‐2435.12328
10.1111/gcb.15912
10.1016/j.jinsphys.2012.06.003
10.1038/s41467‐019‐12479‐w
10.1007/s13131‐017‐1137‐5
10.1007/s10530‐011‐9988‐8
10.1016/0022‐1910(89)90075‐9
10.1111/brv.12425
10.1111/1365‐2435.13095
10.1016/j.cbpa.2014.08.002
10.1086/499986
10.1002/ecy.3139
10.1111/j.0014‐3820.2004.tb00458.x
10.1890/02‐0607
10.1111/gcb.15321
10.1111/1365‐2435.12360
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
DOI 10.1111/1365-2435.14445
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
SWEPUB Stockholms universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Stockholms universitet
SwePub Articles full text
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Entomology Abstracts
AGRICOLA


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 3078
ExternalDocumentID oai_DiVA_org_su_223873
10_1111_1365_2435_14445
FEC14445
Genre researchArticle
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GrantInformation_xml – fundername: Bolin Centre for Climate Research
– fundername: Carl Tryggers Stiftelse för Vetenskaplig Forskning
– fundername: Vetenskapsrådet
  funderid: VR 2017‐04159; VR 2017‐04500
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABSQW
AGHNM
AGUYK
CITATION
7QG
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7S9
L.6
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
ID FETCH-LOGICAL-c4265-bf7ffa4c742cdc980a6ce8f5147b62ea07628501cf2f4ea1375d0faec961e9883
IEDL.DBID DR2
ISSN 0269-8463
1365-2435
IngestDate Thu Aug 21 07:00:08 EDT 2025
Fri Jul 11 18:39:09 EDT 2025
Tue Aug 12 18:13:20 EDT 2025
Thu Apr 24 22:54:21 EDT 2025
Tue Jul 01 01:15:56 EDT 2025
Wed Jan 22 16:16:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4265-bf7ffa4c742cdc980a6ce8f5147b62ea07628501cf2f4ea1375d0faec961e9883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2785-5108
0000-0001-8344-6830
0000-0002-4560-6271
0000-0002-4628-0584
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14445
PQID 2898303185
PQPubID 1066355
PageCount 15
ParticipantIDs swepub_primary_oai_DiVA_org_su_223873
proquest_miscellaneous_2942097834
proquest_journals_2898303185
crossref_citationtrail_10_1111_1365_2435_14445
crossref_primary_10_1111_1365_2435_14445
wiley_primary_10_1111_1365_2435_14445_FEC14445
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 27
1997; 43
2006; 79
2019; 10
2015; 30
2019; 56
2008; 39
2006; 37
2022; 25
2008; 105
2008; 33
2012; 58
2012; 14
2014; 61
2013; 281
2017; 114
2014; 178
2007; 38
2020; 18
2007; 137
2018; 9
2023; 68
2013; 16
2010; 118
2017; 36
2015; 40
2000; 97
2022; 36
2017; 121
2014; 17
2015; 90
2018; 32
2012; 215
1989; 35
1989; 39
2004; 85
1989; 67
2020; 41
2010
2021; 224
2015; 53
2015; 167
2015; 54
1996; 93
2022; 47
2021b
2021a
2020; 34
2020; 101
2011; 38
2016; 56
2015; 29
2000; 267
2023
2015; 115
2020; 74
2022
2021
2004; 58
2002; 23
2022; 13
2020; 26
2018; 93
2005; 15
2012; 7
2009; 106
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
Renault D. (e_1_2_9_53_1) 2002; 23
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_19_4
e_1_2_9_15_1
e_1_2_9_38_1
Arias P. A. (e_1_2_9_4_1) 2021
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_19_3
e_1_2_9_19_2
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
Pullin A. (e_1_2_9_51_1) 1996; 93
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 97
  start-page: 149
  year: 2000
  end-page: 153
  article-title: Cold hardiness of (Heteroptera: Pyrrhocoridae) from central and southern Europe. (2000) Eur
  publication-title: Journal of Entomology
– volume: 178
  start-page: 51
  year: 2014
  end-page: 58
  article-title: Cold hardiness and deacclimation of overwintering pupae
  publication-title: Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology
– volume: 43
  start-page: 843
  year: 1997
  end-page: 854
  article-title: Cold hardiness, supercooling ability and causes of low‐temperature mortality in the soft tick, Argas reflexus, and the hard tick, (Acari: Ixodoidea) from Central Europe
  publication-title: Journal of Insect Physiology
– volume: 29
  start-page: 357
  year: 2015
  end-page: 366
  article-title: The relative importance of number, duration and intensity of cold stress events in determining survival and energetics of an overwintering insect
  publication-title: Functional Ecology
– volume: 16
  start-page: 1424
  year: 2013
  end-page: 1435
  article-title: Predicting species distributions for conservation decisions
  publication-title: Ecology Letters
– volume: 38
  start-page: 1
  year: 2007
  end-page: 25
  article-title: Evolution of animal Photoperiodism
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 9
  start-page: 1
  year: 2018
  end-page: 8
  article-title: Climatic variation of supercooling point in the linden bug (Heteroptera: Pyrrhocoridae)
  publication-title: Insects
– volume: 67
  start-page: 825
  year: 1989
  end-page: 827
  article-title: Switch in the overwintering strategy of two insect species and latitudinal differences in cold hardiness
  publication-title: Canadian Journal of Zoology
– year: 2021
– volume: 18
  start-page: 141
  year: 2020
  end-page: 150
  article-title: Complex responses of global insect pests to climate warming
  publication-title: Frontiers in Ecology and the Environment
– volume: 58
  start-page: 1146
  year: 2012
  end-page: 1158
  article-title: Population dependent effects of photoperiod on diapause related physiological traits in an invasive beetle ( )
  publication-title: Journal of Insect Physiology
– volume: 40
  start-page: 123
  year: 2015
  end-page: 130
  article-title: Responses in metabolic rate to changes in temperature in diapausing Colorado potato beetle from three European
  publication-title: Physiological Entomology
– volume: 106
  start-page: 11160
  year: 2009
  end-page: 11165
  article-title: Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 13
  start-page: 1
  year: 2022
  end-page: 20
  article-title: Exploring cold hardiness within a butterfly clade: Supercooling ability and polyol profiles in European Satyrinae
  publication-title: Insects
– volume: 38
  start-page: 1
  year: 2011
  end-page: 5
  article-title: Persisting cold extremes under 21st‐century warming scenarios
  publication-title: Geophysical Research Letters
– volume: 36
  start-page: 51
  year: 2017
  end-page: 60
  article-title: Investigation of Arctic air temperature extremes at north of 60° N in winter
  publication-title: Acta Oceanologica Sinica
– volume: 35
  start-page: 277
  year: 1989
  end-page: 281
  article-title: Effects of low temperature on diapausing and inachis io (Lepidoptera: Nymphalidae): Cold hardiness and overwintering survival
  publication-title: Journal of Insect Physiology
– volume: 79
  start-page: 295
  year: 2006
  end-page: 313
  article-title: Trade‐offs in thermal adaptation: The need for a molecular to ecological integration
  publication-title: Physiological and Biochemical Zoology
– year: 2022
– volume: 15
  start-page: 2084
  year: 2005
  end-page: 2096
  article-title: Expansion of geographic range in the pine processionary moth caused by increased winter temperatures
  publication-title: Ecological Applications
– volume: 32
  start-page: 1652
  year: 2018
  end-page: 1665
  article-title: Contemporary climate‐driven range shifts: Putting evolution back on the table
  publication-title: Functional Ecology
– volume: 215
  start-page: 1607
  year: 2012
  end-page: 1613
  article-title: The impacts of repeated cold exposure on insects
  publication-title: The Journal of Experimental Biology
– volume: 36
  start-page: 1151
  year: 2022
  end-page: 1162
  article-title: Longer and warmer prewinter periods reduce post‐winter fitness in a diapausing insect
  publication-title: Functional Ecology
– volume: 74
  start-page: 1451
  year: 2020
  end-page: 1465
  article-title: Rapid adaptive evolution of the diapause program during range expansion of an invasive mosquito
  publication-title: Evolution
– year: 2021a
– volume: 105
  start-page: 599
  year: 2008
  end-page: 606
  article-title: The effect of temperature on the diapause and cold hardiness of (Lepidoptera: Lasiocampidae)
  publication-title: European Journal of Entomology
– volume: 118
  start-page: 1507
  year: 2010
  end-page: 1514
  article-title: Potential influence of climate change on vector‐borne and zoonotic diseases: A review and proposed research plan
  publication-title: Environmental Health Perspectives
– volume: 68
  start-page: 319
  year: 2023
  end-page: 339
  article-title: Molecular mechanisms of winter survival
  publication-title: Annual Review of Entomology
– volume: 41
  start-page: 54
  year: 2020
  end-page: 62
  article-title: Evolutionary impacts of winter climate change on insects
  publication-title: Current Opinion in Insect Science
– volume: 56
  start-page: 62
  year: 2016
  end-page: 72
  article-title: Adaptation to low temperature exposure increases metabolic rates independently of growth rates
  publication-title: Integrative and Comparative Biology
– volume: 29
  start-page: 549
  year: 2015
  end-page: 561
  article-title: A cross‐seasonal perspective on local adaptation: Metabolic plasticity mediates responses to winter in a thermal‐generalist moth
  publication-title: Functional Ecology
– volume: 17
  start-page: 637
  year: 2014
  end-page: 649
  article-title: Evolutionary responses to global change: Lessons from invasive species
  publication-title: Ecology Letters
– volume: 115
  start-page: 586
  year: 2015
  end-page: 597
  article-title: Geographical range margins of many taxonomic groups continue to shift polewards
  publication-title: Biological Journal of the Linnean Society
– volume: 7
  year: 2012
  article-title: Variation in Hsp70 levels after cold shock: Signs of evolutionary responses to thermal selection among populations
  publication-title: PLoS One
– volume: 90
  start-page: 214
  year: 2015
  end-page: 235
  article-title: Cold truths: How winter drives responses of terrestrial organisms to climate change
  publication-title: Biological Reviews
– volume: 85
  start-page: 231
  year: 2004
  end-page: 241
  article-title: Warmer winters drive butterfly range expansion by increasing survivorship
  publication-title: Ecology
– volume: 39
  start-page: 308
  year: 1989
  end-page: 313
  article-title: Insect cold‐hardiness: To freeze or not to freeze—How insects survive low temperatures
  publication-title: Bioscience
– volume: 14
  start-page: 115
  year: 2012
  end-page: 125
  article-title: Could phenotypic plasticity limit an invasive species? Incomplete reversibility of mid‐winter deacclimation in emerald ash borer
  publication-title: Biological Invasions
– volume: 58
  start-page: 1748
  year: 2004
  end-page: 1762
  article-title: Adaptation to temperate climates
  publication-title: Evolution
– volume: 167
  start-page: 38
  year: 2015
  end-page: 45
  article-title: Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect
  publication-title: Aquatic Toxicology
– volume: 47
  start-page: 553
  year: 2022
  end-page: 565
  article-title: Cold tolerance and winter survival of seasonally‐acclimatised second‐instar larvae of the spruce budworm,
  publication-title: Ecological Entomology
– volume: 101
  year: 2020
  article-title: Eco‐evolutionary dynamics of range expansion
  publication-title: Ecology
– volume: 281
  year: 2013
  article-title: Evolution on the move: Specialization on widespread resources associated with rapid range expansion in response to climate change
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 56
  start-page: 2518
  year: 2019
  end-page: 2527
  article-title: Rapid local adaptation to northern winters in the invasive Asian tiger mosquito : A moving target
  publication-title: Journal of Applied Ecology
– volume: 39
  start-page: 321
  year: 2008
  end-page: 342
  article-title: Adaptation to marginal habitats
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 53
  start-page: 180
  year: 2015
  end-page: 197
  article-title: An invitation to measure insect cold tolerance: Methods, approaches, and workflow
  publication-title: Journal of Thermal Biology
– volume: 33
  start-page: 709
  year: 2008
  end-page: 715
  article-title: Evolution of increased cold tolerance during range expansion of the elongate hemlock scale Fiorinia externa Ferris (Hemiptera: Diaspididae)
  publication-title: Ecological Entomology
– start-page: 82
  year: 2021
  end-page: 84
– volume: 121
  start-page: 248
  year: 2017
  end-page: 257
  article-title: Rapid evolution of ant thermal tolerance across an urban‐rural temperature cline
  publication-title: Biological Journal of the Linnean Society
– volume: 114
  start-page: 470
  year: 2017
  end-page: 480
  article-title: More complex than expected: Cold hardiness and the concentration of cryoprotectants in overwintering larvae of five butterflies (Lepidoptera: Nymphalidae)
  publication-title: European Journal of Entomology
– volume: 37
  start-page: 637
  year: 2006
  end-page: 669
  article-title: Ecological and evolutionary responses to recent climate change
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– start-page: 276
  year: 2010
  end-page: 296
– volume: 25
  start-page: 2022
  year: 2022
  end-page: 2033
  article-title: Local adaptation to seasonal cues at the fronts of two parallel, climate‐induced butterfly range expansions
  publication-title: Ecology Letters
– volume: 224
  year: 2021
  article-title: Local thermal environment and warming influence supercooling and drive widespread shifts in the metabolome of diapausing Pieris rapae butterflies
  publication-title: The Journal of Experimental Biology
– volume: 27
  start-page: 6103
  year: 2021
  end-page: 6116
  article-title: Snow modulates winter energy use and cold exposure across an elevation gradient in a montane ectotherm
  publication-title: Global Change Biology
– volume: 267
  start-page: 739
  year: 2000
  end-page: 745
  article-title: Thermal tolerance, climatic variability and latitude
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– year: 2021b
– volume: 10
  start-page: 4455
  year: 2019
  article-title: Climate‐induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year
  publication-title: Nature Communications
– volume: 34
  start-page: 1029
  year: 2020
  end-page: 1040
  article-title: Variation in butterfly diapause duration in relation to voltinism suggests adaptation to autumn warmth, not winter cold
  publication-title: Functional Ecology
– year: 2023
– volume: 23
  start-page: 217
  year: 2002
  end-page: 228
  article-title: Survival at low temperatures in insects: What is the ecological significance of the supercooling point?
  publication-title: Cryo‐Letters
– volume: 93
  start-page: 121
  year: 1996
  end-page: 129
  article-title: Physiological relationships between insect diapause and cold tolerance: Coevolution or coincidence?
  publication-title: European Journal of Entomology
– volume: 26
  start-page: 6350
  year: 2020
  end-page: 6362
  article-title: Future winters present a complex energetic landscape of decreased costs and reduced risk for a freeze‐tolerant amphibian, the wood frog ( )
  publication-title: Global Change Biology
– volume: 54
  start-page: 5
  year: 2015
  end-page: 11
  article-title: Linking energetics and overwintering in temperate insects
  publication-title: Journal of Thermal Biology
– volume: 137
  start-page: 599
  year: 2007
  end-page: 609
  article-title: Constraints and reinforcement on adaptation under climate change: Selection of genetically correlated traits
  publication-title: Biological Conservation
– volume: 30
  start-page: 780
  year: 2015
  end-page: 792
  article-title: Where and when do species interactions set range limits?
  publication-title: Trends in Ecology & Evolution
– volume: 93
  start-page: 1891
  year: 2018
  end-page: 1914
  article-title: Mechanisms underlying insect freeze tolerance
  publication-title: Biological Reviews
– volume: 61
  start-page: 265
  year: 2014
  end-page: 272
  article-title: The effect of overwintering temperature on the body energy reserves and phenoloxidase activity of bumblebee queens
  publication-title: Insectes Sociaux
– ident: e_1_2_9_34_1
  doi: 10.1371/journal.pone.0031446
– ident: e_1_2_9_29_1
  doi: 10.1002/fee.2160
– ident: e_1_2_9_27_1
  doi: 10.1139/z89‐121
– ident: e_1_2_9_5_1
  doi: 10.1890/04‐1903
– ident: e_1_2_9_31_1
  doi: 10.1111/phen.12095
– ident: e_1_2_9_56_1
  doi: 10.1016/j.jtherbio.2014.07.007
– ident: e_1_2_9_11_1
  doi: 10.1016/S0022‐1910(97)00025‐5
– ident: e_1_2_9_13_1
  doi: 10.1017/9781108609364
– ident: e_1_2_9_19_3
– ident: e_1_2_9_21_1
  doi: 10.1016/j.biocon.2007.03.018
– ident: e_1_2_9_32_1
  doi: 10.1111/1365‐2435.13525
– ident: e_1_2_9_37_1
  doi: 10.1242/jeb.059956
– volume: 93
  start-page: 121
  year: 1996
  ident: e_1_2_9_51_1
  article-title: Physiological relationships between insect diapause and cold tolerance: Coevolution or coincidence?
  publication-title: European Journal of Entomology
– ident: e_1_2_9_33_1
  doi: 10.1016/j.tree.2015.09.011
– ident: e_1_2_9_40_1
  doi: 10.1111/1365‐2664.13480
– ident: e_1_2_9_44_1
  doi: 10.1111/ele.12262
– ident: e_1_2_9_57_1
  doi: 10.1016/j.jtherbio.2015.11.003
– ident: e_1_2_9_25_1
  doi: 10.1146/annurev.ecolsys.38.091206.095622
– ident: e_1_2_9_50_1
  doi: 10.1111/j.1365‐2311.2008.01021.x
– ident: e_1_2_9_46_1
  doi: 10.1017/CBO9780511675997.012
– ident: e_1_2_9_60_1
– ident: e_1_2_9_66_1
  doi: 10.3390/insects13040369
– ident: e_1_2_9_71_1
  doi: 10.14411/eje.2008.080
– ident: e_1_2_9_47_1
  doi: 10.1146/annurev.ecolsys.37.091305.110100
– ident: e_1_2_9_45_1
  doi: 10.1111/1365‐2435.14037
– ident: e_1_2_9_62_1
  doi: 10.1146/annurev‐ento‐120120‐095233
– volume: 23
  start-page: 217
  year: 2002
  ident: e_1_2_9_53_1
  article-title: Survival at low temperatures in insects: What is the ecological significance of the supercooling point?
  publication-title: Cryo‐Letters
– ident: e_1_2_9_64_1
  doi: 10.1007/s00040‐014‐0351‐9
– ident: e_1_2_9_23_1
  doi: 10.1111/1365-2435.14445
– ident: e_1_2_9_36_1
  doi: 10.1016/j.cois.2020.06.003
– ident: e_1_2_9_2_1
  doi: 10.1098/rspb.2000.1065
– ident: e_1_2_9_19_2
– ident: e_1_2_9_15_1
  doi: 10.1093/biolinnean/blw047
– ident: e_1_2_9_20_1
  doi: 10.1111/ele.12189
– ident: e_1_2_9_7_1
  doi: 10.1146/annurev.ecolsys.37.091305.110115
– ident: e_1_2_9_28_1
  doi: 10.2307/1311113
– ident: e_1_2_9_24_1
  doi: 10.14411/eje.2000.027
– ident: e_1_2_9_22_1
  doi: 10.1111/ele.14085
– ident: e_1_2_9_6_1
  doi: 10.1111/evo.14029
– ident: e_1_2_9_65_1
  doi: 10.14411/eje.2017.060
– ident: e_1_2_9_70_1
  doi: 10.1093/icb/icw009
– ident: e_1_2_9_68_1
  doi: 10.1111/brv.12105
– start-page: 82
  volume-title: Climate change 2021: ThePhysical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2021
  ident: e_1_2_9_4_1
– ident: e_1_2_9_39_1
  doi: 10.1111/bij.12574
– ident: e_1_2_9_3_1
  doi: 10.1016/j.aquatox.2015.07.018
– ident: e_1_2_9_12_1
  doi: 10.1111/een.13140
– ident: e_1_2_9_55_1
  doi: 10.1101/2021.11.04.467261
– ident: e_1_2_9_19_1
– ident: e_1_2_9_43_1
  doi: 10.1289/ehp.0901389
– ident: e_1_2_9_48_1
  doi: 10.1073/pnas.0900284106
– ident: e_1_2_9_16_1
  doi: 10.3390/insects9040144
– ident: e_1_2_9_41_1
  doi: 10.1242/jeb.243118
– ident: e_1_2_9_26_1
  doi: 10.1029/2011GL047103
– ident: e_1_2_9_9_1
  doi: 10.1098/rspb.2013.1800
– ident: e_1_2_9_38_1
  doi: 10.1111/1365‐2435.12328
– ident: e_1_2_9_54_1
  doi: 10.1111/gcb.15912
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jinsphys.2012.06.003
– ident: e_1_2_9_35_1
  doi: 10.1038/s41467‐019‐12479‐w
– ident: e_1_2_9_59_1
  doi: 10.1007/s13131‐017‐1137‐5
– ident: e_1_2_9_58_1
  doi: 10.1007/s10530‐011‐9988‐8
– ident: e_1_2_9_52_1
  doi: 10.1016/0022‐1910(89)90075‐9
– ident: e_1_2_9_63_1
  doi: 10.1111/brv.12425
– ident: e_1_2_9_14_1
  doi: 10.1111/1365‐2435.13095
– ident: e_1_2_9_69_1
  doi: 10.1016/j.cbpa.2014.08.002
– ident: e_1_2_9_49_1
  doi: 10.1086/499986
– ident: e_1_2_9_42_1
  doi: 10.1002/ecy.3139
– ident: e_1_2_9_18_1
– ident: e_1_2_9_8_1
  doi: 10.1111/j.0014‐3820.2004.tb00458.x
– ident: e_1_2_9_10_1
  doi: 10.1890/02‐0607
– ident: e_1_2_9_17_1
  doi: 10.1111/gcb.15321
– ident: e_1_2_9_19_4
– ident: e_1_2_9_61_1
– ident: e_1_2_9_67_1
  doi: 10.1111/1365‐2435.12360
SSID ssj0009522
Score 2.4265192
Snippet Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range...
SourceID swepub
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3064
SubjectTerms Adaptation
adults
butterflies
Butterflies & moths
Caterpillars
climate
Climate change
Cold
cold tolerance
Diapause
ecology
ecophysiology
Environmental conditions
Evolution
Geographical distribution
HuR protein
laboratory experimentation
Lepidoptera: Nymphalidae
Metabolic rate
Metabolism
Natural selection
photoperiod
Population studies
Populations
Range extension
Satyrinae
Supercooling
Survival
Sweden
temperature
Winter
Title A range‐expanding butterfly is susceptible to cold and long winters but shows no signs of local adaptation to winter conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14445
https://www.proquest.com/docview/2898303185
https://www.proquest.com/docview/2942097834
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-223873
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9QwEA96IPji_8PV84ig4EuXNk3b9HG52-UQFBFPfAtJmujh0i6bLef5pN_Az-gncSZp170DEfEtbTJtkmYyvzQzvxDyjNmmMDp1ia5UnXBXikToUifaFHnFlRFFCBR-9bo8OeUvPxSjNyHGwkR-iO0PN9SMMF-jgivtd5Q8-meBtcf9SY5h5nAH2fOP37Id2t24j8DKOgFLmw_kPujLc0X-sl3aAZuRQPQydg3GZ3Gb6LHa0efk87Tf6Kn5eoXR8b_adYfcGqApncWxdJdcs-09ciMeVnkBqbkZUvvz39FxIDBMD_4--T6jawxW-Pnth_2yigEzVMejsJcX9MxT3_vgR6OXlm46Ck9sKJSjyw5KniN3xdqjBPWfunNP246ig4mnnaPB6lLVqFX0HkD5KAGPwY13VKAH5HQxf3d0kgxnPCQGsEGRaFc5p7iBFbppTC1SVRorHMC4SpfMqrTCGM80M445blWWV0WTOmVNXWa2FiLfJ3tt19qHhOa2yRjTTVMby11RKpNltTA153AJqHhCpuMXlmYgQMdzOJZyXAhh10vsehm6fkJebAVWkfvjz0UPxiEjh0nAS1jLihwnTch-us0G9cU9GdXarocyNWchlIZPyPM41LbvQubv47P3M9mtP0rfS0ByosqhGWH4_K1KcjE_ColH_yrwmNxkAOWi084B2duse_sEoNdGH5LrjL85DDr2C2YpJfg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCNELKo-qS1swEkhcghLHSZzjquxqgbbi0KLeLNuxodIqWa13VXor_4DfyC9hxs4uWySEuDnKjPMYj-ez52FCXjHbFEanLtGVqhPuSpEIXepEmyKvuDKiCInCJ6fl5Jx_uCguNnJhYn2I9YYbakaYr1HBcUN6Q8tjgBaYe3RQ8uIuuccBnWNYH-OfNgrvRk8CK-sEbG3el_fBaJ4_OrhtmTbgZiwhehu9BvMz3iEPe9xIh1HQj8gd2z4m9-NJktfQGpm-tTv6nboGDL3u-ifk-5DOMZPg580P-20Ws1mojudUT6_ppad-6UOQi55auugo9NhQoKPTDiivsLDE3CMH9V-7K0_bjmL0h6edo8EkUtWoWXTtI3_kgG7QK46j-yk5H4_OjiZJfwBDYsBwF4l2lXOKG1g-m8bUIlWlscIBxqp0yaxKK0zATDPjmONWZXlVNKlT1tRlZmsh8l2y1Xat3SM0t03GmG6a2ljuilKZLKuFqTmHS4CsA_J29fOl6auT4yEZU7lapaC0JEpLBmkNyJs1wywW5vg76cFKmrLXUC9hoSlynNHg9sv1bdAtdJio1nZLoKk5C3kufEBex1GwfhaW5X53-Xkou_kX6ZcSYJaocviMMEj-9UpyPDoKjWf_y_CCPJicnRzL4_enH_fJNgPMFaNrDsjWYr60h4CRFvp5UIJflPsH-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNQL74otBYwEEpes8nAS57hqd1VeFUIUcbNsx4aKVbJab1TKCf4Bv5FfwoydLNtKCCFujuxxbMfj-RzPfCbkSWrqXKvYRqqUVcRswSOuChUpnWclk5rnPlD49VFxeMxefMgHb0KMhQn8EOsfbqgZfr1GBV_UdkPJg38WWHs8n2T5ZXKFFYAnEBe9TTd4d8NBQlpUEZjarGf3QWeeCxWcN0wbaDMwiJ4Hr976zG4QNbQ7OJ18HncrNdZfL1A6_lfHbpLrPTalkzCZbpFLprlNrobbKs8gNdV9amf6OzwOBPr1wd0h3yd0idEKP7_9MF8WIWKGqnAX9vyMnjjqOucdadTc0FVLocaaQjk6b6HkKZJXLB1KUPepPXW0aSl6mDjaWurNLpW1XAT3AZQPElANnryjBt0lx7Ppu_3DqL_kIdIADvJI2dJayTRs0XWtKx7LQhtuAceVqkiNjEsM8owTbVPLjEyyMq9jK42uisRUnGc7ZKtpG3OP0MzUSZqquq60YTYvpE6SiuuKMXgEWDwi4-ELC90zoONFHHMx7IRw6AUOvfBDPyLP1gKLQP7x56J7w5QR_SrgBGxmeYarJmQ_XmeD_uKhjGxM20GZiqU-loaNyNMw1dbvQurvg5P3E9EuPwrXCYByvMygG376_K1JYjbd94ndfxV4RK69OZiJV8-PXt4n2ynAuuDAs0e2VsvOPAAYtlIPvaL9AjPgJ-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+range%E2%80%90expanding+butterfly+is+susceptible+to+cold+and+long+winters+but+shows+no+signs+of+local+adaptation+to+winter+conditions&rft.jtitle=Functional+ecology&rft.au=Ittonen%2C+Mats&rft.au=Roberts%2C+Kevin+T.&rft.au=Lehmann%2C+Philipp&rft.au=Gotthard%2C+Karl&rft.date=2023-12-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=37&rft.issue=12&rft.spage=3064&rft.epage=3078&rft_id=info:doi/10.1111%2F1365-2435.14445&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2435_14445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon