A range‐expanding butterfly is susceptible to cold and long winters but shows no signs of local adaptation to winter conditions
Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation. The wall brown bu...
Saved in:
Published in | Functional ecology Vol. 37; no. 12; pp. 3064 - 3078 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0269-8463 1365-2435 1365-2435 |
DOI | 10.1111/1365-2435.14445 |
Cover
Abstract | Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation.
The wall brown butterfly (Lasiommata megera) has expanded northward in Sweden in the years 2000–2020, most likely as a result of climate change, and has previously been shown to have evolved local adaptations to northern daylength conditions. This evolution has occurred despite hypothesised genetic constraints to adaptation at range margins.
We studied local adaptation to winter conditions in four of the previously‐studied L. megera populations, using a common garden laboratory experiment with a warm and short, an intermediate, and a cold and long winter treatment. We compared the winter and post‐winter survival of caterpillars from two southern core range and two northern range margin populations in Sweden.
During the experiment, we measured metabolic rates of a subset of diapausing caterpillars to test whether populations differ in metabolic suppression during diapause. Further, we measured supercooling points, which reflect lower lethal temperature in L. megera, of the same subset of caterpillars. We also compared supercooling points between L. megera and three closely related species with more northern distributions.
Few individuals survived the coldest treatment all the way to successful adult emergence, so L. megera seems susceptible to cold winters. Individuals of northern descent did not survive cold winters any better than individuals from southern populations. Similarly, there were no signs of local adaptation in metabolic rates or supercooling points. The comparison among species did not reveal any clear relationship between geographical distribution and supercooling point.
Although northern winters probably exert strong selection on L. megera, we provide comprehensive evidence for the lack of local adaptation to winter conditions. This contrasts with the previous finding of quickly evolved local adaptation in diapause timing, highlighting the need to consider how traits associated with different seasons differ in how they may evolve and facilitate climate change‐induced range expansions.
Read the free Plain Language Summary for this article on the Journal blog.
Sammanfattning
Som en följd av klimatförändringar förflyttar sig eller expanderar många arter mot polerna. Även om en sådan art bara följer sin klimatnisch, är det sannolikt att populationer nära kanten av artens utbredningsområde utsätts för främmande miljöförhållanden och därmed naturligt urval för lokal anpassning.
Svingelgräsfjärilen (Lasiommata megera), som – sannolikt till följd av klimatförändringar – expanderat norrut i Sverige under åren 2000–2020, har tidigare visats ha anpassat sig lokalt till nordliga dagslängdsförhållanden. Denna evolution har skett trots hypoteser om att genetiska begränsningar kan hindra evolution vid utbredningskanter.
Vi studerade lokal anpassning till olika vinterförhållanden i fyra av de tidigare studerade svingelgräsfjärilspopulationerna. Vi lät larver från olika populationer övervintra i tre olika experimentella vinterförhållanden: en varm och kort, en intermediär och en kall och lång vinter. Vi jämförde överlevnaden av larver från två sydsvenska populationer och två populationer vid artens norra utbredningskant i Sverige.
Under experimentets lopp mätte vi ämnesomsättningen hos en del larver för att testa huruvida populationer skiljer sig i hur starkt nedsatt ämnesomsättning diapauserande larver har. Utöver det mätte vi, med samma individer, vid vilken temperatur larvers underkylda kroppsvätskor fryser. Detta reflekterar de lägsta temperaturerna som svingelgräsfjärilslarver kan överleva. Dessutom jämförde vi svingelgräsfjärilens underkylningsförmåga med tre nära besläktade arter med mer nordliga utbredningsområden.
Få individer både överlevde den kallaste behandlingen och utvecklades till friska vuxna fjärilar, så svingelgräsfjärilen verkar känslig för kalla vintrar. Individer från nordliga populationer klarade inte vintern bättre än de sydliga. Likaså visar våra resultat inga tecken på lokal anpassning i underkylningsförmåga eller nedsättning av ämnesomsättningen. Jämförelsen mellan arter visade inget tydligt förhållande mellan arters utbredningsområden och underkylningsförmåga.
Trots att nordliga vintrar sannolikt medför starkt naturligt urval hos svingelgräsfjärilen, presenterar vi flera belägg för avsaknaden av lokal anpassning till vinterförhållanden. Detta är i motsats till den tidigare upptäckten av snabb evolution av lokal anpassning i diapaustajmning och påvisar att olika årstidsberoende egenskaper kan skilja sig i hur de genom evolution kan utvecklas och främja klimatdrivna utbredningsförändringar.
Read the free Plain Language Summary for this article on the Journal blog. |
---|---|
AbstractList | Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation.
The wall brown butterfly (
Lasiommata megera
) has expanded northward in Sweden in the years 2000–2020, most likely as a result of climate change, and has previously been shown to have evolved local adaptations to northern daylength conditions. This evolution has occurred despite hypothesised genetic constraints to adaptation at range margins.
We studied local adaptation to winter conditions in four of the previously‐studied
L. megera
populations, using a common garden laboratory experiment with a warm and short, an intermediate, and a cold and long winter treatment. We compared the winter and post‐winter survival of caterpillars from two southern core range and two northern range margin populations in Sweden.
During the experiment, we measured metabolic rates of a subset of diapausing caterpillars to test whether populations differ in metabolic suppression during diapause. Further, we measured supercooling points, which reflect lower lethal temperature in
L. megera
, of the same subset of caterpillars. We also compared supercooling points between
L. megera
and three closely related species with more northern distributions.
Few individuals survived the coldest treatment all the way to successful adult emergence, so
L. megera
seems susceptible to cold winters. Individuals of northern descent did not survive cold winters any better than individuals from southern populations. Similarly, there were no signs of local adaptation in metabolic rates or supercooling points. The comparison among species did not reveal any clear relationship between geographical distribution and supercooling point.
Although northern winters probably exert strong selection on
L. megera
, we provide comprehensive evidence for the lack of local adaptation to winter conditions. This contrasts with the previous finding of quickly evolved local adaptation in diapause timing, highlighting the need to consider how traits associated with different seasons differ in how they may evolve and facilitate climate change‐induced range expansions.
Read the free
Plain Language Summary
for this article on the Journal blog.
Som en följd av klimatförändringar förflyttar sig eller expanderar många arter mot polerna. Även om en sådan art bara följer sin klimatnisch, är det sannolikt att populationer nära kanten av artens utbredningsområde utsätts för främmande miljöförhållanden och därmed naturligt urval för lokal anpassning.
Svingelgräsfjärilen (
Lasiommata megera
), som – sannolikt till följd av klimatförändringar – expanderat norrut i Sverige under åren 2000–2020, har tidigare visats ha anpassat sig lokalt till nordliga dagslängdsförhållanden. Denna evolution har skett trots hypoteser om att genetiska begränsningar kan hindra evolution vid utbredningskanter.
Vi studerade lokal anpassning till olika vinterförhållanden i fyra av de tidigare studerade svingelgräsfjärilspopulationerna. Vi lät larver från olika populationer övervintra i tre olika experimentella vinterförhållanden: en varm och kort, en intermediär och en kall och lång vinter. Vi jämförde överlevnaden av larver från två sydsvenska populationer och två populationer vid artens norra utbredningskant i Sverige.
Under experimentets lopp mätte vi ämnesomsättningen hos en del larver för att testa huruvida populationer skiljer sig i hur starkt nedsatt ämnesomsättning diapauserande larver har. Utöver det mätte vi, med samma individer, vid vilken temperatur larvers underkylda kroppsvätskor fryser. Detta reflekterar de lägsta temperaturerna som svingelgräsfjärilslarver kan överleva. Dessutom jämförde vi svingelgräsfjärilens underkylningsförmåga med tre nära besläktade arter med mer nordliga utbredningsområden.
Få individer både överlevde den kallaste behandlingen och utvecklades till friska vuxna fjärilar, så svingelgräsfjärilen verkar känslig för kalla vintrar. Individer från nordliga populationer klarade inte vintern bättre än de sydliga. Likaså visar våra resultat inga tecken på lokal anpassning i underkylningsförmåga eller nedsättning av ämnesomsättningen. Jämförelsen mellan arter visade inget tydligt förhållande mellan arters utbredningsområden och underkylningsförmåga.
Trots att nordliga vintrar sannolikt medför starkt naturligt urval hos svingelgräsfjärilen, presenterar vi flera belägg för avsaknaden av lokal anpassning till vinterförhållanden. Detta är i motsats till den tidigare upptäckten av snabb evolution av lokal anpassning i diapaustajmning och påvisar att olika årstidsberoende egenskaper kan skilja sig i hur de genom evolution kan utvecklas och främja klimatdrivna utbredningsförändringar. Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation.The wall brown butterfly (Lasiommata megera) has expanded northward in Sweden in the years 2000–2020, most likely as a result of climate change, and has previously been shown to have evolved local adaptations to northern daylength conditions. This evolution has occurred despite hypothesised genetic constraints to adaptation at range margins.We studied local adaptation to winter conditions in four of the previously‐studied L. megera populations, using a common garden laboratory experiment with a warm and short, an intermediate, and a cold and long winter treatment. We compared the winter and post‐winter survival of caterpillars from two southern core range and two northern range margin populations in Sweden.During the experiment, we measured metabolic rates of a subset of diapausing caterpillars to test whether populations differ in metabolic suppression during diapause. Further, we measured supercooling points, which reflect lower lethal temperature in L. megera, of the same subset of caterpillars. We also compared supercooling points between L. megera and three closely related species with more northern distributions.Few individuals survived the coldest treatment all the way to successful adult emergence, so L. megera seems susceptible to cold winters. Individuals of northern descent did not survive cold winters any better than individuals from southern populations. Similarly, there were no signs of local adaptation in metabolic rates or supercooling points. The comparison among species did not reveal any clear relationship between geographical distribution and supercooling point.Although northern winters probably exert strong selection on L. megera, we provide comprehensive evidence for the lack of local adaptation to winter conditions. This contrasts with the previous finding of quickly evolved local adaptation in diapause timing, highlighting the need to consider how traits associated with different seasons differ in how they may evolve and facilitate climate change‐induced range expansions.Read the free Plain Language Summary for this article on the Journal blog. Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation. The wall brown butterfly (Lasiommata megera) has expanded northward in Sweden in the years 2000–2020, most likely as a result of climate change, and has previously been shown to have evolved local adaptations to northern daylength conditions. This evolution has occurred despite hypothesised genetic constraints to adaptation at range margins. We studied local adaptation to winter conditions in four of the previously‐studied L. megera populations, using a common garden laboratory experiment with a warm and short, an intermediate, and a cold and long winter treatment. We compared the winter and post‐winter survival of caterpillars from two southern core range and two northern range margin populations in Sweden. During the experiment, we measured metabolic rates of a subset of diapausing caterpillars to test whether populations differ in metabolic suppression during diapause. Further, we measured supercooling points, which reflect lower lethal temperature in L. megera, of the same subset of caterpillars. We also compared supercooling points between L. megera and three closely related species with more northern distributions. Few individuals survived the coldest treatment all the way to successful adult emergence, so L. megera seems susceptible to cold winters. Individuals of northern descent did not survive cold winters any better than individuals from southern populations. Similarly, there were no signs of local adaptation in metabolic rates or supercooling points. The comparison among species did not reveal any clear relationship between geographical distribution and supercooling point. Although northern winters probably exert strong selection on L. megera, we provide comprehensive evidence for the lack of local adaptation to winter conditions. This contrasts with the previous finding of quickly evolved local adaptation in diapause timing, highlighting the need to consider how traits associated with different seasons differ in how they may evolve and facilitate climate change‐induced range expansions. Read the free Plain Language Summary for this article on the Journal blog. Sammanfattning Som en följd av klimatförändringar förflyttar sig eller expanderar många arter mot polerna. Även om en sådan art bara följer sin klimatnisch, är det sannolikt att populationer nära kanten av artens utbredningsområde utsätts för främmande miljöförhållanden och därmed naturligt urval för lokal anpassning. Svingelgräsfjärilen (Lasiommata megera), som – sannolikt till följd av klimatförändringar – expanderat norrut i Sverige under åren 2000–2020, har tidigare visats ha anpassat sig lokalt till nordliga dagslängdsförhållanden. Denna evolution har skett trots hypoteser om att genetiska begränsningar kan hindra evolution vid utbredningskanter. Vi studerade lokal anpassning till olika vinterförhållanden i fyra av de tidigare studerade svingelgräsfjärilspopulationerna. Vi lät larver från olika populationer övervintra i tre olika experimentella vinterförhållanden: en varm och kort, en intermediär och en kall och lång vinter. Vi jämförde överlevnaden av larver från två sydsvenska populationer och två populationer vid artens norra utbredningskant i Sverige. Under experimentets lopp mätte vi ämnesomsättningen hos en del larver för att testa huruvida populationer skiljer sig i hur starkt nedsatt ämnesomsättning diapauserande larver har. Utöver det mätte vi, med samma individer, vid vilken temperatur larvers underkylda kroppsvätskor fryser. Detta reflekterar de lägsta temperaturerna som svingelgräsfjärilslarver kan överleva. Dessutom jämförde vi svingelgräsfjärilens underkylningsförmåga med tre nära besläktade arter med mer nordliga utbredningsområden. Få individer både överlevde den kallaste behandlingen och utvecklades till friska vuxna fjärilar, så svingelgräsfjärilen verkar känslig för kalla vintrar. Individer från nordliga populationer klarade inte vintern bättre än de sydliga. Likaså visar våra resultat inga tecken på lokal anpassning i underkylningsförmåga eller nedsättning av ämnesomsättningen. Jämförelsen mellan arter visade inget tydligt förhållande mellan arters utbredningsområden och underkylningsförmåga. Trots att nordliga vintrar sannolikt medför starkt naturligt urval hos svingelgräsfjärilen, presenterar vi flera belägg för avsaknaden av lokal anpassning till vinterförhållanden. Detta är i motsats till den tidigare upptäckten av snabb evolution av lokal anpassning i diapaustajmning och påvisar att olika årstidsberoende egenskaper kan skilja sig i hur de genom evolution kan utvecklas och främja klimatdrivna utbredningsförändringar. Read the free Plain Language Summary for this article on the Journal blog. Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range margin populations are likely to face unfamiliar environmental conditions and thus natural selection for local adaptation. The wall brown butterfly ( Lasiommata megera ) has expanded northward in Sweden in the years 2000–2020, most likely as a result of climate change, and has previously been shown to have evolved local adaptations to northern daylength conditions. This evolution has occurred despite hypothesised genetic constraints to adaptation at range margins. We studied local adaptation to winter conditions in four of the previously-studied L. megera populations, using a common garden laboratory experiment with a warm and short, an intermediate, and a cold and long winter treatment. We compared the winter and post-winter survival of caterpillars from two southern core range and two northern range margin populations in Sweden. During the experiment, we measured metabolic rates of a subset of diapausing caterpillars to test whether populations differ in metabolic suppression during diapause. Further, we measured supercooling points, which reflect lower lethal temperature in L. megera , of the same subset of caterpillars. We also compared supercooling points between L. megera and three closely related species with more northern distributions. Few individuals survived the coldest treatment all the way to successful adult emergence, so L. megera seems susceptible to cold winters. Individuals of northern descent did not survive cold winters any better than individuals from southern populations. Similarly, there were no signs of local adaptation in metabolic rates or supercooling points. The comparison among species did not reveal any clear relationship between geographical distribution and supercooling point. Although northern winters probably exert strong selection on L. megera , we provide comprehensive evidence for the lack of local adaptation to winter conditions. This contrasts with the previous finding of quickly evolved local adaptation in diapause timing, highlighting the need to consider how traits associated with different seasons differ in how they may evolve and facilitate climate change-induced range expansions. |
Author | Gotthard, Karl Roberts, Kevin T. Lehmann, Philipp Ittonen, Mats |
Author_xml | – sequence: 1 givenname: Mats orcidid: 0000-0002-4628-0584 surname: Ittonen fullname: Ittonen, Mats email: mats.ittonen@zoologi.su.se organization: Stockholm university – sequence: 2 givenname: Kevin T. orcidid: 0000-0003-2785-5108 surname: Roberts fullname: Roberts, Kevin T. organization: Stockholm University – sequence: 3 givenname: Philipp orcidid: 0000-0001-8344-6830 surname: Lehmann fullname: Lehmann, Philipp organization: University of Greifswald – sequence: 4 givenname: Karl orcidid: 0000-0002-4560-6271 surname: Gotthard fullname: Gotthard, Karl organization: Stockholm university |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-223873$$DView record from Swedish Publication Index |
BookMark | eNqFkc9u1DAQhy3USmxLz1wtceHAtv6XxDmulrYgVeJCe7Ucx15cuXbwJFr2Bm_AM_ZJcEjhUAnhiyXr-2Y88ztBRzFFi9BrSs5pOReU19WaCV6dUyFE9QKt_r4coRVhdbuWouYv0QnAPSGkrRhboR8bnHXc2cfvP-23Qcfexx3upnG02YUD9oBhAmOH0XfB4jFhk0KPC4dDKuTex0LCbGD4kvaAY8LgdxFwcgUxOmDd62HUo09x9hejlCmt5jd4hY6dDmDPnu5TdHt1-Xn7YX3z6frjdnOzNoKVOTrXOKeFaQQzvWkl0bWx0lVUNF3NrCZNzWRFqHHMCaspb6qeOG1NW1PbSslP0bulLuztMHVqyP5B54NK2qv3_m6jUt4pmBRjXDa84G8XfMjp62RhVA--LCIEHW2aQLFWMNI2kouCvnmG3qcpxzKMYrKVnHAqq0JVC2VyAsjWKeOXtYxZ-6AoUXOOak5Nzamp3zkW7-KZ9-fn_zaeOu19sIf_4erqcrt4vwB6GrK7 |
CitedBy_id | crossref_primary_10_1111_1365_2435_14445 |
Cites_doi | 10.1371/journal.pone.0031446 10.1002/fee.2160 10.1139/z89‐121 10.1890/04‐1903 10.1111/phen.12095 10.1016/j.jtherbio.2014.07.007 10.1016/S0022‐1910(97)00025‐5 10.1017/9781108609364 10.1016/j.biocon.2007.03.018 10.1111/1365‐2435.13525 10.1242/jeb.059956 10.1016/j.tree.2015.09.011 10.1111/1365‐2664.13480 10.1111/ele.12262 10.1016/j.jtherbio.2015.11.003 10.1146/annurev.ecolsys.38.091206.095622 10.1111/j.1365‐2311.2008.01021.x 10.1017/CBO9780511675997.012 10.3390/insects13040369 10.14411/eje.2008.080 10.1146/annurev.ecolsys.37.091305.110100 10.1111/1365‐2435.14037 10.1146/annurev‐ento‐120120‐095233 10.1007/s00040‐014‐0351‐9 10.1111/1365-2435.14445 10.1016/j.cois.2020.06.003 10.1098/rspb.2000.1065 10.1093/biolinnean/blw047 10.1111/ele.12189 10.1146/annurev.ecolsys.37.091305.110115 10.2307/1311113 10.14411/eje.2000.027 10.1111/ele.14085 10.1111/evo.14029 10.14411/eje.2017.060 10.1093/icb/icw009 10.1111/brv.12105 10.1111/bij.12574 10.1016/j.aquatox.2015.07.018 10.1111/een.13140 10.1101/2021.11.04.467261 10.1289/ehp.0901389 10.1073/pnas.0900284106 10.3390/insects9040144 10.1242/jeb.243118 10.1029/2011GL047103 10.1098/rspb.2013.1800 10.1111/1365‐2435.12328 10.1111/gcb.15912 10.1016/j.jinsphys.2012.06.003 10.1038/s41467‐019‐12479‐w 10.1007/s13131‐017‐1137‐5 10.1007/s10530‐011‐9988‐8 10.1016/0022‐1910(89)90075‐9 10.1111/brv.12425 10.1111/1365‐2435.13095 10.1016/j.cbpa.2014.08.002 10.1086/499986 10.1002/ecy.3139 10.1111/j.0014‐3820.2004.tb00458.x 10.1890/02‐0607 10.1111/gcb.15321 10.1111/1365‐2435.12360 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 ABAVF ADTPV AOWAS D8T DG7 ZZAVC |
DOI | 10.1111/1365-2435.14445 |
DatabaseName | Wiley Online Library Open Access CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic SWEPUB Stockholms universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Stockholms universitet SwePub Articles full text |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Entomology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 3078 |
ExternalDocumentID | oai_DiVA_org_su_223873 10_1111_1365_2435_14445 FEC14445 |
Genre | researchArticle |
GeographicLocations | Sweden |
GeographicLocations_xml | – name: Sweden |
GrantInformation_xml | – fundername: Bolin Centre for Climate Research – fundername: Carl Tryggers Stiftelse för Vetenskaplig Forskning – fundername: Vetenskapsrådet funderid: VR 2017‐04159; VR 2017‐04500 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCMX ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW AGHNM AGUYK CITATION 7QG 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7S9 L.6 ABAVF ADTPV AOWAS D8T DG7 ZZAVC |
ID | FETCH-LOGICAL-c4265-bf7ffa4c742cdc980a6ce8f5147b62ea07628501cf2f4ea1375d0faec961e9883 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 1365-2435 |
IngestDate | Thu Aug 21 07:00:08 EDT 2025 Fri Jul 11 18:39:09 EDT 2025 Tue Aug 12 18:13:20 EDT 2025 Thu Apr 24 22:54:21 EDT 2025 Tue Jul 01 01:15:56 EDT 2025 Wed Jan 22 16:16:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4265-bf7ffa4c742cdc980a6ce8f5147b62ea07628501cf2f4ea1375d0faec961e9883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2785-5108 0000-0001-8344-6830 0000-0002-4560-6271 0000-0002-4628-0584 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14445 |
PQID | 2898303185 |
PQPubID | 1066355 |
PageCount | 15 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_223873 proquest_miscellaneous_2942097834 proquest_journals_2898303185 crossref_citationtrail_10_1111_1365_2435_14445 crossref_primary_10_1111_1365_2435_14445 wiley_primary_10_1111_1365_2435_14445_FEC14445 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 27 1997; 43 2006; 79 2019; 10 2015; 30 2019; 56 2008; 39 2006; 37 2022; 25 2008; 105 2008; 33 2012; 58 2012; 14 2014; 61 2013; 281 2017; 114 2014; 178 2007; 38 2020; 18 2007; 137 2018; 9 2023; 68 2013; 16 2010; 118 2017; 36 2015; 40 2000; 97 2022; 36 2017; 121 2014; 17 2015; 90 2018; 32 2012; 215 1989; 35 1989; 39 2004; 85 1989; 67 2020; 41 2010 2021; 224 2015; 53 2015; 167 2015; 54 1996; 93 2022; 47 2021b 2021a 2020; 34 2020; 101 2011; 38 2016; 56 2015; 29 2000; 267 2023 2015; 115 2020; 74 2022 2021 2004; 58 2002; 23 2022; 13 2020; 26 2018; 93 2005; 15 2012; 7 2009; 106 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 Renault D. (e_1_2_9_53_1) 2002; 23 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_19_4 e_1_2_9_15_1 e_1_2_9_38_1 Arias P. A. (e_1_2_9_4_1) 2021 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_19_3 e_1_2_9_19_2 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 Pullin A. (e_1_2_9_51_1) 1996; 93 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 97 start-page: 149 year: 2000 end-page: 153 article-title: Cold hardiness of (Heteroptera: Pyrrhocoridae) from central and southern Europe. (2000) Eur publication-title: Journal of Entomology – volume: 178 start-page: 51 year: 2014 end-page: 58 article-title: Cold hardiness and deacclimation of overwintering pupae publication-title: Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology – volume: 43 start-page: 843 year: 1997 end-page: 854 article-title: Cold hardiness, supercooling ability and causes of low‐temperature mortality in the soft tick, Argas reflexus, and the hard tick, (Acari: Ixodoidea) from Central Europe publication-title: Journal of Insect Physiology – volume: 29 start-page: 357 year: 2015 end-page: 366 article-title: The relative importance of number, duration and intensity of cold stress events in determining survival and energetics of an overwintering insect publication-title: Functional Ecology – volume: 16 start-page: 1424 year: 2013 end-page: 1435 article-title: Predicting species distributions for conservation decisions publication-title: Ecology Letters – volume: 38 start-page: 1 year: 2007 end-page: 25 article-title: Evolution of animal Photoperiodism publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 9 start-page: 1 year: 2018 end-page: 8 article-title: Climatic variation of supercooling point in the linden bug (Heteroptera: Pyrrhocoridae) publication-title: Insects – volume: 67 start-page: 825 year: 1989 end-page: 827 article-title: Switch in the overwintering strategy of two insect species and latitudinal differences in cold hardiness publication-title: Canadian Journal of Zoology – year: 2021 – volume: 18 start-page: 141 year: 2020 end-page: 150 article-title: Complex responses of global insect pests to climate warming publication-title: Frontiers in Ecology and the Environment – volume: 58 start-page: 1146 year: 2012 end-page: 1158 article-title: Population dependent effects of photoperiod on diapause related physiological traits in an invasive beetle ( ) publication-title: Journal of Insect Physiology – volume: 40 start-page: 123 year: 2015 end-page: 130 article-title: Responses in metabolic rate to changes in temperature in diapausing Colorado potato beetle from three European publication-title: Physiological Entomology – volume: 106 start-page: 11160 year: 2009 end-page: 11165 article-title: Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 13 start-page: 1 year: 2022 end-page: 20 article-title: Exploring cold hardiness within a butterfly clade: Supercooling ability and polyol profiles in European Satyrinae publication-title: Insects – volume: 38 start-page: 1 year: 2011 end-page: 5 article-title: Persisting cold extremes under 21st‐century warming scenarios publication-title: Geophysical Research Letters – volume: 36 start-page: 51 year: 2017 end-page: 60 article-title: Investigation of Arctic air temperature extremes at north of 60° N in winter publication-title: Acta Oceanologica Sinica – volume: 35 start-page: 277 year: 1989 end-page: 281 article-title: Effects of low temperature on diapausing and inachis io (Lepidoptera: Nymphalidae): Cold hardiness and overwintering survival publication-title: Journal of Insect Physiology – volume: 79 start-page: 295 year: 2006 end-page: 313 article-title: Trade‐offs in thermal adaptation: The need for a molecular to ecological integration publication-title: Physiological and Biochemical Zoology – year: 2022 – volume: 15 start-page: 2084 year: 2005 end-page: 2096 article-title: Expansion of geographic range in the pine processionary moth caused by increased winter temperatures publication-title: Ecological Applications – volume: 32 start-page: 1652 year: 2018 end-page: 1665 article-title: Contemporary climate‐driven range shifts: Putting evolution back on the table publication-title: Functional Ecology – volume: 215 start-page: 1607 year: 2012 end-page: 1613 article-title: The impacts of repeated cold exposure on insects publication-title: The Journal of Experimental Biology – volume: 36 start-page: 1151 year: 2022 end-page: 1162 article-title: Longer and warmer prewinter periods reduce post‐winter fitness in a diapausing insect publication-title: Functional Ecology – volume: 74 start-page: 1451 year: 2020 end-page: 1465 article-title: Rapid adaptive evolution of the diapause program during range expansion of an invasive mosquito publication-title: Evolution – year: 2021a – volume: 105 start-page: 599 year: 2008 end-page: 606 article-title: The effect of temperature on the diapause and cold hardiness of (Lepidoptera: Lasiocampidae) publication-title: European Journal of Entomology – volume: 118 start-page: 1507 year: 2010 end-page: 1514 article-title: Potential influence of climate change on vector‐borne and zoonotic diseases: A review and proposed research plan publication-title: Environmental Health Perspectives – volume: 68 start-page: 319 year: 2023 end-page: 339 article-title: Molecular mechanisms of winter survival publication-title: Annual Review of Entomology – volume: 41 start-page: 54 year: 2020 end-page: 62 article-title: Evolutionary impacts of winter climate change on insects publication-title: Current Opinion in Insect Science – volume: 56 start-page: 62 year: 2016 end-page: 72 article-title: Adaptation to low temperature exposure increases metabolic rates independently of growth rates publication-title: Integrative and Comparative Biology – volume: 29 start-page: 549 year: 2015 end-page: 561 article-title: A cross‐seasonal perspective on local adaptation: Metabolic plasticity mediates responses to winter in a thermal‐generalist moth publication-title: Functional Ecology – volume: 17 start-page: 637 year: 2014 end-page: 649 article-title: Evolutionary responses to global change: Lessons from invasive species publication-title: Ecology Letters – volume: 115 start-page: 586 year: 2015 end-page: 597 article-title: Geographical range margins of many taxonomic groups continue to shift polewards publication-title: Biological Journal of the Linnean Society – volume: 7 year: 2012 article-title: Variation in Hsp70 levels after cold shock: Signs of evolutionary responses to thermal selection among populations publication-title: PLoS One – volume: 90 start-page: 214 year: 2015 end-page: 235 article-title: Cold truths: How winter drives responses of terrestrial organisms to climate change publication-title: Biological Reviews – volume: 85 start-page: 231 year: 2004 end-page: 241 article-title: Warmer winters drive butterfly range expansion by increasing survivorship publication-title: Ecology – volume: 39 start-page: 308 year: 1989 end-page: 313 article-title: Insect cold‐hardiness: To freeze or not to freeze—How insects survive low temperatures publication-title: Bioscience – volume: 14 start-page: 115 year: 2012 end-page: 125 article-title: Could phenotypic plasticity limit an invasive species? Incomplete reversibility of mid‐winter deacclimation in emerald ash borer publication-title: Biological Invasions – volume: 58 start-page: 1748 year: 2004 end-page: 1762 article-title: Adaptation to temperate climates publication-title: Evolution – volume: 167 start-page: 38 year: 2015 end-page: 45 article-title: Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect publication-title: Aquatic Toxicology – volume: 47 start-page: 553 year: 2022 end-page: 565 article-title: Cold tolerance and winter survival of seasonally‐acclimatised second‐instar larvae of the spruce budworm, publication-title: Ecological Entomology – volume: 101 year: 2020 article-title: Eco‐evolutionary dynamics of range expansion publication-title: Ecology – volume: 281 year: 2013 article-title: Evolution on the move: Specialization on widespread resources associated with rapid range expansion in response to climate change publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 56 start-page: 2518 year: 2019 end-page: 2527 article-title: Rapid local adaptation to northern winters in the invasive Asian tiger mosquito : A moving target publication-title: Journal of Applied Ecology – volume: 39 start-page: 321 year: 2008 end-page: 342 article-title: Adaptation to marginal habitats publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 53 start-page: 180 year: 2015 end-page: 197 article-title: An invitation to measure insect cold tolerance: Methods, approaches, and workflow publication-title: Journal of Thermal Biology – volume: 33 start-page: 709 year: 2008 end-page: 715 article-title: Evolution of increased cold tolerance during range expansion of the elongate hemlock scale Fiorinia externa Ferris (Hemiptera: Diaspididae) publication-title: Ecological Entomology – start-page: 82 year: 2021 end-page: 84 – volume: 121 start-page: 248 year: 2017 end-page: 257 article-title: Rapid evolution of ant thermal tolerance across an urban‐rural temperature cline publication-title: Biological Journal of the Linnean Society – volume: 114 start-page: 470 year: 2017 end-page: 480 article-title: More complex than expected: Cold hardiness and the concentration of cryoprotectants in overwintering larvae of five butterflies (Lepidoptera: Nymphalidae) publication-title: European Journal of Entomology – volume: 37 start-page: 637 year: 2006 end-page: 669 article-title: Ecological and evolutionary responses to recent climate change publication-title: Annual Review of Ecology, Evolution, and Systematics – start-page: 276 year: 2010 end-page: 296 – volume: 25 start-page: 2022 year: 2022 end-page: 2033 article-title: Local adaptation to seasonal cues at the fronts of two parallel, climate‐induced butterfly range expansions publication-title: Ecology Letters – volume: 224 year: 2021 article-title: Local thermal environment and warming influence supercooling and drive widespread shifts in the metabolome of diapausing Pieris rapae butterflies publication-title: The Journal of Experimental Biology – volume: 27 start-page: 6103 year: 2021 end-page: 6116 article-title: Snow modulates winter energy use and cold exposure across an elevation gradient in a montane ectotherm publication-title: Global Change Biology – volume: 267 start-page: 739 year: 2000 end-page: 745 article-title: Thermal tolerance, climatic variability and latitude publication-title: Proceedings of the Royal Society B: Biological Sciences – year: 2021b – volume: 10 start-page: 4455 year: 2019 article-title: Climate‐induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year publication-title: Nature Communications – volume: 34 start-page: 1029 year: 2020 end-page: 1040 article-title: Variation in butterfly diapause duration in relation to voltinism suggests adaptation to autumn warmth, not winter cold publication-title: Functional Ecology – year: 2023 – volume: 23 start-page: 217 year: 2002 end-page: 228 article-title: Survival at low temperatures in insects: What is the ecological significance of the supercooling point? publication-title: Cryo‐Letters – volume: 93 start-page: 121 year: 1996 end-page: 129 article-title: Physiological relationships between insect diapause and cold tolerance: Coevolution or coincidence? publication-title: European Journal of Entomology – volume: 26 start-page: 6350 year: 2020 end-page: 6362 article-title: Future winters present a complex energetic landscape of decreased costs and reduced risk for a freeze‐tolerant amphibian, the wood frog ( ) publication-title: Global Change Biology – volume: 54 start-page: 5 year: 2015 end-page: 11 article-title: Linking energetics and overwintering in temperate insects publication-title: Journal of Thermal Biology – volume: 137 start-page: 599 year: 2007 end-page: 609 article-title: Constraints and reinforcement on adaptation under climate change: Selection of genetically correlated traits publication-title: Biological Conservation – volume: 30 start-page: 780 year: 2015 end-page: 792 article-title: Where and when do species interactions set range limits? publication-title: Trends in Ecology & Evolution – volume: 93 start-page: 1891 year: 2018 end-page: 1914 article-title: Mechanisms underlying insect freeze tolerance publication-title: Biological Reviews – volume: 61 start-page: 265 year: 2014 end-page: 272 article-title: The effect of overwintering temperature on the body energy reserves and phenoloxidase activity of bumblebee queens publication-title: Insectes Sociaux – ident: e_1_2_9_34_1 doi: 10.1371/journal.pone.0031446 – ident: e_1_2_9_29_1 doi: 10.1002/fee.2160 – ident: e_1_2_9_27_1 doi: 10.1139/z89‐121 – ident: e_1_2_9_5_1 doi: 10.1890/04‐1903 – ident: e_1_2_9_31_1 doi: 10.1111/phen.12095 – ident: e_1_2_9_56_1 doi: 10.1016/j.jtherbio.2014.07.007 – ident: e_1_2_9_11_1 doi: 10.1016/S0022‐1910(97)00025‐5 – ident: e_1_2_9_13_1 doi: 10.1017/9781108609364 – ident: e_1_2_9_19_3 – ident: e_1_2_9_21_1 doi: 10.1016/j.biocon.2007.03.018 – ident: e_1_2_9_32_1 doi: 10.1111/1365‐2435.13525 – ident: e_1_2_9_37_1 doi: 10.1242/jeb.059956 – volume: 93 start-page: 121 year: 1996 ident: e_1_2_9_51_1 article-title: Physiological relationships between insect diapause and cold tolerance: Coevolution or coincidence? publication-title: European Journal of Entomology – ident: e_1_2_9_33_1 doi: 10.1016/j.tree.2015.09.011 – ident: e_1_2_9_40_1 doi: 10.1111/1365‐2664.13480 – ident: e_1_2_9_44_1 doi: 10.1111/ele.12262 – ident: e_1_2_9_57_1 doi: 10.1016/j.jtherbio.2015.11.003 – ident: e_1_2_9_25_1 doi: 10.1146/annurev.ecolsys.38.091206.095622 – ident: e_1_2_9_50_1 doi: 10.1111/j.1365‐2311.2008.01021.x – ident: e_1_2_9_46_1 doi: 10.1017/CBO9780511675997.012 – ident: e_1_2_9_60_1 – ident: e_1_2_9_66_1 doi: 10.3390/insects13040369 – ident: e_1_2_9_71_1 doi: 10.14411/eje.2008.080 – ident: e_1_2_9_47_1 doi: 10.1146/annurev.ecolsys.37.091305.110100 – ident: e_1_2_9_45_1 doi: 10.1111/1365‐2435.14037 – ident: e_1_2_9_62_1 doi: 10.1146/annurev‐ento‐120120‐095233 – volume: 23 start-page: 217 year: 2002 ident: e_1_2_9_53_1 article-title: Survival at low temperatures in insects: What is the ecological significance of the supercooling point? publication-title: Cryo‐Letters – ident: e_1_2_9_64_1 doi: 10.1007/s00040‐014‐0351‐9 – ident: e_1_2_9_23_1 doi: 10.1111/1365-2435.14445 – ident: e_1_2_9_36_1 doi: 10.1016/j.cois.2020.06.003 – ident: e_1_2_9_2_1 doi: 10.1098/rspb.2000.1065 – ident: e_1_2_9_19_2 – ident: e_1_2_9_15_1 doi: 10.1093/biolinnean/blw047 – ident: e_1_2_9_20_1 doi: 10.1111/ele.12189 – ident: e_1_2_9_7_1 doi: 10.1146/annurev.ecolsys.37.091305.110115 – ident: e_1_2_9_28_1 doi: 10.2307/1311113 – ident: e_1_2_9_24_1 doi: 10.14411/eje.2000.027 – ident: e_1_2_9_22_1 doi: 10.1111/ele.14085 – ident: e_1_2_9_6_1 doi: 10.1111/evo.14029 – ident: e_1_2_9_65_1 doi: 10.14411/eje.2017.060 – ident: e_1_2_9_70_1 doi: 10.1093/icb/icw009 – ident: e_1_2_9_68_1 doi: 10.1111/brv.12105 – start-page: 82 volume-title: Climate change 2021: ThePhysical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change year: 2021 ident: e_1_2_9_4_1 – ident: e_1_2_9_39_1 doi: 10.1111/bij.12574 – ident: e_1_2_9_3_1 doi: 10.1016/j.aquatox.2015.07.018 – ident: e_1_2_9_12_1 doi: 10.1111/een.13140 – ident: e_1_2_9_55_1 doi: 10.1101/2021.11.04.467261 – ident: e_1_2_9_19_1 – ident: e_1_2_9_43_1 doi: 10.1289/ehp.0901389 – ident: e_1_2_9_48_1 doi: 10.1073/pnas.0900284106 – ident: e_1_2_9_16_1 doi: 10.3390/insects9040144 – ident: e_1_2_9_41_1 doi: 10.1242/jeb.243118 – ident: e_1_2_9_26_1 doi: 10.1029/2011GL047103 – ident: e_1_2_9_9_1 doi: 10.1098/rspb.2013.1800 – ident: e_1_2_9_38_1 doi: 10.1111/1365‐2435.12328 – ident: e_1_2_9_54_1 doi: 10.1111/gcb.15912 – ident: e_1_2_9_30_1 doi: 10.1016/j.jinsphys.2012.06.003 – ident: e_1_2_9_35_1 doi: 10.1038/s41467‐019‐12479‐w – ident: e_1_2_9_59_1 doi: 10.1007/s13131‐017‐1137‐5 – ident: e_1_2_9_58_1 doi: 10.1007/s10530‐011‐9988‐8 – ident: e_1_2_9_52_1 doi: 10.1016/0022‐1910(89)90075‐9 – ident: e_1_2_9_63_1 doi: 10.1111/brv.12425 – ident: e_1_2_9_14_1 doi: 10.1111/1365‐2435.13095 – ident: e_1_2_9_69_1 doi: 10.1016/j.cbpa.2014.08.002 – ident: e_1_2_9_49_1 doi: 10.1086/499986 – ident: e_1_2_9_42_1 doi: 10.1002/ecy.3139 – ident: e_1_2_9_18_1 – ident: e_1_2_9_8_1 doi: 10.1111/j.0014‐3820.2004.tb00458.x – ident: e_1_2_9_10_1 doi: 10.1890/02‐0607 – ident: e_1_2_9_17_1 doi: 10.1111/gcb.15321 – ident: e_1_2_9_19_4 – ident: e_1_2_9_61_1 – ident: e_1_2_9_67_1 doi: 10.1111/1365‐2435.12360 |
SSID | ssj0009522 |
Score | 2.4265192 |
Snippet | Numerous species shift or expand their ranges poleward in response to climate change. Even when expanding species follow their climatic niches, expanding range... |
SourceID | swepub proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3064 |
SubjectTerms | Adaptation adults butterflies Butterflies & moths Caterpillars climate Climate change Cold cold tolerance Diapause ecology ecophysiology Environmental conditions Evolution Geographical distribution HuR protein laboratory experimentation Lepidoptera: Nymphalidae Metabolic rate Metabolism Natural selection photoperiod Population studies Populations Range extension Satyrinae Supercooling Survival Sweden temperature Winter |
Title | A range‐expanding butterfly is susceptible to cold and long winters but shows no signs of local adaptation to winter conditions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14445 https://www.proquest.com/docview/2898303185 https://www.proquest.com/docview/2942097834 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-223873 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9QwEA96IPji_8PV84ig4EuXNk3b9HG52-UQFBFPfAtJmujh0i6bLef5pN_Az-gncSZp170DEfEtbTJtkmYyvzQzvxDyjNmmMDp1ia5UnXBXikToUifaFHnFlRFFCBR-9bo8OeUvPxSjNyHGwkR-iO0PN9SMMF-jgivtd5Q8-meBtcf9SY5h5nAH2fOP37Id2t24j8DKOgFLmw_kPujLc0X-sl3aAZuRQPQydg3GZ3Gb6LHa0efk87Tf6Kn5eoXR8b_adYfcGqApncWxdJdcs-09ciMeVnkBqbkZUvvz39FxIDBMD_4--T6jawxW-Pnth_2yigEzVMejsJcX9MxT3_vgR6OXlm46Ck9sKJSjyw5KniN3xdqjBPWfunNP246ig4mnnaPB6lLVqFX0HkD5KAGPwY13VKAH5HQxf3d0kgxnPCQGsEGRaFc5p7iBFbppTC1SVRorHMC4SpfMqrTCGM80M445blWWV0WTOmVNXWa2FiLfJ3tt19qHhOa2yRjTTVMby11RKpNltTA153AJqHhCpuMXlmYgQMdzOJZyXAhh10vsehm6fkJebAVWkfvjz0UPxiEjh0nAS1jLihwnTch-us0G9cU9GdXarocyNWchlIZPyPM41LbvQubv47P3M9mtP0rfS0ByosqhGWH4_K1KcjE_ColH_yrwmNxkAOWi084B2duse_sEoNdGH5LrjL85DDr2C2YpJfg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCNELKo-qS1swEkhcghLHSZzjquxqgbbi0KLeLNuxodIqWa13VXor_4DfyC9hxs4uWySEuDnKjPMYj-ez52FCXjHbFEanLtGVqhPuSpEIXepEmyKvuDKiCInCJ6fl5Jx_uCguNnJhYn2I9YYbakaYr1HBcUN6Q8tjgBaYe3RQ8uIuuccBnWNYH-OfNgrvRk8CK-sEbG3el_fBaJ4_OrhtmTbgZiwhehu9BvMz3iEPe9xIh1HQj8gd2z4m9-NJktfQGpm-tTv6nboGDL3u-ifk-5DOMZPg580P-20Ws1mojudUT6_ppad-6UOQi55auugo9NhQoKPTDiivsLDE3CMH9V-7K0_bjmL0h6edo8EkUtWoWXTtI3_kgG7QK46j-yk5H4_OjiZJfwBDYsBwF4l2lXOKG1g-m8bUIlWlscIBxqp0yaxKK0zATDPjmONWZXlVNKlT1tRlZmsh8l2y1Xat3SM0t03GmG6a2ljuilKZLKuFqTmHS4CsA_J29fOl6auT4yEZU7lapaC0JEpLBmkNyJs1wywW5vg76cFKmrLXUC9hoSlynNHg9sv1bdAtdJio1nZLoKk5C3kufEBex1GwfhaW5X53-Xkou_kX6ZcSYJaocviMMEj-9UpyPDoKjWf_y_CCPJicnRzL4_enH_fJNgPMFaNrDsjWYr60h4CRFvp5UIJflPsH-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNQL74otBYwEEpes8nAS57hqd1VeFUIUcbNsx4aKVbJab1TKCf4Bv5FfwoydLNtKCCFujuxxbMfj-RzPfCbkSWrqXKvYRqqUVcRswSOuChUpnWclk5rnPlD49VFxeMxefMgHb0KMhQn8EOsfbqgZfr1GBV_UdkPJg38WWHs8n2T5ZXKFFYAnEBe9TTd4d8NBQlpUEZjarGf3QWeeCxWcN0wbaDMwiJ4Hr976zG4QNbQ7OJ18HncrNdZfL1A6_lfHbpLrPTalkzCZbpFLprlNrobbKs8gNdV9amf6OzwOBPr1wd0h3yd0idEKP7_9MF8WIWKGqnAX9vyMnjjqOucdadTc0FVLocaaQjk6b6HkKZJXLB1KUPepPXW0aSl6mDjaWurNLpW1XAT3AZQPElANnryjBt0lx7Ppu_3DqL_kIdIADvJI2dJayTRs0XWtKx7LQhtuAceVqkiNjEsM8owTbVPLjEyyMq9jK42uisRUnGc7ZKtpG3OP0MzUSZqquq60YTYvpE6SiuuKMXgEWDwi4-ELC90zoONFHHMx7IRw6AUOvfBDPyLP1gKLQP7x56J7w5QR_SrgBGxmeYarJmQ_XmeD_uKhjGxM20GZiqU-loaNyNMw1dbvQurvg5P3E9EuPwrXCYByvMygG376_K1JYjbd94ndfxV4RK69OZiJV8-PXt4n2ynAuuDAs0e2VsvOPAAYtlIPvaL9AjPgJ-8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+range%E2%80%90expanding+butterfly+is+susceptible+to+cold+and+long+winters+but+shows+no+signs+of+local+adaptation+to+winter+conditions&rft.jtitle=Functional+ecology&rft.au=Ittonen%2C+Mats&rft.au=Roberts%2C+Kevin+T.&rft.au=Lehmann%2C+Philipp&rft.au=Gotthard%2C+Karl&rft.date=2023-12-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=37&rft.issue=12&rft.spage=3064&rft.epage=3078&rft_id=info:doi/10.1111%2F1365-2435.14445&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1365_2435_14445 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |