3D‐printed hydroxyapatite scaffolds for bone tissue engineering: A systematic review in experimental animal studies

The use of 3D‐printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part B, Applied biomaterials Vol. 111; no. 1; pp. 203 - 219
Main Authors Avanzi, Ingrid Regina, Parisi, Julia Risso, Souza, Amanda, Cruz, Matheus Almeida, Martignago, Cintia Cristina Santi, Ribeiro, Daniel Araki, Braga, Anna Rafaela Cavalcante, Renno, Ana Claudia
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1552-4973
1552-4981
1552-4981
DOI10.1002/jbm.b.35134

Cover

Loading…
Abstract The use of 3D‐printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D‐printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta‐analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors “3D printing,” “bone,” “HA,” “repair,” and “in vivo.” Thirty‐six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D‐printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction.
AbstractList The use of 3D‐printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D‐printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta‐analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors “3D printing,” “bone,” “HA,” “repair,” and “in vivo.” Thirty‐six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D‐printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction.
The use of 3D-printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D-printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors "3D printing," "bone," "HA," "repair," and "in vivo." Thirty-six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D-printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction.The use of 3D-printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D-printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors "3D printing," "bone," "HA," "repair," and "in vivo." Thirty-six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D-printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction.
Author Martignago, Cintia Cristina Santi
Avanzi, Ingrid Regina
Souza, Amanda
Ribeiro, Daniel Araki
Renno, Ana Claudia
Braga, Anna Rafaela Cavalcante
Cruz, Matheus Almeida
Parisi, Julia Risso
Author_xml – sequence: 1
  givenname: Ingrid Regina
  orcidid: 0000-0001-5948-1484
  surname: Avanzi
  fullname: Avanzi, Ingrid Regina
  organization: São Paulo State Faculty of Technology (FATEC)
– sequence: 2
  givenname: Julia Risso
  surname: Parisi
  fullname: Parisi, Julia Risso
  organization: Metropolitan University of Santos (UNIMES)
– sequence: 3
  givenname: Amanda
  surname: Souza
  fullname: Souza, Amanda
  organization: Federal University of São Paulo (UNIFESP)
– sequence: 4
  givenname: Matheus Almeida
  surname: Cruz
  fullname: Cruz, Matheus Almeida
  organization: Federal University of São Paulo (UNIFESP)
– sequence: 5
  givenname: Cintia Cristina Santi
  surname: Martignago
  fullname: Martignago, Cintia Cristina Santi
  organization: Federal University of São Paulo (UNIFESP)
– sequence: 6
  givenname: Daniel Araki
  surname: Ribeiro
  fullname: Ribeiro, Daniel Araki
  organization: Federal University of São Paulo (UNIFESP)
– sequence: 7
  givenname: Anna Rafaela Cavalcante
  surname: Braga
  fullname: Braga, Anna Rafaela Cavalcante
  organization: Federal University of São Paulo (UNIFESP)
– sequence: 8
  givenname: Ana Claudia
  surname: Renno
  fullname: Renno, Ana Claudia
  email: acmr_ft@yahoo.com.br
  organization: Federal University of São Paulo (UNIFESP)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35906778$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtuFDEUhi0URC5Q0SNLNEhoF1_G9gxdEu4KoklveTzHwasZe7E9SabjEfKMeRIMG1JEguqc4vuOrf8_RHshBkDoOSVrSgh7s-mndb_mgvLmETqgQrBV07V0735XfB8d5rypsCSCP0H7XHREKtUeoJm_u_15s00-FBjw92VI8XoxW1N8AZytcS6OQ8YuJtzXZ3HxOc-AIVz4AFC1i7f4GOclF5iqZHGCSw9X2AcM19sKTBCKGbEJfqojl3nwkJ-ix86MGZ7dzSN0_uH9-emn1dm3j59Pj89WtmGyWVkKpKOy7wZDu54Z03JQgjCmaGccqNYq6YhjvFFK2oE2smPOKdlaDr3g_Ai92p3dpvhjhlz05LOFcTQB4pw1k51sRdfypqIvH6CbOKdQP6eZ4kRR0RJSqRd31NxPMOia22TSov_mWYHXO8CmmHMCd49Qon-3pWtbutd_2qo0fUBbX2qKMZRk_PgPh-2cKz_C8r_z-svJ15Od9AstHqmZ
CitedBy_id crossref_primary_10_1016_j_tice_2024_102390
crossref_primary_10_1016_j_jmbbm_2024_106391
crossref_primary_10_1016_j_biomaterials_2024_122991
crossref_primary_10_1016_j_csbj_2023_03_053
crossref_primary_10_1080_00914037_2024_2372795
crossref_primary_10_1016_j_mtchem_2024_102175
crossref_primary_10_3390_cells12060859
crossref_primary_10_1021_acsomega_2c07656
crossref_primary_10_1016_j_bprint_2023_e00301
crossref_primary_10_1080_10717544_2024_2391001
crossref_primary_10_1002_jbm_a_37529
crossref_primary_10_3390_ma18051120
crossref_primary_10_3390_jfb14120555
crossref_primary_10_3390_biomedicines12051049
crossref_primary_10_1007_s44164_023_00049_w
crossref_primary_10_3390_biomimetics9070386
crossref_primary_10_1039_D2RA04009C
crossref_primary_10_3390_biomimetics9010055
crossref_primary_10_1002_mba2_74
crossref_primary_10_1016_j_matchemphys_2024_129371
crossref_primary_10_1016_j_ceramint_2024_07_266
Cites_doi 10.1177/2280800020934652
10.1016/j.msec.2020.111148
10.1016/j.msec.2020.111686
10.1016/j.msec.2020.110893
10.1038/ncomms13982
10.1007/s10856-009-3839-5
10.1016/j.jmbbm.2019.02.014
10.1007/978-1-4939-8997-3_31
10.4995/Thesis/10251/48526
10.1038/s41598‐017‐14923‐7
10.1016/j.ijbiomac.2019.05.090
10.1615/CritRevBiomedEng.v40.i5.10
10.1080/14686996.2016.1145532
10.1016/j.mattod.2013.11.017
10.1016/j.actbio.2017.03.006
10.1111/cpr.12725
10.1007/s10439-016-1678-3
10.7150/thno.39167
10.1088/1758-5090/abcb48
10.1089/ten.teb.2012.0437
10.1002/jbm.a.36681
10.1039/C8RA06652C
10.2147/IJN.S259678
10.1002/jbm.a.31237
10.1002/jcp.21592
10.1021/acsbiomaterials.8b01614
10.1007/s00264-017-3503-5
10.1039/C5NR01580D
10.1039/D1TB00662B
10.1021/acsami.6b00815
10.1016/j.msec.2019.109960
10.1088/1748-605X/aad923
10.4252/wjsc.v7.i10.1215
10.1002/ebm2.7
10.1021/np400793r
10.1016/j.cej.2019.01.015
10.1002/jbm.a.10535
10.1371/journal.pone.0188352
10.1002/term.3106
10.1186/s13046-017-0654-6
10.1088/1758-5090/abcf8d
10.1016/j.ijbiomac.2020.01.109
10.1039/C9TB01204D
10.1016/j.matlet.2013.04.110
10.1016/j.ceramint.2021.04.043
10.1243/09544119JEIM452
10.3390/pharmaceutics12090851
10.3390/polym12081782
10.1016/j.jcot.2019.12.002
10.1039/c2ra21085a
10.1088/1748-605X/ab388d
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.b.35134
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4981
EndPage 219
ExternalDocumentID 35906778
10_1002_jbm_b_35134
JBMB35134
Genre reviewArticle
Research Support, Non-U.S. Gov't
Systematic Review
Journal Article
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  funderid: 2019/10228‐5
GroupedDBID -~X
.GA
.Y3
05W
0R~
10A
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
702
7PT
8-1
8-4
8-5
8UM
930
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BRXPI
BY8
CO8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
IX1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
NF~
NNB
O66
P2W
P4D
PQQKQ
QB0
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W99
WBKPD
WFSAM
WIH
WJL
WOHZO
WRC
WYISQ
XG1
XV2
ZZTAW
AAYXX
ABJNI
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c4264-c1e0916b9da19b2aa83e75022719afe78c76f0f234776cd14692ff768c3eb533
IEDL.DBID DR2
ISSN 1552-4973
1552-4981
IngestDate Thu Jul 10 22:21:28 EDT 2025
Fri Jul 25 11:56:44 EDT 2025
Mon Jul 21 06:05:18 EDT 2025
Tue Jul 01 02:42:18 EDT 2025
Thu Apr 24 23:05:48 EDT 2025
Wed Jan 22 16:31:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords bone regeneration
animal studies
3D-scaffolds
systematic review
bone healing
Language English
License 2022 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4264-c1e0916b9da19b2aa83e75022719afe78c76f0f234776cd14692ff768c3eb533
Notes Funding information
Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number: 2019/10228‐5
ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Undefined-1
ObjectType-Review-4
content type line 23
ORCID 0000-0001-5948-1484
PMID 35906778
PQID 2730715800
PQPubID 2034571
PageCount 17
ParticipantIDs proquest_miscellaneous_2696859834
proquest_journals_2730715800
pubmed_primary_35906778
crossref_primary_10_1002_jbm_b_35134
crossref_citationtrail_10_1002_jbm_b_35134
wiley_primary_10_1002_jbm_b_35134_JBMB35134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part B, Applied biomaterials
PublicationTitleAlternate J Biomed Mater Res B Appl Biomater
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 42
2017; 7
2019; 93
2017; 45
2019; 14
2020; 15
2020; 14
2021; 120
2020; 12
2020; 11
2020; 10
2013; 7
2019; 362
2020; 18
2013; 19
2010; 21
2020; 1
2013; 16
2020; 53
2020; 9
2018; 37
2021; 9
2015; 2
2021; 47
2019; 7
2019; 9
2015; 16
2019; 5
2019; 1
2013; 106
2019; 104
2020; 148
2019; 107
2016; 17
2009; 218
2015; 7
2021; 13
2016; 7
2012; 2
2019; 1914
2013; 76
2022
2003; 66A
2017; 54
2017; 12
2020; 116
2009; 223
2015
2020; 112
2007; 83A
2016; 8
2019; 134
2018; 13
2012; 40
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Saxena V (e_1_2_7_14_1) 2019; 1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
Ródenas RJ (e_1_2_7_13_1) 2015
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Markstedt K (e_1_2_7_19_1) 2015; 16
Sumer M (e_1_2_7_3_1) 2013; 7
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
Gul H (e_1_2_7_7_1) 2020; 1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
Liu H (e_1_2_7_43_1) 2020; 9
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 47
  start-page: 20352
  year: 2021
  end-page: 20361
  article-title: 3D printing and osteogenesis of loofah‐like hydroxyapatite bone scaffolds
  publication-title: Ceram Int
– volume: 1
  start-page: 205
  year: 2019
  end-page: 249
  article-title: Hydroxyapatite: an inorganic ceramic for biomedical applications
  publication-title: Nanobiomater Tissue Eng
– volume: 66A
  start-page: 880
  year: 2003
  end-page: 884
  article-title: The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial‐derived cell cultures
  publication-title: J Biomed Mater Res A
– volume: 2
  year: 2015
  article-title: A protocol format for the preparation, registration and publication of systematic reviews of animal intervention studies
  publication-title: Evidence‐Based Preclin Med
– volume: 362
  start-page: 269
  year: 2019
  end-page: 279
  article-title: 3D printed PCL/SrHA scaffold for enhanced bone regeneration
  publication-title: Chem Eng J
– volume: 54
  start-page: 386
  year: 2017
  end-page: 398
  article-title: Surface‐enrichment with hydroxyapatite nanoparticles in stereolithography‐fabricated composite polymer scaffolds promotes bone repair
  publication-title: Acta Biomater
– volume: 7
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Three dimensional printed polylactic acid‐hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: an bioreactor model
  publication-title: Sci Rep
– volume: 16
  start-page: 1489
  year: 2015
  end-page: 1496
  article-title: 3D bioprinting human chondrocytes with nanocellulose‐alginate bioink for cartilage tissue engineering applications
  publication-title: Amer Chem Soc
– volume: 16
  start-page: 496
  year: 2013
  end-page: 504
  article-title: Bone tissue engineering using 3D printing
  publication-title: Mater Today
– volume: 7
  start-page: 7574
  year: 2019
  end-page: 7587
  article-title: Effects of hydroxyapatite surface nano/micro‐structure on osteoclast formation and activity
  publication-title: J Mater Chem B: R Soc Chem
– volume: 10
  start-page: 725
  year: 2020
  end-page: 740
  article-title: Mesenchymal stem cell‐loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three‐dimensional‐printed poly(ε‐caprolactone) /nano‐hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation
  publication-title: Theranostics
– volume: 104
  start-page: 109960
  year: 2019
  article-title: Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering
  publication-title: Mater Sci Eng C: Mater Biol Appl
– volume: 21
  start-page: 343
  year: 2010
  end-page: 351
  article-title: Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. J mater Sci mater med [internet]
  publication-title: J Mater Sci Mater Med
– volume: 13
  year: 2021
  article-title: Degradable calcium deficient hydroxyapatite/poly(lactic‐glycolic acid copolymer) bilayer scaffold through integral molding 3D printing for bone defect repair
  publication-title: Biofabrication
– volume: 5
  start-page: 2466
  year: 2019
  end-page: 2481
  article-title: Porous scaffolds of poly(lactic‐ co‐glycolic acid) and mesoporous hydroxyapatite surface modified by poly(γ‐benzyl‐ l ‐glutamate) (PBLG) for bone repair
  publication-title: ACS Biomater Sci Eng.
– volume: 9
  start-page: 1
  year: 2020
  end-page: 11
  article-title: Delivering proangiogenic factors from 3D‐printed Polycaprolactone scaffolds for vascularized bone regeneration
  publication-title: Adv Healthc Mater
– volume: 11
  start-page: S118
  year: 2020
  end-page: S124
  article-title: 3D printing applications in bone tissue engineering
  publication-title: J Clin Orthop Trauma
– volume: 40
  start-page: 363
  year: 2012
  article-title: Bone tissue engineering: recent advances and challenges
  publication-title: Crit Rev Biomed Eng
– volume: 7
  start-page: 1
  year: 2016
  end-page: 15
  article-title: Cell‐free 3D scaffold with two‐stage delivery of miRNA‐26a to regenerate critical‐sized bone defects
  publication-title: Nat Commun
– volume: 93
  start-page: 183
  year: 2019
  end-page: 193
  article-title: Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications
  publication-title: J Mech Behav Biomed Mater
– volume: 15
  start-page: 5825
  year: 2020
  end-page: 5838
  article-title: 3D‐ha scaffold functionalized by extracellular matrix of stem cells promotes bone repair
  publication-title: Int J Nanomedicine
– year: 2022
– volume: 12
  start-page: 0188352
  year: 2017
  article-title: Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide
  publication-title: PLoS One
– volume: 76
  start-page: 2355
  year: 2013
  end-page: 2359
  article-title: Characterization and anti‐inflammatory effects of iodinated Acetylenic acids isolated from the marine sponges Suberites mammilaris and Suberites japonicus
  publication-title: J Nat Prod
– volume: 1
  start-page: 737
  year: 2020
  end-page: 760
  article-title: 3 ‐ bioceramics: types and clinical applications
  publication-title: Woodhead Publ. Ser. Biomater
– volume: 12
  start-page: 1
  year: 2020
  end-page: 18
  article-title: Drug delivery applications of three‐dimensional printed (3DP) mesoporous scaffolds
  publication-title: Pharmaceutics
– volume: 42
  start-page: 17
  year: 2017
  end-page: 24
  article-title: Induced membrane technique using beta‐tricalcium phosphate for reconstruction of femoral and tibial segmental bone loss due to infection: technical tips and preliminary clinical results
  publication-title: Int Orthop
– year: 2015
– volume: 120
  year: 2021
  article-title: Alkali treatment facilitates functional nano‐hydroxyapatite coating of 3D printed polylactic acid scaffolds
  publication-title: Mater Sci Eng C
– volume: 7
  start-page: 11642
  year: 2015
  end-page: 11651
  article-title: Reduced graphene oxide‐coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells
  publication-title: Nanoscale
– volume: 1914
  start-page: 571
  year: 2019
  end-page: 616
  article-title: Scanning electron microscopy of bone
  publication-title: Methods Mol Biol
– volume: 12
  start-page: 1782
  year: 2020
  article-title: Natural 3D‐printed bioinks for skin regeneration and wound healing: a systematic review
  publication-title: Polymer
– volume: 2
  start-page: 10110
  year: 2012
  end-page: 10124
  article-title: Three‐dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering
  publication-title: RSC Adv
– volume: 37
  start-page: 4
  year: 2018
  article-title: Microfluidic co‐culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma‐mediated cell motility and drug resistance. J Exp Clin cancer res [internet]
  publication-title: J Exp Clin Cancer Res
– volume: 7
  start-page: 6
  year: 2013
  end-page: 14
  article-title: Autogenous cortical bone and bioactive glass grafting for treatment of intraosseous periodontal defects
  publication-title: Eur J Dent Dental Invest Soc
– volume: 116
  start-page: 111148
  year: 2020
  article-title: Biodegradable 3D printed HA/CMCS/PDA scaffold for repairing lacunar bone defect
  publication-title: Mater Sci Eng C
– volume: 17
  start-page: 136
  year: 2016
  end-page: 148
  article-title: Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical‐size rat calvarial defect model
  publication-title: Sci Technol Adv Mater
– volume: 9
  start-page: 5338
  year: 2019
  end-page: 5346
  article-title: Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis
  publication-title: RSC Adv R Soc Chem
– volume: 112
  year: 2020
  article-title: Evaluation of BMP‐2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and
  publication-title: Mater Sci Eng C
– volume: 14
  year: 2019
  article-title: 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity for bone regeneration
  publication-title: Biomed Mater
– volume: 8
  start-page: 6905
  year: 2016
  end-page: 6916
  article-title: Low‐temperature additive manufacturing of biomimic three‐dimensional hydroxyapatite/collagen scaffolds for bone regeneration
  publication-title: ACS Appl Mater Interfaces
– volume: 83A
  start-page: 434
  year: 2007
  end-page: 445
  article-title: Fabrication and in vitro characterization of three‐dimensional organic/inorganic scaffolds by robocasting
  publication-title: J Biomed Mater Res A
– volume: 148
  start-page: 153
  year: 2020
  end-page: 162
  article-title: Heparan sulfate loaded polycaprolactone‐hydroxyapatite scaffolds with 3D printing for bone defect repair
  publication-title: Int J Biol Macromol
– volume: 19
  start-page: 485
  year: 2013
  end-page: 502
  article-title: Three‐dimensional scaffolds for tissue engineering applications: role of porosity and pore size
  publication-title: Tissue Eng B Rev
– volume: 14
  start-page: 1403
  year: 2020
  end-page: 1414
  article-title: The effect of induced membranes combined with enhanced bone marrow and 3D PLA‐HA on repairing long bone defects
  publication-title: J Tissue Eng Regen Med
– volume: 218
  start-page: 237
  year: 2009
  end-page: 245
  article-title: The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair
  publication-title: J Cell Physiol
– volume: 134
  start-page: 869
  year: 2019
  end-page: 881
  article-title: Incorporation of collagen and PLGA in bioactive glass: biological evaluation
  publication-title: Int J Biol Macromol
– volume: 13
  start-page: 065004
  year: 2018
  article-title: 3D printing of strontium‐doped hydroxyapatite based composite scaffolds for repairing critical‐sized rabbit calvarial defects
  publication-title: Biomed Mater
– volume: 7
  start-page: 1215
  year: 2015
  article-title: Polymeric vs hydroxyapatite‐based scaffolds on dental pulp stem cell proliferation and differentiation
  publication-title: World J Stem Cells
– volume: 9
  start-page: 4488
  year: 2021
  end-page: 4501
  article-title: A hierarchical scaffold with a highly pore‐interconnective 3D printed PLGA/n‐HA framework and an extracellular matrix like gelatin network filler for bone regeneration
  publication-title: J Mater Chem B
– volume: 18
  start-page: 1
  year: 2020
  end-page: 10
  article-title: The integration of pore size and porosity distribution on Ti‐6A1‐4V scaffolds by 3D printing in the modulation of osteo‐differentation
  publication-title: J Appl Biomater Funct Mater
– volume: 13
  year: 2021
  article-title: Bioactive Sr2+/Fe3+co‐substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering
  publication-title: Biofabrication
– volume: 106
  start-page: 145
  year: 2013
  end-page: 150
  article-title: Fabrication of calcium phosphate fibres through electrospinning and sintering of hydroxyapatite nanoparticles
  publication-title: Mater Lett.
– volume: 45
  start-page: 23
  year: 2017
  end-page: 44
  article-title: 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery
  publication-title: Ann Biomed Eng
– volume: 107
  start-page: 1654
  year: 2019
  end-page: 1666
  article-title: Synthesis and characterization of biomimetic bioceramic nanoparticles with optimized physicochemical properties for bone tissue engineering
  publication-title: J Biomed Mater Res A
– volume: 223
  start-page: 289
  year: 2009
  end-page: 301
  article-title: Advanced computer‐aided design for bone tissue‐engineering scaffolds
  publication-title: Proc Inst Mech Eng H
– volume: 53
  start-page: 1
  year: 2020
  end-page: 14
  article-title: Blockade of adrenergic β‐receptor activation through local delivery of propranolol from a 3D collagen/polyvinyl alcohol/hydroxyapatite scaffold promotes bone repair
  publication-title: Cell Prolif
– ident: e_1_2_7_16_1
  doi: 10.1177/2280800020934652
– volume: 16
  start-page: 1489
  year: 2015
  ident: e_1_2_7_19_1
  article-title: 3D bioprinting human chondrocytes with nanocellulose‐alginate bioink for cartilage tissue engineering applications
  publication-title: Amer Chem Soc
– ident: e_1_2_7_37_1
  doi: 10.1016/j.msec.2020.111148
– ident: e_1_2_7_2_1
  doi: 10.1016/j.msec.2020.111686
– ident: e_1_2_7_35_1
  doi: 10.1016/j.msec.2020.110893
– ident: e_1_2_7_22_1
  doi: 10.1038/ncomms13982
– ident: e_1_2_7_48_1
  doi: 10.1007/s10856-009-3839-5
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jmbbm.2019.02.014
– ident: e_1_2_7_56_1
  doi: 10.1007/978-1-4939-8997-3_31
– volume-title: Scaffold Surface Modifications and Culture Conditions as Key Parameters to Develop Cartilage and Bone Tissue Engineering Implants
  year: 2015
  ident: e_1_2_7_13_1
  doi: 10.4995/Thesis/10251/48526
– ident: e_1_2_7_30_1
  doi: 10.1038/s41598‐017‐14923‐7
– ident: e_1_2_7_49_1
  doi: 10.1016/j.ijbiomac.2019.05.090
– ident: e_1_2_7_51_1
  doi: 10.1615/CritRevBiomedEng.v40.i5.10
– ident: e_1_2_7_38_1
  doi: 10.1080/14686996.2016.1145532
– ident: e_1_2_7_53_1
  doi: 10.1016/j.mattod.2013.11.017
– ident: e_1_2_7_26_1
  doi: 10.1016/j.actbio.2017.03.006
– ident: e_1_2_7_40_1
  doi: 10.1111/cpr.12725
– ident: e_1_2_7_18_1
  doi: 10.1007/s10439-016-1678-3
– ident: e_1_2_7_41_1
  doi: 10.7150/thno.39167
– ident: e_1_2_7_27_1
  doi: 10.1088/1758-5090/abcb48
– ident: e_1_2_7_57_1
– ident: e_1_2_7_15_1
  doi: 10.1089/ten.teb.2012.0437
– ident: e_1_2_7_17_1
  doi: 10.1002/jbm.a.36681
– ident: e_1_2_7_32_1
  doi: 10.1039/C8RA06652C
– ident: e_1_2_7_42_1
  doi: 10.2147/IJN.S259678
– ident: e_1_2_7_55_1
  doi: 10.1002/jbm.a.31237
– ident: e_1_2_7_50_1
  doi: 10.1002/jcp.21592
– ident: e_1_2_7_59_1
– ident: e_1_2_7_28_1
  doi: 10.1021/acsbiomaterials.8b01614
– ident: e_1_2_7_4_1
  doi: 10.1007/s00264-017-3503-5
– ident: e_1_2_7_10_1
  doi: 10.1039/C5NR01580D
– ident: e_1_2_7_23_1
  doi: 10.1039/D1TB00662B
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.6b00815
– ident: e_1_2_7_5_1
  doi: 10.1016/j.msec.2019.109960
– volume: 9
  start-page: 1
  year: 2020
  ident: e_1_2_7_43_1
  article-title: Delivering proangiogenic factors from 3D‐printed Polycaprolactone scaffolds for vascularized bone regeneration
  publication-title: Adv Healthc Mater
– ident: e_1_2_7_31_1
  doi: 10.1088/1748-605X/aad923
– ident: e_1_2_7_11_1
  doi: 10.4252/wjsc.v7.i10.1215
– ident: e_1_2_7_24_1
  doi: 10.1002/ebm2.7
– ident: e_1_2_7_45_1
  doi: 10.1021/np400793r
– ident: e_1_2_7_39_1
  doi: 10.1016/j.cej.2019.01.015
– ident: e_1_2_7_9_1
  doi: 10.1002/jbm.a.10535
– ident: e_1_2_7_12_1
  doi: 10.1371/journal.pone.0188352
– ident: e_1_2_7_36_1
  doi: 10.1002/term.3106
– volume: 7
  start-page: 6
  year: 2013
  ident: e_1_2_7_3_1
  article-title: Autogenous cortical bone and bioactive glass grafting for treatment of intraosseous periodontal defects
  publication-title: Eur J Dent Dental Invest Soc
– ident: e_1_2_7_21_1
  doi: 10.1186/s13046-017-0654-6
– ident: e_1_2_7_44_1
  doi: 10.1088/1758-5090/abcf8d
– ident: e_1_2_7_34_1
  doi: 10.1016/j.ijbiomac.2020.01.109
– ident: e_1_2_7_6_1
  doi: 10.1039/C9TB01204D
– ident: e_1_2_7_8_1
  doi: 10.1016/j.matlet.2013.04.110
– ident: e_1_2_7_29_1
  doi: 10.1016/j.ceramint.2021.04.043
– ident: e_1_2_7_52_1
  doi: 10.1243/09544119JEIM452
– ident: e_1_2_7_47_1
  doi: 10.3390/pharmaceutics12090851
– volume: 1
  start-page: 737
  year: 2020
  ident: e_1_2_7_7_1
  article-title: 3 ‐ bioceramics: types and clinical applications
  publication-title: Woodhead Publ. Ser. Biomater
– ident: e_1_2_7_46_1
  doi: 10.3390/polym12081782
– volume: 1
  start-page: 205
  year: 2019
  ident: e_1_2_7_14_1
  article-title: Hydroxyapatite: an inorganic ceramic for biomedical applications
  publication-title: Nanobiomater Tissue Eng
– ident: e_1_2_7_54_1
  doi: 10.1016/j.jcot.2019.12.002
– ident: e_1_2_7_58_1
  doi: 10.1039/c2ra21085a
– ident: e_1_2_7_33_1
  doi: 10.1088/1748-605X/ab388d
SSID ssj0026053
Score 2.4688644
SecondaryResourceType review_article
Snippet The use of 3D‐printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of...
The use of 3D-printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 203
SubjectTerms 3D‐scaffolds
Animal models
animal studies
Animals
Biological activity
Biomedical materials
Bone and Bones
Bone grafts
Bone healing
Bone Regeneration
Bones
Durapatite - pharmacology
Finite element method
Healing
Hydroxyapatite
Literature reviews
Materials research
Materials science
Meta-analysis
Printing, Three-Dimensional
Scaffolds
Substitute bone
systematic review
Three dimensional printing
Tissue Engineering
Tissue Scaffolds
Title 3D‐printed hydroxyapatite scaffolds for bone tissue engineering: A systematic review in experimental animal studies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.b.35134
https://www.ncbi.nlm.nih.gov/pubmed/35906778
https://www.proquest.com/docview/2730715800
https://www.proquest.com/docview/2696859834
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTtwwEMetihM9UKClXT4qV-JUlKW2403MDUoRQqKHikrcIn-qUMhWJHuAE4_AM_IkzNghu5SqUntKJDuOE3vsX5zxfwjZZDmzyimdyaDgA6UILlOOuczkjhteeh_irvfjr6PD7_nRqTztfHNwL0zSh-gX3NAy4niNBq5Nsz0VDT03l0MzFJIJVANFby1Eom-9eBSCenSvl5JjHDXR7c6DlO2Za5_OR88g8ymzxknn4FWKrNpErUL0Nfk5nLRmaG9-U3L87-dZJAsdjtLd1H-WyAtfL5OXMyKFr8lE7N_f3uH6H8Ap_XHtsDIaHbFbTxurQxhfuIYC_FIzrj1tY1NSPy1jh-7SqWI0Tbtl6FlNZ8MLUF2fXcKhSY6Nb8jJwZeTz4dZF6whswhVmWUe0GNklNNMGa51KTzQCOcFUzr4orTFKHwKXORFMbIOBmjFQ4CPHSu8AeZcIXM1VPIdoQGYSuIaJ9M-57osVYAhWzFRGi8L7Qbk42OLVbYTMsd4GhdVkmDmFbzKylTxVQ7IZp_5V9Lv-HO29cemrzojbiogOwAwCUg9IB_6ZDA__Keiaz-eQB4UF5KqxCLepi7T30dIFfX5BmQrNvzfKlAd7R3vxbPVf8q9RuY5YFdaFFonc-3VxG8AJrXmfbSGB9hUD14
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BOQCH8lu6UMBIPYGyxXa8ibm1lGop3R7QIvVm2bEtCm226mYP7YlH4Bl5EsZ2NrsFhASnRLLjTDwe-_Nk_A3AJs1pJa3UmfASNyiFt5m01GYmt8yw0jkfT72PDgfDT_n-kThqHW7hLEzih-gcbsEy4nwdDDw4pLcWrKFfzGnf9LmgPL8ON0JO75DBYPdjRx8VoHoMsBeChUxqvD2fhyVbSw9fXZF-g5lXUWtcdvbugJoLnKJNvvZnjelXl79wOf7_F92F1RaRku00hO7BNVffh9tLPIUPYMZ3f3z7HlyAiE_J5wsbpNEhFrtxZFpp7ycndkoQ_xIzqR1pojaJW7TxhmyTBWk0SQdmyHFNljMMEF0fn-JlmmIbH8J479347TBr8zVkVcBVWUUdoo-BkVZTaZjWJXcISBgrqNTeFWVVDPxrz3heFIPK4hwtmfe436m4Mwg712ClRiHXgXiEVSK4Oal2OdNlKT3O2pLy0jhRaNuDl3OVqarlMg8pNU5UYmFmCrtSGRW7sgebXeWzROHx52obc92r1o6nCsEdYjCBqLoHL7pitMDwW0XXbjLDOoFfSMgyNPEojZnuPVzISNHXg1dR838TQO3vjHbi3eN_qv0cbg7HowN18P7wwxO4xRCFJR_RBqw05zP3FFFTY55F0_gJtI8TeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1dT9UwGMcbxcToBfiKB1BrwpVmB9uu2-odiCeIQozBhLumrwGFHcJ2LuCKj8Bn5JP4tB07BzUmerUl7bpu7dP-1j39PwitkpwYYYXKuBfwgVJ6mwlLbKZzSzWtnPNx1_vObrH1Ld_e5_udb07YC5P0IfoFt2AZcbwOBn5i_dpUNPS7Ph7qIeOE5bfRnbwAcwlM9LVXjwqkHv3rOachkBrrtudBytrMxTcnpN8o8ya0xllntJBCqzZRrDA4m_wYTlo9NOe_SDn-9wM9QPMdj-L11IEeoluufoTuz6gUPkYTtnl1cRkWAIFO8cGZDZVRwRO7dbgxyvvxkW0w0C_W49rhNrYldtMy3uF1PJWMxmm7DD6s8Wx8Aazqw2M4NMmz8QnaG33Ye7-VddEaMhOoKjPEAXsUWlhFhKZKVcwBjlBaEqG8KytTFv6tpywvy8JYGKEF9R6-dgxzGqDzKZqroZLPEPYAVTwschLlcqqqSngYswVhlXa8VHaAXl-3mDSdknkIqHEkkwYzlfAqpZbxVQ7Qap_5JAl4_DnbynXTy86KGwloBwTGgakH6FWfDPYXfqqo2o0nkCeoC3FRhSIWU5fp78O4iAJ9A_QmNvzfKiC3N3Y24tnSP-V-ie5-2RzJzx93Py2jexQQLC0QraC59nTingMytfpFNIyfj3gSMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-printed+hydroxyapatite+scaffolds+for+bone+tissue+engineering%3A+A+systematic+review+in+experimental+animal+studies&rft.jtitle=Journal+of+biomedical+materials+research.+Part+B%2C+Applied+biomaterials&rft.au=Avanzi%2C+Ingrid+Regina&rft.au=Parisi%2C+Julia+Risso&rft.au=Souza%2C+Amanda&rft.au=Cruz%2C+Matheus+Almeida&rft.date=2023-01-01&rft.eissn=1552-4981&rft.volume=111&rft.issue=1&rft.spage=203&rft_id=info:doi/10.1002%2Fjbm.b.35134&rft_id=info%3Apmid%2F35906778&rft.externalDocID=35906778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4973&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4973&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4973&client=summon