3D‐printed hydroxyapatite scaffolds for bone tissue engineering: A systematic review in experimental animal studies
The use of 3D‐printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of...
Saved in:
Published in | Journal of biomedical materials research. Part B, Applied biomaterials Vol. 111; no. 1; pp. 203 - 219 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1552-4973 1552-4981 1552-4981 |
DOI | 10.1002/jbm.b.35134 |
Cover
Loading…
Abstract | The use of 3D‐printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D‐printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta‐analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors “3D printing,” “bone,” “HA,” “repair,” and “in vivo.” Thirty‐six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D‐printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction. |
---|---|
AbstractList | The use of 3D‐printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D‐printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta‐analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors “3D printing,” “bone,” “HA,” “repair,” and “in vivo.” Thirty‐six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D‐printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction. The use of 3D-printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D-printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors "3D printing," "bone," "HA," "repair," and "in vivo." Thirty-six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D-printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction.The use of 3D-printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D-printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors "3D printing," "bone," "HA," "repair," and "in vivo." Thirty-six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D-printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction. |
Author | Martignago, Cintia Cristina Santi Avanzi, Ingrid Regina Souza, Amanda Ribeiro, Daniel Araki Renno, Ana Claudia Braga, Anna Rafaela Cavalcante Cruz, Matheus Almeida Parisi, Julia Risso |
Author_xml | – sequence: 1 givenname: Ingrid Regina orcidid: 0000-0001-5948-1484 surname: Avanzi fullname: Avanzi, Ingrid Regina organization: São Paulo State Faculty of Technology (FATEC) – sequence: 2 givenname: Julia Risso surname: Parisi fullname: Parisi, Julia Risso organization: Metropolitan University of Santos (UNIMES) – sequence: 3 givenname: Amanda surname: Souza fullname: Souza, Amanda organization: Federal University of São Paulo (UNIFESP) – sequence: 4 givenname: Matheus Almeida surname: Cruz fullname: Cruz, Matheus Almeida organization: Federal University of São Paulo (UNIFESP) – sequence: 5 givenname: Cintia Cristina Santi surname: Martignago fullname: Martignago, Cintia Cristina Santi organization: Federal University of São Paulo (UNIFESP) – sequence: 6 givenname: Daniel Araki surname: Ribeiro fullname: Ribeiro, Daniel Araki organization: Federal University of São Paulo (UNIFESP) – sequence: 7 givenname: Anna Rafaela Cavalcante surname: Braga fullname: Braga, Anna Rafaela Cavalcante organization: Federal University of São Paulo (UNIFESP) – sequence: 8 givenname: Ana Claudia surname: Renno fullname: Renno, Ana Claudia email: acmr_ft@yahoo.com.br organization: Federal University of São Paulo (UNIFESP) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35906778$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtuFDEUhi0URC5Q0SNLNEhoF1_G9gxdEu4KoklveTzHwasZe7E9SabjEfKMeRIMG1JEguqc4vuOrf8_RHshBkDoOSVrSgh7s-mndb_mgvLmETqgQrBV07V0735XfB8d5rypsCSCP0H7XHREKtUeoJm_u_15s00-FBjw92VI8XoxW1N8AZytcS6OQ8YuJtzXZ3HxOc-AIVz4AFC1i7f4GOclF5iqZHGCSw9X2AcM19sKTBCKGbEJfqojl3nwkJ-ix86MGZ7dzSN0_uH9-emn1dm3j59Pj89WtmGyWVkKpKOy7wZDu54Z03JQgjCmaGccqNYq6YhjvFFK2oE2smPOKdlaDr3g_Ai92p3dpvhjhlz05LOFcTQB4pw1k51sRdfypqIvH6CbOKdQP6eZ4kRR0RJSqRd31NxPMOia22TSov_mWYHXO8CmmHMCd49Qon-3pWtbutd_2qo0fUBbX2qKMZRk_PgPh-2cKz_C8r_z-svJ15Od9AstHqmZ |
CitedBy_id | crossref_primary_10_1016_j_tice_2024_102390 crossref_primary_10_1016_j_jmbbm_2024_106391 crossref_primary_10_1016_j_biomaterials_2024_122991 crossref_primary_10_1016_j_csbj_2023_03_053 crossref_primary_10_1080_00914037_2024_2372795 crossref_primary_10_1016_j_mtchem_2024_102175 crossref_primary_10_3390_cells12060859 crossref_primary_10_1021_acsomega_2c07656 crossref_primary_10_1016_j_bprint_2023_e00301 crossref_primary_10_1080_10717544_2024_2391001 crossref_primary_10_1002_jbm_a_37529 crossref_primary_10_3390_ma18051120 crossref_primary_10_3390_jfb14120555 crossref_primary_10_3390_biomedicines12051049 crossref_primary_10_1007_s44164_023_00049_w crossref_primary_10_3390_biomimetics9070386 crossref_primary_10_1039_D2RA04009C crossref_primary_10_3390_biomimetics9010055 crossref_primary_10_1002_mba2_74 crossref_primary_10_1016_j_matchemphys_2024_129371 crossref_primary_10_1016_j_ceramint_2024_07_266 |
Cites_doi | 10.1177/2280800020934652 10.1016/j.msec.2020.111148 10.1016/j.msec.2020.111686 10.1016/j.msec.2020.110893 10.1038/ncomms13982 10.1007/s10856-009-3839-5 10.1016/j.jmbbm.2019.02.014 10.1007/978-1-4939-8997-3_31 10.4995/Thesis/10251/48526 10.1038/s41598‐017‐14923‐7 10.1016/j.ijbiomac.2019.05.090 10.1615/CritRevBiomedEng.v40.i5.10 10.1080/14686996.2016.1145532 10.1016/j.mattod.2013.11.017 10.1016/j.actbio.2017.03.006 10.1111/cpr.12725 10.1007/s10439-016-1678-3 10.7150/thno.39167 10.1088/1758-5090/abcb48 10.1089/ten.teb.2012.0437 10.1002/jbm.a.36681 10.1039/C8RA06652C 10.2147/IJN.S259678 10.1002/jbm.a.31237 10.1002/jcp.21592 10.1021/acsbiomaterials.8b01614 10.1007/s00264-017-3503-5 10.1039/C5NR01580D 10.1039/D1TB00662B 10.1021/acsami.6b00815 10.1016/j.msec.2019.109960 10.1088/1748-605X/aad923 10.4252/wjsc.v7.i10.1215 10.1002/ebm2.7 10.1021/np400793r 10.1016/j.cej.2019.01.015 10.1002/jbm.a.10535 10.1371/journal.pone.0188352 10.1002/term.3106 10.1186/s13046-017-0654-6 10.1088/1758-5090/abcf8d 10.1016/j.ijbiomac.2020.01.109 10.1039/C9TB01204D 10.1016/j.matlet.2013.04.110 10.1016/j.ceramint.2021.04.043 10.1243/09544119JEIM452 10.3390/pharmaceutics12090851 10.3390/polym12081782 10.1016/j.jcot.2019.12.002 10.1039/c2ra21085a 10.1088/1748-605X/ab388d |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. 2023 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. – notice: 2023 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/jbm.b.35134 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4981 |
EndPage | 219 |
ExternalDocumentID | 35906778 10_1002_jbm_b_35134 JBMB35134 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Systematic Review Journal Article |
GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo funderid: 2019/10228‐5 |
GroupedDBID | -~X .GA .Y3 05W 0R~ 10A 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 702 7PT 8-1 8-4 8-5 8UM 930 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BRXPI BY8 CO8 CS3 D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S GNP GODZA HBH HF~ HGLYW HHY HHZ HVGLF IX1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM NF~ NNB O66 P2W P4D PQQKQ QB0 RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W99 WBKPD WFSAM WIH WJL WOHZO WRC WYISQ XG1 XV2 ZZTAW AAYXX ABJNI AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c4264-c1e0916b9da19b2aa83e75022719afe78c76f0f234776cd14692ff768c3eb533 |
IEDL.DBID | DR2 |
ISSN | 1552-4973 1552-4981 |
IngestDate | Thu Jul 10 22:21:28 EDT 2025 Fri Jul 25 11:56:44 EDT 2025 Mon Jul 21 06:05:18 EDT 2025 Tue Jul 01 02:42:18 EDT 2025 Thu Apr 24 23:05:48 EDT 2025 Wed Jan 22 16:31:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | bone regeneration animal studies 3D-scaffolds systematic review bone healing |
Language | English |
License | 2022 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4264-c1e0916b9da19b2aa83e75022719afe78c76f0f234776cd14692ff768c3eb533 |
Notes | Funding information Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number: 2019/10228‐5 ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Undefined-1 ObjectType-Review-4 content type line 23 |
ORCID | 0000-0001-5948-1484 |
PMID | 35906778 |
PQID | 2730715800 |
PQPubID | 2034571 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2696859834 proquest_journals_2730715800 pubmed_primary_35906778 crossref_primary_10_1002_jbm_b_35134 crossref_citationtrail_10_1002_jbm_b_35134 wiley_primary_10_1002_jbm_b_35134_JBMB35134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part B, Applied biomaterials |
PublicationTitleAlternate | J Biomed Mater Res B Appl Biomater |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 42 2017; 7 2019; 93 2017; 45 2019; 14 2020; 15 2020; 14 2021; 120 2020; 12 2020; 11 2020; 10 2013; 7 2019; 362 2020; 18 2013; 19 2010; 21 2020; 1 2013; 16 2020; 53 2020; 9 2018; 37 2021; 9 2015; 2 2021; 47 2019; 7 2019; 9 2015; 16 2019; 5 2019; 1 2013; 106 2019; 104 2020; 148 2019; 107 2016; 17 2009; 218 2015; 7 2021; 13 2016; 7 2012; 2 2019; 1914 2013; 76 2022 2003; 66A 2017; 54 2017; 12 2020; 116 2009; 223 2015 2020; 112 2007; 83A 2016; 8 2019; 134 2018; 13 2012; 40 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Saxena V (e_1_2_7_14_1) 2019; 1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 Ródenas RJ (e_1_2_7_13_1) 2015 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Markstedt K (e_1_2_7_19_1) 2015; 16 Sumer M (e_1_2_7_3_1) 2013; 7 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 Gul H (e_1_2_7_7_1) 2020; 1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 Liu H (e_1_2_7_43_1) 2020; 9 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 47 start-page: 20352 year: 2021 end-page: 20361 article-title: 3D printing and osteogenesis of loofah‐like hydroxyapatite bone scaffolds publication-title: Ceram Int – volume: 1 start-page: 205 year: 2019 end-page: 249 article-title: Hydroxyapatite: an inorganic ceramic for biomedical applications publication-title: Nanobiomater Tissue Eng – volume: 66A start-page: 880 year: 2003 end-page: 884 article-title: The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial‐derived cell cultures publication-title: J Biomed Mater Res A – volume: 2 year: 2015 article-title: A protocol format for the preparation, registration and publication of systematic reviews of animal intervention studies publication-title: Evidence‐Based Preclin Med – volume: 362 start-page: 269 year: 2019 end-page: 279 article-title: 3D printed PCL/SrHA scaffold for enhanced bone regeneration publication-title: Chem Eng J – volume: 54 start-page: 386 year: 2017 end-page: 398 article-title: Surface‐enrichment with hydroxyapatite nanoparticles in stereolithography‐fabricated composite polymer scaffolds promotes bone repair publication-title: Acta Biomater – volume: 7 start-page: 1 year: 2017 end-page: 13 article-title: Three dimensional printed polylactic acid‐hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: an bioreactor model publication-title: Sci Rep – volume: 16 start-page: 1489 year: 2015 end-page: 1496 article-title: 3D bioprinting human chondrocytes with nanocellulose‐alginate bioink for cartilage tissue engineering applications publication-title: Amer Chem Soc – volume: 16 start-page: 496 year: 2013 end-page: 504 article-title: Bone tissue engineering using 3D printing publication-title: Mater Today – volume: 7 start-page: 7574 year: 2019 end-page: 7587 article-title: Effects of hydroxyapatite surface nano/micro‐structure on osteoclast formation and activity publication-title: J Mater Chem B: R Soc Chem – volume: 10 start-page: 725 year: 2020 end-page: 740 article-title: Mesenchymal stem cell‐loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three‐dimensional‐printed poly(ε‐caprolactone) /nano‐hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation publication-title: Theranostics – volume: 104 start-page: 109960 year: 2019 article-title: Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering publication-title: Mater Sci Eng C: Mater Biol Appl – volume: 21 start-page: 343 year: 2010 end-page: 351 article-title: Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. J mater Sci mater med [internet] publication-title: J Mater Sci Mater Med – volume: 13 year: 2021 article-title: Degradable calcium deficient hydroxyapatite/poly(lactic‐glycolic acid copolymer) bilayer scaffold through integral molding 3D printing for bone defect repair publication-title: Biofabrication – volume: 5 start-page: 2466 year: 2019 end-page: 2481 article-title: Porous scaffolds of poly(lactic‐ co‐glycolic acid) and mesoporous hydroxyapatite surface modified by poly(γ‐benzyl‐ l ‐glutamate) (PBLG) for bone repair publication-title: ACS Biomater Sci Eng. – volume: 9 start-page: 1 year: 2020 end-page: 11 article-title: Delivering proangiogenic factors from 3D‐printed Polycaprolactone scaffolds for vascularized bone regeneration publication-title: Adv Healthc Mater – volume: 11 start-page: S118 year: 2020 end-page: S124 article-title: 3D printing applications in bone tissue engineering publication-title: J Clin Orthop Trauma – volume: 40 start-page: 363 year: 2012 article-title: Bone tissue engineering: recent advances and challenges publication-title: Crit Rev Biomed Eng – volume: 7 start-page: 1 year: 2016 end-page: 15 article-title: Cell‐free 3D scaffold with two‐stage delivery of miRNA‐26a to regenerate critical‐sized bone defects publication-title: Nat Commun – volume: 93 start-page: 183 year: 2019 end-page: 193 article-title: Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications publication-title: J Mech Behav Biomed Mater – volume: 15 start-page: 5825 year: 2020 end-page: 5838 article-title: 3D‐ha scaffold functionalized by extracellular matrix of stem cells promotes bone repair publication-title: Int J Nanomedicine – year: 2022 – volume: 12 start-page: 0188352 year: 2017 article-title: Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide publication-title: PLoS One – volume: 76 start-page: 2355 year: 2013 end-page: 2359 article-title: Characterization and anti‐inflammatory effects of iodinated Acetylenic acids isolated from the marine sponges Suberites mammilaris and Suberites japonicus publication-title: J Nat Prod – volume: 1 start-page: 737 year: 2020 end-page: 760 article-title: 3 ‐ bioceramics: types and clinical applications publication-title: Woodhead Publ. Ser. Biomater – volume: 12 start-page: 1 year: 2020 end-page: 18 article-title: Drug delivery applications of three‐dimensional printed (3DP) mesoporous scaffolds publication-title: Pharmaceutics – volume: 42 start-page: 17 year: 2017 end-page: 24 article-title: Induced membrane technique using beta‐tricalcium phosphate for reconstruction of femoral and tibial segmental bone loss due to infection: technical tips and preliminary clinical results publication-title: Int Orthop – year: 2015 – volume: 120 year: 2021 article-title: Alkali treatment facilitates functional nano‐hydroxyapatite coating of 3D printed polylactic acid scaffolds publication-title: Mater Sci Eng C – volume: 7 start-page: 11642 year: 2015 end-page: 11651 article-title: Reduced graphene oxide‐coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells publication-title: Nanoscale – volume: 1914 start-page: 571 year: 2019 end-page: 616 article-title: Scanning electron microscopy of bone publication-title: Methods Mol Biol – volume: 12 start-page: 1782 year: 2020 article-title: Natural 3D‐printed bioinks for skin regeneration and wound healing: a systematic review publication-title: Polymer – volume: 2 start-page: 10110 year: 2012 end-page: 10124 article-title: Three‐dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering publication-title: RSC Adv – volume: 37 start-page: 4 year: 2018 article-title: Microfluidic co‐culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma‐mediated cell motility and drug resistance. J Exp Clin cancer res [internet] publication-title: J Exp Clin Cancer Res – volume: 7 start-page: 6 year: 2013 end-page: 14 article-title: Autogenous cortical bone and bioactive glass grafting for treatment of intraosseous periodontal defects publication-title: Eur J Dent Dental Invest Soc – volume: 116 start-page: 111148 year: 2020 article-title: Biodegradable 3D printed HA/CMCS/PDA scaffold for repairing lacunar bone defect publication-title: Mater Sci Eng C – volume: 17 start-page: 136 year: 2016 end-page: 148 article-title: Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical‐size rat calvarial defect model publication-title: Sci Technol Adv Mater – volume: 9 start-page: 5338 year: 2019 end-page: 5346 article-title: Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis publication-title: RSC Adv R Soc Chem – volume: 112 year: 2020 article-title: Evaluation of BMP‐2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and publication-title: Mater Sci Eng C – volume: 14 year: 2019 article-title: 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity for bone regeneration publication-title: Biomed Mater – volume: 8 start-page: 6905 year: 2016 end-page: 6916 article-title: Low‐temperature additive manufacturing of biomimic three‐dimensional hydroxyapatite/collagen scaffolds for bone regeneration publication-title: ACS Appl Mater Interfaces – volume: 83A start-page: 434 year: 2007 end-page: 445 article-title: Fabrication and in vitro characterization of three‐dimensional organic/inorganic scaffolds by robocasting publication-title: J Biomed Mater Res A – volume: 148 start-page: 153 year: 2020 end-page: 162 article-title: Heparan sulfate loaded polycaprolactone‐hydroxyapatite scaffolds with 3D printing for bone defect repair publication-title: Int J Biol Macromol – volume: 19 start-page: 485 year: 2013 end-page: 502 article-title: Three‐dimensional scaffolds for tissue engineering applications: role of porosity and pore size publication-title: Tissue Eng B Rev – volume: 14 start-page: 1403 year: 2020 end-page: 1414 article-title: The effect of induced membranes combined with enhanced bone marrow and 3D PLA‐HA on repairing long bone defects publication-title: J Tissue Eng Regen Med – volume: 218 start-page: 237 year: 2009 end-page: 245 article-title: The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair publication-title: J Cell Physiol – volume: 134 start-page: 869 year: 2019 end-page: 881 article-title: Incorporation of collagen and PLGA in bioactive glass: biological evaluation publication-title: Int J Biol Macromol – volume: 13 start-page: 065004 year: 2018 article-title: 3D printing of strontium‐doped hydroxyapatite based composite scaffolds for repairing critical‐sized rabbit calvarial defects publication-title: Biomed Mater – volume: 7 start-page: 1215 year: 2015 article-title: Polymeric vs hydroxyapatite‐based scaffolds on dental pulp stem cell proliferation and differentiation publication-title: World J Stem Cells – volume: 9 start-page: 4488 year: 2021 end-page: 4501 article-title: A hierarchical scaffold with a highly pore‐interconnective 3D printed PLGA/n‐HA framework and an extracellular matrix like gelatin network filler for bone regeneration publication-title: J Mater Chem B – volume: 18 start-page: 1 year: 2020 end-page: 10 article-title: The integration of pore size and porosity distribution on Ti‐6A1‐4V scaffolds by 3D printing in the modulation of osteo‐differentation publication-title: J Appl Biomater Funct Mater – volume: 13 year: 2021 article-title: Bioactive Sr2+/Fe3+co‐substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering publication-title: Biofabrication – volume: 106 start-page: 145 year: 2013 end-page: 150 article-title: Fabrication of calcium phosphate fibres through electrospinning and sintering of hydroxyapatite nanoparticles publication-title: Mater Lett. – volume: 45 start-page: 23 year: 2017 end-page: 44 article-title: 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery publication-title: Ann Biomed Eng – volume: 107 start-page: 1654 year: 2019 end-page: 1666 article-title: Synthesis and characterization of biomimetic bioceramic nanoparticles with optimized physicochemical properties for bone tissue engineering publication-title: J Biomed Mater Res A – volume: 223 start-page: 289 year: 2009 end-page: 301 article-title: Advanced computer‐aided design for bone tissue‐engineering scaffolds publication-title: Proc Inst Mech Eng H – volume: 53 start-page: 1 year: 2020 end-page: 14 article-title: Blockade of adrenergic β‐receptor activation through local delivery of propranolol from a 3D collagen/polyvinyl alcohol/hydroxyapatite scaffold promotes bone repair publication-title: Cell Prolif – ident: e_1_2_7_16_1 doi: 10.1177/2280800020934652 – volume: 16 start-page: 1489 year: 2015 ident: e_1_2_7_19_1 article-title: 3D bioprinting human chondrocytes with nanocellulose‐alginate bioink for cartilage tissue engineering applications publication-title: Amer Chem Soc – ident: e_1_2_7_37_1 doi: 10.1016/j.msec.2020.111148 – ident: e_1_2_7_2_1 doi: 10.1016/j.msec.2020.111686 – ident: e_1_2_7_35_1 doi: 10.1016/j.msec.2020.110893 – ident: e_1_2_7_22_1 doi: 10.1038/ncomms13982 – ident: e_1_2_7_48_1 doi: 10.1007/s10856-009-3839-5 – ident: e_1_2_7_20_1 doi: 10.1016/j.jmbbm.2019.02.014 – ident: e_1_2_7_56_1 doi: 10.1007/978-1-4939-8997-3_31 – volume-title: Scaffold Surface Modifications and Culture Conditions as Key Parameters to Develop Cartilage and Bone Tissue Engineering Implants year: 2015 ident: e_1_2_7_13_1 doi: 10.4995/Thesis/10251/48526 – ident: e_1_2_7_30_1 doi: 10.1038/s41598‐017‐14923‐7 – ident: e_1_2_7_49_1 doi: 10.1016/j.ijbiomac.2019.05.090 – ident: e_1_2_7_51_1 doi: 10.1615/CritRevBiomedEng.v40.i5.10 – ident: e_1_2_7_38_1 doi: 10.1080/14686996.2016.1145532 – ident: e_1_2_7_53_1 doi: 10.1016/j.mattod.2013.11.017 – ident: e_1_2_7_26_1 doi: 10.1016/j.actbio.2017.03.006 – ident: e_1_2_7_40_1 doi: 10.1111/cpr.12725 – ident: e_1_2_7_18_1 doi: 10.1007/s10439-016-1678-3 – ident: e_1_2_7_41_1 doi: 10.7150/thno.39167 – ident: e_1_2_7_27_1 doi: 10.1088/1758-5090/abcb48 – ident: e_1_2_7_57_1 – ident: e_1_2_7_15_1 doi: 10.1089/ten.teb.2012.0437 – ident: e_1_2_7_17_1 doi: 10.1002/jbm.a.36681 – ident: e_1_2_7_32_1 doi: 10.1039/C8RA06652C – ident: e_1_2_7_42_1 doi: 10.2147/IJN.S259678 – ident: e_1_2_7_55_1 doi: 10.1002/jbm.a.31237 – ident: e_1_2_7_50_1 doi: 10.1002/jcp.21592 – ident: e_1_2_7_59_1 – ident: e_1_2_7_28_1 doi: 10.1021/acsbiomaterials.8b01614 – ident: e_1_2_7_4_1 doi: 10.1007/s00264-017-3503-5 – ident: e_1_2_7_10_1 doi: 10.1039/C5NR01580D – ident: e_1_2_7_23_1 doi: 10.1039/D1TB00662B – ident: e_1_2_7_25_1 doi: 10.1021/acsami.6b00815 – ident: e_1_2_7_5_1 doi: 10.1016/j.msec.2019.109960 – volume: 9 start-page: 1 year: 2020 ident: e_1_2_7_43_1 article-title: Delivering proangiogenic factors from 3D‐printed Polycaprolactone scaffolds for vascularized bone regeneration publication-title: Adv Healthc Mater – ident: e_1_2_7_31_1 doi: 10.1088/1748-605X/aad923 – ident: e_1_2_7_11_1 doi: 10.4252/wjsc.v7.i10.1215 – ident: e_1_2_7_24_1 doi: 10.1002/ebm2.7 – ident: e_1_2_7_45_1 doi: 10.1021/np400793r – ident: e_1_2_7_39_1 doi: 10.1016/j.cej.2019.01.015 – ident: e_1_2_7_9_1 doi: 10.1002/jbm.a.10535 – ident: e_1_2_7_12_1 doi: 10.1371/journal.pone.0188352 – ident: e_1_2_7_36_1 doi: 10.1002/term.3106 – volume: 7 start-page: 6 year: 2013 ident: e_1_2_7_3_1 article-title: Autogenous cortical bone and bioactive glass grafting for treatment of intraosseous periodontal defects publication-title: Eur J Dent Dental Invest Soc – ident: e_1_2_7_21_1 doi: 10.1186/s13046-017-0654-6 – ident: e_1_2_7_44_1 doi: 10.1088/1758-5090/abcf8d – ident: e_1_2_7_34_1 doi: 10.1016/j.ijbiomac.2020.01.109 – ident: e_1_2_7_6_1 doi: 10.1039/C9TB01204D – ident: e_1_2_7_8_1 doi: 10.1016/j.matlet.2013.04.110 – ident: e_1_2_7_29_1 doi: 10.1016/j.ceramint.2021.04.043 – ident: e_1_2_7_52_1 doi: 10.1243/09544119JEIM452 – ident: e_1_2_7_47_1 doi: 10.3390/pharmaceutics12090851 – volume: 1 start-page: 737 year: 2020 ident: e_1_2_7_7_1 article-title: 3 ‐ bioceramics: types and clinical applications publication-title: Woodhead Publ. Ser. Biomater – ident: e_1_2_7_46_1 doi: 10.3390/polym12081782 – volume: 1 start-page: 205 year: 2019 ident: e_1_2_7_14_1 article-title: Hydroxyapatite: an inorganic ceramic for biomedical applications publication-title: Nanobiomater Tissue Eng – ident: e_1_2_7_54_1 doi: 10.1016/j.jcot.2019.12.002 – ident: e_1_2_7_58_1 doi: 10.1039/c2ra21085a – ident: e_1_2_7_33_1 doi: 10.1088/1748-605X/ab388d |
SSID | ssj0026053 |
Score | 2.4688644 |
SecondaryResourceType | review_article |
Snippet | The use of 3D‐printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of... The use of 3D-printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 203 |
SubjectTerms | 3D‐scaffolds Animal models animal studies Animals Biological activity Biomedical materials Bone and Bones Bone grafts Bone healing Bone Regeneration Bones Durapatite - pharmacology Finite element method Healing Hydroxyapatite Literature reviews Materials research Materials science Meta-analysis Printing, Three-Dimensional Scaffolds Substitute bone systematic review Three dimensional printing Tissue Engineering Tissue Scaffolds |
Title | 3D‐printed hydroxyapatite scaffolds for bone tissue engineering: A systematic review in experimental animal studies |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.b.35134 https://www.ncbi.nlm.nih.gov/pubmed/35906778 https://www.proquest.com/docview/2730715800 https://www.proquest.com/docview/2696859834 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTtwwEMetihM9UKClXT4qV-JUlKW2403MDUoRQqKHikrcIn-qUMhWJHuAE4_AM_IkzNghu5SqUntKJDuOE3vsX5zxfwjZZDmzyimdyaDgA6UILlOOuczkjhteeh_irvfjr6PD7_nRqTztfHNwL0zSh-gX3NAy4niNBq5Nsz0VDT03l0MzFJIJVANFby1Eom-9eBSCenSvl5JjHDXR7c6DlO2Za5_OR88g8ymzxknn4FWKrNpErUL0Nfk5nLRmaG9-U3L87-dZJAsdjtLd1H-WyAtfL5OXMyKFr8lE7N_f3uH6H8Ap_XHtsDIaHbFbTxurQxhfuIYC_FIzrj1tY1NSPy1jh-7SqWI0Tbtl6FlNZ8MLUF2fXcKhSY6Nb8jJwZeTz4dZF6whswhVmWUe0GNklNNMGa51KTzQCOcFUzr4orTFKHwKXORFMbIOBmjFQ4CPHSu8AeZcIXM1VPIdoQGYSuIaJ9M-57osVYAhWzFRGi8L7Qbk42OLVbYTMsd4GhdVkmDmFbzKylTxVQ7IZp_5V9Lv-HO29cemrzojbiogOwAwCUg9IB_6ZDA__Keiaz-eQB4UF5KqxCLepi7T30dIFfX5BmQrNvzfKlAd7R3vxbPVf8q9RuY5YFdaFFonc-3VxG8AJrXmfbSGB9hUD14 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BOQCH8lu6UMBIPYGyxXa8ibm1lGop3R7QIvVm2bEtCm226mYP7YlH4Bl5EsZ2NrsFhASnRLLjTDwe-_Nk_A3AJs1pJa3UmfASNyiFt5m01GYmt8yw0jkfT72PDgfDT_n-kThqHW7hLEzih-gcbsEy4nwdDDw4pLcWrKFfzGnf9LmgPL8ON0JO75DBYPdjRx8VoHoMsBeChUxqvD2fhyVbSw9fXZF-g5lXUWtcdvbugJoLnKJNvvZnjelXl79wOf7_F92F1RaRku00hO7BNVffh9tLPIUPYMZ3f3z7HlyAiE_J5wsbpNEhFrtxZFpp7ycndkoQ_xIzqR1pojaJW7TxhmyTBWk0SQdmyHFNljMMEF0fn-JlmmIbH8J479347TBr8zVkVcBVWUUdoo-BkVZTaZjWJXcISBgrqNTeFWVVDPxrz3heFIPK4hwtmfe436m4Mwg712ClRiHXgXiEVSK4Oal2OdNlKT3O2pLy0jhRaNuDl3OVqarlMg8pNU5UYmFmCrtSGRW7sgebXeWzROHx52obc92r1o6nCsEdYjCBqLoHL7pitMDwW0XXbjLDOoFfSMgyNPEojZnuPVzISNHXg1dR838TQO3vjHbi3eN_qv0cbg7HowN18P7wwxO4xRCFJR_RBqw05zP3FFFTY55F0_gJtI8TeA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1dT9UwGMcbxcToBfiKB1BrwpVmB9uu2-odiCeIQozBhLumrwGFHcJ2LuCKj8Bn5JP4tB07BzUmerUl7bpu7dP-1j39PwitkpwYYYXKuBfwgVJ6mwlLbKZzSzWtnPNx1_vObrH1Ld_e5_udb07YC5P0IfoFt2AZcbwOBn5i_dpUNPS7Ph7qIeOE5bfRnbwAcwlM9LVXjwqkHv3rOachkBrrtudBytrMxTcnpN8o8ya0xllntJBCqzZRrDA4m_wYTlo9NOe_SDn-9wM9QPMdj-L11IEeoluufoTuz6gUPkYTtnl1cRkWAIFO8cGZDZVRwRO7dbgxyvvxkW0w0C_W49rhNrYldtMy3uF1PJWMxmm7DD6s8Wx8Aazqw2M4NMmz8QnaG33Ye7-VddEaMhOoKjPEAXsUWlhFhKZKVcwBjlBaEqG8KytTFv6tpywvy8JYGKEF9R6-dgxzGqDzKZqroZLPEPYAVTwschLlcqqqSngYswVhlXa8VHaAXl-3mDSdknkIqHEkkwYzlfAqpZbxVQ7Qap_5JAl4_DnbynXTy86KGwloBwTGgakH6FWfDPYXfqqo2o0nkCeoC3FRhSIWU5fp78O4iAJ9A_QmNvzfKiC3N3Y24tnSP-V-ie5-2RzJzx93Py2jexQQLC0QraC59nTingMytfpFNIyfj3gSMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-printed+hydroxyapatite+scaffolds+for+bone+tissue+engineering%3A+A+systematic+review+in+experimental+animal+studies&rft.jtitle=Journal+of+biomedical+materials+research.+Part+B%2C+Applied+biomaterials&rft.au=Avanzi%2C+Ingrid+Regina&rft.au=Parisi%2C+Julia+Risso&rft.au=Souza%2C+Amanda&rft.au=Cruz%2C+Matheus+Almeida&rft.date=2023-01-01&rft.eissn=1552-4981&rft.volume=111&rft.issue=1&rft.spage=203&rft_id=info:doi/10.1002%2Fjbm.b.35134&rft_id=info%3Apmid%2F35906778&rft.externalDocID=35906778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4973&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4973&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4973&client=summon |