Role of apolipoprotein C‐III overproduction in diabetic dyslipidaemia

Aims To investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC‐III, and whether improvement of glycae...

Full description

Saved in:
Bibliographic Details
Published inDiabetes, obesity & metabolism Vol. 21; no. 8; pp. 1861 - 1870
Main Authors Adiels, Martin, Taskinen, Marja‐Riitta, Björnson, Elias, Andersson, Linda, Matikainen, Niina, Söderlund, Sanni, Kahri, Juhani, Hakkarainen, Antti, Lundbom, Nina, Sihlbom, Carina, Thorsell, Annika, Zhou, Haihong, Pietiläinen, Kirsi H., Packard, Chris, Borén, Jan
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1462-8902
1463-1326
1463-1326
DOI10.1111/dom.13744

Cover

Loading…
Abstract Aims To investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC‐III, and whether improvement of glycaemic control using the glucagon‐like peptide‐1 analogue liraglutide for 16 weeks modifies apoC‐III dynamics. Materials and Methods Postprandial apoC‐III kinetics were assessed after a bolus injection of [5,5,5‐2H3]leucine using ultrasensitive mass spectrometry techniques. We compared apoC‐III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non‐diabetic subjects. Liver fat content, subcutaneous abdominal and intra‐abdominal fat were determined using proton magnetic resonance spectroscopy. Results Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC‐III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC‐III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC‐III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC‐III secretion rate was higher in subjects with type 2 diabetes compared with BMI‐matched non‐diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042). Conclusions The results reveal that the secretion rate of apoC‐III is associated with elevation of triglyceride‐rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC‐III.
AbstractList - Aims: To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC-III, and whether improvement of glycaemic control using the glucagon-like peptide-1 analogue liraglutide for 16 weeks modifies apoC-III dynamics. Materials and Methods: Postprandial apoC-III kinetics were assessed after a bolus injection of [5,5,5- 2 H 3 ]leucine using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non-diabetic subjects. Liver fat content, subcutaneous abdominal and intra-abdominal fat were determined using proton magnetic resonance spectroscopy. Results: Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC-III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC-III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC-III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC-III secretion rate was higher in subjects with type 2 diabetes compared with BMI-matched non-diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042). Conclusions: The results reveal that the secretion rate of apoC-III is associated with elevation of triglyceride-rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC-III. © 2019 John Wiley & Sons Ltd
To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC-III, and whether improvement of glycaemic control using the glucagon-like peptide-1 analogue liraglutide for 16 weeks modifies apoC-III dynamics.AIMSTo investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC-III, and whether improvement of glycaemic control using the glucagon-like peptide-1 analogue liraglutide for 16 weeks modifies apoC-III dynamics.Postprandial apoC-III kinetics were assessed after a bolus injection of [5,5,5-2 H3 ]leucine using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non-diabetic subjects. Liver fat content, subcutaneous abdominal and intra-abdominal fat were determined using proton magnetic resonance spectroscopy.MATERIALS AND METHODSPostprandial apoC-III kinetics were assessed after a bolus injection of [5,5,5-2 H3 ]leucine using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non-diabetic subjects. Liver fat content, subcutaneous abdominal and intra-abdominal fat were determined using proton magnetic resonance spectroscopy.Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC-III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC-III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC-III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC-III secretion rate was higher in subjects with type 2 diabetes compared with BMI-matched non-diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042).RESULTSImproved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC-III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC-III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC-III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC-III secretion rate was higher in subjects with type 2 diabetes compared with BMI-matched non-diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042).The results reveal that the secretion rate of apoC-III is associated with elevation of triglyceride-rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC-III.CONCLUSIONSThe results reveal that the secretion rate of apoC-III is associated with elevation of triglyceride-rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC-III.
To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC-III, and whether improvement of glycaemic control using the glucagon-like peptide-1 analogue liraglutide for 16 weeks modifies apoC-III dynamics. Postprandial apoC-III kinetics were assessed after a bolus injection of [5,5,5- H ]leucine using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non-diabetic subjects. Liver fat content, subcutaneous abdominal and intra-abdominal fat were determined using proton magnetic resonance spectroscopy. Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC-III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC-III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC-III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC-III secretion rate was higher in subjects with type 2 diabetes compared with BMI-matched non-diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042). The results reveal that the secretion rate of apoC-III is associated with elevation of triglyceride-rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC-III.
AimsTo investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC‐III, and whether improvement of glycaemic control using the glucagon‐like peptide‐1 analogue liraglutide for 16 weeks modifies apoC‐III dynamics.Materials and MethodsPostprandial apoC‐III kinetics were assessed after a bolus injection of [5,5,5‐2H3]leucine using ultrasensitive mass spectrometry techniques. We compared apoC‐III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non‐diabetic subjects. Liver fat content, subcutaneous abdominal and intra‐abdominal fat were determined using proton magnetic resonance spectroscopy.ResultsImproved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC‐III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC‐III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC‐III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC‐III secretion rate was higher in subjects with type 2 diabetes compared with BMI‐matched non‐diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042).ConclusionsThe results reveal that the secretion rate of apoC‐III is associated with elevation of triglyceride‐rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC‐III.
Aims To investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC‐III, and whether improvement of glycaemic control using the glucagon‐like peptide‐1 analogue liraglutide for 16 weeks modifies apoC‐III dynamics. Materials and Methods Postprandial apoC‐III kinetics were assessed after a bolus injection of [5,5,5‐2H3]leucine using ultrasensitive mass spectrometry techniques. We compared apoC‐III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non‐diabetic subjects. Liver fat content, subcutaneous abdominal and intra‐abdominal fat were determined using proton magnetic resonance spectroscopy. Results Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC‐III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC‐III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC‐III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC‐III secretion rate was higher in subjects with type 2 diabetes compared with BMI‐matched non‐diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042). Conclusions The results reveal that the secretion rate of apoC‐III is associated with elevation of triglyceride‐rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC‐III.
Author Andersson, Linda
Packard, Chris
Lundbom, Nina
Borén, Jan
Adiels, Martin
Sihlbom, Carina
Söderlund, Sanni
Zhou, Haihong
Hakkarainen, Antti
Thorsell, Annika
Pietiläinen, Kirsi H.
Kahri, Juhani
Matikainen, Niina
Taskinen, Marja‐Riitta
Björnson, Elias
Author_xml – sequence: 1
  givenname: Martin
  surname: Adiels
  fullname: Adiels, Martin
  organization: Sahlgrenska University Hospital
– sequence: 2
  givenname: Marja‐Riitta
  surname: Taskinen
  fullname: Taskinen, Marja‐Riitta
  organization: University of Helsinki
– sequence: 3
  givenname: Elias
  surname: Björnson
  fullname: Björnson, Elias
  organization: Sahlgrenska University Hospital
– sequence: 4
  givenname: Linda
  surname: Andersson
  fullname: Andersson, Linda
  organization: Sahlgrenska University Hospital
– sequence: 5
  givenname: Niina
  surname: Matikainen
  fullname: Matikainen, Niina
  organization: University of Helsinki
– sequence: 6
  givenname: Sanni
  surname: Söderlund
  fullname: Söderlund, Sanni
  organization: University of Helsinki
– sequence: 7
  givenname: Juhani
  surname: Kahri
  fullname: Kahri, Juhani
  organization: Helsinki University Hospital
– sequence: 8
  givenname: Antti
  surname: Hakkarainen
  fullname: Hakkarainen, Antti
  organization: Aalto University School of Science
– sequence: 9
  givenname: Nina
  surname: Lundbom
  fullname: Lundbom, Nina
  organization: University of Helsinki
– sequence: 10
  givenname: Carina
  surname: Sihlbom
  fullname: Sihlbom, Carina
  organization: University of Gothenburg
– sequence: 11
  givenname: Annika
  surname: Thorsell
  fullname: Thorsell, Annika
  organization: University of Gothenburg
– sequence: 12
  givenname: Haihong
  surname: Zhou
  fullname: Zhou, Haihong
  organization: Merck & Co. Inc
– sequence: 13
  givenname: Kirsi H.
  surname: Pietiläinen
  fullname: Pietiläinen, Kirsi H.
  organization: University of Helsinki
– sequence: 14
  givenname: Chris
  surname: Packard
  fullname: Packard, Chris
  organization: University of Glasgow
– sequence: 15
  givenname: Jan
  orcidid: 0000-0003-0786-8091
  surname: Borén
  fullname: Borén, Jan
  email: jan.boren@wlab.gu.se
  organization: Sahlgrenska University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30972934$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/281834$$DView record from Swedish Publication Index
BookMark eNp1kU1O5DAQhS0E4n_BBVAkNswi4J_qJF6iZgZaAiEhWFuOXUFGSRziBNQ7jjBn5CS46YYFAm9slb_3VFVvh6y3vkVCDhg9YfGcWt-cMJEDrJFtBplImeDZ-sebp4WkfIvshPBIKQVR5JtkS1CZcylgm1zc-hoTXyW687XrfNf7AV2bTN9e_89ms8Q_Yx9rdjSD820Sf6zTJQ7OJHYeosJZjY3Te2Sj0nXA_dW9S-7__b2bXqZXNxez6dlVaoBnkBrGpKgAwULJrZQ2zzJRGitErGvNqM1BQCWh1MBtnKksJa80yzMp0AATuyRd-oYX7MZSdb1rdD9XXjv1MHYqlh5GFVDxghUCIn-85OMQTyOGQTUuGKxr3aIfg-Kc5lJkk0kR0aNv6KMf-zZOE6kJ8ImEYkEdrqixbNB-NfC50gicLgHT-xB6rJRxg15sb-i1qxWjahGaiqGpj9Ci4s83xafpT-zK_cXVOP8dVOc310vFO2cjpYQ
CitedBy_id crossref_primary_10_1038_s41569_022_00676_y
crossref_primary_10_3390_lipidology1020009
crossref_primary_10_1097_MOL_0000000000000640
crossref_primary_10_1161_ATVBAHA_122_318290
crossref_primary_10_1093_eurheartj_ehab531
crossref_primary_10_3389_fendo_2020_00252
crossref_primary_10_3390_ijms25105365
crossref_primary_10_1093_eurheartj_ehab551
crossref_primary_10_1097_JP9_0000000000000153
crossref_primary_10_3389_fendo_2020_00474
crossref_primary_10_1007_s40259_022_00520_2
crossref_primary_10_1161_ATVBAHA_123_319765
crossref_primary_10_1016_j_bbapap_2020_140469
crossref_primary_10_3390_cells10040850
crossref_primary_10_1111_jdi_14056
crossref_primary_10_1111_dom_14174
crossref_primary_10_3390_ijms241713540
crossref_primary_10_1007_s13300_024_01626_2
crossref_primary_10_1016_j_cytogfr_2020_08_003
crossref_primary_10_1097_MOL_0000000000000795
crossref_primary_10_1161_ATVBAHA_120_315446
crossref_primary_10_1172_jci_insight_160607
crossref_primary_10_3390_nu11091987
crossref_primary_10_1172_jci_insight_177268
crossref_primary_10_4102_ajlm_v12i1_2018
crossref_primary_10_1016_j_jacasi_2024_07_011
crossref_primary_10_1093_cvr_cvad177
crossref_primary_10_1111_dom_14328
crossref_primary_10_1016_j_ahjo_2022_100128
crossref_primary_10_1080_14779072_2020_1768848
crossref_primary_10_3389_fendo_2020_593931
crossref_primary_10_1016_j_metabol_2021_154887
crossref_primary_10_1016_j_jacc_2021_08_051
crossref_primary_10_1016_j_jacl_2019_12_003
crossref_primary_10_1016_j_atherosclerosis_2024_117545
crossref_primary_10_1186_s12986_020_00488_2
crossref_primary_10_1007_s00125_023_06008_0
crossref_primary_10_1016_j_jlr_2023_100475
crossref_primary_10_3390_ijms252312759
crossref_primary_10_1172_JCI131333
crossref_primary_10_1111_apha_13916
Cites_doi 10.1161/ATVBAHA.110.220723
10.2337/dc08-0358
10.1097/MOL.0b013e328352dc70
10.1097/MOL.0000000000000146
10.1172/JCI110532
10.1016/j.jacl.2018.01.008
10.1042/CS20070308
10.1097/MED.0000000000000136
10.1002/nbm.1580
10.1194/jlr.E015701
10.1161/01.ATV.0000066131.01313.EB
10.1016/j.amjcard.2011.12.023
10.1016/S0022-2275(20)39938-7
10.1111/joim.12632
10.5551/jat.E598
10.1016/j.atherosclerosis.2018.05.014
10.1161/ATVBAHA.115.305415
10.2217/clp.14.59
10.1161/ATVBAHA.108.169383
10.1210/en.2013-1934
10.1016/S0006-291X(72)80149-9
10.1172/JCI86610
10.1161/ATVBAHA.117.310473
10.1161/CIRCRESAHA.111.300367
10.1161/ATVBAHA.115.305614
10.1002/oby.20781
10.1007/s11883-016-0614-1
10.1021/ac3034757
10.1161/01.CIR.102.16.1886
10.1515/cclm-2013-0741
10.1016/j.metabol.2004.05.004
10.1056/NEJMoa1308027
10.2174/0929867324666170609081612
10.1373/clinchem.2017.279463
10.1194/jlr.M011163
10.1161/ATVBAHA.117.309007
10.1111/dom.12133
10.1161/ATVBAHA.111.224808
10.1056/NEJMoa1307095
10.1056/NEJMoa1400284
10.1373/jalm.2017.024919
10.1194/jlr.M078220
10.1016/j.tips.2015.07.001
10.1007/s00125-006-0340-2
10.2337/db09-0206
10.1194/M900346-JLR200
10.1161/ATVBAHA.117.309493
10.1194/jlr.M500455-JLR200
10.1111/dom.13487
10.1007/s00125-005-1753-z
10.1016/j.jacc.2018.04.050
10.1016/S1388-1981(99)00176-6
10.1210/jc.2003-032056
10.1161/CIRCULATIONAHA.117.031276
10.1161/ATVBAHA.109.197830
10.1016/S0021-9258(19)86357-3
10.1194/jlr.M400108-JLR200
10.1172/JCI112713
10.1097/MOL.0000000000000502
10.1016/j.jacl.2015.05.002
10.1016/j.cmet.2018.03.001
ContentType Journal Article
Copyright 2019 John Wiley & Sons Ltd
2019 John Wiley & Sons Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons Ltd
– notice: 2019 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
NPM
7T5
7TK
H94
K9.
7X8
ADTPV
AOWAS
F1U
DOI 10.1111/dom.13744
DatabaseName CrossRef
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DatabaseTitle CrossRef
PubMed
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1463-1326
EndPage 1870
ExternalDocumentID oai_gup_ub_gu_se_281834
30972934
10_1111_dom_13744
DOM13744
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swedish Foundation for Strategic Research
– fundername: Swedish Heart‐Lung Foundation
– fundername: Helsinki University Hospital Research funds
– fundername: Academy of Finland
  funderid: 314383; 272376; 266286
– fundername: Swedish Diabetes Foundation
– fundername: Finnish Diabetes Research Foundation
– fundername: Sahlgrenska University Hospital
– fundername: Swedish Research Council
– fundername: Finnish Medical Foundation
– fundername: Novo Nordisk Foundation
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
29F
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7T5
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H94
K9.
7X8
ADTPV
AOWAS
F1U
ID FETCH-LOGICAL-c4264-c1193f4e4d4b2d99d7663bcd33193aa10d7434f94ba42d137bb92fa17693ec413
IEDL.DBID DR2
ISSN 1462-8902
1463-1326
IngestDate Thu Aug 21 07:04:33 EDT 2025
Fri Jul 11 15:08:22 EDT 2025
Fri Jul 25 22:25:08 EDT 2025
Wed Feb 19 02:31:06 EST 2025
Thu Apr 24 22:57:21 EDT 2025
Tue Jul 01 01:03:08 EDT 2025
Wed Jan 22 16:41:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords stable isotopes
type 2 diabetes
apolipoprotein C-III
kinetics
lipoproteins
Language English
License 2019 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4264-c1193f4e4d4b2d99d7663bcd33193aa10d7434f94ba42d137bb92fa17693ec413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-0786-8091
OpenAccessLink http://hdl.handle.net/10138/312925
PMID 30972934
PQID 2254259488
PQPubID 1006516
PageCount 10
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_281834
proquest_miscellaneous_2207936558
proquest_journals_2254259488
pubmed_primary_30972934
crossref_citationtrail_10_1111_dom_13744
crossref_primary_10_1111_dom_13744
wiley_primary_10_1111_dom_13744_DOM13744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Diabetes, obesity & metabolism
PublicationTitleAlternate Diabetes Obes Metab
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References 2015; 35
2015; 36
1986; 78
2011; 52
2014; 371
2008; 31
1972; 46
1989; 47
2014; 22
2009; 58
1982; 69
2013; 15
2017; 37
2019; 21
2018; 137
2008; 28
2013; 112
1994; 35
2017; 282
2011; 24
2008; 114
2018; 72
2014; 52
2012; 23
2018; 38
2009; 16
2010; 30
2018; 29
2004; 89
2015; 10
2013; 85
2011; 31
2016; 126
2016; 18
2005; 48
2015; 9
2014; 155
2018; 64
2018; 27
2018; 25
2005; 46
2012; 109
2018; 274
2015; 26
2004; 53
1979; 254
2000; 102
2017; 58
2006; 49
2015; 22
2006; 47
2018
2018; 12
2000; 1483
2010; 51
2003; 23
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
Atger V (e_1_2_8_59_1) 1989; 47
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
Eisenberg S (e_1_2_8_19_1) 1979; 254
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 28
  start-page: 1660
  year: 2008
  end-page: 1665
  article-title: Triglyceride‐rich lipoprotein‐associated apolipoprotein C‐III production is stimulated by plasma free fatty acids in humans
  publication-title: Arterioscler Thromb Vasc Biol.
– volume: 52
  start-page: 794
  year: 2011
  end-page: 800
  article-title: Plasma apolipoprotein C‐III metabolism in patients with chronic kidney disease
  publication-title: J Lipid Res.
– volume: 16
  start-page: 145
  year: 2009
  end-page: 154
  article-title: Remnant lipoproteins as strong key particles to atherogenesis
  publication-title: J Atheroscler Thromb.
– volume: 51
  start-page: 150
  year: 2010
  end-page: 161
  article-title: Expression of apolipoprotein C‐III in McA‐RH7777 cells enhances VLDL assembly and secretion under lipid‐rich conditions
  publication-title: J Lipid Res.
– volume: 371
  start-page: 22
  year: 2014
  end-page: 31
  article-title: Lung, and Blood Institute. Loss‐of‐function mutations in , triglycerides, and coronary disease
  publication-title: N Engl J Med.
– volume: 282
  start-page: 187
  year: 2017
  end-page: 201
  article-title: Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity
  publication-title: J Intern Med.
– volume: 89
  start-page: 3949
  year: 2004
  end-page: 3955
  article-title: Rate of production of plasma and very‐low‐density lipoprotein (VLDL) apolipoprotein C‐III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity
  publication-title: J Clin Endocrinol Metab.
– volume: 35
  start-page: 2218
  year: 2015
  end-page: 2224
  article-title: Kinetic and related determinants of plasma triglyceride concentration in abdominal obesity: multicenter tracer kinetic study
  publication-title: Arterioscler Thromb Vasc Biol.
– volume: 37
  start-page: 1013
  year: 2017
  end-page: 1014
  article-title: Apolipoprotein C‐III: the small protein with sizeable vascular risk
  publication-title: Arterioscler Thromb Vasc Biol.
– volume: 15
  start-page: 1040
  year: 2013
  end-page: 1048
  article-title: Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat‐rich meal in patients with type 2 diabetes: a randomized, double‐blind, placebo‐controlled, cross‐over trial
  publication-title: Diabetes Obes Metab.
– volume: 25
  start-page: 1567
  year: 2018
  end-page: 1576
  article-title: APOC‐III antisense oligonucleotides: a new option for the treatment of hypertriglyceridemia
  publication-title: Curr Med Chem.
– volume: 112
  start-page: 1479
  year: 2013
  end-page: 1490
  article-title: Antisense oligonucleotide inhibition of apolipoprotein C‐III reduces plasma triglycerides in rodents, nonhuman primates, and humans
  publication-title: Circ Res.
– volume: 58
  start-page: 2018
  year: 2009
  end-page: 2026
  article-title: ApoCIII‐enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan
  publication-title: Diabetes.
– volume: 58
  start-page: 1893
  year: 2017
  end-page: 1902
  article-title: Apolipoprotein C‐III inhibits triglyceride hydrolysis by GPIHBP1‐bound LPL
  publication-title: J Lipid Res.
– volume: 31
  start-page: 2144
  year: 2011
  end-page: 2150
  article-title: Dual metabolic defects are required to produce hypertriglyceridemia in obese subjects
  publication-title: Arterioscler Thromb Vasc Biol.
– volume: 31
  start-page: 513
  year: 2011
  end-page: 519
  article-title: Transcriptional activation of apolipoprotein CIII expression by glucose may contribute to diabetic dyslipidemia
  publication-title: Arterioscler Thromb Vasc Biol.
– volume: 52
  start-page: 815
  year: 2014
  end-page: 824
  article-title: The revised Lund‐Malmo GFR estimating equation outperforms MDRD and CKD‐EPI across GFR, age and BMI intervals in a large Swedish population
  publication-title: Clin Chem Lab Med.
– volume: 371
  start-page: 2200
  year: 2014
  end-page: 2206
  article-title: Targeting APOC3 in the familial chylomicronemia syndrome
  publication-title: N Engl J Med.
– volume: 64
  start-page: 219
  year: 2018
  end-page: 230
  article-title: Remnant cholesterol and myocardial infarction in normal weight, overweight, and obese individuals from the copenhagen general population study
  publication-title: Clin Chem.
– volume: 48
  start-page: 1207
  year: 2005
  end-page: 1215
  article-title: Alterations of lipids and apolipoprotein CIII in very low density lipoprotein subspecies in type 2 diabetes
  publication-title: Diabetologia.
– volume: 12
  start-page: 801
  year: 2018
  end-page: 809
  article-title: Effect of statin therapy on plasma apolipoprotein CIII concentrations: a systematic review and meta‐analysis of randomized controlled trials
  publication-title: J Clin Lipidol.
– volume: 35
  start-page: 1880
  year: 2015
  end-page: 1888
  article-title: Plasma apolipoprotein C‐III levels, triglycerides, and coronary artery calcification in type 2 diabetics
  publication-title: Arterioscler Thromb Vasc Biol.
– volume: 35
  start-page: 1918
  year: 1994
  end-page: 1924
  article-title: Transcriptional regulation of the apoC‐III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels
  publication-title: J Lipid Res.
– volume: 47
  start-page: 1212
  year: 2006
  end-page: 1218
  article-title: Apolipoprotein C‐III isoforms: kinetics and relative implication in lipid metabolism
  publication-title: J Lipid Res.
– volume: 72
  start-page: 156
  year: 2018
  end-page: 169
  article-title: Remnant‐like particle cholesterol, low‐density lipoprotein triglycerides, and incident cardiovascular disease
  publication-title: J Am Coll Cardiol.
– volume: 137
  start-page: 1364
  year: 2018
  end-page: 1373
  article-title: High‐density lipoprotein subspecies defined by presence of apolipoprotein c‐iii and incident coronary heart disease in four cohorts
  publication-title: Circulation.
– volume: 22
  start-page: 1854
  year: 2014
  end-page: 1859
  article-title: Hepatic lipogenesis and a marker of hepatic lipid oxidation, predict postprandial responses of triglyceride‐rich lipoproteins
  publication-title: Obesity (Silver Spring).
– volume: 69
  start-page: 932
  year: 1982
  end-page: 939
  article-title: An abnormal triglyceride‐rich lipoprotein containing excess sialylated apolipoprotein C‐III
  publication-title: J Clin Invest.
– volume: 21
  start-page: 84
  year: 2019
  end-page: 94
  article-title: Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: a single‐centre randomized controlled study
  publication-title: Diabetes Obes Metab.
– volume: 371
  start-page: 32
  year: 2014
  end-page: 41
  article-title: Loss‐of‐function mutations in APOC3 and risk of ischemic vascular disease
  publication-title: N Engl J Med.
– volume: 49
  start-page: 2049
  year: 2006
  end-page: 2057
  article-title: Vildagliptin therapy reduces postprandial intestinal triglyceride‐rich lipoprotein particles in patients with type 2 diabetes
  publication-title: Diabetologia.
– volume: 53
  start-page: 1296
  year: 2004
  end-page: 1304
  article-title: Apolipoprotein C‐III protein concentrations and gene polymorphisms in type 1 diabetes: associations with lipoprotein subclasses
  publication-title: Metabolism.
– volume: 102
  start-page: 1886
  year: 2000
  end-page: 1892
  article-title: VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial
  publication-title: Circulation.
– volume: 274
  start-page: 182
  year: 2018
  end-page: 190
  article-title: Apolipoprotein CIII and N‐terminal prohormone b‐type natriuretic peptide as independent predictors for cardiovascular disease in type 2 diabetes
  publication-title: Atherosclerosis.
– volume: 22
  start-page: 119
  year: 2015
  end-page: 125
  article-title: Apolipoprotein C‐III: a potent modulator of hypertriglyceridemia and cardiovascular disease
  publication-title: Curr Opin Endocrinol Diabetes Obes.
– volume: 78
  start-page: 1287
  year: 1986
  end-page: 1295
  article-title: Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride‐rich lipoproteins by lipoprotein lipase in vivo
  publication-title: J Clin Invest.
– volume: 1483
  start-page: 15
  year: 2000
  end-page: 36
  article-title: Molecular basis of exchangeable apolipoprotein function
  publication-title: Biochim Biophys Acta.
– volume: 109
  start-page: 1295
  year: 2012
  end-page: 1302
  article-title: Epicardial fat, cardiac dimensions, and low‐grade inflammation in young adult monozygotic twins discordant for obesity
  publication-title: Am J Cardiol.
– volume: 23
  start-page: 853
  year: 2003
  end-page: 858
  article-title: LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients
  publication-title: Arterioscler Thromb Vasc Biol.
– volume: 18
  start-page: 59
  year: 2016
  article-title: Why Is apolipoprotein CIII emerging as a novel therapeutic target to reduce the burden of cardiovascular disease?
  publication-title: Curr Atheroscler Rep.
– year: 2018
  article-title: Development of a novel homogeneous assay for remnant lipoprotein particle cholesterol
  publication-title: J Appl Lab Med.
– volume: 114
  start-page: 611
  year: 2008
  end-page: 624
  article-title: Apolipoprotein C‐III: understanding an emerging cardiovascular risk factor
  publication-title: Clin Sci (Lond).
– volume: 85
  start-page: 2867
  year: 2013
  end-page: 2874
  article-title: Relative quantitation of glycoisoforms of intact apolipoprotein C3 in human plasma by liquid chromatography‐high‐resolution mass spectrometry
  publication-title: Anal Chem.
– volume: 10
  start-page: 103
  year: 2015
  end-page: 112
  article-title: Lipoprotein effects of incretin analogs and dipeptidyl peptidase 4 inhibitors
  publication-title: Clin Lipidol.
– volume: 29
  start-page: 171
  year: 2018
  end-page: 179
  article-title: Apolipoprotein C‐III in triglyceride‐rich lipoprotein metabolism
  publication-title: Curr Opin Lipidol.
– volume: 46
  start-page: 375
  year: 1972
  end-page: 382
  article-title: Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein
  publication-title: Biochem Biophys Res Commun.
– volume: 38
  start-page: 660
  year: 2018
  end-page: 668
  article-title: APOC3 loss‐of‐function mutations, remnant cholesterol, low‐density lipoprotein cholesterol, and cardiovascular risk: mediation‐ and meta‐analyses of 137895 individuals
  publication-title: Arterioscler Thromb Vasc Biol.
– volume: 23
  start-page: 206
  year: 2012
  end-page: 212
  article-title: Apolipoprotein C‐III and hepatic triglyceride‐rich lipoprotein production
  publication-title: Curr Opin Lipidol.
– volume: 37
  start-page: 1206
  year: 2017
  end-page: 1212
  article-title: Apolipoprotein C‐III levels and incident coronary artery disease risk: the EPIC‐Norfolk prospective population study
  publication-title: Arterioscler Thromb Vasc Biol.
– volume: 30
  start-page: 239
  year: 2010
  end-page: 245
  article-title: Metabolism of very‐low‐density lipoprotein and low‐density lipoprotein containing apolipoprotein C‐III and not other small apolipoproteins
  publication-title: Arterioscler Thromb Vasc Biol.
– volume: 254
  start-page: 12603
  year: 1979
  end-page: 12608
  article-title: Very low density lipoprotein. Removal of Apolipoproteins C‐II and C‐III‐1 during lipolysis in vitro
  publication-title: J Biol Chem.
– volume: 47
  start-page: 497
  year: 1989
  end-page: 501
  article-title: Presence of Apo B48, and relative Apo CII deficiency and Apo CIII enrichment in uremic very‐low density lipoproteins
  publication-title: Ann Biol Clin (Paris).
– volume: 31
  start-page: 1656
  year: 2008
  end-page: 1661
  article-title: Dose‐dependent effect of rosuvastatin on VLDL‐apolipoprotein C‐III kinetics in the metabolic syndrome
  publication-title: Diabetes Care.
– volume: 36
  start-page: 675
  year: 2015
  end-page: 687
  article-title: Apolipoprotein C‐III: from pathophysiology to pharmacology
  publication-title: Trends Pharmacol Sci.
– volume: 46
  start-page: 58
  year: 2005
  end-page: 67
  article-title: A new combined multicompartmental model for apolipoprotein B‐100 and triglyceride metabolism in VLDL subfractions
  publication-title: J Lipid Res.
– volume: 9
  start-page: 498
  year: 2015
  end-page: 510
  article-title: The risk of cardiovascular events with increased apolipoprotein CIII: a systematic review and meta‐analysis
  publication-title: J Clin Lipidol.
– volume: 126
  start-page: 2855
  year: 2016
  end-page: 2866
  article-title: ApoC‐III inhibits clearance of triglyceride‐rich lipoproteins through LDL family receptors
  publication-title: J Clin Invest.
– volume: 26
  start-page: 56
  year: 2015
  end-page: 63
  article-title: The crucial roles of apolipoproteins E and C‐III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia
  publication-title: Curr Opin Lipidol.
– volume: 155
  start-page: 1280
  year: 2014
  end-page: 1290
  article-title: GLP‐1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody
  publication-title: Endocrinology.
– volume: 24
  start-page: 238
  year: 2011
  end-page: 245
  article-title: Long‐TE 1H MRS suggests that liver fat is more saturated than subcutaneous and visceral fat
  publication-title: NMR Biomed.
– volume: 27
  start-page: 740
  year: 2018
  end-page: 756
  article-title: Mechanisms of action and therapeutic application of glucagon‐like peptide‐1
  publication-title: Cell Metab.
– volume: 52
  start-page: 1067
  year: 2011
  end-page: 1070
  article-title: Complexities of plasma apolipoprotein C‐III metabolism
  publication-title: J Lipid Res.
– ident: e_1_2_8_28_1
  doi: 10.1161/ATVBAHA.110.220723
– ident: e_1_2_8_63_1
  doi: 10.2337/dc08-0358
– ident: e_1_2_8_27_1
  doi: 10.1097/MOL.0b013e328352dc70
– ident: e_1_2_8_52_1
  doi: 10.1097/MOL.0000000000000146
– ident: e_1_2_8_57_1
  doi: 10.1172/JCI110532
– ident: e_1_2_8_56_1
  doi: 10.1016/j.jacl.2018.01.008
– ident: e_1_2_8_50_1
  doi: 10.1042/CS20070308
– ident: e_1_2_8_15_1
  doi: 10.1097/MED.0000000000000136
– ident: e_1_2_8_38_1
  doi: 10.1002/nbm.1580
– ident: e_1_2_8_48_1
  doi: 10.1194/jlr.E015701
– ident: e_1_2_8_3_1
  doi: 10.1161/01.ATV.0000066131.01313.EB
– ident: e_1_2_8_40_1
  doi: 10.1016/j.amjcard.2011.12.023
– ident: e_1_2_8_30_1
  doi: 10.1016/S0022-2275(20)39938-7
– ident: e_1_2_8_36_1
  doi: 10.1111/joim.12632
– ident: e_1_2_8_47_1
  doi: 10.5551/jat.E598
– ident: e_1_2_8_6_1
  doi: 10.1016/j.atherosclerosis.2018.05.014
– ident: e_1_2_8_32_1
  doi: 10.1161/ATVBAHA.115.305415
– ident: e_1_2_8_34_1
  doi: 10.2217/clp.14.59
– ident: e_1_2_8_29_1
  doi: 10.1161/ATVBAHA.108.169383
– ident: e_1_2_8_54_1
  doi: 10.1210/en.2013-1934
– ident: e_1_2_8_18_1
  doi: 10.1016/S0006-291X(72)80149-9
– ident: e_1_2_8_23_1
  doi: 10.1172/JCI86610
– ident: e_1_2_8_5_1
  doi: 10.1161/ATVBAHA.117.310473
– ident: e_1_2_8_10_1
  doi: 10.1161/CIRCRESAHA.111.300367
– ident: e_1_2_8_25_1
  doi: 10.1161/ATVBAHA.115.305614
– ident: e_1_2_8_41_1
  doi: 10.1002/oby.20781
– ident: e_1_2_8_13_1
  doi: 10.1007/s11883-016-0614-1
– ident: e_1_2_8_60_1
  doi: 10.1021/ac3034757
– ident: e_1_2_8_2_1
  doi: 10.1161/01.CIR.102.16.1886
– ident: e_1_2_8_44_1
  doi: 10.1515/cclm-2013-0741
– ident: e_1_2_8_53_1
  doi: 10.1016/j.metabol.2004.05.004
– ident: e_1_2_8_7_1
  doi: 10.1056/NEJMoa1308027
– ident: e_1_2_8_9_1
  doi: 10.2174/0929867324666170609081612
– ident: e_1_2_8_62_1
  doi: 10.1373/clinchem.2017.279463
– ident: e_1_2_8_45_1
  doi: 10.1194/jlr.M011163
– ident: e_1_2_8_4_1
  doi: 10.1161/ATVBAHA.117.309007
– ident: e_1_2_8_33_1
  doi: 10.1111/dom.12133
– ident: e_1_2_8_39_1
  doi: 10.1161/ATVBAHA.111.224808
– ident: e_1_2_8_8_1
  doi: 10.1056/NEJMoa1307095
– ident: e_1_2_8_24_1
  doi: 10.1056/NEJMoa1400284
– ident: e_1_2_8_43_1
  doi: 10.1373/jalm.2017.024919
– ident: e_1_2_8_22_1
  doi: 10.1194/jlr.M078220
– ident: e_1_2_8_14_1
  doi: 10.1016/j.tips.2015.07.001
– ident: e_1_2_8_42_1
  doi: 10.1007/s00125-006-0340-2
– ident: e_1_2_8_16_1
  doi: 10.2337/db09-0206
– ident: e_1_2_8_26_1
  doi: 10.1194/M900346-JLR200
– ident: e_1_2_8_21_1
  doi: 10.1161/ATVBAHA.117.309493
– ident: e_1_2_8_58_1
  doi: 10.1194/jlr.M500455-JLR200
– ident: e_1_2_8_35_1
  doi: 10.1111/dom.13487
– ident: e_1_2_8_46_1
  doi: 10.1007/s00125-005-1753-z
– volume: 47
  start-page: 497
  year: 1989
  ident: e_1_2_8_59_1
  article-title: Presence of Apo B48, and relative Apo CII deficiency and Apo CIII enrichment in uremic very‐low density lipoproteins
  publication-title: Ann Biol Clin (Paris).
– ident: e_1_2_8_61_1
  doi: 10.1016/j.jacc.2018.04.050
– ident: e_1_2_8_11_1
  doi: 10.1016/S1388-1981(99)00176-6
– ident: e_1_2_8_49_1
  doi: 10.1210/jc.2003-032056
– ident: e_1_2_8_17_1
  doi: 10.1161/CIRCULATIONAHA.117.031276
– ident: e_1_2_8_51_1
  doi: 10.1161/ATVBAHA.109.197830
– volume: 254
  start-page: 12603
  year: 1979
  ident: e_1_2_8_19_1
  article-title: Very low density lipoprotein. Removal of Apolipoproteins C‐II and C‐III‐1 during lipolysis in vitro
  publication-title: J Biol Chem.
  doi: 10.1016/S0021-9258(19)86357-3
– ident: e_1_2_8_37_1
  doi: 10.1194/jlr.M400108-JLR200
– ident: e_1_2_8_20_1
  doi: 10.1172/JCI112713
– ident: e_1_2_8_31_1
  doi: 10.1097/MOL.0000000000000502
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jacl.2015.05.002
– ident: e_1_2_8_55_1
  doi: 10.1016/j.cmet.2018.03.001
SSID ssj0004387
Score 2.450438
Snippet Aims To investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride...
To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride...
AimsTo investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride...
- Aims: To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride...
SourceID swepub
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1861
SubjectTerms apolipoprotein C‐III
Apolipoproteins
Body mass index
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Dyslipidemia
Endocrinology and Diabetes
Endokrinologi och diabetes
Glucagon
Homeostasis
kinetics
Leucine
Lipoproteins
Magnetic resonance spectroscopy
Mass spectroscopy
Metabolic disorders
Secretion
stable isotopes
type 2 diabetes
Title Role of apolipoprotein C‐III overproduction in diabetic dyslipidaemia
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.13744
https://www.ncbi.nlm.nih.gov/pubmed/30972934
https://www.proquest.com/docview/2254259488
https://www.proquest.com/docview/2207936558
https://gup.ub.gu.se/publication/281834
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQB8SlvPrYQlFAFeKS1Wbt7K7FqeJRFmmphEDigGT5iVZAEnU3BzjxE_iN_BJm7CQtLUiIWxRPkknGM_5ij78h5PsgYZLyRMaOcRoz17Mx5-kgTo2kxjmnrd8uNjruHZ6xo_P0fIbs1HthAj9EM-GGnuHjNTq4VJO_nNzkN-2E9hlygWKuFgKikz_UUYz64ngQCMDjOWbxLNZZPM2Vz8ei_wBmwx76HLj6kedggVzUOoeEk6t2OVVtffcPneM7X2qRfKgQafQjdKElMmOzZTI3qtbcV8jPk_zaRrmLJBZ0KHLP7DDOot3H-4fhcBhhDmgReGPBxhG0hPncsY7MLaDYYmykvRnLj-TsYP909zCuyi_EGmFSrBMAd45ZZpjqGs5NH9CJ0oaC11Ipk44B9MEcZ0qyrgGtleJdJxOsrmg1DI6fyGyWZ_YLiUxi-kj8Bj2mw7Q1vGN6adoFsGoVBIFBi2zXhhC64ibHEhnXov5HgQ8j_Idpkc1GtAiEHC8JrdXWFJVPTgRELghQHCJWi2w0zeBNuEQiM5uXKIOEgaAbyHwOvaB5CkWmI07h5luhWzQtSNF9WRYCTl2WYmIFUmyh4La39et6ir1fI3_w9e2iq2QeQBsPSYhrZHb6u7TfABhN1br3gCf5SQkY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIubXkUlrYQEEK9ZLVZO7triUvVB7vQLVLVSr0gy_GjWtEmUbs50FN_Ar-RX8KMnQTKQ0LconiSTDKe8Rd7_A3A61HCFROJih0XLOZuYGMh0lGcGsWMc05bv11sejgYn_D3p-npArxt9sIEfoh2wo08w8drcnCakP7Jy01x0U3YkPM7sEQVval-we7RD_Ioznx5PAwF6POC8nhWmzye9tLbo9FvELPlD70NXf3Ys78CnxqtQ8rJ5241z7r6-hdCx_99rVVYrkFptB160QNYsPlDuDutl90fwbuj4txGhYsU1XQoC0_uMMujnW83XyeTSURpoGWgjkUzR9gSpnRnOjJfEMiWM6PsxUw9hpP9veOdcVxXYIg1IaVYJ4jvHLfc8KxvhDBDBCiZNgwdlymV9AwCEO4EzxTvG9Q6y0TfqYQKLFqN4-MaLOZFbp9CZBIzJO437DQ9rq0RPTNI0z7iVZthHBh1YKuxhNQ1PTlVyTiXzW8KfhjpP0wHXrWiZeDk-JPQRmNOWbvllcTghTFKYNDqwMu2GR2KVklUbouKZIgzEHVDmSehG7RPYUR2JBje_E3oF20LsXSfVaXEU2eVvLKSWLZIcMsb--96yt2PU3_w7N9FX8C98fH0QB5MDj-sw33EcCLkJG7A4vyyspuIk-bZc-8O3wF3lg0y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKqFeWkpf20IbqqriktVm7eyuxQkBW7bt0goViUMly_EDrQpJVDaH9sRP4DfyS5ixk1D6kFBvUTxJnNjf-Is9_gbgzSjhiolExY4LFnM3sLEQ6ShOjWLGOaet3y423R_sHfL3R-nRAmw2e2GCPkQ74UbI8P6aAF4a9wvITXHaTdiQ8ztwlw8QLMSIDq61ozjz2fHQEyDkBYXxLDdhPO2lNwejPxhmKx96k7n6oWf8AL42lQ4RJ9-61Tzr6p-_6Tn-51stw_2akkZboQ89hAWbr8DStF50fwTvDooTGxUuUpTRoSy8tMMsj7Yvzy8mk0lEQaBlEI7FRo6wJEzoznRkfiCNLWdG2dOZegyH490v23txnX8h1sSTYp0gu3PccsOzvhHCDJGeZNowhC1TKukZpB_cCZ4p3jdY6ywTfacSSq9oNY6OT2AxL3L7DCKTmCEpv2GX6XFtjeiZQZr2ka3aDL3AqAMbTUNIXYuTU46ME9n8pOCHkf7DdOB1a1oGRY6_Ga02rSlrUJ5JdF3ooQS6rA6st8UIJ1ojUbktKrIhxUCsG9o8Db2gfQojqSPB8OZvQ7doS0ij-7gqJZ46ruSZlaSxRYYbvq3_XU-582nqD57f3vQVLH3eGcuPk_0PL-AeEjgRAhJXYXH-vbJrSJLm2UsPhitm5Avq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+apolipoprotein+C%E2%80%90III+overproduction+in+diabetic+dyslipidaemia&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Adiels%2C+Martin&rft.au=Marja%E2%80%90Riitta+Taskinen&rft.au=Bj%C3%B6rnson%2C+Elias&rft.au=Andersson%2C+Linda&rft.date=2019-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1462-8902&rft.eissn=1463-1326&rft.volume=21&rft.issue=8&rft.spage=1861&rft.epage=1870&rft_id=info:doi/10.1111%2Fdom.13744&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon