Role of apolipoprotein C‐III overproduction in diabetic dyslipidaemia
Aims To investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC‐III, and whether improvement of glycae...
Saved in:
Published in | Diabetes, obesity & metabolism Vol. 21; no. 8; pp. 1861 - 1870 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.08.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1462-8902 1463-1326 1463-1326 |
DOI | 10.1111/dom.13744 |
Cover
Loading…
Abstract | Aims
To investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC‐III, and whether improvement of glycaemic control using the glucagon‐like peptide‐1 analogue liraglutide for 16 weeks modifies apoC‐III dynamics.
Materials and Methods
Postprandial apoC‐III kinetics were assessed after a bolus injection of [5,5,5‐2H3]leucine using ultrasensitive mass spectrometry techniques. We compared apoC‐III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non‐diabetic subjects. Liver fat content, subcutaneous abdominal and intra‐abdominal fat were determined using proton magnetic resonance spectroscopy.
Results
Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC‐III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC‐III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC‐III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC‐III secretion rate was higher in subjects with type 2 diabetes compared with BMI‐matched non‐diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042).
Conclusions
The results reveal that the secretion rate of apoC‐III is associated with elevation of triglyceride‐rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC‐III. |
---|---|
AbstractList | - Aims: To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC-III, and whether improvement of glycaemic control using the glucagon-like peptide-1 analogue liraglutide for 16 weeks modifies apoC-III dynamics. Materials and Methods: Postprandial apoC-III kinetics were assessed after a bolus injection of [5,5,5- 2 H 3 ]leucine using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non-diabetic subjects. Liver fat content, subcutaneous abdominal and intra-abdominal fat were determined using proton magnetic resonance spectroscopy. Results: Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC-III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC-III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC-III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC-III secretion rate was higher in subjects with type 2 diabetes compared with BMI-matched non-diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042). Conclusions: The results reveal that the secretion rate of apoC-III is associated with elevation of triglyceride-rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC-III. © 2019 John Wiley & Sons Ltd To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC-III, and whether improvement of glycaemic control using the glucagon-like peptide-1 analogue liraglutide for 16 weeks modifies apoC-III dynamics.AIMSTo investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC-III, and whether improvement of glycaemic control using the glucagon-like peptide-1 analogue liraglutide for 16 weeks modifies apoC-III dynamics.Postprandial apoC-III kinetics were assessed after a bolus injection of [5,5,5-2 H3 ]leucine using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non-diabetic subjects. Liver fat content, subcutaneous abdominal and intra-abdominal fat were determined using proton magnetic resonance spectroscopy.MATERIALS AND METHODSPostprandial apoC-III kinetics were assessed after a bolus injection of [5,5,5-2 H3 ]leucine using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non-diabetic subjects. Liver fat content, subcutaneous abdominal and intra-abdominal fat were determined using proton magnetic resonance spectroscopy.Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC-III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC-III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC-III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC-III secretion rate was higher in subjects with type 2 diabetes compared with BMI-matched non-diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042).RESULTSImproved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC-III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC-III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC-III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC-III secretion rate was higher in subjects with type 2 diabetes compared with BMI-matched non-diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042).The results reveal that the secretion rate of apoC-III is associated with elevation of triglyceride-rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC-III.CONCLUSIONSThe results reveal that the secretion rate of apoC-III is associated with elevation of triglyceride-rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC-III. To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC-III, and whether improvement of glycaemic control using the glucagon-like peptide-1 analogue liraglutide for 16 weeks modifies apoC-III dynamics. Postprandial apoC-III kinetics were assessed after a bolus injection of [5,5,5- H ]leucine using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non-diabetic subjects. Liver fat content, subcutaneous abdominal and intra-abdominal fat were determined using proton magnetic resonance spectroscopy. Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC-III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC-III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC-III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC-III secretion rate was higher in subjects with type 2 diabetes compared with BMI-matched non-diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042). The results reveal that the secretion rate of apoC-III is associated with elevation of triglyceride-rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC-III. AimsTo investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC‐III, and whether improvement of glycaemic control using the glucagon‐like peptide‐1 analogue liraglutide for 16 weeks modifies apoC‐III dynamics.Materials and MethodsPostprandial apoC‐III kinetics were assessed after a bolus injection of [5,5,5‐2H3]leucine using ultrasensitive mass spectrometry techniques. We compared apoC‐III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non‐diabetic subjects. Liver fat content, subcutaneous abdominal and intra‐abdominal fat were determined using proton magnetic resonance spectroscopy.ResultsImproved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC‐III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC‐III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC‐III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC‐III secretion rate was higher in subjects with type 2 diabetes compared with BMI‐matched non‐diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042).ConclusionsThe results reveal that the secretion rate of apoC‐III is associated with elevation of triglyceride‐rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC‐III. Aims To investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC‐III, and whether improvement of glycaemic control using the glucagon‐like peptide‐1 analogue liraglutide for 16 weeks modifies apoC‐III dynamics. Materials and Methods Postprandial apoC‐III kinetics were assessed after a bolus injection of [5,5,5‐2H3]leucine using ultrasensitive mass spectrometry techniques. We compared apoC‐III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non‐diabetic subjects. Liver fat content, subcutaneous abdominal and intra‐abdominal fat were determined using proton magnetic resonance spectroscopy. Results Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC‐III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC‐III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC‐III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC‐III secretion rate was higher in subjects with type 2 diabetes compared with BMI‐matched non‐diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042). Conclusions The results reveal that the secretion rate of apoC‐III is associated with elevation of triglyceride‐rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC‐III. |
Author | Andersson, Linda Packard, Chris Lundbom, Nina Borén, Jan Adiels, Martin Sihlbom, Carina Söderlund, Sanni Zhou, Haihong Hakkarainen, Antti Thorsell, Annika Pietiläinen, Kirsi H. Kahri, Juhani Matikainen, Niina Taskinen, Marja‐Riitta Björnson, Elias |
Author_xml | – sequence: 1 givenname: Martin surname: Adiels fullname: Adiels, Martin organization: Sahlgrenska University Hospital – sequence: 2 givenname: Marja‐Riitta surname: Taskinen fullname: Taskinen, Marja‐Riitta organization: University of Helsinki – sequence: 3 givenname: Elias surname: Björnson fullname: Björnson, Elias organization: Sahlgrenska University Hospital – sequence: 4 givenname: Linda surname: Andersson fullname: Andersson, Linda organization: Sahlgrenska University Hospital – sequence: 5 givenname: Niina surname: Matikainen fullname: Matikainen, Niina organization: University of Helsinki – sequence: 6 givenname: Sanni surname: Söderlund fullname: Söderlund, Sanni organization: University of Helsinki – sequence: 7 givenname: Juhani surname: Kahri fullname: Kahri, Juhani organization: Helsinki University Hospital – sequence: 8 givenname: Antti surname: Hakkarainen fullname: Hakkarainen, Antti organization: Aalto University School of Science – sequence: 9 givenname: Nina surname: Lundbom fullname: Lundbom, Nina organization: University of Helsinki – sequence: 10 givenname: Carina surname: Sihlbom fullname: Sihlbom, Carina organization: University of Gothenburg – sequence: 11 givenname: Annika surname: Thorsell fullname: Thorsell, Annika organization: University of Gothenburg – sequence: 12 givenname: Haihong surname: Zhou fullname: Zhou, Haihong organization: Merck & Co. Inc – sequence: 13 givenname: Kirsi H. surname: Pietiläinen fullname: Pietiläinen, Kirsi H. organization: University of Helsinki – sequence: 14 givenname: Chris surname: Packard fullname: Packard, Chris organization: University of Glasgow – sequence: 15 givenname: Jan orcidid: 0000-0003-0786-8091 surname: Borén fullname: Borén, Jan email: jan.boren@wlab.gu.se organization: Sahlgrenska University Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30972934$$D View this record in MEDLINE/PubMed https://gup.ub.gu.se/publication/281834$$DView record from Swedish Publication Index |
BookMark | eNp1kU1O5DAQhS0E4n_BBVAkNswi4J_qJF6iZgZaAiEhWFuOXUFGSRziBNQ7jjBn5CS46YYFAm9slb_3VFVvh6y3vkVCDhg9YfGcWt-cMJEDrJFtBplImeDZ-sebp4WkfIvshPBIKQVR5JtkS1CZcylgm1zc-hoTXyW687XrfNf7AV2bTN9e_89ms8Q_Yx9rdjSD820Sf6zTJQ7OJHYeosJZjY3Te2Sj0nXA_dW9S-7__b2bXqZXNxez6dlVaoBnkBrGpKgAwULJrZQ2zzJRGitErGvNqM1BQCWh1MBtnKksJa80yzMp0AATuyRd-oYX7MZSdb1rdD9XXjv1MHYqlh5GFVDxghUCIn-85OMQTyOGQTUuGKxr3aIfg-Kc5lJkk0kR0aNv6KMf-zZOE6kJ8ImEYkEdrqixbNB-NfC50gicLgHT-xB6rJRxg15sb-i1qxWjahGaiqGpj9Ci4s83xafpT-zK_cXVOP8dVOc310vFO2cjpYQ |
CitedBy_id | crossref_primary_10_1038_s41569_022_00676_y crossref_primary_10_3390_lipidology1020009 crossref_primary_10_1097_MOL_0000000000000640 crossref_primary_10_1161_ATVBAHA_122_318290 crossref_primary_10_1093_eurheartj_ehab531 crossref_primary_10_3389_fendo_2020_00252 crossref_primary_10_3390_ijms25105365 crossref_primary_10_1093_eurheartj_ehab551 crossref_primary_10_1097_JP9_0000000000000153 crossref_primary_10_3389_fendo_2020_00474 crossref_primary_10_1007_s40259_022_00520_2 crossref_primary_10_1161_ATVBAHA_123_319765 crossref_primary_10_1016_j_bbapap_2020_140469 crossref_primary_10_3390_cells10040850 crossref_primary_10_1111_jdi_14056 crossref_primary_10_1111_dom_14174 crossref_primary_10_3390_ijms241713540 crossref_primary_10_1007_s13300_024_01626_2 crossref_primary_10_1016_j_cytogfr_2020_08_003 crossref_primary_10_1097_MOL_0000000000000795 crossref_primary_10_1161_ATVBAHA_120_315446 crossref_primary_10_1172_jci_insight_160607 crossref_primary_10_3390_nu11091987 crossref_primary_10_1172_jci_insight_177268 crossref_primary_10_4102_ajlm_v12i1_2018 crossref_primary_10_1016_j_jacasi_2024_07_011 crossref_primary_10_1093_cvr_cvad177 crossref_primary_10_1111_dom_14328 crossref_primary_10_1016_j_ahjo_2022_100128 crossref_primary_10_1080_14779072_2020_1768848 crossref_primary_10_3389_fendo_2020_593931 crossref_primary_10_1016_j_metabol_2021_154887 crossref_primary_10_1016_j_jacc_2021_08_051 crossref_primary_10_1016_j_jacl_2019_12_003 crossref_primary_10_1016_j_atherosclerosis_2024_117545 crossref_primary_10_1186_s12986_020_00488_2 crossref_primary_10_1007_s00125_023_06008_0 crossref_primary_10_1016_j_jlr_2023_100475 crossref_primary_10_3390_ijms252312759 crossref_primary_10_1172_JCI131333 crossref_primary_10_1111_apha_13916 |
Cites_doi | 10.1161/ATVBAHA.110.220723 10.2337/dc08-0358 10.1097/MOL.0b013e328352dc70 10.1097/MOL.0000000000000146 10.1172/JCI110532 10.1016/j.jacl.2018.01.008 10.1042/CS20070308 10.1097/MED.0000000000000136 10.1002/nbm.1580 10.1194/jlr.E015701 10.1161/01.ATV.0000066131.01313.EB 10.1016/j.amjcard.2011.12.023 10.1016/S0022-2275(20)39938-7 10.1111/joim.12632 10.5551/jat.E598 10.1016/j.atherosclerosis.2018.05.014 10.1161/ATVBAHA.115.305415 10.2217/clp.14.59 10.1161/ATVBAHA.108.169383 10.1210/en.2013-1934 10.1016/S0006-291X(72)80149-9 10.1172/JCI86610 10.1161/ATVBAHA.117.310473 10.1161/CIRCRESAHA.111.300367 10.1161/ATVBAHA.115.305614 10.1002/oby.20781 10.1007/s11883-016-0614-1 10.1021/ac3034757 10.1161/01.CIR.102.16.1886 10.1515/cclm-2013-0741 10.1016/j.metabol.2004.05.004 10.1056/NEJMoa1308027 10.2174/0929867324666170609081612 10.1373/clinchem.2017.279463 10.1194/jlr.M011163 10.1161/ATVBAHA.117.309007 10.1111/dom.12133 10.1161/ATVBAHA.111.224808 10.1056/NEJMoa1307095 10.1056/NEJMoa1400284 10.1373/jalm.2017.024919 10.1194/jlr.M078220 10.1016/j.tips.2015.07.001 10.1007/s00125-006-0340-2 10.2337/db09-0206 10.1194/M900346-JLR200 10.1161/ATVBAHA.117.309493 10.1194/jlr.M500455-JLR200 10.1111/dom.13487 10.1007/s00125-005-1753-z 10.1016/j.jacc.2018.04.050 10.1016/S1388-1981(99)00176-6 10.1210/jc.2003-032056 10.1161/CIRCULATIONAHA.117.031276 10.1161/ATVBAHA.109.197830 10.1016/S0021-9258(19)86357-3 10.1194/jlr.M400108-JLR200 10.1172/JCI112713 10.1097/MOL.0000000000000502 10.1016/j.jacl.2015.05.002 10.1016/j.cmet.2018.03.001 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons Ltd 2019 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons Ltd – notice: 2019 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM 7T5 7TK H94 K9. 7X8 ADTPV AOWAS F1U |
DOI | 10.1111/dom.13744 |
DatabaseName | CrossRef PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic SwePub SwePub Articles SWEPUB Göteborgs universitet |
DatabaseTitle | CrossRef PubMed AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1463-1326 |
EndPage | 1870 |
ExternalDocumentID | oai_gup_ub_gu_se_281834 30972934 10_1111_dom_13744 DOM13744 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Swedish Foundation for Strategic Research – fundername: Swedish Heart‐Lung Foundation – fundername: Helsinki University Hospital Research funds – fundername: Academy of Finland funderid: 314383; 272376; 266286 – fundername: Swedish Diabetes Foundation – fundername: Finnish Diabetes Research Foundation – fundername: Sahlgrenska University Hospital – fundername: Swedish Research Council – fundername: Finnish Medical Foundation – fundername: Novo Nordisk Foundation |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29F 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7T5 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY H94 K9. 7X8 ADTPV AOWAS F1U |
ID | FETCH-LOGICAL-c4264-c1193f4e4d4b2d99d7663bcd33193aa10d7434f94ba42d137bb92fa17693ec413 |
IEDL.DBID | DR2 |
ISSN | 1462-8902 1463-1326 |
IngestDate | Thu Aug 21 07:04:33 EDT 2025 Fri Jul 11 15:08:22 EDT 2025 Fri Jul 25 22:25:08 EDT 2025 Wed Feb 19 02:31:06 EST 2025 Thu Apr 24 22:57:21 EDT 2025 Tue Jul 01 01:03:08 EDT 2025 Wed Jan 22 16:41:14 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | stable isotopes type 2 diabetes apolipoprotein C-III kinetics lipoproteins |
Language | English |
License | 2019 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4264-c1193f4e4d4b2d99d7663bcd33193aa10d7434f94ba42d137bb92fa17693ec413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0003-0786-8091 |
OpenAccessLink | http://hdl.handle.net/10138/312925 |
PMID | 30972934 |
PQID | 2254259488 |
PQPubID | 1006516 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_gup_ub_gu_se_281834 proquest_miscellaneous_2207936558 proquest_journals_2254259488 pubmed_primary_30972934 crossref_citationtrail_10_1111_dom_13744 crossref_primary_10_1111_dom_13744 wiley_primary_10_1111_dom_13744_DOM13744 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Diabetes, obesity & metabolism |
PublicationTitleAlternate | Diabetes Obes Metab |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | 2015; 35 2015; 36 1986; 78 2011; 52 2014; 371 2008; 31 1972; 46 1989; 47 2014; 22 2009; 58 1982; 69 2013; 15 2017; 37 2019; 21 2018; 137 2008; 28 2013; 112 1994; 35 2017; 282 2011; 24 2008; 114 2018; 72 2014; 52 2012; 23 2018; 38 2009; 16 2010; 30 2018; 29 2004; 89 2015; 10 2013; 85 2011; 31 2016; 126 2016; 18 2005; 48 2015; 9 2014; 155 2018; 64 2018; 27 2018; 25 2005; 46 2012; 109 2018; 274 2015; 26 2004; 53 1979; 254 2000; 102 2017; 58 2006; 49 2015; 22 2006; 47 2018 2018; 12 2000; 1483 2010; 51 2003; 23 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 Atger V (e_1_2_8_59_1) 1989; 47 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 Eisenberg S (e_1_2_8_19_1) 1979; 254 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 28 start-page: 1660 year: 2008 end-page: 1665 article-title: Triglyceride‐rich lipoprotein‐associated apolipoprotein C‐III production is stimulated by plasma free fatty acids in humans publication-title: Arterioscler Thromb Vasc Biol. – volume: 52 start-page: 794 year: 2011 end-page: 800 article-title: Plasma apolipoprotein C‐III metabolism in patients with chronic kidney disease publication-title: J Lipid Res. – volume: 16 start-page: 145 year: 2009 end-page: 154 article-title: Remnant lipoproteins as strong key particles to atherogenesis publication-title: J Atheroscler Thromb. – volume: 51 start-page: 150 year: 2010 end-page: 161 article-title: Expression of apolipoprotein C‐III in McA‐RH7777 cells enhances VLDL assembly and secretion under lipid‐rich conditions publication-title: J Lipid Res. – volume: 371 start-page: 22 year: 2014 end-page: 31 article-title: Lung, and Blood Institute. Loss‐of‐function mutations in , triglycerides, and coronary disease publication-title: N Engl J Med. – volume: 282 start-page: 187 year: 2017 end-page: 201 article-title: Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity publication-title: J Intern Med. – volume: 89 start-page: 3949 year: 2004 end-page: 3955 article-title: Rate of production of plasma and very‐low‐density lipoprotein (VLDL) apolipoprotein C‐III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity publication-title: J Clin Endocrinol Metab. – volume: 35 start-page: 2218 year: 2015 end-page: 2224 article-title: Kinetic and related determinants of plasma triglyceride concentration in abdominal obesity: multicenter tracer kinetic study publication-title: Arterioscler Thromb Vasc Biol. – volume: 37 start-page: 1013 year: 2017 end-page: 1014 article-title: Apolipoprotein C‐III: the small protein with sizeable vascular risk publication-title: Arterioscler Thromb Vasc Biol. – volume: 15 start-page: 1040 year: 2013 end-page: 1048 article-title: Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat‐rich meal in patients with type 2 diabetes: a randomized, double‐blind, placebo‐controlled, cross‐over trial publication-title: Diabetes Obes Metab. – volume: 25 start-page: 1567 year: 2018 end-page: 1576 article-title: APOC‐III antisense oligonucleotides: a new option for the treatment of hypertriglyceridemia publication-title: Curr Med Chem. – volume: 112 start-page: 1479 year: 2013 end-page: 1490 article-title: Antisense oligonucleotide inhibition of apolipoprotein C‐III reduces plasma triglycerides in rodents, nonhuman primates, and humans publication-title: Circ Res. – volume: 58 start-page: 2018 year: 2009 end-page: 2026 article-title: ApoCIII‐enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan publication-title: Diabetes. – volume: 58 start-page: 1893 year: 2017 end-page: 1902 article-title: Apolipoprotein C‐III inhibits triglyceride hydrolysis by GPIHBP1‐bound LPL publication-title: J Lipid Res. – volume: 31 start-page: 2144 year: 2011 end-page: 2150 article-title: Dual metabolic defects are required to produce hypertriglyceridemia in obese subjects publication-title: Arterioscler Thromb Vasc Biol. – volume: 31 start-page: 513 year: 2011 end-page: 519 article-title: Transcriptional activation of apolipoprotein CIII expression by glucose may contribute to diabetic dyslipidemia publication-title: Arterioscler Thromb Vasc Biol. – volume: 52 start-page: 815 year: 2014 end-page: 824 article-title: The revised Lund‐Malmo GFR estimating equation outperforms MDRD and CKD‐EPI across GFR, age and BMI intervals in a large Swedish population publication-title: Clin Chem Lab Med. – volume: 371 start-page: 2200 year: 2014 end-page: 2206 article-title: Targeting APOC3 in the familial chylomicronemia syndrome publication-title: N Engl J Med. – volume: 64 start-page: 219 year: 2018 end-page: 230 article-title: Remnant cholesterol and myocardial infarction in normal weight, overweight, and obese individuals from the copenhagen general population study publication-title: Clin Chem. – volume: 48 start-page: 1207 year: 2005 end-page: 1215 article-title: Alterations of lipids and apolipoprotein CIII in very low density lipoprotein subspecies in type 2 diabetes publication-title: Diabetologia. – volume: 12 start-page: 801 year: 2018 end-page: 809 article-title: Effect of statin therapy on plasma apolipoprotein CIII concentrations: a systematic review and meta‐analysis of randomized controlled trials publication-title: J Clin Lipidol. – volume: 35 start-page: 1880 year: 2015 end-page: 1888 article-title: Plasma apolipoprotein C‐III levels, triglycerides, and coronary artery calcification in type 2 diabetics publication-title: Arterioscler Thromb Vasc Biol. – volume: 35 start-page: 1918 year: 1994 end-page: 1924 article-title: Transcriptional regulation of the apoC‐III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels publication-title: J Lipid Res. – volume: 47 start-page: 1212 year: 2006 end-page: 1218 article-title: Apolipoprotein C‐III isoforms: kinetics and relative implication in lipid metabolism publication-title: J Lipid Res. – volume: 72 start-page: 156 year: 2018 end-page: 169 article-title: Remnant‐like particle cholesterol, low‐density lipoprotein triglycerides, and incident cardiovascular disease publication-title: J Am Coll Cardiol. – volume: 137 start-page: 1364 year: 2018 end-page: 1373 article-title: High‐density lipoprotein subspecies defined by presence of apolipoprotein c‐iii and incident coronary heart disease in four cohorts publication-title: Circulation. – volume: 22 start-page: 1854 year: 2014 end-page: 1859 article-title: Hepatic lipogenesis and a marker of hepatic lipid oxidation, predict postprandial responses of triglyceride‐rich lipoproteins publication-title: Obesity (Silver Spring). – volume: 69 start-page: 932 year: 1982 end-page: 939 article-title: An abnormal triglyceride‐rich lipoprotein containing excess sialylated apolipoprotein C‐III publication-title: J Clin Invest. – volume: 21 start-page: 84 year: 2019 end-page: 94 article-title: Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: a single‐centre randomized controlled study publication-title: Diabetes Obes Metab. – volume: 371 start-page: 32 year: 2014 end-page: 41 article-title: Loss‐of‐function mutations in APOC3 and risk of ischemic vascular disease publication-title: N Engl J Med. – volume: 49 start-page: 2049 year: 2006 end-page: 2057 article-title: Vildagliptin therapy reduces postprandial intestinal triglyceride‐rich lipoprotein particles in patients with type 2 diabetes publication-title: Diabetologia. – volume: 53 start-page: 1296 year: 2004 end-page: 1304 article-title: Apolipoprotein C‐III protein concentrations and gene polymorphisms in type 1 diabetes: associations with lipoprotein subclasses publication-title: Metabolism. – volume: 102 start-page: 1886 year: 2000 end-page: 1892 article-title: VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial publication-title: Circulation. – volume: 274 start-page: 182 year: 2018 end-page: 190 article-title: Apolipoprotein CIII and N‐terminal prohormone b‐type natriuretic peptide as independent predictors for cardiovascular disease in type 2 diabetes publication-title: Atherosclerosis. – volume: 22 start-page: 119 year: 2015 end-page: 125 article-title: Apolipoprotein C‐III: a potent modulator of hypertriglyceridemia and cardiovascular disease publication-title: Curr Opin Endocrinol Diabetes Obes. – volume: 78 start-page: 1287 year: 1986 end-page: 1295 article-title: Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride‐rich lipoproteins by lipoprotein lipase in vivo publication-title: J Clin Invest. – volume: 1483 start-page: 15 year: 2000 end-page: 36 article-title: Molecular basis of exchangeable apolipoprotein function publication-title: Biochim Biophys Acta. – volume: 109 start-page: 1295 year: 2012 end-page: 1302 article-title: Epicardial fat, cardiac dimensions, and low‐grade inflammation in young adult monozygotic twins discordant for obesity publication-title: Am J Cardiol. – volume: 23 start-page: 853 year: 2003 end-page: 858 article-title: LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients publication-title: Arterioscler Thromb Vasc Biol. – volume: 18 start-page: 59 year: 2016 article-title: Why Is apolipoprotein CIII emerging as a novel therapeutic target to reduce the burden of cardiovascular disease? publication-title: Curr Atheroscler Rep. – year: 2018 article-title: Development of a novel homogeneous assay for remnant lipoprotein particle cholesterol publication-title: J Appl Lab Med. – volume: 114 start-page: 611 year: 2008 end-page: 624 article-title: Apolipoprotein C‐III: understanding an emerging cardiovascular risk factor publication-title: Clin Sci (Lond). – volume: 85 start-page: 2867 year: 2013 end-page: 2874 article-title: Relative quantitation of glycoisoforms of intact apolipoprotein C3 in human plasma by liquid chromatography‐high‐resolution mass spectrometry publication-title: Anal Chem. – volume: 10 start-page: 103 year: 2015 end-page: 112 article-title: Lipoprotein effects of incretin analogs and dipeptidyl peptidase 4 inhibitors publication-title: Clin Lipidol. – volume: 29 start-page: 171 year: 2018 end-page: 179 article-title: Apolipoprotein C‐III in triglyceride‐rich lipoprotein metabolism publication-title: Curr Opin Lipidol. – volume: 46 start-page: 375 year: 1972 end-page: 382 article-title: Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein publication-title: Biochem Biophys Res Commun. – volume: 38 start-page: 660 year: 2018 end-page: 668 article-title: APOC3 loss‐of‐function mutations, remnant cholesterol, low‐density lipoprotein cholesterol, and cardiovascular risk: mediation‐ and meta‐analyses of 137895 individuals publication-title: Arterioscler Thromb Vasc Biol. – volume: 23 start-page: 206 year: 2012 end-page: 212 article-title: Apolipoprotein C‐III and hepatic triglyceride‐rich lipoprotein production publication-title: Curr Opin Lipidol. – volume: 37 start-page: 1206 year: 2017 end-page: 1212 article-title: Apolipoprotein C‐III levels and incident coronary artery disease risk: the EPIC‐Norfolk prospective population study publication-title: Arterioscler Thromb Vasc Biol. – volume: 30 start-page: 239 year: 2010 end-page: 245 article-title: Metabolism of very‐low‐density lipoprotein and low‐density lipoprotein containing apolipoprotein C‐III and not other small apolipoproteins publication-title: Arterioscler Thromb Vasc Biol. – volume: 254 start-page: 12603 year: 1979 end-page: 12608 article-title: Very low density lipoprotein. Removal of Apolipoproteins C‐II and C‐III‐1 during lipolysis in vitro publication-title: J Biol Chem. – volume: 47 start-page: 497 year: 1989 end-page: 501 article-title: Presence of Apo B48, and relative Apo CII deficiency and Apo CIII enrichment in uremic very‐low density lipoproteins publication-title: Ann Biol Clin (Paris). – volume: 31 start-page: 1656 year: 2008 end-page: 1661 article-title: Dose‐dependent effect of rosuvastatin on VLDL‐apolipoprotein C‐III kinetics in the metabolic syndrome publication-title: Diabetes Care. – volume: 36 start-page: 675 year: 2015 end-page: 687 article-title: Apolipoprotein C‐III: from pathophysiology to pharmacology publication-title: Trends Pharmacol Sci. – volume: 46 start-page: 58 year: 2005 end-page: 67 article-title: A new combined multicompartmental model for apolipoprotein B‐100 and triglyceride metabolism in VLDL subfractions publication-title: J Lipid Res. – volume: 9 start-page: 498 year: 2015 end-page: 510 article-title: The risk of cardiovascular events with increased apolipoprotein CIII: a systematic review and meta‐analysis publication-title: J Clin Lipidol. – volume: 126 start-page: 2855 year: 2016 end-page: 2866 article-title: ApoC‐III inhibits clearance of triglyceride‐rich lipoproteins through LDL family receptors publication-title: J Clin Invest. – volume: 26 start-page: 56 year: 2015 end-page: 63 article-title: The crucial roles of apolipoproteins E and C‐III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia publication-title: Curr Opin Lipidol. – volume: 155 start-page: 1280 year: 2014 end-page: 1290 article-title: GLP‐1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody publication-title: Endocrinology. – volume: 24 start-page: 238 year: 2011 end-page: 245 article-title: Long‐TE 1H MRS suggests that liver fat is more saturated than subcutaneous and visceral fat publication-title: NMR Biomed. – volume: 27 start-page: 740 year: 2018 end-page: 756 article-title: Mechanisms of action and therapeutic application of glucagon‐like peptide‐1 publication-title: Cell Metab. – volume: 52 start-page: 1067 year: 2011 end-page: 1070 article-title: Complexities of plasma apolipoprotein C‐III metabolism publication-title: J Lipid Res. – ident: e_1_2_8_28_1 doi: 10.1161/ATVBAHA.110.220723 – ident: e_1_2_8_63_1 doi: 10.2337/dc08-0358 – ident: e_1_2_8_27_1 doi: 10.1097/MOL.0b013e328352dc70 – ident: e_1_2_8_52_1 doi: 10.1097/MOL.0000000000000146 – ident: e_1_2_8_57_1 doi: 10.1172/JCI110532 – ident: e_1_2_8_56_1 doi: 10.1016/j.jacl.2018.01.008 – ident: e_1_2_8_50_1 doi: 10.1042/CS20070308 – ident: e_1_2_8_15_1 doi: 10.1097/MED.0000000000000136 – ident: e_1_2_8_38_1 doi: 10.1002/nbm.1580 – ident: e_1_2_8_48_1 doi: 10.1194/jlr.E015701 – ident: e_1_2_8_3_1 doi: 10.1161/01.ATV.0000066131.01313.EB – ident: e_1_2_8_40_1 doi: 10.1016/j.amjcard.2011.12.023 – ident: e_1_2_8_30_1 doi: 10.1016/S0022-2275(20)39938-7 – ident: e_1_2_8_36_1 doi: 10.1111/joim.12632 – ident: e_1_2_8_47_1 doi: 10.5551/jat.E598 – ident: e_1_2_8_6_1 doi: 10.1016/j.atherosclerosis.2018.05.014 – ident: e_1_2_8_32_1 doi: 10.1161/ATVBAHA.115.305415 – ident: e_1_2_8_34_1 doi: 10.2217/clp.14.59 – ident: e_1_2_8_29_1 doi: 10.1161/ATVBAHA.108.169383 – ident: e_1_2_8_54_1 doi: 10.1210/en.2013-1934 – ident: e_1_2_8_18_1 doi: 10.1016/S0006-291X(72)80149-9 – ident: e_1_2_8_23_1 doi: 10.1172/JCI86610 – ident: e_1_2_8_5_1 doi: 10.1161/ATVBAHA.117.310473 – ident: e_1_2_8_10_1 doi: 10.1161/CIRCRESAHA.111.300367 – ident: e_1_2_8_25_1 doi: 10.1161/ATVBAHA.115.305614 – ident: e_1_2_8_41_1 doi: 10.1002/oby.20781 – ident: e_1_2_8_13_1 doi: 10.1007/s11883-016-0614-1 – ident: e_1_2_8_60_1 doi: 10.1021/ac3034757 – ident: e_1_2_8_2_1 doi: 10.1161/01.CIR.102.16.1886 – ident: e_1_2_8_44_1 doi: 10.1515/cclm-2013-0741 – ident: e_1_2_8_53_1 doi: 10.1016/j.metabol.2004.05.004 – ident: e_1_2_8_7_1 doi: 10.1056/NEJMoa1308027 – ident: e_1_2_8_9_1 doi: 10.2174/0929867324666170609081612 – ident: e_1_2_8_62_1 doi: 10.1373/clinchem.2017.279463 – ident: e_1_2_8_45_1 doi: 10.1194/jlr.M011163 – ident: e_1_2_8_4_1 doi: 10.1161/ATVBAHA.117.309007 – ident: e_1_2_8_33_1 doi: 10.1111/dom.12133 – ident: e_1_2_8_39_1 doi: 10.1161/ATVBAHA.111.224808 – ident: e_1_2_8_8_1 doi: 10.1056/NEJMoa1307095 – ident: e_1_2_8_24_1 doi: 10.1056/NEJMoa1400284 – ident: e_1_2_8_43_1 doi: 10.1373/jalm.2017.024919 – ident: e_1_2_8_22_1 doi: 10.1194/jlr.M078220 – ident: e_1_2_8_14_1 doi: 10.1016/j.tips.2015.07.001 – ident: e_1_2_8_42_1 doi: 10.1007/s00125-006-0340-2 – ident: e_1_2_8_16_1 doi: 10.2337/db09-0206 – ident: e_1_2_8_26_1 doi: 10.1194/M900346-JLR200 – ident: e_1_2_8_21_1 doi: 10.1161/ATVBAHA.117.309493 – ident: e_1_2_8_58_1 doi: 10.1194/jlr.M500455-JLR200 – ident: e_1_2_8_35_1 doi: 10.1111/dom.13487 – ident: e_1_2_8_46_1 doi: 10.1007/s00125-005-1753-z – volume: 47 start-page: 497 year: 1989 ident: e_1_2_8_59_1 article-title: Presence of Apo B48, and relative Apo CII deficiency and Apo CIII enrichment in uremic very‐low density lipoproteins publication-title: Ann Biol Clin (Paris). – ident: e_1_2_8_61_1 doi: 10.1016/j.jacc.2018.04.050 – ident: e_1_2_8_11_1 doi: 10.1016/S1388-1981(99)00176-6 – ident: e_1_2_8_49_1 doi: 10.1210/jc.2003-032056 – ident: e_1_2_8_17_1 doi: 10.1161/CIRCULATIONAHA.117.031276 – ident: e_1_2_8_51_1 doi: 10.1161/ATVBAHA.109.197830 – volume: 254 start-page: 12603 year: 1979 ident: e_1_2_8_19_1 article-title: Very low density lipoprotein. Removal of Apolipoproteins C‐II and C‐III‐1 during lipolysis in vitro publication-title: J Biol Chem. doi: 10.1016/S0021-9258(19)86357-3 – ident: e_1_2_8_37_1 doi: 10.1194/jlr.M400108-JLR200 – ident: e_1_2_8_20_1 doi: 10.1172/JCI112713 – ident: e_1_2_8_31_1 doi: 10.1097/MOL.0000000000000502 – ident: e_1_2_8_12_1 doi: 10.1016/j.jacl.2015.05.002 – ident: e_1_2_8_55_1 doi: 10.1016/j.cmet.2018.03.001 |
SSID | ssj0004387 |
Score | 2.450438 |
Snippet | Aims
To investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride... To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride... AimsTo investigate how apolipoprotein C‐III (apoC‐III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride... - Aims: To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride... |
SourceID | swepub proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1861 |
SubjectTerms | apolipoprotein C‐III Apolipoproteins Body mass index Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Dyslipidemia Endocrinology and Diabetes Endokrinologi och diabetes Glucagon Homeostasis kinetics Leucine Lipoproteins Magnetic resonance spectroscopy Mass spectroscopy Metabolic disorders Secretion stable isotopes type 2 diabetes |
Title | Role of apolipoprotein C‐III overproduction in diabetic dyslipidaemia |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.13744 https://www.ncbi.nlm.nih.gov/pubmed/30972934 https://www.proquest.com/docview/2254259488 https://www.proquest.com/docview/2207936558 https://gup.ub.gu.se/publication/281834 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQB8SlvPrYQlFAFeKS1Wbt7K7FqeJRFmmphEDigGT5iVZAEnU3BzjxE_iN_BJm7CQtLUiIWxRPkknGM_5ij78h5PsgYZLyRMaOcRoz17Mx5-kgTo2kxjmnrd8uNjruHZ6xo_P0fIbs1HthAj9EM-GGnuHjNTq4VJO_nNzkN-2E9hlygWKuFgKikz_UUYz64ngQCMDjOWbxLNZZPM2Vz8ei_wBmwx76HLj6kedggVzUOoeEk6t2OVVtffcPneM7X2qRfKgQafQjdKElMmOzZTI3qtbcV8jPk_zaRrmLJBZ0KHLP7DDOot3H-4fhcBhhDmgReGPBxhG0hPncsY7MLaDYYmykvRnLj-TsYP909zCuyi_EGmFSrBMAd45ZZpjqGs5NH9CJ0oaC11Ipk44B9MEcZ0qyrgGtleJdJxOsrmg1DI6fyGyWZ_YLiUxi-kj8Bj2mw7Q1vGN6adoFsGoVBIFBi2zXhhC64ibHEhnXov5HgQ8j_Idpkc1GtAiEHC8JrdXWFJVPTgRELghQHCJWi2w0zeBNuEQiM5uXKIOEgaAbyHwOvaB5CkWmI07h5luhWzQtSNF9WRYCTl2WYmIFUmyh4La39et6ir1fI3_w9e2iq2QeQBsPSYhrZHb6u7TfABhN1br3gCf5SQkY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIubXkUlrYQEEK9ZLVZO7triUvVB7vQLVLVSr0gy_GjWtEmUbs50FN_Ar-RX8KMnQTKQ0LconiSTDKe8Rd7_A3A61HCFROJih0XLOZuYGMh0lGcGsWMc05bv11sejgYn_D3p-npArxt9sIEfoh2wo08w8drcnCakP7Jy01x0U3YkPM7sEQVval-we7RD_Ioznx5PAwF6POC8nhWmzye9tLbo9FvELPlD70NXf3Ys78CnxqtQ8rJ5241z7r6-hdCx_99rVVYrkFptB160QNYsPlDuDutl90fwbuj4txGhYsU1XQoC0_uMMujnW83XyeTSURpoGWgjkUzR9gSpnRnOjJfEMiWM6PsxUw9hpP9veOdcVxXYIg1IaVYJ4jvHLfc8KxvhDBDBCiZNgwdlymV9AwCEO4EzxTvG9Q6y0TfqYQKLFqN4-MaLOZFbp9CZBIzJO437DQ9rq0RPTNI0z7iVZthHBh1YKuxhNQ1PTlVyTiXzW8KfhjpP0wHXrWiZeDk-JPQRmNOWbvllcTghTFKYNDqwMu2GR2KVklUbouKZIgzEHVDmSehG7RPYUR2JBje_E3oF20LsXSfVaXEU2eVvLKSWLZIcMsb--96yt2PU3_w7N9FX8C98fH0QB5MDj-sw33EcCLkJG7A4vyyspuIk-bZc-8O3wF3lg0y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKqFeWkpf20IbqqriktVm7eyuxQkBW7bt0goViUMly_EDrQpJVDaH9sRP4DfyS5ixk1D6kFBvUTxJnNjf-Is9_gbgzSjhiolExY4LFnM3sLEQ6ShOjWLGOaet3y423R_sHfL3R-nRAmw2e2GCPkQ74UbI8P6aAF4a9wvITXHaTdiQ8ztwlw8QLMSIDq61ozjz2fHQEyDkBYXxLDdhPO2lNwejPxhmKx96k7n6oWf8AL42lQ4RJ9-61Tzr6p-_6Tn-51stw_2akkZboQ89hAWbr8DStF50fwTvDooTGxUuUpTRoSy8tMMsj7Yvzy8mk0lEQaBlEI7FRo6wJEzoznRkfiCNLWdG2dOZegyH490v23txnX8h1sSTYp0gu3PccsOzvhHCDJGeZNowhC1TKukZpB_cCZ4p3jdY6ywTfacSSq9oNY6OT2AxL3L7DCKTmCEpv2GX6XFtjeiZQZr2ka3aDL3AqAMbTUNIXYuTU46ME9n8pOCHkf7DdOB1a1oGRY6_Ga02rSlrUJ5JdF3ooQS6rA6st8UIJ1ojUbktKrIhxUCsG9o8Db2gfQojqSPB8OZvQ7doS0ij-7gqJZ46ruSZlaSxRYYbvq3_XU-582nqD57f3vQVLH3eGcuPk_0PL-AeEjgRAhJXYXH-vbJrSJLm2UsPhitm5Avq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+apolipoprotein+C%E2%80%90III+overproduction+in+diabetic+dyslipidaemia&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Adiels%2C+Martin&rft.au=Marja%E2%80%90Riitta+Taskinen&rft.au=Bj%C3%B6rnson%2C+Elias&rft.au=Andersson%2C+Linda&rft.date=2019-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1462-8902&rft.eissn=1463-1326&rft.volume=21&rft.issue=8&rft.spage=1861&rft.epage=1870&rft_id=info:doi/10.1111%2Fdom.13744&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon |