Organometal Halide Perovskite Quantum Dot Light-Emitting Diodes

Organometal halide perovskites quantum dots (OHP‐QDs) with bright, color‐tunable, and narrow‐band photoluminescence have significant advantages in display, lighting, and laser applications. Due to sparse concentrations and difficulties in the enrichment of OHP‐QDs, production of large‐area uniform f...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 26; no. 26; pp. 4797 - 4802
Main Authors Deng, Wei, Xu, Xiuzhen, Zhang, Xiujuan, Zhang, Yedong, Jin, Xiangcheng, Wang, Liang, Lee, Shuit-Tong, Jie, Jiansheng
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 12.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organometal halide perovskites quantum dots (OHP‐QDs) with bright, color‐tunable, and narrow‐band photoluminescence have significant advantages in display, lighting, and laser applications. Due to sparse concentrations and difficulties in the enrichment of OHP‐QDs, production of large‐area uniform films of OHP‐QDs is a challenging task, which largely impedes their use in electroluminescence devices. Here, a simple dip‐coating method has been reported to effectively fabricate large‐area uniform films of OHP‐QDs. Using this technique, multicolor OHP‐QDs light‐emitting diodes (OQ‐LEDs) emitting in blue, blue‐green, green, orange, and red color have been successfully produced by simply tuning the halide composition or size of QDs. The blue, green, and red OQ‐LEDs exhibited, respectively, a maximum luminance of 2673, 2398, and 986 cd m−2 at a current efficiency of 4.01, 3.72, and 1.52 cd A−1, and an external quantum efficiency of 1.38%, 1.06%, and 0.53%, which are much better than most LEDs based on OHP films. The packaged OQ‐LEDs show long‐term stability in air (humidity ≈50%) for at least 7 d. The results demonstrate the great potential of the dip‐coating method to fabricate large‐area uniform films for various QDs. The high‐efficiency OQ‐LEDs also demonstrate the promising potential of OHP‐QDs for low‐cost display, lighting, and optical communication applications. Organometal halide perovskite quantum dot (OHP‐QDs)‐based light‐emitting diodes (LEDs) are developed using a simple dip‐coating method. The OHP‐QDs‐based LEDs show multicolor emission from blue, green to red by tuning the composition or size of the OHP‐QDs. The packaged devices also exhibit robust stability under continuous bias in air for at least 7 d.
AbstractList Organometal halide perovskites quantum dots (OHP‐QDs) with bright, color‐tunable, and narrow‐band photoluminescence have significant advantages in display, lighting, and laser applications. Due to sparse concentrations and difficulties in the enrichment of OHP‐QDs, production of large‐area uniform films of OHP‐QDs is a challenging task, which largely impedes their use in electroluminescence devices. Here, a simple dip‐coating method has been reported to effectively fabricate large‐area uniform films of OHP‐QDs. Using this technique, multicolor OHP‐QDs light‐emitting diodes (OQ‐LEDs) emitting in blue, blue‐green, green, orange, and red color have been successfully produced by simply tuning the halide composition or size of QDs. The blue, green, and red OQ‐LEDs exhibited, respectively, a maximum luminance of 2673, 2398, and 986 cd m−2 at a current efficiency of 4.01, 3.72, and 1.52 cd A−1, and an external quantum efficiency of 1.38%, 1.06%, and 0.53%, which are much better than most LEDs based on OHP films. The packaged OQ‐LEDs show long‐term stability in air (humidity ≈50%) for at least 7 d. The results demonstrate the great potential of the dip‐coating method to fabricate large‐area uniform films for various QDs. The high‐efficiency OQ‐LEDs also demonstrate the promising potential of OHP‐QDs for low‐cost display, lighting, and optical communication applications. Organometal halide perovskite quantum dot (OHP‐QDs)‐based light‐emitting diodes (LEDs) are developed using a simple dip‐coating method. The OHP‐QDs‐based LEDs show multicolor emission from blue, green to red by tuning the composition or size of the OHP‐QDs. The packaged devices also exhibit robust stability under continuous bias in air for at least 7 d.
Organometal halide perovskites quantum dots (OHP‐QDs) with bright, color‐tunable, and narrow‐band photoluminescence have significant advantages in display, lighting, and laser applications. Due to sparse concentrations and difficulties in the enrichment of OHP‐QDs, production of large‐area uniform films of OHP‐QDs is a challenging task, which largely impedes their use in electroluminescence devices. Here, a simple dip‐coating method has been reported to effectively fabricate large‐area uniform films of OHP‐QDs. Using this technique, multicolor OHP‐QDs light‐emitting diodes (OQ‐LEDs) emitting in blue, blue‐green, green, orange, and red color have been successfully produced by simply tuning the halide composition or size of QDs. The blue, green, and red OQ‐LEDs exhibited, respectively, a maximum luminance of 2673, 2398, and 986 cd m −2 at a current efficiency of 4.01, 3.72, and 1.52 cd A −1 , and an external quantum efficiency of 1.38%, 1.06%, and 0.53%, which are much better than most LEDs based on OHP films. The packaged OQ‐LEDs show long‐term stability in air (humidity ≈50%) for at least 7 d. The results demonstrate the great potential of the dip‐coating method to fabricate large‐area uniform films for various QDs. The high‐efficiency OQ‐LEDs also demonstrate the promising potential of OHP‐QDs for low‐cost display, lighting, and optical communication applications.
Organometal halide perovskites quantum dots (OHP-QDs) with bright, color-tunable, and narrow-band photoluminescence have significant advantages in display, lighting, and laser applications. Due to sparse concentrations and difficulties in the enrichment of OHP-QDs, production of large-area uniform films of OHP-QDs is a challenging task, which largely impedes their use in electroluminescence devices. Here, a simple dip-coating method has been reported to effectively fabricate large-area uniform films of OHP-QDs. Using this technique, multicolor OHP-QDs light-emitting diodes (OQ-LEDs) emitting in blue, blue-green, green, orange, and red color have been successfully produced by simply tuning the halide composition or size of QDs. The blue, green, and red OQ-LEDs exhibited, respectively, a maximum luminance of 2673, 2398, and 986 cd m super(-2) at a current efficiency of 4.01, 3.72, and 1.52 cd A super(-1), and an external quantum efficiency of 1.38%, 1.06%, and 0.53%, which are much better than most LEDs based on OHP films. The packaged OQ-LEDs show long-term stability in air (humidity approximately 50%) for at least 7 d. The results demonstrate the great potential of the dip-coating method to fabricate large-area uniform films for various QDs. The high-efficiency OQ-LEDs also demonstrate the promising potential of OHP-QDs for low-cost display, lighting, and optical communication applications. Organometal halide perovskite quantum dot (OHP-QDs)-based light-emitting diodes (LEDs) are developed using a simple dip-coating method. The OHP-QDs-based LEDs show multicolor emission from blue, green to red by tuning the composition or size of the OHP-QDs. The packaged devices also exhibit robust stability under continuous bias in air for at least 7 d.
Author Zhang, Yedong
Jie, Jiansheng
Jin, Xiangcheng
Xu, Xiuzhen
Lee, Shuit-Tong
Wang, Liang
Deng, Wei
Zhang, Xiujuan
Author_xml – sequence: 1
  givenname: Wei
  surname: Deng
  fullname: Deng, Wei
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China
– sequence: 2
  givenname: Xiuzhen
  surname: Xu
  fullname: Xu, Xiuzhen
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China
– sequence: 3
  givenname: Xiujuan
  surname: Zhang
  fullname: Zhang, Xiujuan
  email: xjzhang@suda.edu.cn
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China
– sequence: 4
  givenname: Yedong
  surname: Zhang
  fullname: Zhang, Yedong
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China
– sequence: 5
  givenname: Xiangcheng
  surname: Jin
  fullname: Jin, Xiangcheng
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China
– sequence: 6
  givenname: Liang
  surname: Wang
  fullname: Wang, Liang
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China
– sequence: 7
  givenname: Shuit-Tong
  surname: Lee
  fullname: Lee, Shuit-Tong
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China
– sequence: 8
  givenname: Jiansheng
  surname: Jie
  fullname: Jie, Jiansheng
  email: xjzhang@suda.edu.cn
  organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China
BookMark eNqFkD1PwzAQQC0EEm1hZc7IkmI7dtxMqOonUqBFgrab5SbnYpqPEjtA_z2tgio2prvhvdPptdF5URaA0A3BXYIxvVOpzrsUkxATzNkZapGQhH6Aae_8tJPVJWpb-44xESJgLXQ_qzaqKHNwKvOmKjMpeHOoyk-7NQ6851oVrs69Yem82GzenD_KjXOm2HhDU6Zgr9CFVpmF69_ZQa_j0ctg6sezycOgH_sJoyHz14QDJRwTSIFrmmqiwzDAoUhJkGiumU4xx2x9-In2NFNKsEgI0IqnoCKWBB1029zdVeVHDdbJ3NgEskwVUNZWkh7lnEeM4gPabdCkKq2tQMtdZXJV7SXB8lhKHkvJU6mDEDXCl8lg_w8t-8Px41_Xb1xjHXyfXFVtZSgCweXyaSJFvOKL5WIl58EP2TV9sg
CitedBy_id crossref_primary_10_1016_j_mtchem_2022_101012
crossref_primary_10_1038_s41467_019_09011_5
crossref_primary_10_1039_C8NR01396A
crossref_primary_10_1021_acsnano_6b08747
crossref_primary_10_1002_admt_202200043
crossref_primary_10_1002_adfm_202303423
crossref_primary_10_1016_j_nanoen_2020_104757
crossref_primary_10_1039_C8TC01214H
crossref_primary_10_1039_C7TC05658C
crossref_primary_10_1007_s10854_018_00585_2
crossref_primary_10_1002_advs_201700780
crossref_primary_10_1088_1361_6528_aae0ad
crossref_primary_10_1088_2053_1591_ab11ae
crossref_primary_10_1002_smtd_201800231
crossref_primary_10_1039_C8CP02776E
crossref_primary_10_1016_j_trechm_2020_07_002
crossref_primary_10_1002_adom_201900272
crossref_primary_10_1007_s12274_017_1432_7
crossref_primary_10_1039_C7CP06097A
crossref_primary_10_1002_smll_201701770
crossref_primary_10_1021_acsami_7b15470
crossref_primary_10_1002_smll_202304411
crossref_primary_10_1016_j_mattod_2021_10_023
crossref_primary_10_1007_s12200_020_1042_y
crossref_primary_10_3390_nano14050391
crossref_primary_10_1016_j_orgel_2018_06_052
crossref_primary_10_1063_1_5136308
crossref_primary_10_1103_PhysRevB_105_155420
crossref_primary_10_1002_adma_201706226
crossref_primary_10_1039_D0AN01127D
crossref_primary_10_1038_s41565_022_01113_4
crossref_primary_10_1039_D0NR03630G
crossref_primary_10_1364_OE_504469
crossref_primary_10_1021_acsami_7b13260
crossref_primary_10_1364_OL_503970
crossref_primary_10_7567_1347_4065_ab4ecd
crossref_primary_10_1002_admi_201902054
crossref_primary_10_1039_C7CP07827G
crossref_primary_10_1002_adfm_201707031
crossref_primary_10_1021_acsnano_7b07856
crossref_primary_10_1016_j_mtadv_2022_100232
crossref_primary_10_1021_acs_nanolett_8b00184
crossref_primary_10_1002_smll_201900332
crossref_primary_10_1021_acsami_7b18964
crossref_primary_10_1021_acsnano_9b01734
crossref_primary_10_1007_s11432_023_3944_3
crossref_primary_10_1021_acsenergylett_2c02938
crossref_primary_10_1039_D0TC03042B
crossref_primary_10_1016_j_jallcom_2021_160727
crossref_primary_10_1002_adma_201704062
crossref_primary_10_1007_s10853_022_07169_w
crossref_primary_10_1016_j_compositesb_2022_109956
crossref_primary_10_1002_adfm_201705189
crossref_primary_10_1021_acsomega_8b02877
crossref_primary_10_1002_adfm_201700051
crossref_primary_10_1103_PhysRevB_101_195414
crossref_primary_10_1557_adv_2020_307
crossref_primary_10_1002_inf2_12019
crossref_primary_10_1039_C6CC05549D
crossref_primary_10_1021_acs_jpclett_1c02978
crossref_primary_10_1039_C8EE02744G
crossref_primary_10_1002_adom_202300473
crossref_primary_10_1002_adfm_201903861
crossref_primary_10_1021_acsami_0c22604
crossref_primary_10_3390_cryst12070929
crossref_primary_10_1002_lpor_202200651
crossref_primary_10_1002_admt_202300946
crossref_primary_10_1002_smtd_201700380
crossref_primary_10_1002_smtd_201700382
crossref_primary_10_1021_acsami_1c09725
crossref_primary_10_1021_acsphotonics_3c01001
crossref_primary_10_7498_aps_68_20190647
crossref_primary_10_1007_s11426_018_9325_7
crossref_primary_10_1002_aelm_202201271
crossref_primary_10_1021_acsami_1c18791
crossref_primary_10_1016_j_jallcom_2016_12_201
crossref_primary_10_1002_aenm_201703246
crossref_primary_10_1088_2053_1591_aacb57
crossref_primary_10_1002_adma_201800251
crossref_primary_10_1016_j_nanoen_2019_104029
crossref_primary_10_1021_acsami_8b07048
crossref_primary_10_1039_C8NR07907B
crossref_primary_10_1063_5_0016377
crossref_primary_10_1016_j_jlumin_2019_01_053
crossref_primary_10_1002_adom_201700864
crossref_primary_10_1002_advs_202206076
crossref_primary_10_1021_acsnano_0c08903
crossref_primary_10_1039_C9TC03978C
crossref_primary_10_1039_D0NR02711A
crossref_primary_10_1039_D3NR01190A
crossref_primary_10_1039_C9NR06191F
crossref_primary_10_1002_adom_202002128
crossref_primary_10_3390_ma12203304
crossref_primary_10_1016_j_ceramint_2022_02_109
crossref_primary_10_1039_D0TC02354J
crossref_primary_10_1039_D1TA08756H
crossref_primary_10_1002_inf2_12031
crossref_primary_10_1021_acsnano_2c02795
crossref_primary_10_1063_5_0126496
crossref_primary_10_1117_1_AP_5_1_016001
crossref_primary_10_1039_D4NR00638K
crossref_primary_10_1016_j_cclet_2016_06_047
crossref_primary_10_1021_acs_jpclett_9b02015
crossref_primary_10_1021_acsenergylett_9b01945
crossref_primary_10_1016_j_dyepig_2019_107829
crossref_primary_10_1016_j_joule_2018_07_012
crossref_primary_10_1007_s40820_018_0210_8
crossref_primary_10_1016_j_jechem_2022_04_001
crossref_primary_10_1021_jacs_8b09706
crossref_primary_10_1039_C6TC04934F
crossref_primary_10_1021_acsomega_9b00464
crossref_primary_10_1002_adom_202303304
crossref_primary_10_3390_nano9040505
crossref_primary_10_1002_sstr_202000124
crossref_primary_10_1039_D3DT00122A
crossref_primary_10_1002_ange_202403739
crossref_primary_10_1002_smtd_201700340
crossref_primary_10_1021_acsanm_4c00283
crossref_primary_10_1039_D2TC05289J
crossref_primary_10_1002_bio_4706
crossref_primary_10_1088_2053_1591_ab9bc5
crossref_primary_10_1021_acsenergylett_9b02096
crossref_primary_10_1039_D1RA03622J
crossref_primary_10_1002_adma_201700047
crossref_primary_10_1039_C8CS00212F
crossref_primary_10_1016_j_actbio_2018_05_004
crossref_primary_10_1016_j_nanoen_2020_105552
crossref_primary_10_1021_acsami_0c07514
crossref_primary_10_1016_j_jcis_2019_07_054
crossref_primary_10_1016_j_chphma_2024_03_004
crossref_primary_10_1002_smll_201702433
crossref_primary_10_1002_adma_201705532
crossref_primary_10_1088_2632_959X_ad2b7e
crossref_primary_10_1039_C6TC04411E
crossref_primary_10_1016_j_cej_2019_123316
crossref_primary_10_1016_j_scriptamat_2019_10_049
crossref_primary_10_1021_acsami_8b07438
crossref_primary_10_1002_adfm_202401284
crossref_primary_10_1021_acsami_7b04616
crossref_primary_10_1063_1_5126473
crossref_primary_10_1007_s12274_018_2197_3
crossref_primary_10_1016_j_scib_2024_05_045
crossref_primary_10_1016_j_surfcoat_2018_04_011
crossref_primary_10_1021_acsenergylett_8b00035
crossref_primary_10_1007_s10853_018_2774_6
crossref_primary_10_1002_smll_201900730
crossref_primary_10_3390_nano10040710
crossref_primary_10_1039_C9CE00027E
crossref_primary_10_1021_acsnano_7b03660
crossref_primary_10_1021_acsami_8b13418
crossref_primary_10_1002_adfm_201904501
crossref_primary_10_1038_s42005_023_01459_8
crossref_primary_10_1016_j_nanoen_2024_109339
crossref_primary_10_1021_acsami_8b05489
crossref_primary_10_1002_aelm_201800335
crossref_primary_10_1002_adfm_201902008
crossref_primary_10_1016_j_mser_2022_100710
crossref_primary_10_1021_accountsmr_3c00039
crossref_primary_10_1002_adma_201704587
crossref_primary_10_1002_smll_201900801
crossref_primary_10_1002_adfm_202103219
crossref_primary_10_1002_adom_201801426
crossref_primary_10_1021_acsnano_6b07617
crossref_primary_10_1038_s41563_018_0018_4
crossref_primary_10_1021_acsnano_7b04683
crossref_primary_10_1039_D2NJ06191K
crossref_primary_10_1021_acs_jpclett_9b03714
crossref_primary_10_1088_1674_4926_41_5_051203
crossref_primary_10_1021_acssuschemeng_0c05171
crossref_primary_10_1039_C6TC04069A
crossref_primary_10_1364_AO_400296
crossref_primary_10_1021_acsanm_0c02334
crossref_primary_10_1039_C8TC05765F
crossref_primary_10_1021_acsenergylett_3c01812
crossref_primary_10_3184_003685018X15360899653905
crossref_primary_10_1016_j_jlumin_2018_05_019
crossref_primary_10_1021_acs_jpclett_6b02224
crossref_primary_10_1021_acsnano_7b00404
crossref_primary_10_1016_j_joule_2020_04_007
crossref_primary_10_1039_D0EE01153C
crossref_primary_10_1021_acsenergylett_8b01669
crossref_primary_10_1002_adom_201800469
crossref_primary_10_1021_acs_chemmater_9b03438
crossref_primary_10_1021_acsnano_8b05172
crossref_primary_10_1002_smll_201900355
crossref_primary_10_1021_acsami_0c05537
crossref_primary_10_1007_s13204_021_01933_1
crossref_primary_10_1002_smtd_201700419
crossref_primary_10_1002_anie_202403739
crossref_primary_10_1063_1_4962351
crossref_primary_10_1039_C6CC10245J
crossref_primary_10_1002_adpr_202200003
crossref_primary_10_1016_j_cej_2023_142330
crossref_primary_10_1063_5_0053583
crossref_primary_10_1063_1_4994995
crossref_primary_10_1515_nanoph_2021_0033
crossref_primary_10_1002_adom_202001684
crossref_primary_10_1016_j_nantod_2022_101449
crossref_primary_10_1021_acs_jpclett_7b00368
crossref_primary_10_1039_C6NR08158D
crossref_primary_10_3390_en12183507
crossref_primary_10_1002_sdtp_11602
crossref_primary_10_1002_adfm_201909667
crossref_primary_10_1039_C8NR00806J
crossref_primary_10_1021_acsami_7b14677
crossref_primary_10_1103_PhysRevB_103_045415
crossref_primary_10_1021_acsami_0c19287
crossref_primary_10_1002_adma_201807516
crossref_primary_10_1002_smtd_201900196
crossref_primary_10_1021_acs_jpcc_8b03721
crossref_primary_10_1002_adom_202101419
crossref_primary_10_31613_ceramist_2021_24_2_07
crossref_primary_10_1002_smtd_201800093
crossref_primary_10_1002_adfm_201604018
crossref_primary_10_1002_chem_201805656
crossref_primary_10_1021_jacs_2c07172
crossref_primary_10_1038_s43246_020_00084_0
crossref_primary_10_1002_lpor_202300383
crossref_primary_10_1002_adfm_201604382
crossref_primary_10_1002_adma_201804595
crossref_primary_10_1039_C8NR10298H
crossref_primary_10_1039_C9NR10070A
crossref_primary_10_1016_j_mattod_2019_10_021
crossref_primary_10_1021_acs_langmuir_9b02129
crossref_primary_10_1109_LED_2019_2932134
crossref_primary_10_3390_nano8070459
crossref_primary_10_1039_C6CC06425F
crossref_primary_10_1103_PhysRevB_101_125424
Cites_doi 10.1002/adma.201502294
10.1038/nphoton.2013.70
10.1038/nchem.2324
10.1021/acs.nanolett.5b00235
10.1021/acs.nanolett.5b02985
10.1002/anie.201306953
10.1002/adma.201503461
10.1038/nnano.2014.149
10.1002/adma.201204502
10.1126/science.1228604
10.1002/adfm.201404421
10.1002/advs.201500194
10.1021/acsnano.5b01154
10.1021/acsami.5b10373
10.1002/adma.201403751
10.1002/adma.201405217
10.1039/C4TA05033A
10.1002/adma.201502567
10.1038/nphoton.2013.342
10.1126/science.aad1818
10.1021/nn506223h
10.1021/la062150e
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201601054
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 4802
ExternalDocumentID 10_1002_adfm_201601054
ADFM201601054
ark_67375_WNG_7LX5VWVX_P
Genre article
GrantInformation_xml – fundername: National Basic Research Program of China
  funderid: 2013CB933500; 2012CB932400
– fundername: National Natural Science Foundation of China
  funderid: 61422403
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4264-b15e21501ede5f2df1f663067d13cf5f4fd0504b73428f4aa74977efa5dea94c3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Aug 16 09:31:12 EDT 2024
Fri Aug 23 00:33:34 EDT 2024
Sat Aug 24 01:05:19 EDT 2024
Wed Oct 30 09:48:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4264-b15e21501ede5f2df1f663067d13cf5f4fd0504b73428f4aa74977efa5dea94c3
Notes National Basic Research Program of China - No. 2013CB933500; No. 2012CB932400
istex:242A903825310E9DC959B375A56FCAB7FC7840EA
ArticleID:ADFM201601054
ark:/67375/WNG-7LX5VWVX-P
National Natural Science Foundation of China - No. 61422403
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825559420
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1825559420
crossref_primary_10_1002_adfm_201601054
wiley_primary_10_1002_adfm_201601054_ADFM201601054
istex_primary_ark_67375_WNG_7LX5VWVX_P
PublicationCentury 2000
PublicationDate July 12, 2016
PublicationDateYYYYMMDD 2016-07-12
PublicationDate_xml – month: 07
  year: 2016
  text: July 12, 2016
  day: 12
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. C. Sullivan, P. T. Kazlas, Nat. Photonics 2013, 7, 407.
M. V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D. V. Talapin, C. R. Kagan, V. I. Klimov, A. L. Rogach, P. Reiss, D. J. Milliron, P. G. Sionnnest, G. Konstantatos, W. J. Parak, T. Hyeon, B. A. Korgel, C. B. Murray, W. Heiss, ACS Nano 2015, 9, 1012.
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533.
J. Z. Song, J. H. Li, X. M. Li, L. M. Xu, Y. H. Dong, H. B. Zeng, Adv. Mater. 2015, 27, 7162.
D. Liu, T. L. Kelly, Nat. Photonics 2013, 8, 133.
G. Li, Z. K. Tan, D. Di, M. L. Lai, L. Jiang, J. H. W. Lim, R. H. Friend, N. C. Greenham, Nano Lett. 2015, 15, 2640.
Z. J. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. X. Xu, O. Voznyy, P. Maraghechi, X. Z Lan, S. Hoogland, Y. Ren, E. H. Sargent, Adv. Mater. 2013, 25, 1719.
M. Ghosh, F. Fan, K. J. Stebe, Langmuir 2007, 23, 2180.
Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. Myoung, C. L. Lee, S. H. Im, T. W. Lee, Adv. Mater. 2015, 27, 1248.
J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K. Z. Milowska, R. García Cortadella, B. Nickel, C. Cardenas-Daw, J. K. Stolarczyk, A. S. Urban, J. Feldmann, Nano Lett. 2015, 15, 6521.
J. Berry, T. Buonassisi, D. A. Egger, G. Hodes, L. Kronik, Y. L. Loo, I. Lubomirsky, S. R. Marder, Y. Mastai, J. S. Miller, D. B. Mitzi, Y. Paz, A. M. Rappe, I. Riess, B. Rybtchinski, O. Stafsudd, V. Stevanovic, M. F. Toney, D. Zitoun, A. Kahn, D. Ginley, D. Cahen, Adv. Mater. 2015, 27, 5102.
H. Huang, A. S. Susha, S. V. Kershaw, T. F. Hung, A. L. Rogach, Adv. Sci. 2015, 2, 1500194.
J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, Adv. Mater. 2015, 27, 2311.
L. Li, P. Gao, W. Wang, K. Mllen, H. Fuchs, L. Chi, Angew. Chem. Int. Ed. 2013, 52, 12530.
H. H. Fang, R. Raissa, M. Abdu-Aguye, S. Adjokatse, G. R. Blake, J. Even, M. A. Loi, Adv. Funct. Mater. 2015, 25, 2378.
H. Huang, F. Zhao, L. Liu, F. Zhang, X. G. Wu, L. Shi, B. Zou, Q. Pei, H. Zhong, ACS Appl. Mater. Interfaces 2015, 7, 28128.
Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687.
H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T. W. Lee, Science 2015, 350, 1222.
X. Li, M. Ibrahim Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han, M. Grätzel, Nat. Chem. 2015, 7, 703.
Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, G. D. Scholes, Adv. Mater. 2016, 28, 566.
W. J. Yin, J. H. Yang, J. Kang, Y. Yan, S. H. Wei, J. Mater. Chem. A 2015, 3, 8926.
2015; 350
2015; 2
2015; 15
2015; 25
2015; 27
2013; 25
2015; 3
2013; 52
2014; 9
2013; 7
2013; 8
2015; 9
2016; 28
2015; 7
2007; 23
2012; 338
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 8
  start-page: 133
  year: 2013
  publication-title: Nat. Photonics
– volume: 27
  start-page: 2311
  year: 2015
  publication-title: Adv. Mater.
– volume: 25
  start-page: 1719
  year: 2013
  publication-title: Adv. Mater.
– volume: 350
  start-page: 1222
  year: 2015
  publication-title: Science
– volume: 7
  start-page: 28128
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 407
  year: 2013
  publication-title: Nat. Photonics
– volume: 9
  start-page: 687
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 703
  year: 2015
  publication-title: Nat. Chem.
– volume: 28
  start-page: 566
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 7162
  year: 2015
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1500194
  year: 2015
  publication-title: Adv. Sci.
– volume: 9
  start-page: 1012
  year: 2015
  publication-title: ACS Nano
– volume: 15
  start-page: 2640
  year: 2015
  publication-title: Nano Lett.
– volume: 27
  start-page: 1248
  year: 2015
  publication-title: Adv. Mater.
– volume: 27
  start-page: 5102
  year: 2015
  publication-title: Adv. Mater.
– volume: 25
  start-page: 2378
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 8926
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 4533
  year: 2015
  publication-title: ACS Nano
– volume: 15
  start-page: 6521
  year: 2015
  publication-title: Nano Lett.
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 23
  start-page: 2180
  year: 2007
  publication-title: Langmuir
– volume: 52
  start-page: 12530
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_6_2_1
  doi: 10.1002/adma.201502294
– ident: e_1_2_6_17_1
  doi: 10.1038/nphoton.2013.70
– ident: e_1_2_6_22_1
  doi: 10.1038/nchem.2324
– ident: e_1_2_6_9_1
  doi: 10.1021/acs.nanolett.5b00235
– ident: e_1_2_6_11_1
  doi: 10.1021/acs.nanolett.5b02985
– ident: e_1_2_6_19_1
  doi: 10.1002/anie.201306953
– ident: e_1_2_6_14_1
  doi: 10.1002/adma.201503461
– ident: e_1_2_6_7_1
  doi: 10.1038/nnano.2014.149
– ident: e_1_2_6_16_1
  doi: 10.1002/adma.201204502
– ident: e_1_2_6_1_1
  doi: 10.1126/science.1228604
– ident: e_1_2_6_3_1
  doi: 10.1002/adfm.201404421
– ident: e_1_2_6_13_1
  doi: 10.1002/advs.201500194
– ident: e_1_2_6_12_1
  doi: 10.1021/acsnano.5b01154
– ident: e_1_2_6_15_1
  doi: 10.1021/acsami.5b10373
– ident: e_1_2_6_6_1
  doi: 10.1002/adma.201403751
– ident: e_1_2_6_8_1
  doi: 10.1002/adma.201405217
– ident: e_1_2_6_5_1
  doi: 10.1039/C4TA05033A
– ident: e_1_2_6_21_1
  doi: 10.1002/adma.201502567
– ident: e_1_2_6_4_1
  doi: 10.1038/nphoton.2013.342
– ident: e_1_2_6_10_1
  doi: 10.1126/science.aad1818
– ident: e_1_2_6_18_1
  doi: 10.1021/nn506223h
– ident: e_1_2_6_20_1
  doi: 10.1021/la062150e
SSID ssj0017734
Score 2.6418414
Snippet Organometal halide perovskites quantum dots (OHP‐QDs) with bright, color‐tunable, and narrow‐band photoluminescence have significant advantages in display,...
Organometal halide perovskites quantum dots (OHP-QDs) with bright, color-tunable, and narrow-band photoluminescence have significant advantages in display,...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 4797
SubjectTerms Devices
Dip coatings
Halides
Light-emitting diodes
Lighting
multicolored light-emitting diodes
organometal halide perovskite
Perovskites
Quantum dots
Tuning
Title Organometal Halide Perovskite Quantum Dot Light-Emitting Diodes
URI https://api.istex.fr/ark:/67375/WNG-7LX5VWVX-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201601054
https://search.proquest.com/docview/1825559420
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QuMCBN2K8VCQEp7ImTZpxnBhjQgwB4tFblDSOhNBWtK0IceIn8Bv5JSTtVjYuSHBrpUZp7bj-7NhfENqv103EqYx8Jgn3qdWDLy0s90mYJJEE6zLzoxM6l1H7jp7HLJ7o4i_4IcqEm7OM_H_tDFyqQe2bNFRq4zrJsYsomCMExSF3NV3Nm5I_CnNebCtH2BV44XjM2hiQ2vTwKa806wT8OgU5J4Fr7nlai0iO37koOHk6yobqKHn7Qef4n49aQgsjWOo1inW0jGagt4LmJ8gKV1Ejb9tMu2Dhute28F2DdwX99GXgEsDedWZ1lHW9Zjr0LlzE__n-cdp9zMuqveZjqmGwhu5ap7cnbX90AIOfOKDkK8zAQoIAgwZmiDbYWIBi_ZvGYWKYoUYHLKDKSpnUDZWSUwsnwUimQR7TJFxHlV7agw3kBSFwCDk1vA5UJVxprKlUODKROiY8qKLDsQLEc8GzIQpGZSKcUEQplCo6yPVTPib7T646jTPxcHkm-EXM7h_uY3FVRXtjBQprM24jRPYgzQbCxlTMRlJ2ZVYRydXxy5yi0Wx1yrvNvwzaQnPu2qWFMdlGlWE_gx2LZ4ZqN1-zX2-36_8
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAO5S22vIKE4JQ2dux4e1yxXRbYXRXUx94sO7alqtoN2t0gxKk_ob-xv6QzSRO6XJDgmCiWkxlP5pvxzGeAt91uyJQwWSwNV7FAPcQGYXnM0zzPjEeXWR2dMJ5kwyPxeSqbakLqhan5IdqEG1lG9b8mA6eE9O5v1lDjArWSMwoppLgNm2jzKZ3e0P_WMkgxpeqN5YxRiRebNryNCd9dH7_mlzZJxD_XQOdN6Fr5nsF9sM1b1yUnZzvlyu7kv_4gdPyvz3oAW9fINOrVS-kh3PLzR3DvBl_hY-hVnZvFzCNij4aI4J2PDvyi-LGkHHD0tUQ1lbOoX6yiEQX9l-cX-7PTqrI66p8Wzi-fwNFg__DDML4-gyHOCSvFlkmPqCBh3nkZuAssIEZBF-dYmgcZRHCJTIRFMfNuEMYogYjSByOdN3siT5_CxryY-2cQJalXPlUiqK4XNlfWMSeMZVnI7B5XSQfeNxrQ32uqDV2TKnNNQtGtUDrwrlJQ-5hZnFGBmpL6ZPJRq9FUHp8cT_VBB940GtRoNrQXYua-KJcawyqJwRQuzg7wSh9_mVP3-oNxe7X9L4New53h4XikR58mX57DXbpPWWLGX8DGalH6lwhvVvZVtYCvADGe8Bc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5RkKpyKNCHGl51pao9GbzrfYRjRAgBQpRWBXxbrb2zEkKJURJXVU_8BH4jv4Rdm5ikl0rt0ZZXa8_seL6ZnfkW4HOzaYVkWoRcUxkyp4dQO1ge0jjLhEbnMsujE877onvBThOezHXxV_wQdcLNW0b5v_YGfmvs_jNpqDbWd5ITH1Fw9gJWmHDw18Oi7zWBFJGy2lcWxFd4kWRG2xjR_cXxC25pxUv41wLmnEeupevprIGevXRVcXKzV0zTvez3H3yO__NV6_D6CZcGrWohbcASjt7A6hxb4VtolX2b-RAdXg-6Dr8bDAY4zn9OfAY4-FY4JRXDoJ1Pg54P-R_u7o-G12VdddC-zg1O3sFF5-jHYTd8OoEhzDxSClPC0WGCiKBBbqmxxAovZWlInFlumTURj1jqpEyblmktmcOTaDU3qA9YFr-H5VE-wg8QRDFKjCWzsokszWRqiGE6JcKK9IDKqAFfZwpQtxXRhqoolanyQlG1UBrwpdRP_Zge3_jyNMnVVf9YyV7CL68uEzVowKeZApUzGr8TokeYFxPlgiruQim3NBtAS3X8ZU7VanfO66vNfxn0EV4O2h3VO-mfbcErf9uniAndhuXpuMAdh22m6W65fB8BatTuxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organometal+Halide+Perovskite+Quantum+Dot+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+functional+materials&rft.au=Deng%2C+Wei&rft.au=Xu%2C+Xiuzhen&rft.au=Zhang%2C+Xiujuan&rft.au=Zhang%2C+Yedong&rft.date=2016-07-12&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=26&rft.spage=4797&rft.epage=4802&rft_id=info:doi/10.1002%2Fadfm.201601054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201601054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon