Organometal Halide Perovskite Quantum Dot Light-Emitting Diodes
Organometal halide perovskites quantum dots (OHP‐QDs) with bright, color‐tunable, and narrow‐band photoluminescence have significant advantages in display, lighting, and laser applications. Due to sparse concentrations and difficulties in the enrichment of OHP‐QDs, production of large‐area uniform f...
Saved in:
Published in | Advanced functional materials Vol. 26; no. 26; pp. 4797 - 4802 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
12.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organometal halide perovskites quantum dots (OHP‐QDs) with bright, color‐tunable, and narrow‐band photoluminescence have significant advantages in display, lighting, and laser applications. Due to sparse concentrations and difficulties in the enrichment of OHP‐QDs, production of large‐area uniform films of OHP‐QDs is a challenging task, which largely impedes their use in electroluminescence devices. Here, a simple dip‐coating method has been reported to effectively fabricate large‐area uniform films of OHP‐QDs. Using this technique, multicolor OHP‐QDs light‐emitting diodes (OQ‐LEDs) emitting in blue, blue‐green, green, orange, and red color have been successfully produced by simply tuning the halide composition or size of QDs. The blue, green, and red OQ‐LEDs exhibited, respectively, a maximum luminance of 2673, 2398, and 986 cd m−2 at a current efficiency of 4.01, 3.72, and 1.52 cd A−1, and an external quantum efficiency of 1.38%, 1.06%, and 0.53%, which are much better than most LEDs based on OHP films. The packaged OQ‐LEDs show long‐term stability in air (humidity ≈50%) for at least 7 d. The results demonstrate the great potential of the dip‐coating method to fabricate large‐area uniform films for various QDs. The high‐efficiency OQ‐LEDs also demonstrate the promising potential of OHP‐QDs for low‐cost display, lighting, and optical communication applications.
Organometal halide perovskite quantum dot (OHP‐QDs)‐based light‐emitting diodes (LEDs) are developed using a simple dip‐coating method. The OHP‐QDs‐based LEDs show multicolor emission from blue, green to red by tuning the composition or size of the OHP‐QDs. The packaged devices also exhibit robust stability under continuous bias in air for at least 7 d. |
---|---|
AbstractList | Organometal halide perovskites quantum dots (OHP‐QDs) with bright, color‐tunable, and narrow‐band photoluminescence have significant advantages in display, lighting, and laser applications. Due to sparse concentrations and difficulties in the enrichment of OHP‐QDs, production of large‐area uniform films of OHP‐QDs is a challenging task, which largely impedes their use in electroluminescence devices. Here, a simple dip‐coating method has been reported to effectively fabricate large‐area uniform films of OHP‐QDs. Using this technique, multicolor OHP‐QDs light‐emitting diodes (OQ‐LEDs) emitting in blue, blue‐green, green, orange, and red color have been successfully produced by simply tuning the halide composition or size of QDs. The blue, green, and red OQ‐LEDs exhibited, respectively, a maximum luminance of 2673, 2398, and 986 cd m−2 at a current efficiency of 4.01, 3.72, and 1.52 cd A−1, and an external quantum efficiency of 1.38%, 1.06%, and 0.53%, which are much better than most LEDs based on OHP films. The packaged OQ‐LEDs show long‐term stability in air (humidity ≈50%) for at least 7 d. The results demonstrate the great potential of the dip‐coating method to fabricate large‐area uniform films for various QDs. The high‐efficiency OQ‐LEDs also demonstrate the promising potential of OHP‐QDs for low‐cost display, lighting, and optical communication applications.
Organometal halide perovskite quantum dot (OHP‐QDs)‐based light‐emitting diodes (LEDs) are developed using a simple dip‐coating method. The OHP‐QDs‐based LEDs show multicolor emission from blue, green to red by tuning the composition or size of the OHP‐QDs. The packaged devices also exhibit robust stability under continuous bias in air for at least 7 d. Organometal halide perovskites quantum dots (OHP‐QDs) with bright, color‐tunable, and narrow‐band photoluminescence have significant advantages in display, lighting, and laser applications. Due to sparse concentrations and difficulties in the enrichment of OHP‐QDs, production of large‐area uniform films of OHP‐QDs is a challenging task, which largely impedes their use in electroluminescence devices. Here, a simple dip‐coating method has been reported to effectively fabricate large‐area uniform films of OHP‐QDs. Using this technique, multicolor OHP‐QDs light‐emitting diodes (OQ‐LEDs) emitting in blue, blue‐green, green, orange, and red color have been successfully produced by simply tuning the halide composition or size of QDs. The blue, green, and red OQ‐LEDs exhibited, respectively, a maximum luminance of 2673, 2398, and 986 cd m −2 at a current efficiency of 4.01, 3.72, and 1.52 cd A −1 , and an external quantum efficiency of 1.38%, 1.06%, and 0.53%, which are much better than most LEDs based on OHP films. The packaged OQ‐LEDs show long‐term stability in air (humidity ≈50%) for at least 7 d. The results demonstrate the great potential of the dip‐coating method to fabricate large‐area uniform films for various QDs. The high‐efficiency OQ‐LEDs also demonstrate the promising potential of OHP‐QDs for low‐cost display, lighting, and optical communication applications. Organometal halide perovskites quantum dots (OHP-QDs) with bright, color-tunable, and narrow-band photoluminescence have significant advantages in display, lighting, and laser applications. Due to sparse concentrations and difficulties in the enrichment of OHP-QDs, production of large-area uniform films of OHP-QDs is a challenging task, which largely impedes their use in electroluminescence devices. Here, a simple dip-coating method has been reported to effectively fabricate large-area uniform films of OHP-QDs. Using this technique, multicolor OHP-QDs light-emitting diodes (OQ-LEDs) emitting in blue, blue-green, green, orange, and red color have been successfully produced by simply tuning the halide composition or size of QDs. The blue, green, and red OQ-LEDs exhibited, respectively, a maximum luminance of 2673, 2398, and 986 cd m super(-2) at a current efficiency of 4.01, 3.72, and 1.52 cd A super(-1), and an external quantum efficiency of 1.38%, 1.06%, and 0.53%, which are much better than most LEDs based on OHP films. The packaged OQ-LEDs show long-term stability in air (humidity approximately 50%) for at least 7 d. The results demonstrate the great potential of the dip-coating method to fabricate large-area uniform films for various QDs. The high-efficiency OQ-LEDs also demonstrate the promising potential of OHP-QDs for low-cost display, lighting, and optical communication applications. Organometal halide perovskite quantum dot (OHP-QDs)-based light-emitting diodes (LEDs) are developed using a simple dip-coating method. The OHP-QDs-based LEDs show multicolor emission from blue, green to red by tuning the composition or size of the OHP-QDs. The packaged devices also exhibit robust stability under continuous bias in air for at least 7 d. |
Author | Zhang, Yedong Jie, Jiansheng Jin, Xiangcheng Xu, Xiuzhen Lee, Shuit-Tong Wang, Liang Deng, Wei Zhang, Xiujuan |
Author_xml | – sequence: 1 givenname: Wei surname: Deng fullname: Deng, Wei organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China – sequence: 2 givenname: Xiuzhen surname: Xu fullname: Xu, Xiuzhen organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China – sequence: 3 givenname: Xiujuan surname: Zhang fullname: Zhang, Xiujuan email: xjzhang@suda.edu.cn organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China – sequence: 4 givenname: Yedong surname: Zhang fullname: Zhang, Yedong organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China – sequence: 5 givenname: Xiangcheng surname: Jin fullname: Jin, Xiangcheng organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China – sequence: 6 givenname: Liang surname: Wang fullname: Wang, Liang organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China – sequence: 7 givenname: Shuit-Tong surname: Lee fullname: Lee, Shuit-Tong organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China – sequence: 8 givenname: Jiansheng surname: Jie fullname: Jie, Jiansheng email: xjzhang@suda.edu.cn organization: Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu, 215123, Suzhou, P. R. China |
BookMark | eNqFkD1PwzAQQC0EEm1hZc7IkmI7dtxMqOonUqBFgrab5SbnYpqPEjtA_z2tgio2prvhvdPptdF5URaA0A3BXYIxvVOpzrsUkxATzNkZapGQhH6Aae_8tJPVJWpb-44xESJgLXQ_qzaqKHNwKvOmKjMpeHOoyk-7NQ6851oVrs69Yem82GzenD_KjXOm2HhDU6Zgr9CFVpmF69_ZQa_j0ctg6sezycOgH_sJoyHz14QDJRwTSIFrmmqiwzDAoUhJkGiumU4xx2x9-In2NFNKsEgI0IqnoCKWBB1029zdVeVHDdbJ3NgEskwVUNZWkh7lnEeM4gPabdCkKq2tQMtdZXJV7SXB8lhKHkvJU6mDEDXCl8lg_w8t-8Px41_Xb1xjHXyfXFVtZSgCweXyaSJFvOKL5WIl58EP2TV9sg |
CitedBy_id | crossref_primary_10_1016_j_mtchem_2022_101012 crossref_primary_10_1038_s41467_019_09011_5 crossref_primary_10_1039_C8NR01396A crossref_primary_10_1021_acsnano_6b08747 crossref_primary_10_1002_admt_202200043 crossref_primary_10_1002_adfm_202303423 crossref_primary_10_1016_j_nanoen_2020_104757 crossref_primary_10_1039_C8TC01214H crossref_primary_10_1039_C7TC05658C crossref_primary_10_1007_s10854_018_00585_2 crossref_primary_10_1002_advs_201700780 crossref_primary_10_1088_1361_6528_aae0ad crossref_primary_10_1088_2053_1591_ab11ae crossref_primary_10_1002_smtd_201800231 crossref_primary_10_1039_C8CP02776E crossref_primary_10_1016_j_trechm_2020_07_002 crossref_primary_10_1002_adom_201900272 crossref_primary_10_1007_s12274_017_1432_7 crossref_primary_10_1039_C7CP06097A crossref_primary_10_1002_smll_201701770 crossref_primary_10_1021_acsami_7b15470 crossref_primary_10_1002_smll_202304411 crossref_primary_10_1016_j_mattod_2021_10_023 crossref_primary_10_1007_s12200_020_1042_y crossref_primary_10_3390_nano14050391 crossref_primary_10_1016_j_orgel_2018_06_052 crossref_primary_10_1063_1_5136308 crossref_primary_10_1103_PhysRevB_105_155420 crossref_primary_10_1002_adma_201706226 crossref_primary_10_1039_D0AN01127D crossref_primary_10_1038_s41565_022_01113_4 crossref_primary_10_1039_D0NR03630G crossref_primary_10_1364_OE_504469 crossref_primary_10_1021_acsami_7b13260 crossref_primary_10_1364_OL_503970 crossref_primary_10_7567_1347_4065_ab4ecd crossref_primary_10_1002_admi_201902054 crossref_primary_10_1039_C7CP07827G crossref_primary_10_1002_adfm_201707031 crossref_primary_10_1021_acsnano_7b07856 crossref_primary_10_1016_j_mtadv_2022_100232 crossref_primary_10_1021_acs_nanolett_8b00184 crossref_primary_10_1002_smll_201900332 crossref_primary_10_1021_acsami_7b18964 crossref_primary_10_1021_acsnano_9b01734 crossref_primary_10_1007_s11432_023_3944_3 crossref_primary_10_1021_acsenergylett_2c02938 crossref_primary_10_1039_D0TC03042B crossref_primary_10_1016_j_jallcom_2021_160727 crossref_primary_10_1002_adma_201704062 crossref_primary_10_1007_s10853_022_07169_w crossref_primary_10_1016_j_compositesb_2022_109956 crossref_primary_10_1002_adfm_201705189 crossref_primary_10_1021_acsomega_8b02877 crossref_primary_10_1002_adfm_201700051 crossref_primary_10_1103_PhysRevB_101_195414 crossref_primary_10_1557_adv_2020_307 crossref_primary_10_1002_inf2_12019 crossref_primary_10_1039_C6CC05549D crossref_primary_10_1021_acs_jpclett_1c02978 crossref_primary_10_1039_C8EE02744G crossref_primary_10_1002_adom_202300473 crossref_primary_10_1002_adfm_201903861 crossref_primary_10_1021_acsami_0c22604 crossref_primary_10_3390_cryst12070929 crossref_primary_10_1002_lpor_202200651 crossref_primary_10_1002_admt_202300946 crossref_primary_10_1002_smtd_201700380 crossref_primary_10_1002_smtd_201700382 crossref_primary_10_1021_acsami_1c09725 crossref_primary_10_1021_acsphotonics_3c01001 crossref_primary_10_7498_aps_68_20190647 crossref_primary_10_1007_s11426_018_9325_7 crossref_primary_10_1002_aelm_202201271 crossref_primary_10_1021_acsami_1c18791 crossref_primary_10_1016_j_jallcom_2016_12_201 crossref_primary_10_1002_aenm_201703246 crossref_primary_10_1088_2053_1591_aacb57 crossref_primary_10_1002_adma_201800251 crossref_primary_10_1016_j_nanoen_2019_104029 crossref_primary_10_1021_acsami_8b07048 crossref_primary_10_1039_C8NR07907B crossref_primary_10_1063_5_0016377 crossref_primary_10_1016_j_jlumin_2019_01_053 crossref_primary_10_1002_adom_201700864 crossref_primary_10_1002_advs_202206076 crossref_primary_10_1021_acsnano_0c08903 crossref_primary_10_1039_C9TC03978C crossref_primary_10_1039_D0NR02711A crossref_primary_10_1039_D3NR01190A crossref_primary_10_1039_C9NR06191F crossref_primary_10_1002_adom_202002128 crossref_primary_10_3390_ma12203304 crossref_primary_10_1016_j_ceramint_2022_02_109 crossref_primary_10_1039_D0TC02354J crossref_primary_10_1039_D1TA08756H crossref_primary_10_1002_inf2_12031 crossref_primary_10_1021_acsnano_2c02795 crossref_primary_10_1063_5_0126496 crossref_primary_10_1117_1_AP_5_1_016001 crossref_primary_10_1039_D4NR00638K crossref_primary_10_1016_j_cclet_2016_06_047 crossref_primary_10_1021_acs_jpclett_9b02015 crossref_primary_10_1021_acsenergylett_9b01945 crossref_primary_10_1016_j_dyepig_2019_107829 crossref_primary_10_1016_j_joule_2018_07_012 crossref_primary_10_1007_s40820_018_0210_8 crossref_primary_10_1016_j_jechem_2022_04_001 crossref_primary_10_1021_jacs_8b09706 crossref_primary_10_1039_C6TC04934F crossref_primary_10_1021_acsomega_9b00464 crossref_primary_10_1002_adom_202303304 crossref_primary_10_3390_nano9040505 crossref_primary_10_1002_sstr_202000124 crossref_primary_10_1039_D3DT00122A crossref_primary_10_1002_ange_202403739 crossref_primary_10_1002_smtd_201700340 crossref_primary_10_1021_acsanm_4c00283 crossref_primary_10_1039_D2TC05289J crossref_primary_10_1002_bio_4706 crossref_primary_10_1088_2053_1591_ab9bc5 crossref_primary_10_1021_acsenergylett_9b02096 crossref_primary_10_1039_D1RA03622J crossref_primary_10_1002_adma_201700047 crossref_primary_10_1039_C8CS00212F crossref_primary_10_1016_j_actbio_2018_05_004 crossref_primary_10_1016_j_nanoen_2020_105552 crossref_primary_10_1021_acsami_0c07514 crossref_primary_10_1016_j_jcis_2019_07_054 crossref_primary_10_1016_j_chphma_2024_03_004 crossref_primary_10_1002_smll_201702433 crossref_primary_10_1002_adma_201705532 crossref_primary_10_1088_2632_959X_ad2b7e crossref_primary_10_1039_C6TC04411E crossref_primary_10_1016_j_cej_2019_123316 crossref_primary_10_1016_j_scriptamat_2019_10_049 crossref_primary_10_1021_acsami_8b07438 crossref_primary_10_1002_adfm_202401284 crossref_primary_10_1021_acsami_7b04616 crossref_primary_10_1063_1_5126473 crossref_primary_10_1007_s12274_018_2197_3 crossref_primary_10_1016_j_scib_2024_05_045 crossref_primary_10_1016_j_surfcoat_2018_04_011 crossref_primary_10_1021_acsenergylett_8b00035 crossref_primary_10_1007_s10853_018_2774_6 crossref_primary_10_1002_smll_201900730 crossref_primary_10_3390_nano10040710 crossref_primary_10_1039_C9CE00027E crossref_primary_10_1021_acsnano_7b03660 crossref_primary_10_1021_acsami_8b13418 crossref_primary_10_1002_adfm_201904501 crossref_primary_10_1038_s42005_023_01459_8 crossref_primary_10_1016_j_nanoen_2024_109339 crossref_primary_10_1021_acsami_8b05489 crossref_primary_10_1002_aelm_201800335 crossref_primary_10_1002_adfm_201902008 crossref_primary_10_1016_j_mser_2022_100710 crossref_primary_10_1021_accountsmr_3c00039 crossref_primary_10_1002_adma_201704587 crossref_primary_10_1002_smll_201900801 crossref_primary_10_1002_adfm_202103219 crossref_primary_10_1002_adom_201801426 crossref_primary_10_1021_acsnano_6b07617 crossref_primary_10_1038_s41563_018_0018_4 crossref_primary_10_1021_acsnano_7b04683 crossref_primary_10_1039_D2NJ06191K crossref_primary_10_1021_acs_jpclett_9b03714 crossref_primary_10_1088_1674_4926_41_5_051203 crossref_primary_10_1021_acssuschemeng_0c05171 crossref_primary_10_1039_C6TC04069A crossref_primary_10_1364_AO_400296 crossref_primary_10_1021_acsanm_0c02334 crossref_primary_10_1039_C8TC05765F crossref_primary_10_1021_acsenergylett_3c01812 crossref_primary_10_3184_003685018X15360899653905 crossref_primary_10_1016_j_jlumin_2018_05_019 crossref_primary_10_1021_acs_jpclett_6b02224 crossref_primary_10_1021_acsnano_7b00404 crossref_primary_10_1016_j_joule_2020_04_007 crossref_primary_10_1039_D0EE01153C crossref_primary_10_1021_acsenergylett_8b01669 crossref_primary_10_1002_adom_201800469 crossref_primary_10_1021_acs_chemmater_9b03438 crossref_primary_10_1021_acsnano_8b05172 crossref_primary_10_1002_smll_201900355 crossref_primary_10_1021_acsami_0c05537 crossref_primary_10_1007_s13204_021_01933_1 crossref_primary_10_1002_smtd_201700419 crossref_primary_10_1002_anie_202403739 crossref_primary_10_1063_1_4962351 crossref_primary_10_1039_C6CC10245J crossref_primary_10_1002_adpr_202200003 crossref_primary_10_1016_j_cej_2023_142330 crossref_primary_10_1063_5_0053583 crossref_primary_10_1063_1_4994995 crossref_primary_10_1515_nanoph_2021_0033 crossref_primary_10_1002_adom_202001684 crossref_primary_10_1016_j_nantod_2022_101449 crossref_primary_10_1021_acs_jpclett_7b00368 crossref_primary_10_1039_C6NR08158D crossref_primary_10_3390_en12183507 crossref_primary_10_1002_sdtp_11602 crossref_primary_10_1002_adfm_201909667 crossref_primary_10_1039_C8NR00806J crossref_primary_10_1021_acsami_7b14677 crossref_primary_10_1103_PhysRevB_103_045415 crossref_primary_10_1021_acsami_0c19287 crossref_primary_10_1002_adma_201807516 crossref_primary_10_1002_smtd_201900196 crossref_primary_10_1021_acs_jpcc_8b03721 crossref_primary_10_1002_adom_202101419 crossref_primary_10_31613_ceramist_2021_24_2_07 crossref_primary_10_1002_smtd_201800093 crossref_primary_10_1002_adfm_201604018 crossref_primary_10_1002_chem_201805656 crossref_primary_10_1021_jacs_2c07172 crossref_primary_10_1038_s43246_020_00084_0 crossref_primary_10_1002_lpor_202300383 crossref_primary_10_1002_adfm_201604382 crossref_primary_10_1002_adma_201804595 crossref_primary_10_1039_C8NR10298H crossref_primary_10_1039_C9NR10070A crossref_primary_10_1016_j_mattod_2019_10_021 crossref_primary_10_1021_acs_langmuir_9b02129 crossref_primary_10_1109_LED_2019_2932134 crossref_primary_10_3390_nano8070459 crossref_primary_10_1039_C6CC06425F crossref_primary_10_1103_PhysRevB_101_125424 |
Cites_doi | 10.1002/adma.201502294 10.1038/nphoton.2013.70 10.1038/nchem.2324 10.1021/acs.nanolett.5b00235 10.1021/acs.nanolett.5b02985 10.1002/anie.201306953 10.1002/adma.201503461 10.1038/nnano.2014.149 10.1002/adma.201204502 10.1126/science.1228604 10.1002/adfm.201404421 10.1002/advs.201500194 10.1021/acsnano.5b01154 10.1021/acsami.5b10373 10.1002/adma.201403751 10.1002/adma.201405217 10.1039/C4TA05033A 10.1002/adma.201502567 10.1038/nphoton.2013.342 10.1126/science.aad1818 10.1021/nn506223h 10.1021/la062150e |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201601054 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 4802 |
ExternalDocumentID | 10_1002_adfm_201601054 ADFM201601054 ark_67375_WNG_7LX5VWVX_P |
Genre | article |
GrantInformation_xml | – fundername: National Basic Research Program of China funderid: 2013CB933500; 2012CB932400 – fundername: National Natural Science Foundation of China funderid: 61422403 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4264-b15e21501ede5f2df1f663067d13cf5f4fd0504b73428f4aa74977efa5dea94c3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Aug 16 09:31:12 EDT 2024 Fri Aug 23 00:33:34 EDT 2024 Sat Aug 24 01:05:19 EDT 2024 Wed Oct 30 09:48:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4264-b15e21501ede5f2df1f663067d13cf5f4fd0504b73428f4aa74977efa5dea94c3 |
Notes | National Basic Research Program of China - No. 2013CB933500; No. 2012CB932400 istex:242A903825310E9DC959B375A56FCAB7FC7840EA ArticleID:ADFM201601054 ark:/67375/WNG-7LX5VWVX-P National Natural Science Foundation of China - No. 61422403 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825559420 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1825559420 crossref_primary_10_1002_adfm_201601054 wiley_primary_10_1002_adfm_201601054_ADFM201601054 istex_primary_ark_67375_WNG_7LX5VWVX_P |
PublicationCentury | 2000 |
PublicationDate | July 12, 2016 |
PublicationDateYYYYMMDD | 2016-07-12 |
PublicationDate_xml | – month: 07 year: 2016 text: July 12, 2016 day: 12 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. C. Sullivan, P. T. Kazlas, Nat. Photonics 2013, 7, 407. M. V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D. V. Talapin, C. R. Kagan, V. I. Klimov, A. L. Rogach, P. Reiss, D. J. Milliron, P. G. Sionnnest, G. Konstantatos, W. J. Parak, T. Hyeon, B. A. Korgel, C. B. Murray, W. Heiss, ACS Nano 2015, 9, 1012. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643. F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533. J. Z. Song, J. H. Li, X. M. Li, L. M. Xu, Y. H. Dong, H. B. Zeng, Adv. Mater. 2015, 27, 7162. D. Liu, T. L. Kelly, Nat. Photonics 2013, 8, 133. G. Li, Z. K. Tan, D. Di, M. L. Lai, L. Jiang, J. H. W. Lim, R. H. Friend, N. C. Greenham, Nano Lett. 2015, 15, 2640. Z. J. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. X. Xu, O. Voznyy, P. Maraghechi, X. Z Lan, S. Hoogland, Y. Ren, E. H. Sargent, Adv. Mater. 2013, 25, 1719. M. Ghosh, F. Fan, K. J. Stebe, Langmuir 2007, 23, 2180. Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. Myoung, C. L. Lee, S. H. Im, T. W. Lee, Adv. Mater. 2015, 27, 1248. J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K. Z. Milowska, R. García Cortadella, B. Nickel, C. Cardenas-Daw, J. K. Stolarczyk, A. S. Urban, J. Feldmann, Nano Lett. 2015, 15, 6521. J. Berry, T. Buonassisi, D. A. Egger, G. Hodes, L. Kronik, Y. L. Loo, I. Lubomirsky, S. R. Marder, Y. Mastai, J. S. Miller, D. B. Mitzi, Y. Paz, A. M. Rappe, I. Riess, B. Rybtchinski, O. Stafsudd, V. Stevanovic, M. F. Toney, D. Zitoun, A. Kahn, D. Ginley, D. Cahen, Adv. Mater. 2015, 27, 5102. H. Huang, A. S. Susha, S. V. Kershaw, T. F. Hung, A. L. Rogach, Adv. Sci. 2015, 2, 1500194. J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, Adv. Mater. 2015, 27, 2311. L. Li, P. Gao, W. Wang, K. Mllen, H. Fuchs, L. Chi, Angew. Chem. Int. Ed. 2013, 52, 12530. H. H. Fang, R. Raissa, M. Abdu-Aguye, S. Adjokatse, G. R. Blake, J. Even, M. A. Loi, Adv. Funct. Mater. 2015, 25, 2378. H. Huang, F. Zhao, L. Liu, F. Zhang, X. G. Wu, L. Shi, B. Zou, Q. Pei, H. Zhong, ACS Appl. Mater. Interfaces 2015, 7, 28128. Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687. H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T. W. Lee, Science 2015, 350, 1222. X. Li, M. Ibrahim Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han, M. Grätzel, Nat. Chem. 2015, 7, 703. Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, G. D. Scholes, Adv. Mater. 2016, 28, 566. W. J. Yin, J. H. Yang, J. Kang, Y. Yan, S. H. Wei, J. Mater. Chem. A 2015, 3, 8926. 2015; 350 2015; 2 2015; 15 2015; 25 2015; 27 2013; 25 2015; 3 2013; 52 2014; 9 2013; 7 2013; 8 2015; 9 2016; 28 2015; 7 2007; 23 2012; 338 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_22_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 8 start-page: 133 year: 2013 publication-title: Nat. Photonics – volume: 27 start-page: 2311 year: 2015 publication-title: Adv. Mater. – volume: 25 start-page: 1719 year: 2013 publication-title: Adv. Mater. – volume: 350 start-page: 1222 year: 2015 publication-title: Science – volume: 7 start-page: 28128 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 407 year: 2013 publication-title: Nat. Photonics – volume: 9 start-page: 687 year: 2014 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 703 year: 2015 publication-title: Nat. Chem. – volume: 28 start-page: 566 year: 2016 publication-title: Adv. Mater. – volume: 27 start-page: 7162 year: 2015 publication-title: Adv. Mater. – volume: 2 start-page: 1500194 year: 2015 publication-title: Adv. Sci. – volume: 9 start-page: 1012 year: 2015 publication-title: ACS Nano – volume: 15 start-page: 2640 year: 2015 publication-title: Nano Lett. – volume: 27 start-page: 1248 year: 2015 publication-title: Adv. Mater. – volume: 27 start-page: 5102 year: 2015 publication-title: Adv. Mater. – volume: 25 start-page: 2378 year: 2015 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 8926 year: 2015 publication-title: J. Mater. Chem. A – volume: 9 start-page: 4533 year: 2015 publication-title: ACS Nano – volume: 15 start-page: 6521 year: 2015 publication-title: Nano Lett. – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 23 start-page: 2180 year: 2007 publication-title: Langmuir – volume: 52 start-page: 12530 year: 2013 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_6_2_1 doi: 10.1002/adma.201502294 – ident: e_1_2_6_17_1 doi: 10.1038/nphoton.2013.70 – ident: e_1_2_6_22_1 doi: 10.1038/nchem.2324 – ident: e_1_2_6_9_1 doi: 10.1021/acs.nanolett.5b00235 – ident: e_1_2_6_11_1 doi: 10.1021/acs.nanolett.5b02985 – ident: e_1_2_6_19_1 doi: 10.1002/anie.201306953 – ident: e_1_2_6_14_1 doi: 10.1002/adma.201503461 – ident: e_1_2_6_7_1 doi: 10.1038/nnano.2014.149 – ident: e_1_2_6_16_1 doi: 10.1002/adma.201204502 – ident: e_1_2_6_1_1 doi: 10.1126/science.1228604 – ident: e_1_2_6_3_1 doi: 10.1002/adfm.201404421 – ident: e_1_2_6_13_1 doi: 10.1002/advs.201500194 – ident: e_1_2_6_12_1 doi: 10.1021/acsnano.5b01154 – ident: e_1_2_6_15_1 doi: 10.1021/acsami.5b10373 – ident: e_1_2_6_6_1 doi: 10.1002/adma.201403751 – ident: e_1_2_6_8_1 doi: 10.1002/adma.201405217 – ident: e_1_2_6_5_1 doi: 10.1039/C4TA05033A – ident: e_1_2_6_21_1 doi: 10.1002/adma.201502567 – ident: e_1_2_6_4_1 doi: 10.1038/nphoton.2013.342 – ident: e_1_2_6_10_1 doi: 10.1126/science.aad1818 – ident: e_1_2_6_18_1 doi: 10.1021/nn506223h – ident: e_1_2_6_20_1 doi: 10.1021/la062150e |
SSID | ssj0017734 |
Score | 2.6418414 |
Snippet | Organometal halide perovskites quantum dots (OHP‐QDs) with bright, color‐tunable, and narrow‐band photoluminescence have significant advantages in display,... Organometal halide perovskites quantum dots (OHP-QDs) with bright, color-tunable, and narrow-band photoluminescence have significant advantages in display,... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 4797 |
SubjectTerms | Devices Dip coatings Halides Light-emitting diodes Lighting multicolored light-emitting diodes organometal halide perovskite Perovskites Quantum dots Tuning |
Title | Organometal Halide Perovskite Quantum Dot Light-Emitting Diodes |
URI | https://api.istex.fr/ark:/67375/WNG-7LX5VWVX-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201601054 https://search.proquest.com/docview/1825559420 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QuMCBN2K8VCQEp7ImTZpxnBhjQgwB4tFblDSOhNBWtK0IceIn8Bv5JSTtVjYuSHBrpUZp7bj-7NhfENqv103EqYx8Jgn3qdWDLy0s90mYJJEE6zLzoxM6l1H7jp7HLJ7o4i_4IcqEm7OM_H_tDFyqQe2bNFRq4zrJsYsomCMExSF3NV3Nm5I_CnNebCtH2BV44XjM2hiQ2vTwKa806wT8OgU5J4Fr7nlai0iO37koOHk6yobqKHn7Qef4n49aQgsjWOo1inW0jGagt4LmJ8gKV1Ejb9tMu2Dhute28F2DdwX99GXgEsDedWZ1lHW9Zjr0LlzE__n-cdp9zMuqveZjqmGwhu5ap7cnbX90AIOfOKDkK8zAQoIAgwZmiDbYWIBi_ZvGYWKYoUYHLKDKSpnUDZWSUwsnwUimQR7TJFxHlV7agw3kBSFwCDk1vA5UJVxprKlUODKROiY8qKLDsQLEc8GzIQpGZSKcUEQplCo6yPVTPib7T646jTPxcHkm-EXM7h_uY3FVRXtjBQprM24jRPYgzQbCxlTMRlJ2ZVYRydXxy5yi0Wx1yrvNvwzaQnPu2qWFMdlGlWE_gx2LZ4ZqN1-zX2-36_8 |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAO5S22vIKE4JQ2dux4e1yxXRbYXRXUx94sO7alqtoN2t0gxKk_ob-xv6QzSRO6XJDgmCiWkxlP5pvxzGeAt91uyJQwWSwNV7FAPcQGYXnM0zzPjEeXWR2dMJ5kwyPxeSqbakLqhan5IdqEG1lG9b8mA6eE9O5v1lDjArWSMwoppLgNm2jzKZ3e0P_WMkgxpeqN5YxRiRebNryNCd9dH7_mlzZJxD_XQOdN6Fr5nsF9sM1b1yUnZzvlyu7kv_4gdPyvz3oAW9fINOrVS-kh3PLzR3DvBl_hY-hVnZvFzCNij4aI4J2PDvyi-LGkHHD0tUQ1lbOoX6yiEQX9l-cX-7PTqrI66p8Wzi-fwNFg__DDML4-gyHOCSvFlkmPqCBh3nkZuAssIEZBF-dYmgcZRHCJTIRFMfNuEMYogYjSByOdN3siT5_CxryY-2cQJalXPlUiqK4XNlfWMSeMZVnI7B5XSQfeNxrQ32uqDV2TKnNNQtGtUDrwrlJQ-5hZnFGBmpL6ZPJRq9FUHp8cT_VBB940GtRoNrQXYua-KJcawyqJwRQuzg7wSh9_mVP3-oNxe7X9L4New53h4XikR58mX57DXbpPWWLGX8DGalH6lwhvVvZVtYCvADGe8Bc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5RkKpyKNCHGl51pao9GbzrfYRjRAgBQpRWBXxbrb2zEkKJURJXVU_8BH4jv4Rdm5ikl0rt0ZZXa8_seL6ZnfkW4HOzaYVkWoRcUxkyp4dQO1ge0jjLhEbnMsujE877onvBThOezHXxV_wQdcLNW0b5v_YGfmvs_jNpqDbWd5ITH1Fw9gJWmHDw18Oi7zWBFJGy2lcWxFd4kWRG2xjR_cXxC25pxUv41wLmnEeupevprIGevXRVcXKzV0zTvez3H3yO__NV6_D6CZcGrWohbcASjt7A6hxb4VtolX2b-RAdXg-6Dr8bDAY4zn9OfAY4-FY4JRXDoJ1Pg54P-R_u7o-G12VdddC-zg1O3sFF5-jHYTd8OoEhzDxSClPC0WGCiKBBbqmxxAovZWlInFlumTURj1jqpEyblmktmcOTaDU3qA9YFr-H5VE-wg8QRDFKjCWzsokszWRqiGE6JcKK9IDKqAFfZwpQtxXRhqoolanyQlG1UBrwpdRP_Zge3_jyNMnVVf9YyV7CL68uEzVowKeZApUzGr8TokeYFxPlgiruQim3NBtAS3X8ZU7VanfO66vNfxn0EV4O2h3VO-mfbcErf9uniAndhuXpuMAdh22m6W65fB8BatTuxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organometal+Halide+Perovskite+Quantum+Dot+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+functional+materials&rft.au=Deng%2C+Wei&rft.au=Xu%2C+Xiuzhen&rft.au=Zhang%2C+Xiujuan&rft.au=Zhang%2C+Yedong&rft.date=2016-07-12&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=26&rft.spage=4797&rft.epage=4802&rft_id=info:doi/10.1002%2Fadfm.201601054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201601054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |