New insights into gibberellin signaling in regulating flowering in Arabidopsis
In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple ex...
Saved in:
Published in | Journal of integrative plant biology Vol. 62; no. 1; pp. 118 - 131 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
China (Republic : 1949- )
Wiley Subscription Services, Inc
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA‐mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition.
Gibberellin (GA) is one of major plant hormones that affects flowering time in Arabidopsis. In this review, we summarized the recent advances in understanding the molecular mechanisms of DELLA‐mediated GA pathway in flowering time control in Arabidopsis, and discussed the possible links with other phytohormone pathwaysduring the floral transition. |
---|---|
AbstractList | In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition.In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition. In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition. In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA‐mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition. Gibberellin (GA) is one of major plant hormones that affects flowering time in Arabidopsis. In this review, we summarized the recent advances in understanding the molecular mechanisms of DELLA‐mediated GA pathway in flowering time control in Arabidopsis, and discussed the possible links with other phytohormone pathwaysduring the floral transition. In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana . The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA‐mediated GA pathway in flowering time control in Arabidopsis , and discuss its possible link with other phytohormone pathways during the floral transition. |
Author | Yu, Hao Bao, Shengjie Hua, Changmei Shen, Lisha |
Author_xml | – sequence: 1 givenname: Shengjie surname: Bao fullname: Bao, Shengjie organization: National University of Singapore – sequence: 2 givenname: Changmei surname: Hua fullname: Hua, Changmei organization: National University of Singapore – sequence: 3 givenname: Lisha surname: Shen fullname: Shen, Lisha email: lisha@tll.org.sg organization: National University of Singapore – sequence: 4 givenname: Hao surname: Yu fullname: Yu, Hao email: dbsyuhao@nus.edu.sg organization: National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31785071$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKxDAUhoMo6oxufAAZcCNC9SRNc1mqeEXUhfvQJumYodOMScswb2_qjBsRzSZ_Tr7_cC4jtN361iJ0hOEcp3Mxc4vqHBMhyRbax5zSjEuQ20kzTjIJnOyhUYwzgFwAI7toL8dcFMDxPnp-tsuJa6Obvncxic5Ppq6qbLBN49pJirdlEtP0NQl22jdlN7zqxi9t2MQvQ1k54xfRxQO0U5dNtIebe4zebm_eru-zp5e7h-vLp0xTwkhmhKagDZGUElNgzbDW3EiAojZGUMC4kqQCrpkFLFmtRVUWqadCS4Nrlo_R6TrtIviP3sZOzV3UqeSytb6PilAASikTxf9oTtJYKBUioSc_0JnvQ-p_oGgqlrN8SHi8ofpqbo1aBDcvw0p9zzQBsAZ08DEGWyvtujQ233ahdI3CoIa1qWFt6mttyXL2w_Kd9VcYr-Gla-zqD1I9PrxerT2fWcWmhg |
CitedBy_id | crossref_primary_10_48130_tp_0024_0043 crossref_primary_10_1007_s11103_023_01373_1 crossref_primary_10_3390_horticulturae7080252 crossref_primary_10_1016_j_aquabot_2023_103704 crossref_primary_10_3390_horticulturae9040428 crossref_primary_10_3389_fpls_2023_1128780 crossref_primary_10_1016_j_pld_2024_10_004 crossref_primary_10_3390_ijms21165914 crossref_primary_10_1093_jxb_erac168 crossref_primary_10_1093_jxb_erae105 crossref_primary_10_3390_agronomy13112671 crossref_primary_10_3390_plants12244103 crossref_primary_10_3390_plants13050649 crossref_primary_10_1007_s00438_022_01942_x crossref_primary_10_1016_j_jphotobiol_2023_112673 crossref_primary_10_1093_plcell_koae248 crossref_primary_10_1007_s00468_024_02580_z crossref_primary_10_3390_ijms231911264 crossref_primary_10_3390_agronomy14010155 crossref_primary_10_48130_frures_0023_0044 crossref_primary_10_1007_s12042_022_09322_w crossref_primary_10_1016_j_cj_2025_01_017 crossref_primary_10_1016_j_postharvbio_2024_112860 crossref_primary_10_1111_ppl_14378 crossref_primary_10_1016_j_pestbp_2023_105725 crossref_primary_10_3390_ijms21249700 crossref_primary_10_1007_s00299_023_03090_x crossref_primary_10_1093_hr_uhac091 crossref_primary_10_1007_s11240_024_02901_7 crossref_primary_10_1073_pnas_2103895118 crossref_primary_10_3390_foods12061223 crossref_primary_10_1016_j_jgg_2023_05_012 crossref_primary_10_1016_j_plaphy_2024_108931 crossref_primary_10_1016_j_scienta_2024_113689 crossref_primary_10_1016_j_ijbiomac_2023_124790 crossref_primary_10_3390_ijms26020732 crossref_primary_10_3390_genes15060740 crossref_primary_10_1016_j_pbi_2021_102074 crossref_primary_10_1111_nph_17314 crossref_primary_10_3390_ijms25094794 crossref_primary_10_3390_ijms25147510 crossref_primary_10_3389_fpls_2021_709030 crossref_primary_10_3390_plants12020264 crossref_primary_10_1016_j_plantsci_2023_111966 crossref_primary_10_31083_j_fbl2904156 crossref_primary_10_1021_acs_jafc_3c04712 crossref_primary_10_3389_fpls_2021_629857 crossref_primary_10_1186_s13765_022_00698_7 crossref_primary_10_1134_S1022795423130124 crossref_primary_10_1016_j_molp_2023_12_011 crossref_primary_10_1016_j_ijbiomac_2025_140497 crossref_primary_10_1093_jxb_erab418 crossref_primary_10_1093_plcell_koae035 crossref_primary_10_3390_agriculture13020374 crossref_primary_10_3390_ijms22115716 crossref_primary_10_1038_s41598_022_10817_5 crossref_primary_10_1007_s00497_024_00510_0 crossref_primary_10_3390_genes15010036 crossref_primary_10_3390_horticulturae11010102 crossref_primary_10_1016_j_scienta_2024_112880 crossref_primary_10_1016_j_jplph_2022_153719 crossref_primary_10_3390_plants12193413 crossref_primary_10_1007_s00344_024_11308_9 crossref_primary_10_1007_s11262_021_01881_6 crossref_primary_10_1016_j_gene_2023_147699 crossref_primary_10_3389_fpls_2022_852047 crossref_primary_10_1007_s13205_024_04019_1 crossref_primary_10_1016_j_ecoenv_2025_118049 crossref_primary_10_1016_j_repbre_2022_11_003 crossref_primary_10_1093_jxb_erae029 crossref_primary_10_1093_pcp_pcaa079 crossref_primary_10_3390_agronomy12123132 crossref_primary_10_1111_nph_20309 crossref_primary_10_1021_acsnano_1c10602 crossref_primary_10_3389_fpls_2021_765995 crossref_primary_10_1007_s13205_023_03573_4 crossref_primary_10_1093_treephys_tpac083 crossref_primary_10_1111_nph_17939 crossref_primary_10_1186_s12870_025_06101_z crossref_primary_10_1007_s11816_024_00945_x crossref_primary_10_3389_fgene_2021_730821 crossref_primary_10_1093_plcell_koad166 crossref_primary_10_3389_fgene_2021_703688 crossref_primary_10_3389_fmicb_2023_1171104 crossref_primary_10_3390_agronomy14112497 crossref_primary_10_1111_nph_18699 crossref_primary_10_1093_plphys_kiae022 crossref_primary_10_3390_ijms22179326 crossref_primary_10_3390_ijms23094955 crossref_primary_10_1111_jipb_13196 crossref_primary_10_1111_jipb_13071 crossref_primary_10_1016_j_plantsci_2024_112100 crossref_primary_10_3390_ijms222312645 crossref_primary_10_32615_bp_2021_056 crossref_primary_10_1111_pbi_14063 crossref_primary_10_3389_fpls_2023_1273409 crossref_primary_10_1093_plphys_kiad162 crossref_primary_10_1111_nph_19893 crossref_primary_10_3390_ijms24087051 crossref_primary_10_1038_s41598_022_21322_0 crossref_primary_10_3390_ijms25105310 crossref_primary_10_1007_s44187_024_00160_1 crossref_primary_10_54112_bbasr_v2023i1_45 crossref_primary_10_1186_s12870_024_05027_2 crossref_primary_10_1186_s12864_025_11348_9 crossref_primary_10_1111_plb_13624 crossref_primary_10_1016_j_plantsci_2021_110995 crossref_primary_10_1016_j_indcrop_2022_116110 crossref_primary_10_1016_j_scienta_2022_111419 crossref_primary_10_1016_j_envexpbot_2025_106126 crossref_primary_10_1111_ppl_13146 crossref_primary_10_3390_ijms232214036 crossref_primary_10_1007_s00425_023_04222_z crossref_primary_10_1093_treephys_tpac035 crossref_primary_10_3390_ijms26031000 crossref_primary_10_1080_15592324_2021_1901448 crossref_primary_10_1111_ppl_13677 crossref_primary_10_7554_eLife_60661 crossref_primary_10_1016_j_plantsci_2024_112369 crossref_primary_10_1093_nar_gkac551 crossref_primary_10_1016_j_pestbp_2023_105598 crossref_primary_10_1016_j_plantsci_2024_112242 crossref_primary_10_3390_horticulturae9121353 crossref_primary_10_1111_ppl_13674 crossref_primary_10_3389_fpls_2021_715683 crossref_primary_10_3390_plants12234020 crossref_primary_10_1111_tpj_16015 crossref_primary_10_1021_acs_jafc_3c03560 crossref_primary_10_7717_peerj_16279 crossref_primary_10_1080_21645698_2024_2442158 crossref_primary_10_1007_s00122_021_03898_9 crossref_primary_10_1111_jipb_13000 crossref_primary_10_1111_ppl_14531 crossref_primary_10_1016_j_plaphy_2024_108650 crossref_primary_10_1016_j_xplc_2023_100779 crossref_primary_10_1016_j_indcrop_2024_119176 crossref_primary_10_1080_14620316_2024_2360439 crossref_primary_10_48130_seedbio_0024_0005 crossref_primary_10_3390_genes14122114 crossref_primary_10_3389_fpls_2022_889460 crossref_primary_10_3389_fpls_2024_1486525 crossref_primary_10_3389_fpls_2024_1336892 crossref_primary_10_3390_ijms251910688 crossref_primary_10_3390_genes16010024 crossref_primary_10_1016_j_hpj_2020_11_007 crossref_primary_10_1038_s41598_024_54862_8 crossref_primary_10_1016_j_hpj_2023_05_020 crossref_primary_10_1111_pce_14258 crossref_primary_10_3389_fpls_2023_1109603 crossref_primary_10_3389_fpls_2022_834431 crossref_primary_10_14710_baf_7_1_2022_60_65 crossref_primary_10_1016_j_chemosphere_2024_141335 crossref_primary_10_3390_agronomy13051251 crossref_primary_10_3390_ijms232214046 crossref_primary_10_3390_plants13030437 crossref_primary_10_1111_pce_15356 crossref_primary_10_1016_j_isci_2024_110829 crossref_primary_10_1093_plphys_kiab224 crossref_primary_10_1111_jipb_12971 crossref_primary_10_1016_j_plantsci_2022_111383 crossref_primary_10_1093_plphys_kiae616 crossref_primary_10_1111_nph_17836 crossref_primary_10_1016_j_indcrop_2023_117148 crossref_primary_10_3390_ijms23126452 crossref_primary_10_1093_jxb_erad103 crossref_primary_10_1093_plcell_koab286 crossref_primary_10_1093_plphys_kiab052 crossref_primary_10_1093_jxb_erac016 crossref_primary_10_1007_s44154_024_00203_8 crossref_primary_10_1126_sciadv_abn5488 crossref_primary_10_1021_acs_jafc_4c09045 crossref_primary_10_3389_fpls_2022_933923 crossref_primary_10_3390_plants14071002 crossref_primary_10_1016_j_jgr_2024_04_004 crossref_primary_10_3390_ijms24087217 crossref_primary_10_1111_pce_15322 crossref_primary_10_17660_ActaHortic_2024_1414_10 crossref_primary_10_1093_hr_uhae013 crossref_primary_10_3390_ijms24043753 crossref_primary_10_1007_s13199_024_01029_8 crossref_primary_10_3390_ijms22147313 crossref_primary_10_1186_s12870_024_05339_3 crossref_primary_10_1016_j_tplants_2020_06_008 crossref_primary_10_1186_s12864_025_11439_7 crossref_primary_10_3389_fpls_2021_626015 crossref_primary_10_1016_j_jprot_2025_105398 crossref_primary_10_1016_j_plaphy_2021_03_046 crossref_primary_10_1038_s41467_023_35966_7 crossref_primary_10_1111_jfbc_13706 crossref_primary_10_1016_j_envexpbot_2021_104411 crossref_primary_10_1016_j_hpj_2023_08_003 crossref_primary_10_3390_genes13101713 crossref_primary_10_1016_j_gene_2023_147739 crossref_primary_10_3390_plants13213051 crossref_primary_10_1007_s00122_024_04737_3 crossref_primary_10_3389_fpls_2022_820439 crossref_primary_10_3390_applbiosci3040035 crossref_primary_10_1038_s41598_024_73936_1 crossref_primary_10_1242_dev_192039 crossref_primary_10_1093_hr_uhae245 crossref_primary_10_3390_horticulturae10090974 crossref_primary_10_1016_j_plantsci_2024_112178 crossref_primary_10_3389_fpls_2023_1135684 crossref_primary_10_1093_plphys_kiac139 crossref_primary_10_2139_ssrn_4132921 crossref_primary_10_3390_su16031076 crossref_primary_10_1007_s00299_023_03034_5 crossref_primary_10_1111_nph_18611 crossref_primary_10_1111_ppl_70084 crossref_primary_10_3390_ijms26020522 crossref_primary_10_1111_tpj_16544 crossref_primary_10_1080_15592324_2022_2026614 crossref_primary_10_1016_j_scienta_2024_113350 crossref_primary_10_3390_agronomy11020196 crossref_primary_10_1007_s11103_024_01460_x crossref_primary_10_1002_adma_202205794 crossref_primary_10_3390_plants14060923 crossref_primary_10_1016_j_ijbiomac_2024_134691 crossref_primary_10_3390_ijms241210365 crossref_primary_10_1242_dev_201601 crossref_primary_10_1038_s41598_024_82364_0 crossref_primary_10_1016_j_pbi_2023_102451 crossref_primary_10_3390_agronomy14081741 crossref_primary_10_1134_S0026893324700055 crossref_primary_10_3389_fpls_2023_1279107 crossref_primary_10_1007_s11032_024_01524_2 crossref_primary_10_1016_j_scienta_2024_113362 crossref_primary_10_1038_s41598_022_05700_2 crossref_primary_10_1111_ppl_13307 crossref_primary_10_1002_pld3_541 crossref_primary_10_3390_plants13040557 crossref_primary_10_3390_plants13040556 |
Cites_doi | 10.1105/tpc.113.120352 10.1073/pnas.1101050108 10.1101/gad.297704 10.1111/tpj.13183 10.1016/S0092-8674(03)00968-1 10.1016/j.molp.2014.12.018 10.1046/j.1365-313X.2003.01674.x 10.1007/s00018-006-6116-5 10.1016/j.pbi.2013.06.001 10.1126/science.1118642 10.1101/gad.1589007 10.1186/s13059-015-0597-1 10.1104/pp.16.01471 10.1146/annurev-arplant-042809-112122 10.1105/tpc.10.5.791 10.1242/dev.01206 10.1093/jxb/ern232 10.1038/ncomms12768 10.1038/ncomms1810 10.1093/mp/ssq073 10.1038/nature04028 10.1105/tpc.020958 10.1242/dev.077164 10.1105/tpc.6.10.1509 10.1105/tpc.11.5.949 10.1073/pnas.212624599 10.1105/tpc.106.042317 10.1073/pnas.0610717104 10.1242/dev.01231 10.1126/science.1065201 10.1016/j.cell.2009.06.014 10.1371/journal.pgen.0020106 10.1038/35009125 10.1242/dev.063511 10.1126/science.288.5471.1613 10.1371/journal.pgen.1005337 10.1104/pp.17.00657 10.1105/tpc.18.00960 10.1105/tpc.107.053009 10.1038/nature01387 10.1093/jxb/ers361 10.1111/j.1365-313X.2005.02642.x 10.1105/tpc.104.028472 10.1104/pp.114.235556 10.1093/jxb/erm300 10.1038/ncb2546 10.1105/tpc.106.047415 10.1104/pp.010442 10.1104/pp.100.1.403 10.1038/ncomms5601 10.1104/pp.114.4.1471 10.1126/science.1250498 10.1105/tpc.113.118604 10.1126/science.286.5446.1962 10.1126/scisignal.2002908 10.1038/nature05960 10.1038/nature06006 10.1105/tpc.110.080788 10.1016/j.cub.2005.07.023 10.1104/pp.16.00891 10.1038/nature06520 10.1146/annurev.arplant.55.031903.141753 10.1038/nature01636 10.1002/1873-3468.12076 10.1104/pp.105.066928 10.1111/jipb.12451 10.1016/j.cub.2009.05.059 10.1038/nature10928 10.1242/dev.080879 10.1126/science.1114358 10.1038/nplants.2016.75 10.1016/j.molp.2018.06.007 10.1038/35074138 10.1105/tpc.112.101014 10.1093/aob/mct067 10.1126/science.1141752 10.1242/dev.020255 10.1038/nature07519 10.1242/dev.02866 10.1007/s003440010038 10.1016/j.molp.2017.08.007 10.1016/S0092-8674(03)00969-3 10.1104/pp.010587 10.1105/tpc.104.028514 10.1105/tpc.112.098749 10.1371/journal.pone.0014012 10.1016/S1360-1385(00)01600-9 10.1093/jxb/erl164 10.1126/science.1091761 10.1093/jxb/erv459 10.1101/gad.867901 10.1046/j.1365-313X.2003.01833.x 10.1093/jxb/erw384 10.1093/jxb/eru246 10.1038/nature07546 10.1016/j.cub.2008.07.075 10.1101/gad.813600 10.1073/pnas.1409567111 10.1146/annurev.arplant.043008.092007 10.1038/cr.2012.29 10.1105/tpc.104.025353 10.1073/pnas.0802254105 10.1016/j.devcel.2019.05.018 10.1038/ng1085 10.1242/dev.087650 10.1073/pnas.1119992109 10.1101/gad.1055803 10.1105/tpc.106.043729 10.1105/tpc.15.00917 10.1371/journal.pbio.1001313 10.1016/j.cub.2005.07.060 10.1016/j.devcel.2010.10.024 10.1016/j.molp.2016.08.003 10.1146/annurev.genet.32.1.227 10.1105/tpc.10.2.155 10.1104/pp.106.084871 10.1007/s00344-003-0028-5 10.1104/pp.113.217729 10.1146/annurev.arplant.59.032607.092804 10.1093/pcp/pcn154 10.1111/j.1365-313X.2009.03877.x 10.1105/tpc.15.00433 10.1016/j.devcel.2016.04.001 10.1101/gad.1318705 10.1046/j.1365-313X.2001.01173.x 10.1080/09168451.2015.1086259 10.1105/tpc.107.051441 |
ContentType | Journal Article |
Copyright | 2019 Institute of Botany, Chinese Academy of Sciences 2019 Institute of Botany, Chinese Academy of Sciences. 2020 Institute of Botany, Chinese Academy of Sciences |
Copyright_xml | – notice: 2019 Institute of Botany, Chinese Academy of Sciences – notice: 2019 Institute of Botany, Chinese Academy of Sciences. – notice: 2020 Institute of Botany, Chinese Academy of Sciences |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/jipb.12892 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Genetics Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1744-7909 |
EndPage | 131 |
ExternalDocumentID | 31785071 10_1111_jipb_12892 JIPB12892 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Singapore National Research Foundation Investigatorship Programme funderid: NRF‐NRFI2016‐02 – fundername: National University of Singapore and Temasek Life Sciences Laboratory – fundername: Singapore National Research Foundation Investigatorship Programme grantid: NRF-NRFI2016-02 |
GroupedDBID | --- -SA -S~ .3N .GA .Y3 05W 0R~ 10A 1OC 29K 2B. 2C. 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VR 5VS 5XA 5XB 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92E 92I 92Q 930 93N A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXDM AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFUIB AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CAJEA CCEZO CCVFK CHBEP CHDYS COF CS3 CW9 D-E D-F D-I DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q-- Q.N Q11 QB0 R.K ROL RX1 SJN SUPJJ SV3 TCJ TGP TUS U1G U5K UB1 W8V W99 WBKPD WFFXF WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4262-d8c40cd29442d51c61cc7d9005fdd84011b92b07c6e0196fc8ba59095c9d1f63 |
IEDL.DBID | DR2 |
ISSN | 1672-9072 1744-7909 |
IngestDate | Fri Jul 11 18:27:17 EDT 2025 Thu Jul 10 19:15:24 EDT 2025 Fri Jul 25 21:15:11 EDT 2025 Wed Feb 19 02:31:35 EST 2025 Thu Apr 24 23:05:57 EDT 2025 Tue Jul 01 03:06:09 EDT 2025 Wed Jan 22 16:37:17 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2019 Institute of Botany, Chinese Academy of Sciences. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4262-d8c40cd29442d51c61cc7d9005fdd84011b92b07c6e0196fc8ba59095c9d1f63 |
Notes | Edited by FA: Free Access Online on Nov. 30, 2019 Zhizhong Gong, China Agricultural University, China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12892 |
PMID | 31785071 |
PQID | 2342947635 |
PQPubID | 2045135 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2400444685 proquest_miscellaneous_2320384488 proquest_journals_2342947635 pubmed_primary_31785071 crossref_citationtrail_10_1111_jipb_12892 crossref_primary_10_1111_jipb_12892 wiley_primary_10_1111_jipb_12892_JIPB12892 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 2020-Jan 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | China (Republic : 1949- ) |
PublicationPlace_xml | – name: China (Republic : 1949- ) – name: Hoboken |
PublicationTitle | Journal of integrative plant biology |
PublicationTitleAlternate | J Integr Plant Biol |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 104 2012; 484 2010; 19 2013; 64 2002; 99 2014; 26 1999; 286 2008; 105 2012; 14 2016; 37 2012; 10 2001; 410 2018; 176 2000; 14 2000; 404 2013; 111 2006; 2006 2009; 19 2012; 24 1998; 10 2010; 5 2012; 22 2012; 139 2011; 138 2007; 19 2007; 448 2004; 303 2019; 31 2009; 60 2002; 130 2006; 58 2003; 35 2008; 59 2001; 28 2011; 4 2003; 33 2012; 109 2001; 20 2015; 67 2004; 55 2016; 7 2007; 316 2005; 19 2016; 2 2006; 45 2008; 49 2008; 135 2005; 15 2018; 11 2016; 28 2005; 17 2003; 22 2016; 172 1997; 114 2013; 25 2019; 50 2000; 5 2005; 139 2003; 17 2013; 162 2003; 115 2010; 61 1993; 5 2014; 65 2007; 134 2004; 131 2014; 5 2001; 294 2006; 63 2013; 16 2016; 86 1999; 11 2001; 15 2005; 309 2011; 23 2016; 80 2000; 288 2007; 21 2016a; 58 2001; 13 2014; 164 2016b; 9 2009; 59 2016; 590 2015; 16 1992; 100 2008; 18 2015; 11 2005; 437 2006; 18 2017; 173 2013; 140 2006; 2 2014; 111 2015; 8 2009; 138 2006; 311 2001; 127 2011; 108 2012; 3 2015; 27 2004; 18 2004; 16 2017; 10 2006; 142 2008; 456 2003; 423 2008; 451 2003; 421 1998; 32 2012; 5 2016; 67 1994; 6 2014; 344 e_1_2_6_114_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_132_1 Belkhadir Y (e_1_2_6_13_1) 2006; 2006 e_1_2_6_113_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 Jacobsen SE (e_1_2_6_53_1) 1993; 5 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_112_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_100_1 e_1_2_6_123_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 Zhai Q (e_1_2_6_128_1) 2015; 27 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_130_1 e_1_2_6_111_1 Silverstone AL (e_1_2_6_98_1) 2001; 13 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_122_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – volume: 176 start-page: 790 year: 2018 end-page: 803 article-title: Transcription factor WRKY75 interacts with DELLA proteins to affect flowering publication-title: Plant Physiol – volume: 24 start-page: 2635 year: 2012 end-page: 2648 article-title: MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression publication-title: Plant Cell – volume: 67 start-page: 195 year: 2015 end-page: 205 article-title: ABSCISIC ACID‐INSENSITIVE 4 negatively regulates flowering through directly promoting transcription publication-title: J Exp Bot – volume: 16 start-page: 2601 year: 2004 end-page: 2613 article-title: Divergent roles of a pair of homologous jumonji/zinc‐finger–class transcription factor proteins in the regulation of flowering time publication-title: Plant Cell – volume: 28 start-page: 465 year: 2001 end-page: 474 article-title: Sites and homeostatic control of auxin biosynthesis in during vegetative growth publication-title: Plant J – volume: 2 year: 2016 article-title: NaKR1 regulates long‐distance movement of FLOWERING LOCUS T in publication-title: Nat Plants – volume: 22 start-page: 134 year: 2003 end-page: 140 article-title: DELLA proteins and GA signalling in publication-title: J Plant Growth Regul – volume: 10 year: 2012 article-title: FTIP1 is an essential regulator required for florigen transport publication-title: PLoS Biol – volume: 59 start-page: 3821 year: 2008 end-page: 3829 article-title: The nature of floral signals in . II. Roles for FLOWERING LOCUS T (FT) and gibberellin publication-title: J Exp Bot – volume: 15 start-page: 1560 year: 2005 end-page: 1565 article-title: KNOX action in is mediated by coordinate regulation of cytokinin and gibberellin activities publication-title: Curr Biol – volume: 138 start-page: 738 year: 2009 end-page: 749 article-title: miR156‐regulated SPL transcription factors define an endogenous flowering pathway in publication-title: Cell – volume: 50 start-page: 90 year: 2019 end-page: 101 article-title: Molecular basis of natural variation in photoperiodic flowering responses publication-title: Dev Cell – volume: 32 start-page: 227 year: 1998 end-page: 254 article-title: The ethylene gas signal transduction pathway: A molecular perspective publication-title: Annu Rev Genet – volume: 139 start-page: 2198 year: 2012 end-page: 2209 article-title: Spatially distinct regulatory roles for gibberellins in the promotion of flowering of under long photoperiods publication-title: Development – volume: 10 start-page: 791 year: 1998 end-page: 800 article-title: Gibberellins promote flowering of by activating the promoter publication-title: Plant Cell – volume: 309 start-page: 1056 year: 2005 end-page: 1059 article-title: Integration of spatial and temporal information during floral induction in publication-title: Science – volume: 14 start-page: 2366 year: 2000 end-page: 2376 article-title: The AGAMOUS‐LIKE 20 MADS domain protein integrates floral inductive pathways in publication-title: Genes Dev – volume: 35 start-page: 613 year: 2003 end-page: 623 article-title: The SOC1 MADS‐box gene integrates vernalization and gibberellin signals for flowering in publication-title: Plant J – volume: 11 start-page: 949 year: 1999 end-page: 956 article-title: encodes a novel MADS domain protein that acts as a repressor of flowering publication-title: Plant Cell – volume: 25 start-page: 4863 year: 2013 end-page: 4878 article-title: ABA‐insensitive3, ABA‐insensitive5, and DELLAs interact to activate the expression of and other high‐temperature‐inducible genes in imbibed seeds in publication-title: Plant Cell – volume: 456 start-page: 459 year: 2008 end-page: 463 article-title: Gibberellin‐induced DELLA recognition by the gibberellin receptor GID1 publication-title: Nature – volume: 135 start-page: 1481 year: 2008 end-page: 1491 article-title: Direct interaction of AGL24 and SOC1 integrates flowering signals in publication-title: Development – volume: 16 start-page: 31 year: 2015 article-title: Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in publication-title: Genome Biol – volume: 162 start-page: 1706 year: 2013 end-page: 1719 article-title: GIGANTEA enables drought escape response via abscisic acid‐dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 publication-title: Plant Physiol – volume: 17 start-page: 410 year: 2003 end-page: 418 article-title: AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation publication-title: Genes Dev – volume: 27 start-page: 2261 year: 2015 end-page: 2272 article-title: Brassinosteroids are master regulators of gibberellin biosynthesis in publication-title: Plant Cell – volume: 31 start-page: 2475 year: 2019 end-page: 2490 article-title: The MCTP‐SNARE complex regulates florigen transport in publication-title: Plant Cell – volume: 37 start-page: 254 year: 2016 end-page: 266 article-title: Multi‐layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the shoot meristem publication-title: Dev Cell – volume: 17 start-page: 1196 year: 2005 end-page: 1204 article-title: HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in publication-title: Plant Cell – volume: 11 year: 2015 article-title: Genome wide binding site analysis reveals transcriptional coactivation of cytokinin‐responsive genes by DELLA proteins publication-title: PLoS Genet – volume: 15 start-page: 1566 year: 2005 end-page: 1571 article-title: KNOXI proteins activate cytokinin biosynthesis publication-title: Curr Biol – volume: 448 start-page: 666 year: 2007 end-page: 671 article-title: The JAZ family of repressors is the missing link in jasmonate signalling publication-title: Nature – volume: 19 start-page: 1532 year: 2005 end-page: 1543 article-title: The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation publication-title: Genes Dev – volume: 344 start-page: 638 year: 2014 end-page: 641 article-title: Gibberellin acts positively then negatively to control onset of flower formation in publication-title: Science – volume: 80 start-page: 34 year: 2016 end-page: 42 article-title: Current aspects of auxin biosynthesis in plants publication-title: Biosci Biotechnol Biochem – volume: 16 start-page: 607 year: 2013 end-page: 613 article-title: Emerging insights into florigen transport publication-title: Curr Opin Plant Biol – volume: 111 start-page: E2760 year: 2014 end-page: E2769 article-title: SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the shoot apex to regulate the floral transition publication-title: Proc Natl Acad Sci USA – volume: 410 start-page: 1116 year: 2001 end-page: 1120 article-title: CONSTANS mediates between the circadian clock and the control of flowering in publication-title: Nature – volume: 20 start-page: 387 year: 2001 end-page: 442 article-title: Occurrence of gibberellins in vascular plants, fungi, and bacteria publication-title: J Plant Growth Regul – volume: 294 start-page: 1519 year: 2001 end-page: 1521 article-title: ARR1, a transcription factor for genes immediately responsive to cytokinins publication-title: Science – volume: 19 start-page: 2140 year: 2007 end-page: 2155 article-title: Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin publication-title: Plant Cell – volume: 22 start-page: 915 year: 2012 end-page: 927 article-title: Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated seedlings publication-title: Cell Res – volume: 451 start-page: 480 year: 2008 end-page: 484 article-title: A molecular framework for light and gibberellin control of cell elongation publication-title: Nature – volume: 140 start-page: 1147 year: 2013 end-page: 1151 article-title: Gibberellin signaling in plants publication-title: Development – volume: 55 start-page: 197 year: 2004 end-page: 223 article-title: Molecular mechanism of gibberellin signaling in plants publication-title: Annu Rev Plant Biol – volume: 19 start-page: 1188 year: 2009 end-page: 1193 article-title: Gibberellin signaling controls cell proliferation rate in publication-title: Curr Biol – volume: 19 start-page: 1209 year: 2007 end-page: 1220 article-title: The DELLA domain of GA INSENSITIVE mediates the interaction with the ga insensitive dwarf1a gibberellin receptor of publication-title: Plant Cell – volume: 60 start-page: 183 year: 2009 end-page: 205 article-title: Jasmonate passes muster: A receptor and targets for the defense hormone publication-title: Annu Rev Plant Bio – volume: 316 start-page: 1030 year: 2007 end-page: 1033 article-title: FT protein movement contributes to long‐distance signaling in floral induction of publication-title: Science – volume: 115 start-page: 667 year: 2003 end-page: 677 article-title: Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)‐dependent proteolysis of EIN3 transcription factor publication-title: Cell – volume: 115 start-page: 679 year: 2003 end-page: 689 article-title: EIN3‐dependent regulation of plant ethylene hormone signaling by two F box proteins: EBF1 and EBF2 publication-title: Cell – volume: 5 start-page: 199 year: 2000 end-page: 206 article-title: The WRKY superfamily of plant transcription factors publication-title: Trends Plant Sci – volume: 19 start-page: 2430 year: 2007 end-page: 2439 article-title: Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis publication-title: Plant Cell – volume: 64 start-page: 675 year: 2013 end-page: 684 article-title: The inhibitory effect of ABA on floral transition is mediated by ABI5 in publication-title: J Exp Bot – volume: 423 start-page: 881 year: 2003 end-page: 885 article-title: Regulation of flowering time by light quality publication-title: Nature – volume: 49 start-page: 1645 year: 2008 end-page: 1658 article-title: Long‐distance, graft‐transmissible action of FLOWERING LOCUS T protein to promote flowering publication-title: Plant Cell Physiol – volume: 58 start-page: 221 year: 2006 end-page: 227 article-title: Gene networks involved in drought stress response and tolerance publication-title: J Exp Bot – volume: 8 start-page: 359 year: 2015 end-page: 377 article-title: To bloom or not to bloom: Role of microRNAs in plant flowering publication-title: Mol Plant – volume: 139 start-page: 4072 year: 2012 end-page: 4082 article-title: Spatial control of flowering by DELLA proteins in publication-title: Development – volume: 11 start-page: 1135 year: 2018 end-page: 1146 article-title: Brassinosteroid signaling recruits histone 3 lysine‐27 demethylation activity to chromatin to inhibit the floral transition in publication-title: Mol Plant – volume: 65 start-page: 4723 year: 2014 end-page: 4730 article-title: Regulation of flowering time by the miR156‐mediated age pathway publication-title: J Exp Bot – volume: 590 start-page: 541 year: 2016 end-page: 549 article-title: DELLA proteins physically interact with CONSTANS to regulate flowering under long days in publication-title: FEBS Lett – volume: 131 start-page: 3357 year: 2004 end-page: 3365 article-title: Modulation of floral development by a gibberellin‐regulated microRNA publication-title: Development – volume: 7 year: 2016 article-title: The NF‐YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in publication-title: Nat Commun – volume: 16 start-page: 1392 year: 2004 end-page: 1405 article-title: The F‐Box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin‐induced degradation publication-title: Plant Cell – volume: 303 start-page: 1003 year: 2004 end-page: 1006 article-title: Photoreceptor regulation of CONSTANS protein in photoperiodic flowering publication-title: Science – volume: 59 start-page: 359 year: 2009 end-page: 374 article-title: The ABA‐INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of and genes during sugar signaling publication-title: Plant J – volume: 3 start-page: 808 year: 2012 article-title: genes link photoperiod and gibberellin pathways to control flowering in publication-title: Nat Commun – volume: 14 start-page: 810 year: 2012 end-page: 817 article-title: Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in publication-title: Nat Cell Biol – volume: 421 start-page: 740 year: 2003 end-page: 743 article-title: Auxin promotes root growth by modulating gibberellin response publication-title: Nature – volume: 17 start-page: 92 year: 2005 end-page: 102 article-title: Cross talk between gibberellin and cytokinin: The GA response inhibitor SPINDLY plays a positive role in cytokinin signaling publication-title: Plant Cell – volume: 130 start-page: 1974 year: 2002 end-page: 1982 article-title: Auxin regulation of the gibberellin pathway in pea publication-title: Plant Physiol – volume: 28 start-page: 829 year: 2016 end-page: 832 article-title: Interactions between brassinosteroids and gibberellins: Synthesis or signaling? publication-title: Plant Cell – volume: 139 start-page: 770 year: 2005 end-page: 778 article-title: CONSTANS activates through FLOWERING LOCUS T to promote flowering in publication-title: Plant Physiol – volume: 404 start-page: 889 year: 2000 end-page: 892 article-title: Integration of floral inductive signals in publication-title: Nature – volume: 59 start-page: 225 year: 2008 end-page: 234 article-title: HDA6 is required for jasmonate response, senescence and flowering in publication-title: J Exp Bot – volume: 108 start-page: 9292 year: 2011 end-page: 9297 article-title: Circadian oscillation of gibberellin signaling in publication-title: Proc Natl Acad Sci USA – volume: 33 start-page: 875 year: 2003 end-page: 885 article-title: Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator publication-title: Plant J – volume: 138 start-page: 4117 year: 2011 end-page: 4129 article-title: The control of developmental phase transitions in plants publication-title: Development – volume: 109 start-page: 13446 year: 2012 end-page: 13451 article-title: Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in publication-title: Proc Natl Acad Sci USA – volume: 134 start-page: 2841 year: 2007 end-page: 2850 article-title: Attenuation of brassinosteroid signaling enhances expression and delays flowering publication-title: Development – volume: 86 start-page: 426 year: 2016 end-page: 440 article-title: Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days publication-title: Plant J – volume: 59 start-page: 225 year: 2008 end-page: 251 article-title: Gibberellin metabolism and its regulation publication-title: Annu Rev Plant Biol – volume: 164 start-page: 1587 year: 2014 end-page: 1592 article-title: Intertissue signal transfer of abscisic acid from vascular cells to guard cells publication-title: Plant Physiol – volume: 448 start-page: 661 year: 2007 end-page: 665 article-title: JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling publication-title: Nature – volume: 61 start-page: 651 year: 2010 end-page: 679 article-title: Abscisic acid: Emergence of a core signaling network publication-title: Annu Rev Plant Biol – volume: 18 start-page: 1338 year: 2008 end-page: 1343 article-title: The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering publication-title: Curr Biol – volume: 9 start-page: 1492 year: 2016b end-page: 1503 article-title: WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short‐day conditions publication-title: Mol Plant – volume: 58 start-page: 642 year: 2016a end-page: 655 article-title: DELLA proteins interact with FLC to repress flowering transition publication-title: J Integr Plant Biol – volume: 18 start-page: 2172 year: 2006 end-page: 2181 article-title: GA is the active gibberellin in the regulation of transcription and floral initiation publication-title: Plant Cell – volume: 2 year: 2006 article-title: Potent induction of flowering by elevated growth temperature publication-title: PLoS Genet – volume: 286 start-page: 1962 year: 1999 end-page: 1965 article-title: Activation tagging of the floral inducer FT publication-title: Science – volume: 142 start-page: 553 year: 2006 end-page: 563 article-title: Transcriptional regulation of gibberellin metabolism genes by auxin signaling in publication-title: Plant Physiol – volume: 437 start-page: 693 year: 2005 end-page: 698 article-title: encodes a soluble receptor for gibberellin publication-title: Nature – volume: 131 start-page: 3615 year: 2004 end-page: 3626 article-title: CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of publication-title: Development – volume: 67 start-page: 6309 year: 2016 end-page: 6322 article-title: ABA‐dependent control of GIGANTEA signalling enables drought escape via up‐regulation of in publication-title: J Exp Bot – volume: 100 start-page: 403 year: 1992 end-page: 408 article-title: Gibberellin is required for flowering in under short days publication-title: Plant Physiol – volume: 21 start-page: 2371 year: 2007 end-page: 2384 article-title: Move on up, it's time for change‐‐mobile signals controlling photoperiod‐dependent flowering publication-title: Genes Dev – volume: 63 start-page: 2738 year: 2006 end-page: 2754 article-title: Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development publication-title: Cell Mol Life Sci – volume: 311 start-page: 91 year: 2006 end-page: 94 article-title: Integration of plant responses to environmentally activated phytohormonal signals publication-title: Science – volume: 26 start-page: 1009 year: 2014 end-page: 1017 article-title: A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the promoter and regulates the timing of flowering in publication-title: Plant Cell – volume: 23 start-page: 701 year: 2011 end-page: 715 article-title: The bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses publication-title: Plant Cell – volume: 484 start-page: 242 year: 2012 end-page: 245 article-title: Transcription factor PIF4 controls the thermosensory activation of flowering publication-title: Nature – volume: 6 start-page: 1509 year: 1994 end-page: 1518 article-title: The locus encodes the cyclase ent‐kaurene synthetase A of gibberellin biosynthesis publication-title: Plant Cell – volume: 111 start-page: 1021 year: 2013 end-page: 1058 article-title: Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany publication-title: Ann Bot – volume: 114 start-page: 1471 year: 1997 end-page: 1476 article-title: Gibberellins and stem growth in . Effects of photoperiod on expression of the and loci publication-title: Plant Physiol – volume: 104 start-page: 6484 year: 2007 end-page: 6489 article-title: The plant stress hormone ethylene controls floral transition via DELLA‐dependent regulation of floral meristem‐identity genes publication-title: Proc Natl Acad Sci USA – volume: 5 year: 2010 article-title: Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in publication-title: PLoS ONE – volume: 99 start-page: 16336 year: 2002 end-page: 16341 article-title: AGAMOUS‐LIKE 24, a dosage‐dependent mediator of the flowering signals publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 155 year: 1998 end-page: 169 article-title: The gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway publication-title: Plant Cell – volume: 10 start-page: 1461 year: 2017 end-page: 1464 article-title: The bHLH Transcription factors MYC2, MYC3, and MYC4 are required for jasmonate‐mediated inhibition of flowering in publication-title: Mol Plant – volume: 13 start-page: 1555 year: 2001 end-page: 1566 article-title: Repressing a repressor, gibberellin‐induced rapid reduction of the RGA protein in publication-title: Plant Cell – volume: 173 start-page: 1463 year: 2017 end-page: 1474 article-title: Gibberellin signaling requires chromatin remodeler PICKLE to promote vegetative growth and phase transitions publication-title: Plant Physiol – volume: 19 start-page: 884 year: 2010 end-page: 894 article-title: DELLAs modulate jasmonate signaling via competitive binding to JAZs publication-title: Dev Cell – volume: 456 start-page: 520 year: 2008 end-page: 523 article-title: Structural basis for gibberellin recognition by its receptor GID1 publication-title: Nature – volume: 5 start-page: ra72 year: 2012 article-title: An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in publication-title: Sci Signal – volume: 2006 year: 2006 article-title: brassinosteroid signaling pathway publication-title: Sci STKE – volume: 27 start-page: 2814 year: 2015 end-page: 2828 article-title: Transcriptional mechanism of jasmonate receptor COI1‐mediated delay of flowering time in publication-title: Plant Cell – volume: 15 start-page: 581 year: 2001 end-page: 590 article-title: KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem publication-title: Genes Dev – volume: 33 start-page: 168 year: 2003 end-page: 171 article-title: A thermosensory pathway controlling flowering time in publication-title: Nat Genet – volume: 5 start-page: 887 year: 1993 end-page: 896 article-title: Mutations at the SPINDLY locus of alter gibberellin signal transduction publication-title: Plant Cell – volume: 5 start-page: 4601 year: 2014 article-title: Nuclear factor Y‐mediated H3K27me3 demethylation of the locus orchestrates flowering responses of publication-title: Nat Commun – volume: 172 start-page: 479 year: 2016 end-page: 488 article-title: The DELLA‐CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering publication-title: Plant Physiol – volume: 4 start-page: 279 year: 2011 end-page: 288 article-title: The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM‐domain proteins to mediate jasmonate response in publication-title: Mol Plant – volume: 18 start-page: 3399 year: 2006 end-page: 3414 article-title: Genetic characterization and functional analysis of the GID1 gibberellin receptors in publication-title: Plant Cell – volume: 18 start-page: 1577 year: 2004 end-page: 1591 article-title: Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and publication-title: Genes Dev – volume: 127 start-page: 1682 year: 2001 end-page: 1693 article-title: GAMYB‐like genes, flowering, and gibberellin signaling in publication-title: Plant Physiol – volume: 288 start-page: 1613 year: 2000 end-page: 1616 article-title: Distinct roles of constans target genes in reproductive development of publication-title: Science – volume: 45 start-page: 804 year: 2006 end-page: 818 article-title: Distinct and overlapping roles of two gibberellin 3‐oxidases in development publication-title: Plant J – volume: 105 start-page: 7618 year: 2008 end-page: 7623 article-title: Modulation of brassinosteroid‐regulated gene expression by jumonji domain‐containing proteins ELF6 and REF6 in publication-title: Proc Natl Acad Sci USA – volume: 24 start-page: 3320 year: 2012 end-page: 3332 article-title: Gibberellin regulates the floral transition through miR156‐targeted SQUAMOSA promoter binding‐like transcription factors publication-title: Plant Cell – ident: e_1_2_6_20_1 doi: 10.1105/tpc.113.120352 – ident: e_1_2_6_9_1 doi: 10.1073/pnas.1101050108 – volume: 5 start-page: 887 year: 1993 ident: e_1_2_6_53_1 article-title: Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction publication-title: Plant Cell – ident: e_1_2_6_18_1 doi: 10.1101/gad.297704 – ident: e_1_2_6_36_1 doi: 10.1111/tpj.13183 – ident: e_1_2_6_87_1 doi: 10.1016/S0092-8674(03)00968-1 – ident: e_1_2_6_103_1 doi: 10.1016/j.molp.2014.12.018 – ident: e_1_2_6_45_1 doi: 10.1046/j.1365-313X.2003.01674.x – ident: e_1_2_6_102_1 doi: 10.1007/s00018-006-6116-5 – ident: e_1_2_6_70_1 doi: 10.1016/j.pbi.2013.06.001 – ident: e_1_2_6_3_1 doi: 10.1126/science.1118642 – ident: e_1_2_6_58_1 doi: 10.1101/gad.1589007 – volume: 27 start-page: 2814 year: 2015 ident: e_1_2_6_128_1 article-title: Transcriptional mechanism of jasmonate receptor COI1‐mediated delay of flowering time in Arabidopsis publication-title: Plant Cell – ident: e_1_2_6_76_1 doi: 10.1186/s13059-015-0597-1 – ident: e_1_2_6_85_1 doi: 10.1104/pp.16.01471 – ident: e_1_2_6_27_1 doi: 10.1146/annurev-arplant-042809-112122 – volume: 2006 start-page: cm5 year: 2006 ident: e_1_2_6_13_1 article-title: Arabidopsis brassinosteroid signaling pathway publication-title: Sci STKE – ident: e_1_2_6_15_1 doi: 10.1105/tpc.10.5.791 – ident: e_1_2_6_5_1 doi: 10.1242/dev.01206 – ident: e_1_2_6_46_1 doi: 10.1093/jxb/ern232 – ident: e_1_2_6_71_1 doi: 10.1038/ncomms12768 – ident: e_1_2_6_84_1 doi: 10.1038/ncomms1810 – ident: e_1_2_6_24_1 doi: 10.1093/mp/ssq073 – ident: e_1_2_6_105_1 doi: 10.1038/nature04028 – ident: e_1_2_6_30_1 doi: 10.1105/tpc.020958 – ident: e_1_2_6_86_1 doi: 10.1242/dev.077164 – ident: e_1_2_6_101_1 doi: 10.1105/tpc.6.10.1509 – ident: e_1_2_6_77_1 doi: 10.1105/tpc.11.5.949 – ident: e_1_2_6_125_1 doi: 10.1073/pnas.212624599 – ident: e_1_2_6_33_1 doi: 10.1105/tpc.106.042317 – ident: e_1_2_6_2_1 doi: 10.1073/pnas.0610717104 – ident: e_1_2_6_7_1 doi: 10.1242/dev.01231 – ident: e_1_2_6_91_1 doi: 10.1126/science.1065201 – ident: e_1_2_6_112_1 doi: 10.1016/j.cell.2009.06.014 – ident: e_1_2_6_11_1 doi: 10.1371/journal.pgen.0020106 – ident: e_1_2_6_16_1 doi: 10.1038/35009125 – ident: e_1_2_6_50_1 doi: 10.1242/dev.063511 – ident: e_1_2_6_93_1 doi: 10.1126/science.288.5471.1613 – ident: e_1_2_6_75_1 doi: 10.1371/journal.pgen.1005337 – ident: e_1_2_6_129_1 doi: 10.1104/pp.17.00657 – ident: e_1_2_6_68_1 doi: 10.1105/tpc.18.00960 – ident: e_1_2_6_23_1 doi: 10.1105/tpc.107.053009 – ident: e_1_2_6_38_1 doi: 10.1038/nature01387 – ident: e_1_2_6_113_1 doi: 10.1093/jxb/ers361 – ident: e_1_2_6_78_1 doi: 10.1111/j.1365-313X.2005.02642.x – ident: e_1_2_6_42_1 doi: 10.1105/tpc.104.028472 – ident: e_1_2_6_60_1 doi: 10.1104/pp.114.235556 – ident: e_1_2_6_118_1 doi: 10.1093/jxb/erm300 – ident: e_1_2_6_10_1 doi: 10.1038/ncb2546 – ident: e_1_2_6_43_1 doi: 10.1105/tpc.106.047415 – ident: e_1_2_6_41_1 doi: 10.1104/pp.010442 – ident: e_1_2_6_117_1 doi: 10.1104/pp.100.1.403 – ident: e_1_2_6_49_1 doi: 10.1038/ncomms5601 – ident: e_1_2_6_120_1 doi: 10.1104/pp.114.4.1471 – ident: e_1_2_6_121_1 doi: 10.1126/science.1250498 – ident: e_1_2_6_66_1 doi: 10.1105/tpc.113.118604 – ident: e_1_2_6_56_1 doi: 10.1126/science.286.5446.1962 – ident: e_1_2_6_64_1 doi: 10.1126/scisignal.2002908 – ident: e_1_2_6_104_1 doi: 10.1038/nature05960 – ident: e_1_2_6_25_1 doi: 10.1038/nature06006 – ident: e_1_2_6_35_1 doi: 10.1105/tpc.110.080788 – ident: e_1_2_6_54_1 doi: 10.1016/j.cub.2005.07.023 – ident: e_1_2_6_110_1 doi: 10.1104/pp.16.00891 – ident: e_1_2_6_29_1 doi: 10.1038/nature06520 – ident: e_1_2_6_100_1 doi: 10.1146/annurev.arplant.55.031903.141753 – ident: e_1_2_6_22_1 doi: 10.1038/nature01636 – ident: e_1_2_6_119_1 doi: 10.1002/1873-3468.12076 – ident: e_1_2_6_124_1 doi: 10.1104/pp.105.066928 – ident: e_1_2_6_62_1 doi: 10.1111/jipb.12451 – ident: e_1_2_6_4_1 doi: 10.1016/j.cub.2009.05.059 – ident: e_1_2_6_59_1 doi: 10.1038/nature10928 – ident: e_1_2_6_40_1 doi: 10.1242/dev.080879 – ident: e_1_2_6_115_1 doi: 10.1126/science.1114358 – ident: e_1_2_6_132_1 doi: 10.1038/nplants.2016.75 – ident: e_1_2_6_65_1 doi: 10.1016/j.molp.2018.06.007 – ident: e_1_2_6_99_1 doi: 10.1038/35074138 – ident: e_1_2_6_126_1 doi: 10.1105/tpc.112.101014 – ident: e_1_2_6_114_1 doi: 10.1093/aob/mct067 – ident: e_1_2_6_26_1 doi: 10.1126/science.1141752 – ident: e_1_2_6_67_1 doi: 10.1242/dev.020255 – ident: e_1_2_6_80_1 doi: 10.1038/nature07519 – ident: e_1_2_6_32_1 doi: 10.1242/dev.02866 – ident: e_1_2_6_74_1 doi: 10.1007/s003440010038 – ident: e_1_2_6_109_1 doi: 10.1016/j.molp.2017.08.007 – ident: e_1_2_6_44_1 doi: 10.1016/S0092-8674(03)00969-3 – ident: e_1_2_6_83_1 doi: 10.1104/pp.010587 – ident: e_1_2_6_131_1 doi: 10.1105/tpc.104.028514 – ident: e_1_2_6_47_1 doi: 10.1105/tpc.112.098749 – ident: e_1_2_6_31_1 doi: 10.1371/journal.pone.0014012 – ident: e_1_2_6_34_1 doi: 10.1016/S1360-1385(00)01600-9 – ident: e_1_2_6_95_1 doi: 10.1093/jxb/erl164 – ident: e_1_2_6_108_1 doi: 10.1126/science.1091761 – ident: e_1_2_6_96_1 doi: 10.1093/jxb/erv459 – ident: e_1_2_6_92_1 doi: 10.1101/gad.867901 – ident: e_1_2_6_79_1 doi: 10.1046/j.1365-313X.2003.01833.x – ident: e_1_2_6_89_1 doi: 10.1093/jxb/erw384 – ident: e_1_2_6_111_1 doi: 10.1093/jxb/eru246 – ident: e_1_2_6_94_1 doi: 10.1038/nature07546 – ident: e_1_2_6_21_1 doi: 10.1016/j.cub.2008.07.075 – ident: e_1_2_6_61_1 doi: 10.1101/gad.813600 – ident: e_1_2_6_8_1 doi: 10.1073/pnas.1409567111 – volume: 13 start-page: 1555 year: 2001 ident: e_1_2_6_98_1 article-title: Repressing a repressor, gibberellin‐induced rapid reduction of the RGA protein in Arabidopsis publication-title: Plant Cell – ident: e_1_2_6_19_1 doi: 10.1146/annurev.arplant.043008.092007 – ident: e_1_2_6_6_1 doi: 10.1038/cr.2012.29 – ident: e_1_2_6_81_1 doi: 10.1105/tpc.104.025353 – ident: e_1_2_6_127_1 doi: 10.1073/pnas.0802254105 – ident: e_1_2_6_12_1 doi: 10.1016/j.devcel.2019.05.018 – ident: e_1_2_6_14_1 doi: 10.1038/ng1085 – ident: e_1_2_6_28_1 doi: 10.1242/dev.087650 – ident: e_1_2_6_39_1 doi: 10.1073/pnas.1119992109 – ident: e_1_2_6_73_1 doi: 10.1101/gad.1055803 – ident: e_1_2_6_106_1 doi: 10.1105/tpc.106.043729 – ident: e_1_2_6_90_1 doi: 10.1105/tpc.15.00917 – ident: e_1_2_6_69_1 doi: 10.1371/journal.pbio.1001313 – ident: e_1_2_6_123_1 doi: 10.1016/j.cub.2005.07.060 – ident: e_1_2_6_48_1 doi: 10.1016/j.devcel.2010.10.024 – ident: e_1_2_6_63_1 doi: 10.1016/j.molp.2016.08.003 – ident: e_1_2_6_55_1 doi: 10.1146/annurev.genet.32.1.227 – ident: e_1_2_6_97_1 doi: 10.1105/tpc.10.2.155 – ident: e_1_2_6_37_1 doi: 10.1104/pp.106.084871 – ident: e_1_2_6_51_1 doi: 10.1007/s00344-003-0028-5 – ident: e_1_2_6_88_1 doi: 10.1104/pp.113.217729 – ident: e_1_2_6_122_1 doi: 10.1146/annurev.arplant.59.032607.092804 – ident: e_1_2_6_82_1 doi: 10.1093/pcp/pcn154 – ident: e_1_2_6_17_1 doi: 10.1111/j.1365-313X.2009.03877.x – ident: e_1_2_6_107_1 doi: 10.1105/tpc.15.00433 – ident: e_1_2_6_52_1 doi: 10.1016/j.devcel.2016.04.001 – ident: e_1_2_6_130_1 doi: 10.1101/gad.1318705 – ident: e_1_2_6_72_1 doi: 10.1046/j.1365-313X.2001.01173.x – ident: e_1_2_6_57_1 doi: 10.1080/09168451.2015.1086259 – ident: e_1_2_6_116_1 doi: 10.1105/tpc.107.051441 |
SSID | ssj0038062 |
Score | 2.6382544 |
SecondaryResourceType | review_article |
Snippet | In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118 |
SubjectTerms | Angiosperms Animal reproduction Arabidopsis Arabidopsis thaliana Breeding success Flowering flowering time Gibberellins Homeostasis Plant hormones proteins Reproduction reproductive success Signal transduction Signaling |
Title | New insights into gibberellin signaling in regulating flowering in Arabidopsis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12892 https://www.ncbi.nlm.nih.gov/pubmed/31785071 https://www.proquest.com/docview/2342947635 https://www.proquest.com/docview/2320384488 https://www.proquest.com/docview/2400444685 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EPHjx_VhfVPSi0KXPbANeVBQVFBEFL1LyqhSXdtnuHvTXO5N2iy8EvbXNtKTJTPJNMvkGYB8hsIljQWFVoXYjtEWXSNVpw1EYJrivEjqcfH3DLh6iq8f4cQqOJmdhan6IdsGNLMOO12TgQlYfjTwfyC6OrpwGYArWIkR013JHhYlns4n6rBe46AEGDTepDeNpX_08G32DmJ8Rq51yzufhaVLZOtLkpTseya56-8Lj-N-_WYC5Bos6x7XyLMKUKZZg5qREvPi6DDc4_jl5UZH3XuHFqHSecynNkCg8C4cCPwSdZcciZ1hntKe7rE9515rnx0Mhc10Oqrxagfvzs_vTC7fJvuAqYql3daIiT-mAR1GgY18xX6me5mi1mdboFvq-5IH0eooZ4tjJVCJFzBGxKa79jIWrMF2UhVkHR0qfcRH2BE7IiN4kN5qhgJd5mdCh1B04mHRCqhpmckqQ0U9bDwVbJ7Wt04G9VnZQ83H8KLU16cu0sckqDUKceyMi4OvAbluM1kRbJKIw5ZhkAtQcdFmTX2QiS7LHEvzOWq0nbVUQjSWEsDtwaHv7lzqmV5e3J_Zq4y_CmzAbkMtvV4G2YHo0HJttxEUjuWP1_x3kuQhS |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFoleoLxKSgEj4ACSI3ttb7wHDn1QJX1ECAWpN2tfriwqO4oTofY38Vf4T8ysHYtCVYlDD9xs78hae2fG34xnvwF4ixDYJomksqrI-DHaok-k6vTDUVouRahT2px8MubDr_HhaXK6Aj-We2Eafogu4UaW4fw1GTglpH-38mKq-uheBWtrKo_sxXeM2OqPo31c3neMHXya7A39tqmAr4l83TepjgNtmIhjZpJQ81DrgRGojLkxGO2EoRJMBQPNLVHH5DpVMhEIRLQwYc4jvO0dWKMO4sTUv_-lI6uK0sC1Lw35gPkYcrKWDNXVDXVTvfr5-wvTXoXI7ht38AB-Lt9OU9ryrb-Yq76-_IM48n95fRtwvwXb3k5jHQ9hxZaP4O5uhYD44jGM0cF7RVlTeqLGg3nlnRVK2RlxlJYeVbZI2qyPQ97Mnrk-Z3iWn1Njufb6zkyqwlTTuqifwOQ2HuUprJZVaZ-Bp1TIhYwGEhEHwlMlrOEoEORBLk2kTA_eLxc90y31OnUAOc-6EAwXI3OL0YM3ney0IRy5Vmp7qTtZ63TqjEUILmJiGOzB624Y3QX9A5KlrRYkw1BTMSZPb5CJHYsgT_E-m41edlNBuJlSCNGDD067bphjdjj6vOuOtv5F-BXcG05OjrPj0fjoOawzym-4lNc2rM5nC_sCQeBcvXS250F2y8r6C2nlZFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAXoOVvodBU0AOVskqcxBsfOLQsq25LV1VVpN4i_6WKqJLVZleovBKvwkMx42QjWlAlDj1wS-JR5Ngzk2_s8TcA7xAC2ySRlFYVGT9GW_SJVJ02HKXlUoQ6pcPJRxO-_yU-OEvOVuDH8ixMww_RLbiRZTh_TQY-NfnvRl5MVR-9q2BtSuWhvfyGAVv9YTzE2d1mbPTp9OO-39YU8DVxr_sm1XGgDRNxzEwSah5qPTACdTE3BoOdMFSCqWCguSXmmFynSiYCcYgWJsx5hK-9A3djHgiqEzE86biqojRw1UtDPmA-Rpys5UJ1aUNdV6_-_f6AtFcRsvvFjR7Bz-XgNJktX_uLuerr79d4I_-T0XsMD1uo7e02trEGK7Zch3t7FcLhyycwQffuFWVNixM1Xswr77xQys6IobT0KK9F0lF9bPJm9txVOcO7_ILKyrXPd2dSFaaa1kX9FE5v41OewWpZlfYFeEqFXMhoIBFvIDhVwhqOAkEe5NJEyvTg_XLOM90Sr1P9j4usC8BwMjI3GT1428lOG7qRv0ptLFUna11OnbEIoUVM_II92Oqa0VnQDpAsbbUgGYaKihF5eoNM7DgEeYrved6oZdcVBJspBRA92HHKdUMfs4Px8Z67evkvwptw_3g4yj6PJ4ev4AGjxQ233rUBq_PZwr5GBDhXb5zleZDdsq7-AsBUYwM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+insights+into+gibberellin+signaling+in+regulating+flowering+in+Arabidopsis&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Bao%2C+Shengjie&rft.au=Hua%2C+Changmei&rft.au=Shen%2C+Lisha&rft.au=Yu%2C+Hao&rft.date=2020-01-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=62&rft.issue=1&rft.spage=118&rft.epage=131&rft_id=info:doi/10.1111%2Fjipb.12892&rft.externalDBID=10.1111%252Fjipb.12892&rft.externalDocID=JIPB12892 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-9072&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-9072&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-9072&client=summon |