New insights into gibberellin signaling in regulating flowering in Arabidopsis

In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple ex...

Full description

Saved in:
Bibliographic Details
Published inJournal of integrative plant biology Vol. 62; no. 1; pp. 118 - 131
Main Authors Bao, Shengjie, Hua, Changmei, Shen, Lisha, Yu, Hao
Format Journal Article
LanguageEnglish
Published China (Republic : 1949- ) Wiley Subscription Services, Inc 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA‐mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition. Gibberellin (GA) is one of major plant hormones that affects flowering time in Arabidopsis. In this review, we summarized the recent advances in understanding the molecular mechanisms of DELLA‐mediated GA pathway in flowering time control in Arabidopsis, and discussed the possible links with other phytohormone pathwaysduring the floral transition.
AbstractList In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition.In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition.
In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition.
In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA‐mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition. Gibberellin (GA) is one of major plant hormones that affects flowering time in Arabidopsis. In this review, we summarized the recent advances in understanding the molecular mechanisms of DELLA‐mediated GA pathway in flowering time control in Arabidopsis, and discussed the possible links with other phytohormone pathwaysduring the floral transition.
In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana . The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA‐mediated GA pathway in flowering time control in Arabidopsis , and discuss its possible link with other phytohormone pathways during the floral transition.
Author Yu, Hao
Bao, Shengjie
Hua, Changmei
Shen, Lisha
Author_xml – sequence: 1
  givenname: Shengjie
  surname: Bao
  fullname: Bao, Shengjie
  organization: National University of Singapore
– sequence: 2
  givenname: Changmei
  surname: Hua
  fullname: Hua, Changmei
  organization: National University of Singapore
– sequence: 3
  givenname: Lisha
  surname: Shen
  fullname: Shen, Lisha
  email: lisha@tll.org.sg
  organization: National University of Singapore
– sequence: 4
  givenname: Hao
  surname: Yu
  fullname: Yu, Hao
  email: dbsyuhao@nus.edu.sg
  organization: National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31785071$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKxDAUhoMo6oxufAAZcCNC9SRNc1mqeEXUhfvQJumYodOMScswb2_qjBsRzSZ_Tr7_cC4jtN361iJ0hOEcp3Mxc4vqHBMhyRbax5zSjEuQ20kzTjIJnOyhUYwzgFwAI7toL8dcFMDxPnp-tsuJa6Obvncxic5Ppq6qbLBN49pJirdlEtP0NQl22jdlN7zqxi9t2MQvQ1k54xfRxQO0U5dNtIebe4zebm_eru-zp5e7h-vLp0xTwkhmhKagDZGUElNgzbDW3EiAojZGUMC4kqQCrpkFLFmtRVUWqadCS4Nrlo_R6TrtIviP3sZOzV3UqeSytb6PilAASikTxf9oTtJYKBUioSc_0JnvQ-p_oGgqlrN8SHi8ofpqbo1aBDcvw0p9zzQBsAZ08DEGWyvtujQ233ahdI3CoIa1qWFt6mttyXL2w_Kd9VcYr-Gla-zqD1I9PrxerT2fWcWmhg
CitedBy_id crossref_primary_10_48130_tp_0024_0043
crossref_primary_10_1007_s11103_023_01373_1
crossref_primary_10_3390_horticulturae7080252
crossref_primary_10_1016_j_aquabot_2023_103704
crossref_primary_10_3390_horticulturae9040428
crossref_primary_10_3389_fpls_2023_1128780
crossref_primary_10_1016_j_pld_2024_10_004
crossref_primary_10_3390_ijms21165914
crossref_primary_10_1093_jxb_erac168
crossref_primary_10_1093_jxb_erae105
crossref_primary_10_3390_agronomy13112671
crossref_primary_10_3390_plants12244103
crossref_primary_10_3390_plants13050649
crossref_primary_10_1007_s00438_022_01942_x
crossref_primary_10_1016_j_jphotobiol_2023_112673
crossref_primary_10_1093_plcell_koae248
crossref_primary_10_1007_s00468_024_02580_z
crossref_primary_10_3390_ijms231911264
crossref_primary_10_3390_agronomy14010155
crossref_primary_10_48130_frures_0023_0044
crossref_primary_10_1007_s12042_022_09322_w
crossref_primary_10_1016_j_cj_2025_01_017
crossref_primary_10_1016_j_postharvbio_2024_112860
crossref_primary_10_1111_ppl_14378
crossref_primary_10_1016_j_pestbp_2023_105725
crossref_primary_10_3390_ijms21249700
crossref_primary_10_1007_s00299_023_03090_x
crossref_primary_10_1093_hr_uhac091
crossref_primary_10_1007_s11240_024_02901_7
crossref_primary_10_1073_pnas_2103895118
crossref_primary_10_3390_foods12061223
crossref_primary_10_1016_j_jgg_2023_05_012
crossref_primary_10_1016_j_plaphy_2024_108931
crossref_primary_10_1016_j_scienta_2024_113689
crossref_primary_10_1016_j_ijbiomac_2023_124790
crossref_primary_10_3390_ijms26020732
crossref_primary_10_3390_genes15060740
crossref_primary_10_1016_j_pbi_2021_102074
crossref_primary_10_1111_nph_17314
crossref_primary_10_3390_ijms25094794
crossref_primary_10_3390_ijms25147510
crossref_primary_10_3389_fpls_2021_709030
crossref_primary_10_3390_plants12020264
crossref_primary_10_1016_j_plantsci_2023_111966
crossref_primary_10_31083_j_fbl2904156
crossref_primary_10_1021_acs_jafc_3c04712
crossref_primary_10_3389_fpls_2021_629857
crossref_primary_10_1186_s13765_022_00698_7
crossref_primary_10_1134_S1022795423130124
crossref_primary_10_1016_j_molp_2023_12_011
crossref_primary_10_1016_j_ijbiomac_2025_140497
crossref_primary_10_1093_jxb_erab418
crossref_primary_10_1093_plcell_koae035
crossref_primary_10_3390_agriculture13020374
crossref_primary_10_3390_ijms22115716
crossref_primary_10_1038_s41598_022_10817_5
crossref_primary_10_1007_s00497_024_00510_0
crossref_primary_10_3390_genes15010036
crossref_primary_10_3390_horticulturae11010102
crossref_primary_10_1016_j_scienta_2024_112880
crossref_primary_10_1016_j_jplph_2022_153719
crossref_primary_10_3390_plants12193413
crossref_primary_10_1007_s00344_024_11308_9
crossref_primary_10_1007_s11262_021_01881_6
crossref_primary_10_1016_j_gene_2023_147699
crossref_primary_10_3389_fpls_2022_852047
crossref_primary_10_1007_s13205_024_04019_1
crossref_primary_10_1016_j_ecoenv_2025_118049
crossref_primary_10_1016_j_repbre_2022_11_003
crossref_primary_10_1093_jxb_erae029
crossref_primary_10_1093_pcp_pcaa079
crossref_primary_10_3390_agronomy12123132
crossref_primary_10_1111_nph_20309
crossref_primary_10_1021_acsnano_1c10602
crossref_primary_10_3389_fpls_2021_765995
crossref_primary_10_1007_s13205_023_03573_4
crossref_primary_10_1093_treephys_tpac083
crossref_primary_10_1111_nph_17939
crossref_primary_10_1186_s12870_025_06101_z
crossref_primary_10_1007_s11816_024_00945_x
crossref_primary_10_3389_fgene_2021_730821
crossref_primary_10_1093_plcell_koad166
crossref_primary_10_3389_fgene_2021_703688
crossref_primary_10_3389_fmicb_2023_1171104
crossref_primary_10_3390_agronomy14112497
crossref_primary_10_1111_nph_18699
crossref_primary_10_1093_plphys_kiae022
crossref_primary_10_3390_ijms22179326
crossref_primary_10_3390_ijms23094955
crossref_primary_10_1111_jipb_13196
crossref_primary_10_1111_jipb_13071
crossref_primary_10_1016_j_plantsci_2024_112100
crossref_primary_10_3390_ijms222312645
crossref_primary_10_32615_bp_2021_056
crossref_primary_10_1111_pbi_14063
crossref_primary_10_3389_fpls_2023_1273409
crossref_primary_10_1093_plphys_kiad162
crossref_primary_10_1111_nph_19893
crossref_primary_10_3390_ijms24087051
crossref_primary_10_1038_s41598_022_21322_0
crossref_primary_10_3390_ijms25105310
crossref_primary_10_1007_s44187_024_00160_1
crossref_primary_10_54112_bbasr_v2023i1_45
crossref_primary_10_1186_s12870_024_05027_2
crossref_primary_10_1186_s12864_025_11348_9
crossref_primary_10_1111_plb_13624
crossref_primary_10_1016_j_plantsci_2021_110995
crossref_primary_10_1016_j_indcrop_2022_116110
crossref_primary_10_1016_j_scienta_2022_111419
crossref_primary_10_1016_j_envexpbot_2025_106126
crossref_primary_10_1111_ppl_13146
crossref_primary_10_3390_ijms232214036
crossref_primary_10_1007_s00425_023_04222_z
crossref_primary_10_1093_treephys_tpac035
crossref_primary_10_3390_ijms26031000
crossref_primary_10_1080_15592324_2021_1901448
crossref_primary_10_1111_ppl_13677
crossref_primary_10_7554_eLife_60661
crossref_primary_10_1016_j_plantsci_2024_112369
crossref_primary_10_1093_nar_gkac551
crossref_primary_10_1016_j_pestbp_2023_105598
crossref_primary_10_1016_j_plantsci_2024_112242
crossref_primary_10_3390_horticulturae9121353
crossref_primary_10_1111_ppl_13674
crossref_primary_10_3389_fpls_2021_715683
crossref_primary_10_3390_plants12234020
crossref_primary_10_1111_tpj_16015
crossref_primary_10_1021_acs_jafc_3c03560
crossref_primary_10_7717_peerj_16279
crossref_primary_10_1080_21645698_2024_2442158
crossref_primary_10_1007_s00122_021_03898_9
crossref_primary_10_1111_jipb_13000
crossref_primary_10_1111_ppl_14531
crossref_primary_10_1016_j_plaphy_2024_108650
crossref_primary_10_1016_j_xplc_2023_100779
crossref_primary_10_1016_j_indcrop_2024_119176
crossref_primary_10_1080_14620316_2024_2360439
crossref_primary_10_48130_seedbio_0024_0005
crossref_primary_10_3390_genes14122114
crossref_primary_10_3389_fpls_2022_889460
crossref_primary_10_3389_fpls_2024_1486525
crossref_primary_10_3389_fpls_2024_1336892
crossref_primary_10_3390_ijms251910688
crossref_primary_10_3390_genes16010024
crossref_primary_10_1016_j_hpj_2020_11_007
crossref_primary_10_1038_s41598_024_54862_8
crossref_primary_10_1016_j_hpj_2023_05_020
crossref_primary_10_1111_pce_14258
crossref_primary_10_3389_fpls_2023_1109603
crossref_primary_10_3389_fpls_2022_834431
crossref_primary_10_14710_baf_7_1_2022_60_65
crossref_primary_10_1016_j_chemosphere_2024_141335
crossref_primary_10_3390_agronomy13051251
crossref_primary_10_3390_ijms232214046
crossref_primary_10_3390_plants13030437
crossref_primary_10_1111_pce_15356
crossref_primary_10_1016_j_isci_2024_110829
crossref_primary_10_1093_plphys_kiab224
crossref_primary_10_1111_jipb_12971
crossref_primary_10_1016_j_plantsci_2022_111383
crossref_primary_10_1093_plphys_kiae616
crossref_primary_10_1111_nph_17836
crossref_primary_10_1016_j_indcrop_2023_117148
crossref_primary_10_3390_ijms23126452
crossref_primary_10_1093_jxb_erad103
crossref_primary_10_1093_plcell_koab286
crossref_primary_10_1093_plphys_kiab052
crossref_primary_10_1093_jxb_erac016
crossref_primary_10_1007_s44154_024_00203_8
crossref_primary_10_1126_sciadv_abn5488
crossref_primary_10_1021_acs_jafc_4c09045
crossref_primary_10_3389_fpls_2022_933923
crossref_primary_10_3390_plants14071002
crossref_primary_10_1016_j_jgr_2024_04_004
crossref_primary_10_3390_ijms24087217
crossref_primary_10_1111_pce_15322
crossref_primary_10_17660_ActaHortic_2024_1414_10
crossref_primary_10_1093_hr_uhae013
crossref_primary_10_3390_ijms24043753
crossref_primary_10_1007_s13199_024_01029_8
crossref_primary_10_3390_ijms22147313
crossref_primary_10_1186_s12870_024_05339_3
crossref_primary_10_1016_j_tplants_2020_06_008
crossref_primary_10_1186_s12864_025_11439_7
crossref_primary_10_3389_fpls_2021_626015
crossref_primary_10_1016_j_jprot_2025_105398
crossref_primary_10_1016_j_plaphy_2021_03_046
crossref_primary_10_1038_s41467_023_35966_7
crossref_primary_10_1111_jfbc_13706
crossref_primary_10_1016_j_envexpbot_2021_104411
crossref_primary_10_1016_j_hpj_2023_08_003
crossref_primary_10_3390_genes13101713
crossref_primary_10_1016_j_gene_2023_147739
crossref_primary_10_3390_plants13213051
crossref_primary_10_1007_s00122_024_04737_3
crossref_primary_10_3389_fpls_2022_820439
crossref_primary_10_3390_applbiosci3040035
crossref_primary_10_1038_s41598_024_73936_1
crossref_primary_10_1242_dev_192039
crossref_primary_10_1093_hr_uhae245
crossref_primary_10_3390_horticulturae10090974
crossref_primary_10_1016_j_plantsci_2024_112178
crossref_primary_10_3389_fpls_2023_1135684
crossref_primary_10_1093_plphys_kiac139
crossref_primary_10_2139_ssrn_4132921
crossref_primary_10_3390_su16031076
crossref_primary_10_1007_s00299_023_03034_5
crossref_primary_10_1111_nph_18611
crossref_primary_10_1111_ppl_70084
crossref_primary_10_3390_ijms26020522
crossref_primary_10_1111_tpj_16544
crossref_primary_10_1080_15592324_2022_2026614
crossref_primary_10_1016_j_scienta_2024_113350
crossref_primary_10_3390_agronomy11020196
crossref_primary_10_1007_s11103_024_01460_x
crossref_primary_10_1002_adma_202205794
crossref_primary_10_3390_plants14060923
crossref_primary_10_1016_j_ijbiomac_2024_134691
crossref_primary_10_3390_ijms241210365
crossref_primary_10_1242_dev_201601
crossref_primary_10_1038_s41598_024_82364_0
crossref_primary_10_1016_j_pbi_2023_102451
crossref_primary_10_3390_agronomy14081741
crossref_primary_10_1134_S0026893324700055
crossref_primary_10_3389_fpls_2023_1279107
crossref_primary_10_1007_s11032_024_01524_2
crossref_primary_10_1016_j_scienta_2024_113362
crossref_primary_10_1038_s41598_022_05700_2
crossref_primary_10_1111_ppl_13307
crossref_primary_10_1002_pld3_541
crossref_primary_10_3390_plants13040557
crossref_primary_10_3390_plants13040556
Cites_doi 10.1105/tpc.113.120352
10.1073/pnas.1101050108
10.1101/gad.297704
10.1111/tpj.13183
10.1016/S0092-8674(03)00968-1
10.1016/j.molp.2014.12.018
10.1046/j.1365-313X.2003.01674.x
10.1007/s00018-006-6116-5
10.1016/j.pbi.2013.06.001
10.1126/science.1118642
10.1101/gad.1589007
10.1186/s13059-015-0597-1
10.1104/pp.16.01471
10.1146/annurev-arplant-042809-112122
10.1105/tpc.10.5.791
10.1242/dev.01206
10.1093/jxb/ern232
10.1038/ncomms12768
10.1038/ncomms1810
10.1093/mp/ssq073
10.1038/nature04028
10.1105/tpc.020958
10.1242/dev.077164
10.1105/tpc.6.10.1509
10.1105/tpc.11.5.949
10.1073/pnas.212624599
10.1105/tpc.106.042317
10.1073/pnas.0610717104
10.1242/dev.01231
10.1126/science.1065201
10.1016/j.cell.2009.06.014
10.1371/journal.pgen.0020106
10.1038/35009125
10.1242/dev.063511
10.1126/science.288.5471.1613
10.1371/journal.pgen.1005337
10.1104/pp.17.00657
10.1105/tpc.18.00960
10.1105/tpc.107.053009
10.1038/nature01387
10.1093/jxb/ers361
10.1111/j.1365-313X.2005.02642.x
10.1105/tpc.104.028472
10.1104/pp.114.235556
10.1093/jxb/erm300
10.1038/ncb2546
10.1105/tpc.106.047415
10.1104/pp.010442
10.1104/pp.100.1.403
10.1038/ncomms5601
10.1104/pp.114.4.1471
10.1126/science.1250498
10.1105/tpc.113.118604
10.1126/science.286.5446.1962
10.1126/scisignal.2002908
10.1038/nature05960
10.1038/nature06006
10.1105/tpc.110.080788
10.1016/j.cub.2005.07.023
10.1104/pp.16.00891
10.1038/nature06520
10.1146/annurev.arplant.55.031903.141753
10.1038/nature01636
10.1002/1873-3468.12076
10.1104/pp.105.066928
10.1111/jipb.12451
10.1016/j.cub.2009.05.059
10.1038/nature10928
10.1242/dev.080879
10.1126/science.1114358
10.1038/nplants.2016.75
10.1016/j.molp.2018.06.007
10.1038/35074138
10.1105/tpc.112.101014
10.1093/aob/mct067
10.1126/science.1141752
10.1242/dev.020255
10.1038/nature07519
10.1242/dev.02866
10.1007/s003440010038
10.1016/j.molp.2017.08.007
10.1016/S0092-8674(03)00969-3
10.1104/pp.010587
10.1105/tpc.104.028514
10.1105/tpc.112.098749
10.1371/journal.pone.0014012
10.1016/S1360-1385(00)01600-9
10.1093/jxb/erl164
10.1126/science.1091761
10.1093/jxb/erv459
10.1101/gad.867901
10.1046/j.1365-313X.2003.01833.x
10.1093/jxb/erw384
10.1093/jxb/eru246
10.1038/nature07546
10.1016/j.cub.2008.07.075
10.1101/gad.813600
10.1073/pnas.1409567111
10.1146/annurev.arplant.043008.092007
10.1038/cr.2012.29
10.1105/tpc.104.025353
10.1073/pnas.0802254105
10.1016/j.devcel.2019.05.018
10.1038/ng1085
10.1242/dev.087650
10.1073/pnas.1119992109
10.1101/gad.1055803
10.1105/tpc.106.043729
10.1105/tpc.15.00917
10.1371/journal.pbio.1001313
10.1016/j.cub.2005.07.060
10.1016/j.devcel.2010.10.024
10.1016/j.molp.2016.08.003
10.1146/annurev.genet.32.1.227
10.1105/tpc.10.2.155
10.1104/pp.106.084871
10.1007/s00344-003-0028-5
10.1104/pp.113.217729
10.1146/annurev.arplant.59.032607.092804
10.1093/pcp/pcn154
10.1111/j.1365-313X.2009.03877.x
10.1105/tpc.15.00433
10.1016/j.devcel.2016.04.001
10.1101/gad.1318705
10.1046/j.1365-313X.2001.01173.x
10.1080/09168451.2015.1086259
10.1105/tpc.107.051441
ContentType Journal Article
Copyright 2019 Institute of Botany, Chinese Academy of Sciences
2019 Institute of Botany, Chinese Academy of Sciences.
2020 Institute of Botany, Chinese Academy of Sciences
Copyright_xml – notice: 2019 Institute of Botany, Chinese Academy of Sciences
– notice: 2019 Institute of Botany, Chinese Academy of Sciences.
– notice: 2020 Institute of Botany, Chinese Academy of Sciences
DBID AAYXX
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
RC3
7X8
7S9
L.6
DOI 10.1111/jipb.12892
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Genetics Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1744-7909
EndPage 131
ExternalDocumentID 31785071
10_1111_jipb_12892
JIPB12892
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Singapore National Research Foundation Investigatorship Programme
  funderid: NRF‐NRFI2016‐02
– fundername: National University of Singapore and Temasek Life Sciences Laboratory
– fundername: Singapore National Research Foundation Investigatorship Programme
  grantid: NRF-NRFI2016-02
GroupedDBID ---
-SA
-S~
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2B.
2C.
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VR
5VS
5XA
5XB
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92E
92I
92Q
930
93N
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXDM
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CAJEA
CCEZO
CCVFK
CHBEP
CHDYS
COF
CS3
CW9
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q--
Q.N
Q11
QB0
R.K
ROL
RX1
SJN
SUPJJ
SV3
TCJ
TGP
TUS
U1G
U5K
UB1
W8V
W99
WBKPD
WFFXF
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4262-d8c40cd29442d51c61cc7d9005fdd84011b92b07c6e0196fc8ba59095c9d1f63
IEDL.DBID DR2
ISSN 1672-9072
1744-7909
IngestDate Fri Jul 11 18:27:17 EDT 2025
Thu Jul 10 19:15:24 EDT 2025
Fri Jul 25 21:15:11 EDT 2025
Wed Feb 19 02:31:35 EST 2025
Thu Apr 24 23:05:57 EDT 2025
Tue Jul 01 03:06:09 EDT 2025
Wed Jan 22 16:37:17 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2019 Institute of Botany, Chinese Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4262-d8c40cd29442d51c61cc7d9005fdd84011b92b07c6e0196fc8ba59095c9d1f63
Notes Edited by
FA: Free Access
Online on
Nov. 30, 2019
Zhizhong Gong, China Agricultural University, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jipb.12892
PMID 31785071
PQID 2342947635
PQPubID 2045135
PageCount 14
ParticipantIDs proquest_miscellaneous_2400444685
proquest_miscellaneous_2320384488
proquest_journals_2342947635
pubmed_primary_31785071
crossref_citationtrail_10_1111_jipb_12892
crossref_primary_10_1111_jipb_12892
wiley_primary_10_1111_jipb_12892_JIPB12892
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
2020-Jan
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace China (Republic : 1949- )
PublicationPlace_xml – name: China (Republic : 1949- )
– name: Hoboken
PublicationTitle Journal of integrative plant biology
PublicationTitleAlternate J Integr Plant Biol
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 104
2012; 484
2010; 19
2013; 64
2002; 99
2014; 26
1999; 286
2008; 105
2012; 14
2016; 37
2012; 10
2001; 410
2018; 176
2000; 14
2000; 404
2013; 111
2006; 2006
2009; 19
2012; 24
1998; 10
2010; 5
2012; 22
2012; 139
2011; 138
2007; 19
2007; 448
2004; 303
2019; 31
2009; 60
2002; 130
2006; 58
2003; 35
2008; 59
2001; 28
2011; 4
2003; 33
2012; 109
2001; 20
2015; 67
2004; 55
2016; 7
2007; 316
2005; 19
2016; 2
2006; 45
2008; 49
2008; 135
2005; 15
2018; 11
2016; 28
2005; 17
2003; 22
2016; 172
1997; 114
2013; 25
2019; 50
2000; 5
2005; 139
2003; 17
2013; 162
2003; 115
2010; 61
1993; 5
2014; 65
2007; 134
2004; 131
2014; 5
2001; 294
2006; 63
2013; 16
2016; 86
1999; 11
2001; 15
2005; 309
2011; 23
2016; 80
2000; 288
2007; 21
2016a; 58
2001; 13
2014; 164
2016b; 9
2009; 59
2016; 590
2015; 16
1992; 100
2008; 18
2015; 11
2005; 437
2006; 18
2017; 173
2013; 140
2006; 2
2014; 111
2015; 8
2009; 138
2006; 311
2001; 127
2011; 108
2012; 3
2015; 27
2004; 18
2004; 16
2017; 10
2006; 142
2008; 456
2003; 423
2008; 451
2003; 421
1998; 32
2012; 5
2016; 67
1994; 6
2014; 344
e_1_2_6_114_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_132_1
Belkhadir Y (e_1_2_6_13_1) 2006; 2006
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
Jacobsen SE (e_1_2_6_53_1) 1993; 5
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_112_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_123_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
Zhai Q (e_1_2_6_128_1) 2015; 27
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_130_1
e_1_2_6_111_1
Silverstone AL (e_1_2_6_98_1) 2001; 13
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_122_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 176
  start-page: 790
  year: 2018
  end-page: 803
  article-title: Transcription factor WRKY75 interacts with DELLA proteins to affect flowering
  publication-title: Plant Physiol
– volume: 24
  start-page: 2635
  year: 2012
  end-page: 2648
  article-title: MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression
  publication-title: Plant Cell
– volume: 67
  start-page: 195
  year: 2015
  end-page: 205
  article-title: ABSCISIC ACID‐INSENSITIVE 4 negatively regulates flowering through directly promoting transcription
  publication-title: J Exp Bot
– volume: 16
  start-page: 2601
  year: 2004
  end-page: 2613
  article-title: Divergent roles of a pair of homologous jumonji/zinc‐finger–class transcription factor proteins in the regulation of flowering time
  publication-title: Plant Cell
– volume: 28
  start-page: 465
  year: 2001
  end-page: 474
  article-title: Sites and homeostatic control of auxin biosynthesis in during vegetative growth
  publication-title: Plant J
– volume: 2
  year: 2016
  article-title: NaKR1 regulates long‐distance movement of FLOWERING LOCUS T in
  publication-title: Nat Plants
– volume: 22
  start-page: 134
  year: 2003
  end-page: 140
  article-title: DELLA proteins and GA signalling in
  publication-title: J Plant Growth Regul
– volume: 10
  year: 2012
  article-title: FTIP1 is an essential regulator required for florigen transport
  publication-title: PLoS Biol
– volume: 59
  start-page: 3821
  year: 2008
  end-page: 3829
  article-title: The nature of floral signals in . II. Roles for FLOWERING LOCUS T (FT) and gibberellin
  publication-title: J Exp Bot
– volume: 15
  start-page: 1560
  year: 2005
  end-page: 1565
  article-title: KNOX action in is mediated by coordinate regulation of cytokinin and gibberellin activities
  publication-title: Curr Biol
– volume: 138
  start-page: 738
  year: 2009
  end-page: 749
  article-title: miR156‐regulated SPL transcription factors define an endogenous flowering pathway in
  publication-title: Cell
– volume: 50
  start-page: 90
  year: 2019
  end-page: 101
  article-title: Molecular basis of natural variation in photoperiodic flowering responses
  publication-title: Dev Cell
– volume: 32
  start-page: 227
  year: 1998
  end-page: 254
  article-title: The ethylene gas signal transduction pathway: A molecular perspective
  publication-title: Annu Rev Genet
– volume: 139
  start-page: 2198
  year: 2012
  end-page: 2209
  article-title: Spatially distinct regulatory roles for gibberellins in the promotion of flowering of under long photoperiods
  publication-title: Development
– volume: 10
  start-page: 791
  year: 1998
  end-page: 800
  article-title: Gibberellins promote flowering of by activating the promoter
  publication-title: Plant Cell
– volume: 309
  start-page: 1056
  year: 2005
  end-page: 1059
  article-title: Integration of spatial and temporal information during floral induction in
  publication-title: Science
– volume: 14
  start-page: 2366
  year: 2000
  end-page: 2376
  article-title: The AGAMOUS‐LIKE 20 MADS domain protein integrates floral inductive pathways in
  publication-title: Genes Dev
– volume: 35
  start-page: 613
  year: 2003
  end-page: 623
  article-title: The SOC1 MADS‐box gene integrates vernalization and gibberellin signals for flowering in
  publication-title: Plant J
– volume: 11
  start-page: 949
  year: 1999
  end-page: 956
  article-title: encodes a novel MADS domain protein that acts as a repressor of flowering
  publication-title: Plant Cell
– volume: 25
  start-page: 4863
  year: 2013
  end-page: 4878
  article-title: ABA‐insensitive3, ABA‐insensitive5, and DELLAs interact to activate the expression of and other high‐temperature‐inducible genes in imbibed seeds in
  publication-title: Plant Cell
– volume: 456
  start-page: 459
  year: 2008
  end-page: 463
  article-title: Gibberellin‐induced DELLA recognition by the gibberellin receptor GID1
  publication-title: Nature
– volume: 135
  start-page: 1481
  year: 2008
  end-page: 1491
  article-title: Direct interaction of AGL24 and SOC1 integrates flowering signals in
  publication-title: Development
– volume: 16
  start-page: 31
  year: 2015
  article-title: Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in
  publication-title: Genome Biol
– volume: 162
  start-page: 1706
  year: 2013
  end-page: 1719
  article-title: GIGANTEA enables drought escape response via abscisic acid‐dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1
  publication-title: Plant Physiol
– volume: 17
  start-page: 410
  year: 2003
  end-page: 418
  article-title: AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation
  publication-title: Genes Dev
– volume: 27
  start-page: 2261
  year: 2015
  end-page: 2272
  article-title: Brassinosteroids are master regulators of gibberellin biosynthesis in
  publication-title: Plant Cell
– volume: 31
  start-page: 2475
  year: 2019
  end-page: 2490
  article-title: The MCTP‐SNARE complex regulates florigen transport in
  publication-title: Plant Cell
– volume: 37
  start-page: 254
  year: 2016
  end-page: 266
  article-title: Multi‐layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the shoot meristem
  publication-title: Dev Cell
– volume: 17
  start-page: 1196
  year: 2005
  end-page: 1204
  article-title: HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in
  publication-title: Plant Cell
– volume: 11
  year: 2015
  article-title: Genome wide binding site analysis reveals transcriptional coactivation of cytokinin‐responsive genes by DELLA proteins
  publication-title: PLoS Genet
– volume: 15
  start-page: 1566
  year: 2005
  end-page: 1571
  article-title: KNOXI proteins activate cytokinin biosynthesis
  publication-title: Curr Biol
– volume: 448
  start-page: 666
  year: 2007
  end-page: 671
  article-title: The JAZ family of repressors is the missing link in jasmonate signalling
  publication-title: Nature
– volume: 19
  start-page: 1532
  year: 2005
  end-page: 1543
  article-title: The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation
  publication-title: Genes Dev
– volume: 344
  start-page: 638
  year: 2014
  end-page: 641
  article-title: Gibberellin acts positively then negatively to control onset of flower formation in
  publication-title: Science
– volume: 80
  start-page: 34
  year: 2016
  end-page: 42
  article-title: Current aspects of auxin biosynthesis in plants
  publication-title: Biosci Biotechnol Biochem
– volume: 16
  start-page: 607
  year: 2013
  end-page: 613
  article-title: Emerging insights into florigen transport
  publication-title: Curr Opin Plant Biol
– volume: 111
  start-page: E2760
  year: 2014
  end-page: E2769
  article-title: SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the shoot apex to regulate the floral transition
  publication-title: Proc Natl Acad Sci USA
– volume: 410
  start-page: 1116
  year: 2001
  end-page: 1120
  article-title: CONSTANS mediates between the circadian clock and the control of flowering in
  publication-title: Nature
– volume: 20
  start-page: 387
  year: 2001
  end-page: 442
  article-title: Occurrence of gibberellins in vascular plants, fungi, and bacteria
  publication-title: J Plant Growth Regul
– volume: 294
  start-page: 1519
  year: 2001
  end-page: 1521
  article-title: ARR1, a transcription factor for genes immediately responsive to cytokinins
  publication-title: Science
– volume: 19
  start-page: 2140
  year: 2007
  end-page: 2155
  article-title: Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin
  publication-title: Plant Cell
– volume: 22
  start-page: 915
  year: 2012
  end-page: 927
  article-title: Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated seedlings
  publication-title: Cell Res
– volume: 451
  start-page: 480
  year: 2008
  end-page: 484
  article-title: A molecular framework for light and gibberellin control of cell elongation
  publication-title: Nature
– volume: 140
  start-page: 1147
  year: 2013
  end-page: 1151
  article-title: Gibberellin signaling in plants
  publication-title: Development
– volume: 55
  start-page: 197
  year: 2004
  end-page: 223
  article-title: Molecular mechanism of gibberellin signaling in plants
  publication-title: Annu Rev Plant Biol
– volume: 19
  start-page: 1188
  year: 2009
  end-page: 1193
  article-title: Gibberellin signaling controls cell proliferation rate in
  publication-title: Curr Biol
– volume: 19
  start-page: 1209
  year: 2007
  end-page: 1220
  article-title: The DELLA domain of GA INSENSITIVE mediates the interaction with the ga insensitive dwarf1a gibberellin receptor of
  publication-title: Plant Cell
– volume: 60
  start-page: 183
  year: 2009
  end-page: 205
  article-title: Jasmonate passes muster: A receptor and targets for the defense hormone
  publication-title: Annu Rev Plant Bio
– volume: 316
  start-page: 1030
  year: 2007
  end-page: 1033
  article-title: FT protein movement contributes to long‐distance signaling in floral induction of
  publication-title: Science
– volume: 115
  start-page: 667
  year: 2003
  end-page: 677
  article-title: Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)‐dependent proteolysis of EIN3 transcription factor
  publication-title: Cell
– volume: 115
  start-page: 679
  year: 2003
  end-page: 689
  article-title: EIN3‐dependent regulation of plant ethylene hormone signaling by two F box proteins: EBF1 and EBF2
  publication-title: Cell
– volume: 5
  start-page: 199
  year: 2000
  end-page: 206
  article-title: The WRKY superfamily of plant transcription factors
  publication-title: Trends Plant Sci
– volume: 19
  start-page: 2430
  year: 2007
  end-page: 2439
  article-title: Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis
  publication-title: Plant Cell
– volume: 64
  start-page: 675
  year: 2013
  end-page: 684
  article-title: The inhibitory effect of ABA on floral transition is mediated by ABI5 in
  publication-title: J Exp Bot
– volume: 423
  start-page: 881
  year: 2003
  end-page: 885
  article-title: Regulation of flowering time by light quality
  publication-title: Nature
– volume: 49
  start-page: 1645
  year: 2008
  end-page: 1658
  article-title: Long‐distance, graft‐transmissible action of FLOWERING LOCUS T protein to promote flowering
  publication-title: Plant Cell Physiol
– volume: 58
  start-page: 221
  year: 2006
  end-page: 227
  article-title: Gene networks involved in drought stress response and tolerance
  publication-title: J Exp Bot
– volume: 8
  start-page: 359
  year: 2015
  end-page: 377
  article-title: To bloom or not to bloom: Role of microRNAs in plant flowering
  publication-title: Mol Plant
– volume: 139
  start-page: 4072
  year: 2012
  end-page: 4082
  article-title: Spatial control of flowering by DELLA proteins in
  publication-title: Development
– volume: 11
  start-page: 1135
  year: 2018
  end-page: 1146
  article-title: Brassinosteroid signaling recruits histone 3 lysine‐27 demethylation activity to chromatin to inhibit the floral transition in
  publication-title: Mol Plant
– volume: 65
  start-page: 4723
  year: 2014
  end-page: 4730
  article-title: Regulation of flowering time by the miR156‐mediated age pathway
  publication-title: J Exp Bot
– volume: 590
  start-page: 541
  year: 2016
  end-page: 549
  article-title: DELLA proteins physically interact with CONSTANS to regulate flowering under long days in
  publication-title: FEBS Lett
– volume: 131
  start-page: 3357
  year: 2004
  end-page: 3365
  article-title: Modulation of floral development by a gibberellin‐regulated microRNA
  publication-title: Development
– volume: 7
  year: 2016
  article-title: The NF‐YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in
  publication-title: Nat Commun
– volume: 16
  start-page: 1392
  year: 2004
  end-page: 1405
  article-title: The F‐Box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin‐induced degradation
  publication-title: Plant Cell
– volume: 303
  start-page: 1003
  year: 2004
  end-page: 1006
  article-title: Photoreceptor regulation of CONSTANS protein in photoperiodic flowering
  publication-title: Science
– volume: 59
  start-page: 359
  year: 2009
  end-page: 374
  article-title: The ABA‐INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of and genes during sugar signaling
  publication-title: Plant J
– volume: 3
  start-page: 808
  year: 2012
  article-title: genes link photoperiod and gibberellin pathways to control flowering in
  publication-title: Nat Commun
– volume: 14
  start-page: 810
  year: 2012
  end-page: 817
  article-title: Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in
  publication-title: Nat Cell Biol
– volume: 421
  start-page: 740
  year: 2003
  end-page: 743
  article-title: Auxin promotes root growth by modulating gibberellin response
  publication-title: Nature
– volume: 17
  start-page: 92
  year: 2005
  end-page: 102
  article-title: Cross talk between gibberellin and cytokinin: The GA response inhibitor SPINDLY plays a positive role in cytokinin signaling
  publication-title: Plant Cell
– volume: 130
  start-page: 1974
  year: 2002
  end-page: 1982
  article-title: Auxin regulation of the gibberellin pathway in pea
  publication-title: Plant Physiol
– volume: 28
  start-page: 829
  year: 2016
  end-page: 832
  article-title: Interactions between brassinosteroids and gibberellins: Synthesis or signaling?
  publication-title: Plant Cell
– volume: 139
  start-page: 770
  year: 2005
  end-page: 778
  article-title: CONSTANS activates through FLOWERING LOCUS T to promote flowering in
  publication-title: Plant Physiol
– volume: 404
  start-page: 889
  year: 2000
  end-page: 892
  article-title: Integration of floral inductive signals in
  publication-title: Nature
– volume: 59
  start-page: 225
  year: 2008
  end-page: 234
  article-title: HDA6 is required for jasmonate response, senescence and flowering in
  publication-title: J Exp Bot
– volume: 108
  start-page: 9292
  year: 2011
  end-page: 9297
  article-title: Circadian oscillation of gibberellin signaling in
  publication-title: Proc Natl Acad Sci USA
– volume: 33
  start-page: 875
  year: 2003
  end-page: 885
  article-title: Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator
  publication-title: Plant J
– volume: 138
  start-page: 4117
  year: 2011
  end-page: 4129
  article-title: The control of developmental phase transitions in plants
  publication-title: Development
– volume: 109
  start-page: 13446
  year: 2012
  end-page: 13451
  article-title: Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in
  publication-title: Proc Natl Acad Sci USA
– volume: 134
  start-page: 2841
  year: 2007
  end-page: 2850
  article-title: Attenuation of brassinosteroid signaling enhances expression and delays flowering
  publication-title: Development
– volume: 86
  start-page: 426
  year: 2016
  end-page: 440
  article-title: Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days
  publication-title: Plant J
– volume: 59
  start-page: 225
  year: 2008
  end-page: 251
  article-title: Gibberellin metabolism and its regulation
  publication-title: Annu Rev Plant Biol
– volume: 164
  start-page: 1587
  year: 2014
  end-page: 1592
  article-title: Intertissue signal transfer of abscisic acid from vascular cells to guard cells
  publication-title: Plant Physiol
– volume: 448
  start-page: 661
  year: 2007
  end-page: 665
  article-title: JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling
  publication-title: Nature
– volume: 61
  start-page: 651
  year: 2010
  end-page: 679
  article-title: Abscisic acid: Emergence of a core signaling network
  publication-title: Annu Rev Plant Biol
– volume: 18
  start-page: 1338
  year: 2008
  end-page: 1343
  article-title: The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering
  publication-title: Curr Biol
– volume: 9
  start-page: 1492
  year: 2016b
  end-page: 1503
  article-title: WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short‐day conditions
  publication-title: Mol Plant
– volume: 58
  start-page: 642
  year: 2016a
  end-page: 655
  article-title: DELLA proteins interact with FLC to repress flowering transition
  publication-title: J Integr Plant Biol
– volume: 18
  start-page: 2172
  year: 2006
  end-page: 2181
  article-title: GA is the active gibberellin in the regulation of transcription and floral initiation
  publication-title: Plant Cell
– volume: 2
  year: 2006
  article-title: Potent induction of flowering by elevated growth temperature
  publication-title: PLoS Genet
– volume: 286
  start-page: 1962
  year: 1999
  end-page: 1965
  article-title: Activation tagging of the floral inducer FT
  publication-title: Science
– volume: 142
  start-page: 553
  year: 2006
  end-page: 563
  article-title: Transcriptional regulation of gibberellin metabolism genes by auxin signaling in
  publication-title: Plant Physiol
– volume: 437
  start-page: 693
  year: 2005
  end-page: 698
  article-title: encodes a soluble receptor for gibberellin
  publication-title: Nature
– volume: 131
  start-page: 3615
  year: 2004
  end-page: 3626
  article-title: CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of
  publication-title: Development
– volume: 67
  start-page: 6309
  year: 2016
  end-page: 6322
  article-title: ABA‐dependent control of GIGANTEA signalling enables drought escape via up‐regulation of in
  publication-title: J Exp Bot
– volume: 100
  start-page: 403
  year: 1992
  end-page: 408
  article-title: Gibberellin is required for flowering in under short days
  publication-title: Plant Physiol
– volume: 21
  start-page: 2371
  year: 2007
  end-page: 2384
  article-title: Move on up, it's time for change‐‐mobile signals controlling photoperiod‐dependent flowering
  publication-title: Genes Dev
– volume: 63
  start-page: 2738
  year: 2006
  end-page: 2754
  article-title: Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development
  publication-title: Cell Mol Life Sci
– volume: 311
  start-page: 91
  year: 2006
  end-page: 94
  article-title: Integration of plant responses to environmentally activated phytohormonal signals
  publication-title: Science
– volume: 26
  start-page: 1009
  year: 2014
  end-page: 1017
  article-title: A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the promoter and regulates the timing of flowering in
  publication-title: Plant Cell
– volume: 23
  start-page: 701
  year: 2011
  end-page: 715
  article-title: The bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses
  publication-title: Plant Cell
– volume: 484
  start-page: 242
  year: 2012
  end-page: 245
  article-title: Transcription factor PIF4 controls the thermosensory activation of flowering
  publication-title: Nature
– volume: 6
  start-page: 1509
  year: 1994
  end-page: 1518
  article-title: The locus encodes the cyclase ent‐kaurene synthetase A of gibberellin biosynthesis
  publication-title: Plant Cell
– volume: 111
  start-page: 1021
  year: 2013
  end-page: 1058
  article-title: Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany
  publication-title: Ann Bot
– volume: 114
  start-page: 1471
  year: 1997
  end-page: 1476
  article-title: Gibberellins and stem growth in . Effects of photoperiod on expression of the and loci
  publication-title: Plant Physiol
– volume: 104
  start-page: 6484
  year: 2007
  end-page: 6489
  article-title: The plant stress hormone ethylene controls floral transition via DELLA‐dependent regulation of floral meristem‐identity genes
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  year: 2010
  article-title: Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in
  publication-title: PLoS ONE
– volume: 99
  start-page: 16336
  year: 2002
  end-page: 16341
  article-title: AGAMOUS‐LIKE 24, a dosage‐dependent mediator of the flowering signals
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 155
  year: 1998
  end-page: 169
  article-title: The gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway
  publication-title: Plant Cell
– volume: 10
  start-page: 1461
  year: 2017
  end-page: 1464
  article-title: The bHLH Transcription factors MYC2, MYC3, and MYC4 are required for jasmonate‐mediated inhibition of flowering in
  publication-title: Mol Plant
– volume: 13
  start-page: 1555
  year: 2001
  end-page: 1566
  article-title: Repressing a repressor, gibberellin‐induced rapid reduction of the RGA protein in
  publication-title: Plant Cell
– volume: 173
  start-page: 1463
  year: 2017
  end-page: 1474
  article-title: Gibberellin signaling requires chromatin remodeler PICKLE to promote vegetative growth and phase transitions
  publication-title: Plant Physiol
– volume: 19
  start-page: 884
  year: 2010
  end-page: 894
  article-title: DELLAs modulate jasmonate signaling via competitive binding to JAZs
  publication-title: Dev Cell
– volume: 456
  start-page: 520
  year: 2008
  end-page: 523
  article-title: Structural basis for gibberellin recognition by its receptor GID1
  publication-title: Nature
– volume: 5
  start-page: ra72
  year: 2012
  article-title: An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in
  publication-title: Sci Signal
– volume: 2006
  year: 2006
  article-title: brassinosteroid signaling pathway
  publication-title: Sci STKE
– volume: 27
  start-page: 2814
  year: 2015
  end-page: 2828
  article-title: Transcriptional mechanism of jasmonate receptor COI1‐mediated delay of flowering time in
  publication-title: Plant Cell
– volume: 15
  start-page: 581
  year: 2001
  end-page: 590
  article-title: KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem
  publication-title: Genes Dev
– volume: 33
  start-page: 168
  year: 2003
  end-page: 171
  article-title: A thermosensory pathway controlling flowering time in
  publication-title: Nat Genet
– volume: 5
  start-page: 887
  year: 1993
  end-page: 896
  article-title: Mutations at the SPINDLY locus of alter gibberellin signal transduction
  publication-title: Plant Cell
– volume: 5
  start-page: 4601
  year: 2014
  article-title: Nuclear factor Y‐mediated H3K27me3 demethylation of the locus orchestrates flowering responses of
  publication-title: Nat Commun
– volume: 172
  start-page: 479
  year: 2016
  end-page: 488
  article-title: The DELLA‐CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering
  publication-title: Plant Physiol
– volume: 4
  start-page: 279
  year: 2011
  end-page: 288
  article-title: The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM‐domain proteins to mediate jasmonate response in
  publication-title: Mol Plant
– volume: 18
  start-page: 3399
  year: 2006
  end-page: 3414
  article-title: Genetic characterization and functional analysis of the GID1 gibberellin receptors in
  publication-title: Plant Cell
– volume: 18
  start-page: 1577
  year: 2004
  end-page: 1591
  article-title: Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and
  publication-title: Genes Dev
– volume: 127
  start-page: 1682
  year: 2001
  end-page: 1693
  article-title: GAMYB‐like genes, flowering, and gibberellin signaling in
  publication-title: Plant Physiol
– volume: 288
  start-page: 1613
  year: 2000
  end-page: 1616
  article-title: Distinct roles of constans target genes in reproductive development of
  publication-title: Science
– volume: 45
  start-page: 804
  year: 2006
  end-page: 818
  article-title: Distinct and overlapping roles of two gibberellin 3‐oxidases in development
  publication-title: Plant J
– volume: 105
  start-page: 7618
  year: 2008
  end-page: 7623
  article-title: Modulation of brassinosteroid‐regulated gene expression by jumonji domain‐containing proteins ELF6 and REF6 in
  publication-title: Proc Natl Acad Sci USA
– volume: 24
  start-page: 3320
  year: 2012
  end-page: 3332
  article-title: Gibberellin regulates the floral transition through miR156‐targeted SQUAMOSA promoter binding‐like transcription factors
  publication-title: Plant Cell
– ident: e_1_2_6_20_1
  doi: 10.1105/tpc.113.120352
– ident: e_1_2_6_9_1
  doi: 10.1073/pnas.1101050108
– volume: 5
  start-page: 887
  year: 1993
  ident: e_1_2_6_53_1
  article-title: Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction
  publication-title: Plant Cell
– ident: e_1_2_6_18_1
  doi: 10.1101/gad.297704
– ident: e_1_2_6_36_1
  doi: 10.1111/tpj.13183
– ident: e_1_2_6_87_1
  doi: 10.1016/S0092-8674(03)00968-1
– ident: e_1_2_6_103_1
  doi: 10.1016/j.molp.2014.12.018
– ident: e_1_2_6_45_1
  doi: 10.1046/j.1365-313X.2003.01674.x
– ident: e_1_2_6_102_1
  doi: 10.1007/s00018-006-6116-5
– ident: e_1_2_6_70_1
  doi: 10.1016/j.pbi.2013.06.001
– ident: e_1_2_6_3_1
  doi: 10.1126/science.1118642
– ident: e_1_2_6_58_1
  doi: 10.1101/gad.1589007
– volume: 27
  start-page: 2814
  year: 2015
  ident: e_1_2_6_128_1
  article-title: Transcriptional mechanism of jasmonate receptor COI1‐mediated delay of flowering time in Arabidopsis
  publication-title: Plant Cell
– ident: e_1_2_6_76_1
  doi: 10.1186/s13059-015-0597-1
– ident: e_1_2_6_85_1
  doi: 10.1104/pp.16.01471
– ident: e_1_2_6_27_1
  doi: 10.1146/annurev-arplant-042809-112122
– volume: 2006
  start-page: cm5
  year: 2006
  ident: e_1_2_6_13_1
  article-title: Arabidopsis brassinosteroid signaling pathway
  publication-title: Sci STKE
– ident: e_1_2_6_15_1
  doi: 10.1105/tpc.10.5.791
– ident: e_1_2_6_5_1
  doi: 10.1242/dev.01206
– ident: e_1_2_6_46_1
  doi: 10.1093/jxb/ern232
– ident: e_1_2_6_71_1
  doi: 10.1038/ncomms12768
– ident: e_1_2_6_84_1
  doi: 10.1038/ncomms1810
– ident: e_1_2_6_24_1
  doi: 10.1093/mp/ssq073
– ident: e_1_2_6_105_1
  doi: 10.1038/nature04028
– ident: e_1_2_6_30_1
  doi: 10.1105/tpc.020958
– ident: e_1_2_6_86_1
  doi: 10.1242/dev.077164
– ident: e_1_2_6_101_1
  doi: 10.1105/tpc.6.10.1509
– ident: e_1_2_6_77_1
  doi: 10.1105/tpc.11.5.949
– ident: e_1_2_6_125_1
  doi: 10.1073/pnas.212624599
– ident: e_1_2_6_33_1
  doi: 10.1105/tpc.106.042317
– ident: e_1_2_6_2_1
  doi: 10.1073/pnas.0610717104
– ident: e_1_2_6_7_1
  doi: 10.1242/dev.01231
– ident: e_1_2_6_91_1
  doi: 10.1126/science.1065201
– ident: e_1_2_6_112_1
  doi: 10.1016/j.cell.2009.06.014
– ident: e_1_2_6_11_1
  doi: 10.1371/journal.pgen.0020106
– ident: e_1_2_6_16_1
  doi: 10.1038/35009125
– ident: e_1_2_6_50_1
  doi: 10.1242/dev.063511
– ident: e_1_2_6_93_1
  doi: 10.1126/science.288.5471.1613
– ident: e_1_2_6_75_1
  doi: 10.1371/journal.pgen.1005337
– ident: e_1_2_6_129_1
  doi: 10.1104/pp.17.00657
– ident: e_1_2_6_68_1
  doi: 10.1105/tpc.18.00960
– ident: e_1_2_6_23_1
  doi: 10.1105/tpc.107.053009
– ident: e_1_2_6_38_1
  doi: 10.1038/nature01387
– ident: e_1_2_6_113_1
  doi: 10.1093/jxb/ers361
– ident: e_1_2_6_78_1
  doi: 10.1111/j.1365-313X.2005.02642.x
– ident: e_1_2_6_42_1
  doi: 10.1105/tpc.104.028472
– ident: e_1_2_6_60_1
  doi: 10.1104/pp.114.235556
– ident: e_1_2_6_118_1
  doi: 10.1093/jxb/erm300
– ident: e_1_2_6_10_1
  doi: 10.1038/ncb2546
– ident: e_1_2_6_43_1
  doi: 10.1105/tpc.106.047415
– ident: e_1_2_6_41_1
  doi: 10.1104/pp.010442
– ident: e_1_2_6_117_1
  doi: 10.1104/pp.100.1.403
– ident: e_1_2_6_49_1
  doi: 10.1038/ncomms5601
– ident: e_1_2_6_120_1
  doi: 10.1104/pp.114.4.1471
– ident: e_1_2_6_121_1
  doi: 10.1126/science.1250498
– ident: e_1_2_6_66_1
  doi: 10.1105/tpc.113.118604
– ident: e_1_2_6_56_1
  doi: 10.1126/science.286.5446.1962
– ident: e_1_2_6_64_1
  doi: 10.1126/scisignal.2002908
– ident: e_1_2_6_104_1
  doi: 10.1038/nature05960
– ident: e_1_2_6_25_1
  doi: 10.1038/nature06006
– ident: e_1_2_6_35_1
  doi: 10.1105/tpc.110.080788
– ident: e_1_2_6_54_1
  doi: 10.1016/j.cub.2005.07.023
– ident: e_1_2_6_110_1
  doi: 10.1104/pp.16.00891
– ident: e_1_2_6_29_1
  doi: 10.1038/nature06520
– ident: e_1_2_6_100_1
  doi: 10.1146/annurev.arplant.55.031903.141753
– ident: e_1_2_6_22_1
  doi: 10.1038/nature01636
– ident: e_1_2_6_119_1
  doi: 10.1002/1873-3468.12076
– ident: e_1_2_6_124_1
  doi: 10.1104/pp.105.066928
– ident: e_1_2_6_62_1
  doi: 10.1111/jipb.12451
– ident: e_1_2_6_4_1
  doi: 10.1016/j.cub.2009.05.059
– ident: e_1_2_6_59_1
  doi: 10.1038/nature10928
– ident: e_1_2_6_40_1
  doi: 10.1242/dev.080879
– ident: e_1_2_6_115_1
  doi: 10.1126/science.1114358
– ident: e_1_2_6_132_1
  doi: 10.1038/nplants.2016.75
– ident: e_1_2_6_65_1
  doi: 10.1016/j.molp.2018.06.007
– ident: e_1_2_6_99_1
  doi: 10.1038/35074138
– ident: e_1_2_6_126_1
  doi: 10.1105/tpc.112.101014
– ident: e_1_2_6_114_1
  doi: 10.1093/aob/mct067
– ident: e_1_2_6_26_1
  doi: 10.1126/science.1141752
– ident: e_1_2_6_67_1
  doi: 10.1242/dev.020255
– ident: e_1_2_6_80_1
  doi: 10.1038/nature07519
– ident: e_1_2_6_32_1
  doi: 10.1242/dev.02866
– ident: e_1_2_6_74_1
  doi: 10.1007/s003440010038
– ident: e_1_2_6_109_1
  doi: 10.1016/j.molp.2017.08.007
– ident: e_1_2_6_44_1
  doi: 10.1016/S0092-8674(03)00969-3
– ident: e_1_2_6_83_1
  doi: 10.1104/pp.010587
– ident: e_1_2_6_131_1
  doi: 10.1105/tpc.104.028514
– ident: e_1_2_6_47_1
  doi: 10.1105/tpc.112.098749
– ident: e_1_2_6_31_1
  doi: 10.1371/journal.pone.0014012
– ident: e_1_2_6_34_1
  doi: 10.1016/S1360-1385(00)01600-9
– ident: e_1_2_6_95_1
  doi: 10.1093/jxb/erl164
– ident: e_1_2_6_108_1
  doi: 10.1126/science.1091761
– ident: e_1_2_6_96_1
  doi: 10.1093/jxb/erv459
– ident: e_1_2_6_92_1
  doi: 10.1101/gad.867901
– ident: e_1_2_6_79_1
  doi: 10.1046/j.1365-313X.2003.01833.x
– ident: e_1_2_6_89_1
  doi: 10.1093/jxb/erw384
– ident: e_1_2_6_111_1
  doi: 10.1093/jxb/eru246
– ident: e_1_2_6_94_1
  doi: 10.1038/nature07546
– ident: e_1_2_6_21_1
  doi: 10.1016/j.cub.2008.07.075
– ident: e_1_2_6_61_1
  doi: 10.1101/gad.813600
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.1409567111
– volume: 13
  start-page: 1555
  year: 2001
  ident: e_1_2_6_98_1
  article-title: Repressing a repressor, gibberellin‐induced rapid reduction of the RGA protein in Arabidopsis
  publication-title: Plant Cell
– ident: e_1_2_6_19_1
  doi: 10.1146/annurev.arplant.043008.092007
– ident: e_1_2_6_6_1
  doi: 10.1038/cr.2012.29
– ident: e_1_2_6_81_1
  doi: 10.1105/tpc.104.025353
– ident: e_1_2_6_127_1
  doi: 10.1073/pnas.0802254105
– ident: e_1_2_6_12_1
  doi: 10.1016/j.devcel.2019.05.018
– ident: e_1_2_6_14_1
  doi: 10.1038/ng1085
– ident: e_1_2_6_28_1
  doi: 10.1242/dev.087650
– ident: e_1_2_6_39_1
  doi: 10.1073/pnas.1119992109
– ident: e_1_2_6_73_1
  doi: 10.1101/gad.1055803
– ident: e_1_2_6_106_1
  doi: 10.1105/tpc.106.043729
– ident: e_1_2_6_90_1
  doi: 10.1105/tpc.15.00917
– ident: e_1_2_6_69_1
  doi: 10.1371/journal.pbio.1001313
– ident: e_1_2_6_123_1
  doi: 10.1016/j.cub.2005.07.060
– ident: e_1_2_6_48_1
  doi: 10.1016/j.devcel.2010.10.024
– ident: e_1_2_6_63_1
  doi: 10.1016/j.molp.2016.08.003
– ident: e_1_2_6_55_1
  doi: 10.1146/annurev.genet.32.1.227
– ident: e_1_2_6_97_1
  doi: 10.1105/tpc.10.2.155
– ident: e_1_2_6_37_1
  doi: 10.1104/pp.106.084871
– ident: e_1_2_6_51_1
  doi: 10.1007/s00344-003-0028-5
– ident: e_1_2_6_88_1
  doi: 10.1104/pp.113.217729
– ident: e_1_2_6_122_1
  doi: 10.1146/annurev.arplant.59.032607.092804
– ident: e_1_2_6_82_1
  doi: 10.1093/pcp/pcn154
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-313X.2009.03877.x
– ident: e_1_2_6_107_1
  doi: 10.1105/tpc.15.00433
– ident: e_1_2_6_52_1
  doi: 10.1016/j.devcel.2016.04.001
– ident: e_1_2_6_130_1
  doi: 10.1101/gad.1318705
– ident: e_1_2_6_72_1
  doi: 10.1046/j.1365-313X.2001.01173.x
– ident: e_1_2_6_57_1
  doi: 10.1080/09168451.2015.1086259
– ident: e_1_2_6_116_1
  doi: 10.1105/tpc.107.051441
SSID ssj0038062
Score 2.6382544
SecondaryResourceType review_article
Snippet In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118
SubjectTerms Angiosperms
Animal reproduction
Arabidopsis
Arabidopsis thaliana
Breeding success
Flowering
flowering time
Gibberellins
Homeostasis
Plant hormones
proteins
Reproduction
reproductive success
Signal transduction
Signaling
Title New insights into gibberellin signaling in regulating flowering in Arabidopsis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12892
https://www.ncbi.nlm.nih.gov/pubmed/31785071
https://www.proquest.com/docview/2342947635
https://www.proquest.com/docview/2320384488
https://www.proquest.com/docview/2400444685
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EPHjx_VhfVPSi0KXPbANeVBQVFBEFL1LyqhSXdtnuHvTXO5N2iy8EvbXNtKTJTPJNMvkGYB8hsIljQWFVoXYjtEWXSNVpw1EYJrivEjqcfH3DLh6iq8f4cQqOJmdhan6IdsGNLMOO12TgQlYfjTwfyC6OrpwGYArWIkR013JHhYlns4n6rBe46AEGDTepDeNpX_08G32DmJ8Rq51yzufhaVLZOtLkpTseya56-8Lj-N-_WYC5Bos6x7XyLMKUKZZg5qREvPi6DDc4_jl5UZH3XuHFqHSecynNkCg8C4cCPwSdZcciZ1hntKe7rE9515rnx0Mhc10Oqrxagfvzs_vTC7fJvuAqYql3daIiT-mAR1GgY18xX6me5mi1mdboFvq-5IH0eooZ4tjJVCJFzBGxKa79jIWrMF2UhVkHR0qfcRH2BE7IiN4kN5qhgJd5mdCh1B04mHRCqhpmckqQ0U9bDwVbJ7Wt04G9VnZQ83H8KLU16cu0sckqDUKceyMi4OvAbluM1kRbJKIw5ZhkAtQcdFmTX2QiS7LHEvzOWq0nbVUQjSWEsDtwaHv7lzqmV5e3J_Zq4y_CmzAbkMtvV4G2YHo0HJttxEUjuWP1_x3kuQhS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFoleoLxKSgEj4ACSI3ttb7wHDn1QJX1ECAWpN2tfriwqO4oTofY38Vf4T8ysHYtCVYlDD9xs78hae2fG34xnvwF4ixDYJomksqrI-DHaok-k6vTDUVouRahT2px8MubDr_HhaXK6Aj-We2Eafogu4UaW4fw1GTglpH-38mKq-uheBWtrKo_sxXeM2OqPo31c3neMHXya7A39tqmAr4l83TepjgNtmIhjZpJQ81DrgRGojLkxGO2EoRJMBQPNLVHH5DpVMhEIRLQwYc4jvO0dWKMO4sTUv_-lI6uK0sC1Lw35gPkYcrKWDNXVDXVTvfr5-wvTXoXI7ht38AB-Lt9OU9ryrb-Yq76-_IM48n95fRtwvwXb3k5jHQ9hxZaP4O5uhYD44jGM0cF7RVlTeqLGg3nlnRVK2RlxlJYeVbZI2qyPQ97Mnrk-Z3iWn1Njufb6zkyqwlTTuqifwOQ2HuUprJZVaZ-Bp1TIhYwGEhEHwlMlrOEoEORBLk2kTA_eLxc90y31OnUAOc-6EAwXI3OL0YM3ney0IRy5Vmp7qTtZ63TqjEUILmJiGOzB624Y3QX9A5KlrRYkw1BTMSZPb5CJHYsgT_E-m41edlNBuJlSCNGDD067bphjdjj6vOuOtv5F-BXcG05OjrPj0fjoOawzym-4lNc2rM5nC_sCQeBcvXS250F2y8r6C2nlZFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAXoOVvodBU0AOVskqcxBsfOLQsq25LV1VVpN4i_6WKqJLVZleovBKvwkMx42QjWlAlDj1wS-JR5Ngzk2_s8TcA7xAC2ySRlFYVGT9GW_SJVJ02HKXlUoQ6pcPJRxO-_yU-OEvOVuDH8ixMww_RLbiRZTh_TQY-NfnvRl5MVR-9q2BtSuWhvfyGAVv9YTzE2d1mbPTp9OO-39YU8DVxr_sm1XGgDRNxzEwSah5qPTACdTE3BoOdMFSCqWCguSXmmFynSiYCcYgWJsx5hK-9A3djHgiqEzE86biqojRw1UtDPmA-Rpys5UJ1aUNdV6_-_f6AtFcRsvvFjR7Bz-XgNJktX_uLuerr79d4I_-T0XsMD1uo7e02trEGK7Zch3t7FcLhyycwQffuFWVNixM1Xswr77xQys6IobT0KK9F0lF9bPJm9txVOcO7_ILKyrXPd2dSFaaa1kX9FE5v41OewWpZlfYFeEqFXMhoIBFvIDhVwhqOAkEe5NJEyvTg_XLOM90Sr1P9j4usC8BwMjI3GT1428lOG7qRv0ptLFUna11OnbEIoUVM_II92Oqa0VnQDpAsbbUgGYaKihF5eoNM7DgEeYrved6oZdcVBJspBRA92HHKdUMfs4Px8Z67evkvwptw_3g4yj6PJ4ev4AGjxQ233rUBq_PZwr5GBDhXb5zleZDdsq7-AsBUYwM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+insights+into+gibberellin+signaling+in+regulating+flowering+in+Arabidopsis&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=Bao%2C+Shengjie&rft.au=Hua%2C+Changmei&rft.au=Shen%2C+Lisha&rft.au=Yu%2C+Hao&rft.date=2020-01-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=62&rft.issue=1&rft.spage=118&rft.epage=131&rft_id=info:doi/10.1111%2Fjipb.12892&rft.externalDBID=10.1111%252Fjipb.12892&rft.externalDocID=JIPB12892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-9072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-9072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-9072&client=summon