Frozen Natural Orbitals‐Based Coupled‐Cluster Singles, Doubles, and (full) Triples ‐ A Computational Study

Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation‐of‐motion (EOM) CCSD methods is well‐known for provide cost‐effective yet accurate alternative for energy computation. In this article, we extend the FNO approach to CCSDT (CC with singles, double...

Full description

Saved in:
Bibliographic Details
Published inChemistry, an Asian journal Vol. 20; no. 14; pp. e00472 - n/a
Main Authors Manisha, Manohar, Prashant Uday
Format Journal Article
LanguageEnglish
Published Germany 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation‐of‐motion (EOM) CCSD methods is well‐known for provide cost‐effective yet accurate alternative for energy computation. In this article, we extend the FNO approach to CCSDT (CC with singles, doubles, and triples) implemented within Q‐CHEM. This can be employed within both the (conventional) double precision (DP) as well as the single precision (SP) algorithms. Errors due to employing SP algorithm instead of DP are insignificant and therefore are not discussed. However, for computational timings, we present the performance of FNO‐CCSDT versus conventional CCSDT methods with both SP and DP algorithms using water molecule as a test system. FNO‐CCSDT results at different thresholds can be extrapolated to give the XFNO‐CCSDT approach, which provides an enhanced accuracy. To illustrate this, we present total energies of a few molecules, adiabatic triplet–singlet gaps of a few chromophores and bond‐stretching trends in total energies and vertical triplet–singlet gaps of hydrogen fluoride molecule. We also examine these methods for numerical estimation of spectroscopic parameters – force constants and vibrational frequencies of some diatomic molecules. The frozen natural orbitals (FNO)‐based CCSDT is a cost‐effective approach and provides significant computational speed‐up with rather insignificant errors (standard deviation ∼0.9$\sim 0.9$ millihartrees) – smaller than the CCSDT accuracy limit of ∼1.5$\sim 1.5$ millihartrees. Extrapolation of FNO‐CCSDT energies computed using different occupation thresholds results in the XFNO‐CCSDT method, which has more balanced accuracy with a standard deviation of ∼0.6$\sim 0.6$ millihartrees.
AbstractList Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation-of-motion (EOM) CCSD methods is well-known for provide cost-effective yet accurate alternative for energy computation. In this article, we extend the FNO approach to CCSDT (CC with singles, doubles, and triples) implemented within Q-CHEM. This can be employed within both the (conventional) double precision (DP) as well as the single precision (SP) algorithms. Errors due to employing SP algorithm instead of DP are insignificant and therefore are not discussed. However, for computational timings, we present the performance of FNO-CCSDT versus conventional CCSDT methods with both SP and DP algorithms using water molecule as a test system. FNO-CCSDT results at different thresholds can be extrapolated to give the XFNO-CCSDT approach, which provides an enhanced accuracy. To illustrate this, we present total energies of a few molecules, adiabatic triplet-singlet gaps of a few chromophores and bond-stretching trends in total energies and vertical triplet-singlet gaps of hydrogen fluoride molecule. We also examine these methods for numerical estimation of spectroscopic parameters - force constants and vibrational frequencies of some diatomic molecules.
Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation‐of‐motion (EOM) CCSD methods is well‐known for provide cost‐effective yet accurate alternative for energy computation. In this article, we extend the FNO approach to CCSDT (CC with singles, doubles, and triples) implemented within Q‐CHEM. This can be employed within both the (conventional) double precision (DP) as well as the single precision (SP) algorithms. Errors due to employing SP algorithm instead of DP are insignificant and therefore are not discussed. However, for computational timings, we present the performance of FNO‐CCSDT versus conventional CCSDT methods with both SP and DP algorithms using water molecule as a test system. FNO‐CCSDT results at different thresholds can be extrapolated to give the XFNO‐CCSDT approach, which provides an enhanced accuracy. To illustrate this, we present total energies of a few molecules, adiabatic triplet–singlet gaps of a few chromophores and bond‐stretching trends in total energies and vertical triplet–singlet gaps of hydrogen fluoride molecule. We also examine these methods for numerical estimation of spectroscopic parameters – force constants and vibrational frequencies of some diatomic molecules. The frozen natural orbitals (FNO)‐based CCSDT is a cost‐effective approach and provides significant computational speed‐up with rather insignificant errors (standard deviation ∼0.9$\sim 0.9$ millihartrees) – smaller than the CCSDT accuracy limit of ∼1.5$\sim 1.5$ millihartrees. Extrapolation of FNO‐CCSDT energies computed using different occupation thresholds results in the XFNO‐CCSDT method, which has more balanced accuracy with a standard deviation of ∼0.6$\sim 0.6$ millihartrees.
Author Manisha
Manohar, Prashant Uday
Author_xml – sequence: 1
  surname: Manisha
  fullname: Manisha
  organization: BITS‐PILANI
– sequence: 2
  givenname: Prashant Uday
  surname: Manohar
  fullname: Manohar, Prashant Uday
  email: pumanohar@pilani.bits-pilani.ac.in
  organization: BITS‐PILANI
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40476559$$D View this record in MEDLINE/PubMed
BookMark eNo9kM1OwzAQhC1URH_gyhH5CBIpthsnzjEECpUqemiRuEX-CwpykyiOhcqJR-AZeRJcCjntjvabkXbGYFDVlQbgHKMpRojccFvyKUGEIhTG5AiMMItwEMb4ZdDvhA3B2No3hChBCTsBw9DDEaXJCDTztv7QFXzinWu5gatWlB039vvz65ZbrWBWu8Zo5XVmnO10C9dl9Wq0vYZ3tRO_C68UvCycMVdw05Yet9DzMPXmbeM63pV15bPXnVO7U3Bc-Hx99jcn4Hl-v8keg-XqYZGly0CGJCKBZJhJIqigiRIF17EOQyFiqTSnnFGqJI5jWcxiWvinOMKJFJJpzoj2niKaTcDFIbdxYqtV3rTllre7_P91DyQH4L00etffMcr3xeb7YvO-2DxdL9JezX4A3mRyeA
ContentType Journal Article
Copyright 2025 The Author(s). Chemistry ‐ An Asian Journal published by Wiley‐VCH GmbH
2025 The Author(s). Chemistry ‐ An Asian Journal published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 The Author(s). Chemistry ‐ An Asian Journal published by Wiley‐VCH GmbH
– notice: 2025 The Author(s). Chemistry ‐ An Asian Journal published by Wiley‐VCH GmbH.
DBID 24P
NPM
DOI 10.1002/asia.202500472
DatabaseName Wiley Online Library Open Access
PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1861-471X
EndPage n/a
ExternalDocumentID 40476559
ASIA202500472
Genre researchArticle
Journal Article
GroupedDBID ---
05W
0R~
1L6
1OC
24P
29B
33P
3WU
4.4
5GY
6J9
8-1
87K
8UM
AAESR
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBS
F5P
G-S
HBH
HGLYW
HHY
HHZ
HZ~
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O9-
OIG
P2W
PQQKQ
QRW
ROL
SUPJJ
WBKPD
WHG
WOHZO
WXSBR
XSW
XV2
ZZTAW
~S-
31~
AANHP
AASGY
ACBWZ
ACRPL
ACUHS
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
EBD
EJD
FEDTE
GODZA
HF~
HVGLF
LH4
NPM
ID FETCH-LOGICAL-c4262-c818c2b5b59dbfae7e44bb7cdea5a855dc177cf375f520a019cbc8ea82e5b5f63
IEDL.DBID 24P
ISSN 1861-4728
IngestDate Fri Jul 25 01:49:53 EDT 2025
Wed Jul 23 09:40:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Triplet–singlet gaps
Vibrational frequency
FNO
XFNO
Single precision
Force constant
CCSDT
Language English
License Attribution
2025 The Author(s). Chemistry ‐ An Asian Journal published by Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4262-c818c2b5b59dbfae7e44bb7cdea5a855dc177cf375f520a019cbc8ea82e5b5f63
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202500472
PMID 40476559
PageCount 8
ParticipantIDs pubmed_primary_40476559
wiley_primary_10_1002_asia_202500472_ASIA202500472
PublicationCentury 2000
PublicationDate 2025-Jul
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-Jul
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Chemistry, an Asian journal
PublicationTitleAlternate Chem Asian J
PublicationYear 2025
References 2009; 46
2013; 3
2003; 118
2013; 1
1993; 207
1984; 26
1989; 159
2003; 17
1970
2010; 181
2008; 4
1970; 1
2007; 79
1987; 151
1985; 18
1987; 86
1997; 107
2017; 38
2000; 326
1986
1988; 88
2002; 107
1985
1977; 33
2005; 70
2021; 155
2008; 112
1955; 97
2024; 26
1990; 92
1992; 83
2017; 129
2011; 135
1974; 35
2000; 113
2011
1999; 194
1982; 76
2013; 42
2006; 8
2008; 59
1981; 24
2008
2008; 129
1995
2008; 128
2013; 184
1978; 14
2009; 131
1990; 165
2009; 136
2011; 7
2014; 112
1976; 10
1993; 14
2020; 152
1987; 137
2013; 34
1993; 99
2013; 139
2010; 132
2019
1999; 34
2019; 730
1977; 11
1999; 111
2009; 5
2014
2013
1977; 12
1966; 45
2001; 115
2001; 114
References_xml – volume: 17
  start-page: 5311
  year: 2003
  end-page: 5325
  publication-title: Int. J. Mod. Phys. B
– year: 2011
– volume: 1
  start-page: 644
  year: 1970
  publication-title: Phys. Rev. A
– volume: 155
  year: 2021
  publication-title: J. Chem. Phys.
– volume: 86
  start-page: 7041
  year: 1987
  end-page: 7050
  publication-title: J. Chem. Phys.
– volume: 184
  start-page: 374
  year: 2013
  end-page: 380
  publication-title: Comput. Phys. Commun.
– volume: 5
  start-page: 1004
  year: 2009
  end-page: 1015
  publication-title: J. Chem. Theory Comput.
– volume: 46
  start-page: 240
  year: 2009
  end-page: 245
  publication-title: Superlattices Microstruct.
– volume: 83
  start-page: 319
  year: 1992
  end-page: 330
  publication-title: Theor. Chim. Acta
– volume: 79
  start-page: 291
  year: 2007
  publication-title: Rev. Mod. Phys.
– start-page: 35
  year: 1986
  end-page: 61
– volume: 115
  start-page: 2014
  year: 2001
  end-page: 2021
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 2049
  year: 2008
  end-page: 2057
  publication-title: J. Phys. Chem. A.
– volume: 107
  start-page: 220
  year: 2002
  end-page: 228
  publication-title: Theor. Chem. Acc.
– volume: 14
  start-page: 33
  year: 1978
  end-page: 58
  publication-title: Int. J. Quantum Chem.
– start-page: 47
  year: 1995
  end-page: 108
– volume: 113
  start-page: 9443
  year: 2000
  end-page: 9455
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 2293
  year: 2013
  end-page: 2309
  publication-title: J. Comput. Chem.
– year: 2014
– volume: 207
  start-page: 414
  year: 1993
  end-page: 423
  publication-title: Chem. Phys. Lett.
– volume: 181
  start-page: 1517
  year: 2010
  end-page: 1528
  publication-title: Comput. Phys. Commun.
– volume: 59
  start-page: 433
  year: 2008
  end-page: 462
  publication-title: Annu. Rev. Phys. Chem.
– volume: 42
  start-page: 8895
  year: 2013
  end-page: 8999
  publication-title: Chem. Soc. Rev.
– volume: 129
  start-page: 1611
  year: 2017
  end-page: 1626
  publication-title: J. Chem. Sc.
– volume: 129
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 165
  start-page: 513
  year: 1990
  end-page: 522
  publication-title: Chem. Phys. Lett.
– volume: 5
  start-page: 2619
  year: 2009
  end-page: 2628
  publication-title: J. Chem. Theory Comput.
– volume: 152
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 194
  start-page: 189
  year: 1999
  end-page: 196
  publication-title: J. Mol. Spectrosc.
– volume: 38
  start-page: 842
  year: 2017
  end-page: 853
  publication-title: Comput. Chem.
– volume: 136
  start-page: 546
  year: 2009
  end-page: 554
  publication-title: Sens. Actuators, B
– year: 2019
– volume: 88
  start-page: 3834
  year: 1988
  end-page: 3839
  publication-title: J. Chem. Phys.
– volume: 114
  start-page: 661
  year: 2001
  end-page: 681
  publication-title: J. Chem. Phys.
– volume: 88
  start-page: 4357
  year: 1988
  end-page: 4366
  publication-title: J. Chem. Phys.
– volume: 730
  start-page: 234
  year: 2019
  end-page: 238
  publication-title: Chem. Phys. Lett.
– volume: 35
  start-page: 33
  year: 1974
  end-page: 58
  publication-title: Theor. Chim. Acta
– volume: 139
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 137
  start-page: 273
  year: 1987
  end-page: 278
  publication-title: Chem. Phys. Lett.
– volume: 26
  start-page: 255
  year: 1984
  end-page: 265
  publication-title: Int. J. Quantum Chem.
– volume: 4
  start-page: 222
  year: 2008
  end-page: 231
  publication-title: J. Chem. Theory Comput.
– volume: 118
  start-page: 1604
  year: 2003
  end-page: 1609
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 421
  year: 1977
  end-page: 432
  publication-title: Int. J. Quantum Chem.
– volume: 76
  start-page: 1910
  year: 1982
  end-page: 1918
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 143
  year: 1999
  end-page: 269
– start-page: 1
  year: 1985
  end-page: 20
– volume: 326
  start-page: 255
  year: 2000
  end-page: 262
  publication-title: Chem. Phys. Lett.
– volume: 12
  start-page: 683
  year: 1977
  end-page: 705
  publication-title: Int. J. Quantum Chem.
– volume: 14
  start-page: 1347
  year: 1993
  end-page: 1363
  publication-title: J. Comput. Chem.
– volume: 118
  start-page: 9481
  year: 2003
  end-page: 9484
  publication-title: J. Chem. Phys.
– volume: 18
  start-page: 809
  year: 1985
  publication-title: J. Phys. A: Math. Gen.
– volume: 7
  start-page: 320
  year: 2011
  end-page: 326
  publication-title: J. Chem. Theory Comput.
– volume: 1
  year: 2013
– volume: 107
  start-page: 6812
  year: 1997
  end-page: 6830
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 3172
  year: 2006
  end-page: 3191
  publication-title: Phys. Chem. Chem. Phys.
– volume: 24
  start-page: 1668
  year: 1981
  publication-title: Phys. Rev. A
– volume: 33
  start-page: 955
  year: 1977
  end-page: 969
  publication-title: Mol. Phys.
– volume: 111
  start-page: 5691
  year: 1999
  end-page: 5705
  publication-title: J. Chem. Phys.
– volume: 159
  start-page: 148
  year: 1989
  end-page: 154
  publication-title: Chem. Phys. Lett.
– volume: 151
  start-page: 93
  year: 1987
  end-page: 127
  publication-title: Phys. Rep.
– volume: 115
  start-page: 3015
  year: 2001
  end-page: 3020
  publication-title: J. Chem. Phys.
– volume: 99
  start-page: 8840
  year: 1993
  end-page: 8847
  publication-title: J. Chem. Phys.
– volume: 97
  start-page: 1474
  year: 1955
  publication-title: Phys. Rev.
– volume: 10
  start-page: 33
  year: 1976
  end-page: 46
  publication-title: Int. J. Quantum Chem.
– volume: 70
  start-page: 837
  year: 2005
  end-page: 850
  publication-title: Collect. Czech. Chem. Commun.
– volume: 131
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 1287
  year: 2011
  end-page: 1295
  publication-title: J. Chem. Theory Comput.
– volume: 11
  start-page: 743
  year: 1977
  end-page: 752
  publication-title: Int. J. Quantum Chem.
– start-page: 1
  year: 2008
  end-page: 82
– volume: 128
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 135
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 844
  year: 2014
  end-page: 852
  publication-title: Mol. Phys.
– year: 1970
– volume: 45
  start-page: 4256
  year: 1966
  end-page: 4266
  publication-title: J. Chem. Phys.
– volume: 26
  start-page: 21204
  year: 2024
  end-page: 21212
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 317
  year: 2013
  end-page: 326
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 92
  start-page: 4924
  year: 1990
  end-page: 4940
  publication-title: J. Chem. Phys.
– year: 2013
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
SSID ssj0052098
Score 2.4344656
Snippet Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation‐of‐motion (EOM) CCSD methods is well‐known for provide...
Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation-of-motion (EOM) CCSD methods is well-known for provide...
SourceID pubmed
wiley
SourceType Index Database
Publisher
StartPage e00472
SubjectTerms CCSDT
FNO
Force constant
Single precision
Triplet–singlet gaps
Vibrational frequency
XFNO
Title Frozen Natural Orbitals‐Based Coupled‐Cluster Singles, Doubles, and (full) Triples ‐ A Computational Study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202500472
https://www.ncbi.nlm.nih.gov/pubmed/40476559
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgDLAgvilf8sAAElGpazvOWCKqgtRSqa3ULbIde6rSKmkHmPgJ_EZ-CWenDWVliWwlt1xiv-fL3TuEbrV5tBEgR6AsJQHVjATAWk1AuVZNqrQW_o9pr8-7Y_o6YZONKv5SH6IKuLmV4fdrt8ClKhq_oqGuyBDOdwDhTvBwG-24-lqnnk_oYL0XuxwPXwwnOJyUQiLWso2PpPHXfgOANkmqR5nOAdpf0UPcLt_nIdoy2RHajddd2Y7RvJPPPkyG-9ILZuC3XLm2H8X359cTAFKK49lyPjUpzOPp0qkg4CGg09QUDxjIsvIDmaX4zgXe7_Eod5H2AsPzuI3LHg-r-CB2OYbvJ2jceR7F3WDVNSHQTl0-0ADBmiimWJQqK01oKFUq1KmRTArGUt0MQ21bIbPgHgkUTystjBTEgI3lrVNUy2aZOUfYECoV14KFrZRyHkXEKKGEpaIJxNCSOjornZbMS2mMhIIvORxS6oh4L1Y3SnVkkjivJ5XXk_bwpV3NLv5jdIn23LjMoL1CtUW-NNfAExbqxn8KcO0Pej9x-7l9
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDGVBvClPDwwgEbV1_coYIqoW2oLUVmKLYseeqrTqY4CJn8Bv5JdwTpoAK1uc5IZcYn_fXc7fIXStTcP6gByespR4VDPiAWs1HuVaNanSWmZ_TPsD3hnTx1dWVBO6vTC5PkSZcHMzI1uv3QR3Cen6j2qo22UIAR5guFM83ERblBPh5iahL8Vi7Io8st1wkkOoJIgsdBsbpP7X_hcC_WapGcy0d9HOmh_iIH-he2jDpPuoGhZt2Q7QrD2fvpsUD-JMMQM_z5Xr-7H4-vi8B0RKcDhdzSYmgXE4WTkZBDwEeJqYxR0GtqyygzhN8I170Fs8mrtU-wLD_TjAeZOHdYIQuyLDt0M0bj-Mwo63bpvgaScv72nAYE0UU8xPlI2NMJQqJXRiYhZLxhLdFELblmAW3BMDx9NKSxNLYsDG8tYRqqTT1JwgbAiNFdeSiVZCOfd9YpRU0lLZBGZoSQ0d506LZrk2RkTBlxyilBoimRfLC7k8Momc16PS61Ew7Abl6PQ_Rleo2hn1e1GvO3g6Q9vufF5Oe44qy_nKXABpWKrL7LP4BiR0u90
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagSMCCeFOeHhhAImrr2okzhkDU8iiV2krdotixpyqt0naAiZ_Ab-SXcHbaUFa2OMktl9jf5_PddwhdS1XXPiCHIzQlDpWMOMBalUNdKRpUSMntielrx20N6NOQDVeq-At9iDLgZmaGXa_NBJ-kuvYrGmqKDGF_BxBuBA_X0YY98TPazrS7XItNjocthuMu7JQ8wpeyjXVS-2u_AkCrJNWiTLSLdhb0EAfF99xDayrbR1vhsivbAZpE-fhDZbiTWMEM_JYL0_Zj-v35dQ-AlOJwPJ-MVArjcDQ3Kgi4B-g0UtM7DGRZ2IskS_GNCbzf4n5uIu1TDO_jABc9HhbxQWxyDN8P0SB67IctZ9E1wZFGXd6RAMGSCCaYnwqdKE9RKoQnU5WwhDOWyobnSd30mAb3JEDxpJBcJZwosNFu8whVsnGmThBWhCbClZx5zZS6ru8TJbjgmvIGEENNqui4cFo8KaQxYgq-dGGTUkXEerF8UKgjk9h4PS69Hge9dlCOTv9jdIU2uw9R_NLuPJ-hbXO7SKY9R5VZPlcXQBlm4tL-FT9Ga7sP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frozen+Natural+Orbitals%E2%80%90Based+Coupled%E2%80%90Cluster+Singles%2C+Doubles%2C+and+%28full%29+Triples+%E2%80%90+A+Computational+Study&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Manisha&rft.au=Manohar%2C+Prashant+Uday&rft.date=2025-07-01&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=20&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fasia.202500472&rft.externalDBID=10.1002%252Fasia.202500472&rft.externalDocID=ASIA202500472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon