Frozen Natural Orbitals‐Based Coupled‐Cluster Singles, Doubles, and (full) Triples ‐ A Computational Study
Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation‐of‐motion (EOM) CCSD methods is well‐known for provide cost‐effective yet accurate alternative for energy computation. In this article, we extend the FNO approach to CCSDT (CC with singles, double...
Saved in:
Published in | Chemistry, an Asian journal Vol. 20; no. 14; pp. e00472 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation‐of‐motion (EOM) CCSD methods is well‐known for provide cost‐effective yet accurate alternative for energy computation. In this article, we extend the FNO approach to CCSDT (CC with singles, doubles, and triples) implemented within Q‐CHEM. This can be employed within both the (conventional) double precision (DP) as well as the single precision (SP) algorithms. Errors due to employing SP algorithm instead of DP are insignificant and therefore are not discussed. However, for computational timings, we present the performance of FNO‐CCSDT versus conventional CCSDT methods with both SP and DP algorithms using water molecule as a test system. FNO‐CCSDT results at different thresholds can be extrapolated to give the XFNO‐CCSDT approach, which provides an enhanced accuracy. To illustrate this, we present total energies of a few molecules, adiabatic triplet–singlet gaps of a few chromophores and bond‐stretching trends in total energies and vertical triplet–singlet gaps of hydrogen fluoride molecule. We also examine these methods for numerical estimation of spectroscopic parameters – force constants and vibrational frequencies of some diatomic molecules.
The frozen natural orbitals (FNO)‐based CCSDT is a cost‐effective approach and provides significant computational speed‐up with rather insignificant errors (standard deviation ∼0.9$\sim 0.9$ millihartrees) – smaller than the CCSDT accuracy limit of ∼1.5$\sim 1.5$ millihartrees. Extrapolation of FNO‐CCSDT energies computed using different occupation thresholds results in the XFNO‐CCSDT method, which has more balanced accuracy with a standard deviation of ∼0.6$\sim 0.6$ millihartrees. |
---|---|
AbstractList | Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation-of-motion (EOM) CCSD methods is well-known for provide cost-effective yet accurate alternative for energy computation. In this article, we extend the FNO approach to CCSDT (CC with singles, doubles, and triples) implemented within Q-CHEM. This can be employed within both the (conventional) double precision (DP) as well as the single precision (SP) algorithms. Errors due to employing SP algorithm instead of DP are insignificant and therefore are not discussed. However, for computational timings, we present the performance of FNO-CCSDT versus conventional CCSDT methods with both SP and DP algorithms using water molecule as a test system. FNO-CCSDT results at different thresholds can be extrapolated to give the XFNO-CCSDT approach, which provides an enhanced accuracy. To illustrate this, we present total energies of a few molecules, adiabatic triplet-singlet gaps of a few chromophores and bond-stretching trends in total energies and vertical triplet-singlet gaps of hydrogen fluoride molecule. We also examine these methods for numerical estimation of spectroscopic parameters - force constants and vibrational frequencies of some diatomic molecules. Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation‐of‐motion (EOM) CCSD methods is well‐known for provide cost‐effective yet accurate alternative for energy computation. In this article, we extend the FNO approach to CCSDT (CC with singles, doubles, and triples) implemented within Q‐CHEM. This can be employed within both the (conventional) double precision (DP) as well as the single precision (SP) algorithms. Errors due to employing SP algorithm instead of DP are insignificant and therefore are not discussed. However, for computational timings, we present the performance of FNO‐CCSDT versus conventional CCSDT methods with both SP and DP algorithms using water molecule as a test system. FNO‐CCSDT results at different thresholds can be extrapolated to give the XFNO‐CCSDT approach, which provides an enhanced accuracy. To illustrate this, we present total energies of a few molecules, adiabatic triplet–singlet gaps of a few chromophores and bond‐stretching trends in total energies and vertical triplet–singlet gaps of hydrogen fluoride molecule. We also examine these methods for numerical estimation of spectroscopic parameters – force constants and vibrational frequencies of some diatomic molecules. The frozen natural orbitals (FNO)‐based CCSDT is a cost‐effective approach and provides significant computational speed‐up with rather insignificant errors (standard deviation ∼0.9$\sim 0.9$ millihartrees) – smaller than the CCSDT accuracy limit of ∼1.5$\sim 1.5$ millihartrees. Extrapolation of FNO‐CCSDT energies computed using different occupation thresholds results in the XFNO‐CCSDT method, which has more balanced accuracy with a standard deviation of ∼0.6$\sim 0.6$ millihartrees. |
Author | Manisha Manohar, Prashant Uday |
Author_xml | – sequence: 1 surname: Manisha fullname: Manisha organization: BITS‐PILANI – sequence: 2 givenname: Prashant Uday surname: Manohar fullname: Manohar, Prashant Uday email: pumanohar@pilani.bits-pilani.ac.in organization: BITS‐PILANI |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40476559$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kM1OwzAQhC1URH_gyhH5CBIpthsnzjEECpUqemiRuEX-CwpykyiOhcqJR-AZeRJcCjntjvabkXbGYFDVlQbgHKMpRojccFvyKUGEIhTG5AiMMItwEMb4ZdDvhA3B2No3hChBCTsBw9DDEaXJCDTztv7QFXzinWu5gatWlB039vvz65ZbrWBWu8Zo5XVmnO10C9dl9Wq0vYZ3tRO_C68UvCycMVdw05Yet9DzMPXmbeM63pV15bPXnVO7U3Bc-Hx99jcn4Hl-v8keg-XqYZGly0CGJCKBZJhJIqigiRIF17EOQyFiqTSnnFGqJI5jWcxiWvinOMKJFJJpzoj2niKaTcDFIbdxYqtV3rTllre7_P91DyQH4L00etffMcr3xeb7YvO-2DxdL9JezX4A3mRyeA |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Chemistry ‐ An Asian Journal published by Wiley‐VCH GmbH 2025 The Author(s). Chemistry ‐ An Asian Journal published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 The Author(s). Chemistry ‐ An Asian Journal published by Wiley‐VCH GmbH – notice: 2025 The Author(s). Chemistry ‐ An Asian Journal published by Wiley‐VCH GmbH. |
DBID | 24P NPM |
DOI | 10.1002/asia.202500472 |
DatabaseName | Wiley Online Library Open Access PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1861-471X |
EndPage | n/a |
ExternalDocumentID | 40476559 ASIA202500472 |
Genre | researchArticle Journal Article |
GroupedDBID | --- 05W 0R~ 1L6 1OC 24P 29B 33P 3WU 4.4 5GY 6J9 8-1 87K 8UM AAESR AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DRFUL DRSTM EBS F5P G-S HBH HGLYW HHY HHZ HZ~ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O9- OIG P2W PQQKQ QRW ROL SUPJJ WBKPD WHG WOHZO WXSBR XSW XV2 ZZTAW ~S- 31~ AANHP AASGY ACBWZ ACRPL ACUHS ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN EBD EJD FEDTE GODZA HF~ HVGLF LH4 NPM |
ID | FETCH-LOGICAL-c4262-c818c2b5b59dbfae7e44bb7cdea5a855dc177cf375f520a019cbc8ea82e5b5f63 |
IEDL.DBID | 24P |
ISSN | 1861-4728 |
IngestDate | Fri Jul 25 01:49:53 EDT 2025 Wed Jul 23 09:40:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Triplet–singlet gaps Vibrational frequency FNO XFNO Single precision Force constant CCSDT |
Language | English |
License | Attribution 2025 The Author(s). Chemistry ‐ An Asian Journal published by Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4262-c818c2b5b59dbfae7e44bb7cdea5a855dc177cf375f520a019cbc8ea82e5b5f63 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202500472 |
PMID | 40476559 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_40476559 wiley_primary_10_1002_asia_202500472_ASIA202500472 |
PublicationCentury | 2000 |
PublicationDate | 2025-Jul |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-Jul |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Chemistry, an Asian journal |
PublicationTitleAlternate | Chem Asian J |
PublicationYear | 2025 |
References | 2009; 46 2013; 3 2003; 118 2013; 1 1993; 207 1984; 26 1989; 159 2003; 17 1970 2010; 181 2008; 4 1970; 1 2007; 79 1987; 151 1985; 18 1987; 86 1997; 107 2017; 38 2000; 326 1986 1988; 88 2002; 107 1985 1977; 33 2005; 70 2021; 155 2008; 112 1955; 97 2024; 26 1990; 92 1992; 83 2017; 129 2011; 135 1974; 35 2000; 113 2011 1999; 194 1982; 76 2013; 42 2006; 8 2008; 59 1981; 24 2008 2008; 129 1995 2008; 128 2013; 184 1978; 14 2009; 131 1990; 165 2009; 136 2011; 7 2014; 112 1976; 10 1993; 14 2020; 152 1987; 137 2013; 34 1993; 99 2013; 139 2010; 132 2019 1999; 34 2019; 730 1977; 11 1999; 111 2009; 5 2014 2013 1977; 12 1966; 45 2001; 115 2001; 114 |
References_xml | – volume: 17 start-page: 5311 year: 2003 end-page: 5325 publication-title: Int. J. Mod. Phys. B – year: 2011 – volume: 1 start-page: 644 year: 1970 publication-title: Phys. Rev. A – volume: 155 year: 2021 publication-title: J. Chem. Phys. – volume: 86 start-page: 7041 year: 1987 end-page: 7050 publication-title: J. Chem. Phys. – volume: 184 start-page: 374 year: 2013 end-page: 380 publication-title: Comput. Phys. Commun. – volume: 5 start-page: 1004 year: 2009 end-page: 1015 publication-title: J. Chem. Theory Comput. – volume: 46 start-page: 240 year: 2009 end-page: 245 publication-title: Superlattices Microstruct. – volume: 83 start-page: 319 year: 1992 end-page: 330 publication-title: Theor. Chim. Acta – volume: 79 start-page: 291 year: 2007 publication-title: Rev. Mod. Phys. – start-page: 35 year: 1986 end-page: 61 – volume: 115 start-page: 2014 year: 2001 end-page: 2021 publication-title: J. Chem. Phys. – volume: 112 start-page: 2049 year: 2008 end-page: 2057 publication-title: J. Phys. Chem. A. – volume: 107 start-page: 220 year: 2002 end-page: 228 publication-title: Theor. Chem. Acc. – volume: 14 start-page: 33 year: 1978 end-page: 58 publication-title: Int. J. Quantum Chem. – start-page: 47 year: 1995 end-page: 108 – volume: 113 start-page: 9443 year: 2000 end-page: 9455 publication-title: J. Chem. Phys. – volume: 34 start-page: 2293 year: 2013 end-page: 2309 publication-title: J. Comput. Chem. – year: 2014 – volume: 207 start-page: 414 year: 1993 end-page: 423 publication-title: Chem. Phys. Lett. – volume: 181 start-page: 1517 year: 2010 end-page: 1528 publication-title: Comput. Phys. Commun. – volume: 59 start-page: 433 year: 2008 end-page: 462 publication-title: Annu. Rev. Phys. Chem. – volume: 42 start-page: 8895 year: 2013 end-page: 8999 publication-title: Chem. Soc. Rev. – volume: 129 start-page: 1611 year: 2017 end-page: 1626 publication-title: J. Chem. Sc. – volume: 129 year: 2008 publication-title: J. Chem. Phys. – volume: 165 start-page: 513 year: 1990 end-page: 522 publication-title: Chem. Phys. Lett. – volume: 5 start-page: 2619 year: 2009 end-page: 2628 publication-title: J. Chem. Theory Comput. – volume: 152 year: 2020 publication-title: J. Chem. Phys. – volume: 194 start-page: 189 year: 1999 end-page: 196 publication-title: J. Mol. Spectrosc. – volume: 38 start-page: 842 year: 2017 end-page: 853 publication-title: Comput. Chem. – volume: 136 start-page: 546 year: 2009 end-page: 554 publication-title: Sens. Actuators, B – year: 2019 – volume: 88 start-page: 3834 year: 1988 end-page: 3839 publication-title: J. Chem. Phys. – volume: 114 start-page: 661 year: 2001 end-page: 681 publication-title: J. Chem. Phys. – volume: 88 start-page: 4357 year: 1988 end-page: 4366 publication-title: J. Chem. Phys. – volume: 730 start-page: 234 year: 2019 end-page: 238 publication-title: Chem. Phys. Lett. – volume: 35 start-page: 33 year: 1974 end-page: 58 publication-title: Theor. Chim. Acta – volume: 139 year: 2013 publication-title: J. Chem. Phys. – volume: 137 start-page: 273 year: 1987 end-page: 278 publication-title: Chem. Phys. Lett. – volume: 26 start-page: 255 year: 1984 end-page: 265 publication-title: Int. J. Quantum Chem. – volume: 4 start-page: 222 year: 2008 end-page: 231 publication-title: J. Chem. Theory Comput. – volume: 118 start-page: 1604 year: 2003 end-page: 1609 publication-title: J. Chem. Phys. – volume: 12 start-page: 421 year: 1977 end-page: 432 publication-title: Int. J. Quantum Chem. – volume: 76 start-page: 1910 year: 1982 end-page: 1918 publication-title: J. Chem. Phys. – volume: 34 start-page: 143 year: 1999 end-page: 269 – start-page: 1 year: 1985 end-page: 20 – volume: 326 start-page: 255 year: 2000 end-page: 262 publication-title: Chem. Phys. Lett. – volume: 12 start-page: 683 year: 1977 end-page: 705 publication-title: Int. J. Quantum Chem. – volume: 14 start-page: 1347 year: 1993 end-page: 1363 publication-title: J. Comput. Chem. – volume: 118 start-page: 9481 year: 2003 end-page: 9484 publication-title: J. Chem. Phys. – volume: 18 start-page: 809 year: 1985 publication-title: J. Phys. A: Math. Gen. – volume: 7 start-page: 320 year: 2011 end-page: 326 publication-title: J. Chem. Theory Comput. – volume: 1 year: 2013 – volume: 107 start-page: 6812 year: 1997 end-page: 6830 publication-title: J. Chem. Phys. – volume: 8 start-page: 3172 year: 2006 end-page: 3191 publication-title: Phys. Chem. Chem. Phys. – volume: 24 start-page: 1668 year: 1981 publication-title: Phys. Rev. A – volume: 33 start-page: 955 year: 1977 end-page: 969 publication-title: Mol. Phys. – volume: 111 start-page: 5691 year: 1999 end-page: 5705 publication-title: J. Chem. Phys. – volume: 159 start-page: 148 year: 1989 end-page: 154 publication-title: Chem. Phys. Lett. – volume: 151 start-page: 93 year: 1987 end-page: 127 publication-title: Phys. Rep. – volume: 115 start-page: 3015 year: 2001 end-page: 3020 publication-title: J. Chem. Phys. – volume: 99 start-page: 8840 year: 1993 end-page: 8847 publication-title: J. Chem. Phys. – volume: 97 start-page: 1474 year: 1955 publication-title: Phys. Rev. – volume: 10 start-page: 33 year: 1976 end-page: 46 publication-title: Int. J. Quantum Chem. – volume: 70 start-page: 837 year: 2005 end-page: 850 publication-title: Collect. Czech. Chem. Commun. – volume: 131 year: 2009 publication-title: J. Chem. Phys. – volume: 7 start-page: 1287 year: 2011 end-page: 1295 publication-title: J. Chem. Theory Comput. – volume: 11 start-page: 743 year: 1977 end-page: 752 publication-title: Int. J. Quantum Chem. – start-page: 1 year: 2008 end-page: 82 – volume: 128 year: 2008 publication-title: J. Chem. Phys. – volume: 135 year: 2011 publication-title: J. Chem. Phys. – volume: 112 start-page: 844 year: 2014 end-page: 852 publication-title: Mol. Phys. – year: 1970 – volume: 45 start-page: 4256 year: 1966 end-page: 4266 publication-title: J. Chem. Phys. – volume: 26 start-page: 21204 year: 2024 end-page: 21212 publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 317 year: 2013 end-page: 326 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 92 start-page: 4924 year: 1990 end-page: 4940 publication-title: J. Chem. Phys. – year: 2013 – volume: 132 year: 2010 publication-title: J. Chem. Phys. |
SSID | ssj0052098 |
Score | 2.4344656 |
Snippet | Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation‐of‐motion (EOM) CCSD methods is well‐known for provide... Frozen (F) natural orbitals (NO) approach in coupled cluster (CC) singles and doubles (SD) and equation-of-motion (EOM) CCSD methods is well-known for provide... |
SourceID | pubmed wiley |
SourceType | Index Database Publisher |
StartPage | e00472 |
SubjectTerms | CCSDT FNO Force constant Single precision Triplet–singlet gaps Vibrational frequency XFNO |
Title | Frozen Natural Orbitals‐Based Coupled‐Cluster Singles, Doubles, and (full) Triples ‐ A Computational Study |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202500472 https://www.ncbi.nlm.nih.gov/pubmed/40476559 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgDLAgvilf8sAAElGpazvOWCKqgtRSqa3ULbIde6rSKmkHmPgJ_EZ-CWenDWVliWwlt1xiv-fL3TuEbrV5tBEgR6AsJQHVjATAWk1AuVZNqrQW_o9pr8-7Y_o6YZONKv5SH6IKuLmV4fdrt8ClKhq_oqGuyBDOdwDhTvBwG-24-lqnnk_oYL0XuxwPXwwnOJyUQiLWso2PpPHXfgOANkmqR5nOAdpf0UPcLt_nIdoy2RHajddd2Y7RvJPPPkyG-9ILZuC3XLm2H8X359cTAFKK49lyPjUpzOPp0qkg4CGg09QUDxjIsvIDmaX4zgXe7_Eod5H2AsPzuI3LHg-r-CB2OYbvJ2jceR7F3WDVNSHQTl0-0ADBmiimWJQqK01oKFUq1KmRTArGUt0MQ21bIbPgHgkUTystjBTEgI3lrVNUy2aZOUfYECoV14KFrZRyHkXEKKGEpaIJxNCSOjornZbMS2mMhIIvORxS6oh4L1Y3SnVkkjivJ5XXk_bwpV3NLv5jdIn23LjMoL1CtUW-NNfAExbqxn8KcO0Pej9x-7l9 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDGVBvClPDwwgEbV1_coYIqoW2oLUVmKLYseeqrTqY4CJn8Bv5JdwTpoAK1uc5IZcYn_fXc7fIXStTcP6gByespR4VDPiAWs1HuVaNanSWmZ_TPsD3hnTx1dWVBO6vTC5PkSZcHMzI1uv3QR3Cen6j2qo22UIAR5guFM83ERblBPh5iahL8Vi7Io8st1wkkOoJIgsdBsbpP7X_hcC_WapGcy0d9HOmh_iIH-he2jDpPuoGhZt2Q7QrD2fvpsUD-JMMQM_z5Xr-7H4-vi8B0RKcDhdzSYmgXE4WTkZBDwEeJqYxR0GtqyygzhN8I170Fs8mrtU-wLD_TjAeZOHdYIQuyLDt0M0bj-Mwo63bpvgaScv72nAYE0UU8xPlI2NMJQqJXRiYhZLxhLdFELblmAW3BMDx9NKSxNLYsDG8tYRqqTT1JwgbAiNFdeSiVZCOfd9YpRU0lLZBGZoSQ0d506LZrk2RkTBlxyilBoimRfLC7k8Momc16PS61Ew7Abl6PQ_Rleo2hn1e1GvO3g6Q9vufF5Oe44qy_nKXABpWKrL7LP4BiR0u90 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagSMCCeFOeHhhAImrr2okzhkDU8iiV2krdotixpyqt0naAiZ_Ab-SXcHbaUFa2OMktl9jf5_PddwhdS1XXPiCHIzQlDpWMOMBalUNdKRpUSMntielrx20N6NOQDVeq-At9iDLgZmaGXa_NBJ-kuvYrGmqKDGF_BxBuBA_X0YY98TPazrS7XItNjocthuMu7JQ8wpeyjXVS-2u_AkCrJNWiTLSLdhb0EAfF99xDayrbR1vhsivbAZpE-fhDZbiTWMEM_JYL0_Zj-v35dQ-AlOJwPJ-MVArjcDQ3Kgi4B-g0UtM7DGRZ2IskS_GNCbzf4n5uIu1TDO_jABc9HhbxQWxyDN8P0SB67IctZ9E1wZFGXd6RAMGSCCaYnwqdKE9RKoQnU5WwhDOWyobnSd30mAb3JEDxpJBcJZwosNFu8whVsnGmThBWhCbClZx5zZS6ru8TJbjgmvIGEENNqui4cFo8KaQxYgq-dGGTUkXEerF8UKgjk9h4PS69Hge9dlCOTv9jdIU2uw9R_NLuPJ-hbXO7SKY9R5VZPlcXQBlm4tL-FT9Ga7sP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frozen+Natural+Orbitals%E2%80%90Based+Coupled%E2%80%90Cluster+Singles%2C+Doubles%2C+and+%28full%29+Triples+%E2%80%90+A+Computational+Study&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Manisha&rft.au=Manohar%2C+Prashant+Uday&rft.date=2025-07-01&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=20&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fasia.202500472&rft.externalDBID=10.1002%252Fasia.202500472&rft.externalDocID=ASIA202500472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon |