PbS/CdS/ZnS Quantum Dots: A Multifunctional Platform for In Vivo Near-Infrared Low-Dose Fluorescence Imaging

Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high‐quality water‐dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 25; no. 42; pp. 6650 - 6659
Main Authors Benayas, Antonio, Ren, Fuqiang, Carrasco, Elisa, Marzal, Vicente, del Rosal, Blanca, Gonfa, Belete A., Juarranz, Ángeles, Sanz-Rodríguez, Francisco, Jaque, Daniel, García-Solé, José, Ma, Dongling, Vetrone, Fiorenzo
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 11.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high‐quality water‐dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a rapid, cost‐effective microwave‐assisted cation exchange procedure are reported. These QDs have proven to be water dispersible, stable, and are expected to be nontoxic, resulting from the growth of an outer ZnS shell and the simultaneous surface functionalization with mercaptopropionic acid ligands. Care is taken to design the emission wavelength of the QDs probe lying within the second biological window (1000–1350 nm), which leads to higher penetration depths because of the low extinction coefficient of biological tissues in this spectral range. Furthermore, their intense fluorescence emission enables to follow the real‐time evolution of QD biodistribution among different organs of living mice, after low‐dose intravenous administration. In this paper, QD platform has proven to be capable (ex vivo and in vitro) of high‐resolution thermal sensing in the physiological temperature range. The investigation, together with the lack of noticeable toxicity from these PbS/CdS/ZnS QDs after preliminary studies, paves the way for their use as outstanding multifunctional probes both for in vitro and in vivo applications in biomedicine. Low‐dose in vivo near‐infrared (NIR) fluorescence imaging is achieved by using carefully designed PbS/CdS/ZnS quantum dots (QDs), intensely emitting within the second biological window (1000–1350 nm). Moreover, preliminary studies both in vitro and in vivo have proven the lack of noticeable toxicity of these QDs. As an additional advantage, this NIR‐fluorescence imaging platform has demonstrated useful multifunctionality, thus being capable, both ex vivo and in vitro, of high‐resolution thermal sensing in the physiological temperature range.
AbstractList Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high‐quality water‐dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a rapid, cost‐effective microwave‐assisted cation exchange procedure are reported. These QDs have proven to be water dispersible, stable, and are expected to be nontoxic, resulting from the growth of an outer ZnS shell and the simultaneous surface functionalization with mercaptopropionic acid ligands. Care is taken to design the emission wavelength of the QDs probe lying within the second biological window (1000–1350 nm), which leads to higher penetration depths because of the low extinction coefficient of biological tissues in this spectral range. Furthermore, their intense fluorescence emission enables to follow the real‐time evolution of QD biodistribution among different organs of living mice, after low‐dose intravenous administration. In this paper, QD platform has proven to be capable (ex vivo and in vitro) of high‐resolution thermal sensing in the physiological temperature range. The investigation, together with the lack of noticeable toxicity from these PbS/CdS/ZnS QDs after preliminary studies, paves the way for their use as outstanding multifunctional probes both for in vitro and in vivo applications in biomedicine.
Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high‐quality water‐dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a rapid, cost‐effective microwave‐assisted cation exchange procedure are reported. These QDs have proven to be water dispersible, stable, and are expected to be nontoxic, resulting from the growth of an outer ZnS shell and the simultaneous surface functionalization with mercaptopropionic acid ligands. Care is taken to design the emission wavelength of the QDs probe lying within the second biological window (1000–1350 nm), which leads to higher penetration depths because of the low extinction coefficient of biological tissues in this spectral range. Furthermore, their intense fluorescence emission enables to follow the real‐time evolution of QD biodistribution among different organs of living mice, after low‐dose intravenous administration. In this paper, QD platform has proven to be capable (ex vivo and in vitro) of high‐resolution thermal sensing in the physiological temperature range. The investigation, together with the lack of noticeable toxicity from these PbS/CdS/ZnS QDs after preliminary studies, paves the way for their use as outstanding multifunctional probes both for in vitro and in vivo applications in biomedicine. Low‐dose in vivo near‐infrared (NIR) fluorescence imaging is achieved by using carefully designed PbS/CdS/ZnS quantum dots (QDs), intensely emitting within the second biological window (1000–1350 nm). Moreover, preliminary studies both in vitro and in vivo have proven the lack of noticeable toxicity of these QDs. As an additional advantage, this NIR‐fluorescence imaging platform has demonstrated useful multifunctionality, thus being capable, both ex vivo and in vitro, of high‐resolution thermal sensing in the physiological temperature range.
Over the past decade, near-infrared (NIR)-emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high-quality water-dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a rapid, cost-effective microwave-assisted cation exchange procedure are reported. These QDs have proven to be water dispersible, stable, and are expected to be nontoxic, resulting from the growth of an outer ZnS shell and the simultaneous surface functionalization with mercaptopropionic acid ligands. Care is taken to design the emission wavelength of the QDs probe lying within the second biological window (1000-1350 nm), which leads to higher penetration depths because of the low extinction coefficient of biological tissues in this spectral range. Furthermore, their intense fluorescence emission enables to follow the real-time evolution of QD biodistribution among different organs of living mice, after low-dose intravenous administration. In this paper, QD platform has proven to be capable (ex vivo and in vitro) of high-resolution thermal sensing in the physiological temperature range. The investigation, together with the lack of noticeable toxicity from these PbS/CdS/ZnS QDs after preliminary studies, paves the way for their use as outstanding multifunctional probes both for in vitro and in vivo applications in biomedicine. Low-dose in vivo near-infrared (NIR) fluorescence imaging is achieved by using carefully designed PbS/CdS/ZnS quantum dots (QDs), intensely emitting within the second biological window (1000-1350 nm). Moreover, preliminary studies both in vitro and in vivo have proven the lack of noticeable toxicity of these QDs. As an additional advantage, this NIR-fluorescence imaging platform has demonstrated useful multifunctionality, thus being capable, both ex vivo and in vitro, of high-resolution thermal sensing in the physiological temperature range.
Author Juarranz, Ángeles
Marzal, Vicente
Carrasco, Elisa
Sanz-Rodríguez, Francisco
Benayas, Antonio
Gonfa, Belete A.
García-Solé, José
Ma, Dongling
Ren, Fuqiang
Vetrone, Fiorenzo
del Rosal, Blanca
Jaque, Daniel
Author_xml – sequence: 1
  givenname: Antonio
  surname: Benayas
  fullname: Benayas, Antonio
  organization: Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, QC, J3X 1S2, Varennes, Canada
– sequence: 2
  givenname: Fuqiang
  surname: Ren
  fullname: Ren, Fuqiang
  organization: Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, QC, J3X 1S2, Varennes, Canada
– sequence: 3
  givenname: Elisa
  surname: Carrasco
  fullname: Carrasco, Elisa
  organization: Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, 28029, Madrid, Spain
– sequence: 4
  givenname: Vicente
  surname: Marzal
  fullname: Marzal, Vicente
  organization: Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
– sequence: 5
  givenname: Blanca
  surname: del Rosal
  fullname: del Rosal, Blanca
  organization: Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
– sequence: 6
  givenname: Belete A.
  surname: Gonfa
  fullname: Gonfa, Belete A.
  organization: Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, QC, J3X 1S2, Varennes, Canada
– sequence: 7
  givenname: Ángeles
  surname: Juarranz
  fullname: Juarranz, Ángeles
  organization: Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, 28029, Madrid, Spain
– sequence: 8
  givenname: Francisco
  surname: Sanz-Rodríguez
  fullname: Sanz-Rodríguez, Francisco
  organization: Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
– sequence: 9
  givenname: Daniel
  surname: Jaque
  fullname: Jaque, Daniel
  email: daniel.jaque@uam.es
  organization: Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain
– sequence: 10
  givenname: José
  surname: García-Solé
  fullname: García-Solé, José
  organization: Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
– sequence: 11
  givenname: Dongling
  surname: Ma
  fullname: Ma, Dongling
  email: daniel.jaque@uam.es
  organization: Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, QC, J3X 1S2, Varennes, Canada
– sequence: 12
  givenname: Fiorenzo
  surname: Vetrone
  fullname: Vetrone, Fiorenzo
  email: daniel.jaque@uam.es
  organization: Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada
BookMark eNqFkEtvEzEQgFeoSLSFK2cfuWyytndtl1u0ISVqWooCFPVizTp2ZfDaxfb28e-7UVCEKlVcPNZovnl8R8WBD14XxXtcTXBVkSlsTD8hFW4qwih5VRxihllJKyIO9n_8801xlNKvqsKc0_qwcJfdetpu1tNrv0ZfB_B56NE85PQRzdD54LI1g1fZBg8OXTrIJsQejQ9aevTD3gV0oSGWS28iRL1Bq3BfzkPSaOGGEHVS2iuNlj3cWH_ztnhtwCX97m88Lr4vPn1rP5erL6fLdrYqVU0YKRmHjgtBgRiNgXWKdEZ1G2qYYJRShXnHatZg0fAxbQCDgFqZ5oQajgWp6XHxYdf3NoY_g05Z9nbcxDnwOgxJjreLUVJD2Vg62ZWqGFKK2sjbaHuIjxJXcqtVbrXKvdYRqJ8BymbYCsoRrHsZO9lh99bpx_8MkbP54vxfttyxNmX9sGch_paMU97Iq4tT2TZ0Ja6vzmRLnwAw5Z3o
CitedBy_id crossref_primary_10_1016_j_talanta_2019_120625
crossref_primary_10_1002_adfm_201706235
crossref_primary_10_1002_adfm_201806088
crossref_primary_10_1016_j_biomaterials_2016_05_026
crossref_primary_10_1039_C7RA12864A
crossref_primary_10_1016_j_talanta_2016_10_021
crossref_primary_10_1039_D1CS00427A
crossref_primary_10_1038_ncomms12749
crossref_primary_10_1016_j_physrep_2022_02_004
crossref_primary_10_1021_acs_chemmater_8b01421
crossref_primary_10_1016_j_jlumin_2021_117967
crossref_primary_10_1039_D4NR00014E
crossref_primary_10_1186_s12951_022_01648_7
crossref_primary_10_1088_1361_6528_aaf6c5
crossref_primary_10_1002_smtd_201800075
crossref_primary_10_1002_smll_201603133
crossref_primary_10_1016_j_inoche_2025_114062
crossref_primary_10_1021_acsanm_9b00317
crossref_primary_10_1002_adfm_202200016
crossref_primary_10_1002_adma_201801140
crossref_primary_10_1021_acschembio_7b00887
crossref_primary_10_1007_s12274_017_1727_8
crossref_primary_10_1002_adfm_201803417
crossref_primary_10_3390_catal14050298
crossref_primary_10_1021_acsami_4c04913
crossref_primary_10_1063_1_5132562
crossref_primary_10_1021_accountsmr_3c00012
crossref_primary_10_1039_C8NR02382D
crossref_primary_10_1021_jacs_0c07022
crossref_primary_10_1016_j_apcatb_2019_118526
crossref_primary_10_1016_j_tibtech_2019_07_013
crossref_primary_10_1039_C6NR08534B
crossref_primary_10_1039_C9NR02801C
crossref_primary_10_1039_D1TC04107J
crossref_primary_10_1039_D0TB02728F
crossref_primary_10_1039_D0NR03568H
crossref_primary_10_1149_2_0141801jss
crossref_primary_10_1021_acs_analchem_0c00499
crossref_primary_10_3390_nano10050993
crossref_primary_10_1038_s41467_018_05160_1
crossref_primary_10_1039_D0NA00846J
crossref_primary_10_1016_j_optmat_2016_06_004
crossref_primary_10_1039_C9NR05733A
crossref_primary_10_1039_C5NH00073D
crossref_primary_10_1016_j_jallcom_2018_03_002
crossref_primary_10_1002_smll_202004118
crossref_primary_10_1016_j_ccr_2016_03_002
crossref_primary_10_2142_biophys_57_081
crossref_primary_10_1002_advs_202000370
crossref_primary_10_1007_s10854_021_05670_7
crossref_primary_10_1016_j_apcatb_2020_118879
crossref_primary_10_1021_acsanm_4c04273
crossref_primary_10_1002_adfm_201807376
crossref_primary_10_1515_nanoph_2017_0039
crossref_primary_10_1002_adhm_201601195
crossref_primary_10_1039_D4TC01396D
crossref_primary_10_1002_advs_201801834
crossref_primary_10_1016_j_jphotochemrev_2017_01_002
crossref_primary_10_3390_nano10061214
crossref_primary_10_1002_smll_202107963
crossref_primary_10_1063_5_0149119
crossref_primary_10_1063_5_0030295
crossref_primary_10_1016_j_bios_2016_11_002
crossref_primary_10_1002_smll_201907171
crossref_primary_10_1002_ppsc_201600242
crossref_primary_10_1016_j_cis_2020_102209
crossref_primary_10_1039_C6TB01186A
crossref_primary_10_1002_smll_202000804
crossref_primary_10_3389_fchem_2019_00088
crossref_primary_10_1021_acs_nanolett_4c05710
crossref_primary_10_1149_2_0111901jss
crossref_primary_10_1002_adfm_201803733
crossref_primary_10_1007_s12274_019_2280_4
crossref_primary_10_1021_acsnano_9b05038
crossref_primary_10_1016_j_addr_2021_03_008
crossref_primary_10_1002_advs_201801201
crossref_primary_10_1039_D0TB01430C
crossref_primary_10_1002_wnan_1483
crossref_primary_10_1021_acsnano_0c08349
crossref_primary_10_1016_j_mtadv_2022_100306
crossref_primary_10_1002_adom_201900917
crossref_primary_10_1021_acs_jpclett_4c01982
crossref_primary_10_1002_adfm_201601953
crossref_primary_10_1088_2050_6120_ac10ae
crossref_primary_10_1002_adfm_202003147
crossref_primary_10_1007_s12274_020_2843_4
crossref_primary_10_1021_acsami_9b06194
crossref_primary_10_1039_C8NR00305J
crossref_primary_10_1021_acsnano_8b07938
crossref_primary_10_1021_acsmaterialslett_1c00334
crossref_primary_10_1038_s41598_020_76851_3
crossref_primary_10_1063_1_4993819
crossref_primary_10_1002_adfm_201703553
crossref_primary_10_1016_j_apsadv_2022_100296
crossref_primary_10_1016_j_bioactmat_2023_10_019
crossref_primary_10_1039_D4QI02869D
crossref_primary_10_1038_s41598_019_44023_7
crossref_primary_10_1016_j_biomaterials_2016_07_021
crossref_primary_10_1021_acsnano_8b06563
crossref_primary_10_1021_acs_chemmater_9b00028
crossref_primary_10_1002_adfm_201802029
crossref_primary_10_1002_adfm_201910536
crossref_primary_10_1021_acsanm_8b00359
crossref_primary_10_1038_s41598_024_65529_9
crossref_primary_10_1016_j_saa_2019_117279
crossref_primary_10_1016_j_omx_2022_100225
Cites_doi 10.1002/smll.200901672
10.4319/lo.1992.37.3.0577
10.1038/nnano.2012.74
10.1117/1.2829772
10.1021/jp1025152
10.1111/jace.12476
10.2310/7290.2011.00057
10.1038/nbt1340
10.1002/ange.201407420
10.1146/annurev.bi.41.070172.000515
10.1016/S0006-3495(96)79716-3
10.1021/nl1036098
10.1016/j.biomaterials.2013.01.089
10.1117/1.2398928
10.1002/adfm.201403653
10.1021/nl100996u
10.1021/nn102878u
10.1039/c3nr02181e
10.1002/smll.201100845
10.1021/nl047996m
10.1098/rsta.2011.0264
10.1007/978-3-211-75237-1_12
10.1021/la902260j
10.1039/C1NR11285F
10.1002/adom.201400484
10.1073/pnas.1014501108
10.1002/ange.201206059
10.1021/cm4021436
10.1039/c3cc44000a
10.1039/c3nr02286b
10.1002/smll.200700632
10.1038/nnano.2009.326
10.1021/nn301218z
10.1109/3.64354
10.3109/02652049609026013
10.1016/j.biomaterials.2013.07.087
10.1007/978-94-009-3127-5
10.1002/adma.200305395
10.1162/153535003322750646
10.1200/JCO.2001.19.3.676
10.1038/ncomms3199
10.1021/nl0347334
10.1002/wnan.72
10.1162/153535003765276282
10.1016/0013-9351(71)90036-3
10.2174/138161210791920496
10.1007/978-0-387-45524-2_38
10.1007/s12274-014-0549-1
10.1088/0031-9155/58/11/R37
10.1088/0031-9155/43/9/003
10.1016/S1040-8428(01)00179-2
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201502632
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 6659
ExternalDocumentID 10_1002_adfm_201502632
ADFM201502632
ark_67375_WNG_C53L8ZWK_C
Genre article
GrantInformation_xml – fundername: Fonds de recherche du Québec‐Nature et Technologies
– fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: Canadian Institutes of Health Research–Breast Cancer Society of Canada
– fundername: Ministére de L'Education, du Loisir et du Sport du Québec
– fundername: FRQNT
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4262-67ab7883a2fe1a6bc2bfcbd3f686333c17b64651857cbdfa1a8a4cf593f718243
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Jul 10 17:41:31 EDT 2025
Tue Jul 01 01:30:21 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Wed Jan 22 17:01:34 EST 2025
Mon Nov 18 03:20:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4262-67ab7883a2fe1a6bc2bfcbd3f686333c17b64651857cbdfa1a8a4cf593f718243
Notes Ministére de L'Education, du Loisir et du Sport du Québec
Natural Sciences and Engineering Research Council of Canada
istex:5DA55EAD1FDA89EB8D4514C7E7219E49ACAA8DFA
FRQNT
ark:/67375/WNG-C53L8ZWK-C
Fonds de recherche du Québec-Nature et Technologies
Canadian Institutes of Health Research-Breast Cancer Society of Canada
ArticleID:ADFM201502632
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1778026536
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1778026536
crossref_primary_10_1002_adfm_201502632
crossref_citationtrail_10_1002_adfm_201502632
wiley_primary_10_1002_adfm_201502632_ADFM201502632
istex_primary_ark_67375_WNG_C53L8ZWK_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 11, 2015
PublicationDateYYYYMMDD 2015-11-11
PublicationDate_xml – month: 11
  year: 2015
  text: November 11, 2015
  day: 11
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, F. Vetrone, Adv. Opt. Mater. 2015, 3, 687.
R. Wang, X. Li, L. Zhou, F. Zhang, Angew. Chem. 2014, 126, 12282.
D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, P. Moghe, Nat. Commun. 2013, 4, 2199.
b) E. Salomatina, B. Jiang, J. Novak, A. N. Yaroslavsky, J. Biomed. Opt. 2006, 11, 064026
E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, D. Jaque, Adv. Funct. Mater. 2015, 25, 615.
c) S.-H. Tseng, A. Grant, A. J. Durkin, J. Biomed. Opt. 2008, 13, 014016.
b) E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, R. M. Levenson, Philos. Trans. R. Soc., A 2011, 369, 4620.
c) C. Stefanadis, C. Chrysochoou, D. Markou, K. Petraki, D. B. Panagiotakos, C. Fasoulakis, A. Kyriakidis, C. Papadimitriou, P. K. Toutouzas, J. Clin. Oncol. 2001, 19, 676
a) C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, Phys. Med. Biol. 1998, 43, 2465
a) R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, A. J. Houtepen, Small 2008, 4, 127
a) H. S. Jensen, F. O. Andersen, Limnol. Oceanogr. 1992, 37, 577
b) E. J. Henderson, A. J. Shuhendler, P. Prasad, V. Baumann, F. Maier-Flaig, D. O. Faulkner, U. Lemmer, X. Y. Wu, G. A. Ozin, Small 2011, 7, 2507
I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, D. García, Nano Res. 2014, 8, 649.
Y. Zhang, Y. Zhang, G. Hong, W. He, K. Zhou, K. Yang, F. Li, G. Chen, Z. Liu, H. Dai, Biomaterials 2013, 34, 3639.
d) B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, Crit. Rev. Oncol. Hematol. 2002, 43, 33.
W.-F. Cheong, S. A. Prahl, A. J. Welch, IEEE J. Quantum Electron. 1990, 26, 2166.
J. Gao, K. Chen, R. Xie, J. Xie, S. Lee, Z. Cheng, X. Peng, X. Chen, Small 2010, 6, 256.
a) G. Choy, P. Choyke, S. K. Libutti, Mol. Imaging 2003, 2, 303
b) Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, Q. Wang, ACS Nano 2012, 6, 3695
A. M. Smith, M. C. Mancini, S. Nie, Nat. Nanotechnol. 2009, 4, 710.
b) N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, K. Soga, J. Am. Ceram. Soc. 2013, 96, 2759
P. A. Jarzyna, A. Gianella, T. Skajaa, G. Knudsen, L. H. Deddens, D. P. Cormode, Z. A. Fayad, W. J. M. Mulder, Wiley Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2010, 2, 138.
C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. Muñoz Javier, H. E. Gaub, S. Stölzle, N. Fertig, W. J. Parak, Nano Lett. 2004, 5, 331.
a) Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, J. V. Frangioni, Mol. Imaging 2003, 2, 50
b) Y. Tang, S. Han, H. Liu, X. Chen, L. Huang, X. Li, J. Zhang, Biomaterials 2013, 34, 8741.
a) N. Won, S. Jeong, K. Kim, J. Kwag, J. Park, S. G. Kim, S. Kim, Mol. Imaging 2012, 11, 338
F. Ren, H. Zhao, F. Vetrone, D. Ma, Nanoscale 2013, 5, 7800.
c) E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, K. Soga, Nanoscale 2013, 5, 11339.
a) C. Chouly, D. Pouliquen, I. Lucet, J. J. Jeune, P. Jallet, J. Microencapsulation 1996, 13, 245
b) D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, M. C. Beard, ACS Nano 2010, 5, 183.
K. Welsher, S. P. Sherlock, H. Dai, Proc. Natl. Acad. Sci. USA 2011, 108, 8943.
F. C. J. M. van Veggel, Chem. Mater. 2013, 26, 111.
D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, USA 2004.
Y. Nakane, Y. Tsukasaki, T. Sakata, H. Yasuda, T. Jin, Chem. Commun. 2013, 49, 7584.
Y. Tang, S. Han, H. Liu, X. Chen, L. Huang, X. Li, J. Zhang, Biomaterials 2013, 34, 8741.
L. Ye, K.-T. Yong, L. Liu, I. Roy, R. Hu, J. Zhu, H. Cai, W.-C. Law, J. Liu, K. Wang, J. Liu, Y. Liu, Y. Hu, X. Zhang, M. T. Swihart, P. N. Prasad, Nat. Nanotechnol. 2012, 7, 453.
b) H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165.
b) K. König, in Handbook of Biological Confocal Microscopy, (Ed: J. B. Pawley), Springer Science+Business Media, LLC, New York, NY, USA 2006.
K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318.
S. L. Jacques, Phys. Med. Biol. 2013, 58, R37.
b) B. L. Vallee, D. D. Ulmer, Annu. Rev. Biochem. 1972, 41, 91.
M. A. Hines, G. D. Scholes, Adv. Mater. 2003, 15, 1844.
T. Zhang, H. Zhao, D. Riabinina, M. Chaker, D. Ma, J. Phys. Chem. C 2010, 114, 10153.
A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2003, 4, 11.
b) A. R. Cossins, K. Bowler, Temperature Biology of Animals, Chapman and Hall, London, UK 1987
a) L. M. Maestro, E. M. Rodriguez, F. S. Rodriguez, M. C. I. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, J. G. Sole, Nano Lett. 2010, 10, 5109
A. Choi, D. Maysinger, in Semiconductor Nanocrystal Quantum Dots, (Ed: A. Rogach), Springer, Vienna, Austria 2008, 349.
c) J.-C. Boyer, M.-P. Manseau, J. I. Murray, F. C. J. M. van Veggel, Langmuir 2009, 26, 1157.
b) L. M. Maestro, J. E. Ramirez-Hernandez, N. Bogdan, J. A. Capobianco, F. Vetrone, J. G. Sole, D. Jaque, Nanoscale 2012, 4, 298.
G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, H. Dai, Angew. Chem. 2012, 124, 9956.
a) J.-W. Yoo, E. Chambers, S. Mitragotri, Curr. Pharm. Des. 2010, 16, 2298
a) H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, M. W. Berns, Biophys. J. 1996, 70, 1529
a) D. F. Flick, H. F. Kraybill, J. M. Dlmitroff, Environ. Res. 1971, 4, 71
2010; 10
2013; 26
1971 1972; 4 41
2003 2011; 2 369
2013; 4
2012; 124
2013; 49
2015; 3
2008 2010; 4 5
2010 2012; 10 4
2008
2003; 15
2004; 5
2004
2003 2012 2013 2013; 2 6 96 5
2013; 5
1998 2006 2008; 43 11 13
1996 2006; 70
2015; 25
2011; 108
1996 2013; 13 34
2013; 58
2012 2011 2009; 11 7 26
2010 2007; 16 25
1990; 26
2013; 34
2010; 114
2003; 4
1992 1987 2001 2002; 37 19 43
2009; 4
2010; 2
2012; 7
2014; 8
2014; 126
2010; 6
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_11_3
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_17_1
e_1_2_6_17_2
e_1_2_6_13_3
e_1_2_6_13_4
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_3_3
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_7_1
Lide D. R. (e_1_2_6_15_1) 2004
e_1_2_6_3_4
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_1_2
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_12_2
e_1_2_6_12_3
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_8_1
e_1_2_6_29_2
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_25_2
References_xml – reference: a) N. Won, S. Jeong, K. Kim, J. Kwag, J. Park, S. G. Kim, S. Kim, Mol. Imaging 2012, 11, 338;
– reference: a) Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, J. V. Frangioni, Mol. Imaging 2003, 2, 50;
– reference: C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. Muñoz Javier, H. E. Gaub, S. Stölzle, N. Fertig, W. J. Parak, Nano Lett. 2004, 5, 331.
– reference: A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, F. Vetrone, Adv. Opt. Mater. 2015, 3, 687.
– reference: T. Zhang, H. Zhao, D. Riabinina, M. Chaker, D. Ma, J. Phys. Chem. C 2010, 114, 10153.
– reference: Y. Nakane, Y. Tsukasaki, T. Sakata, H. Yasuda, T. Jin, Chem. Commun. 2013, 49, 7584.
– reference: b) B. L. Vallee, D. D. Ulmer, Annu. Rev. Biochem. 1972, 41, 91.
– reference: E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, D. Jaque, Adv. Funct. Mater. 2015, 25, 615.
– reference: F. Ren, H. Zhao, F. Vetrone, D. Ma, Nanoscale 2013, 5, 7800.
– reference: d) B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, Crit. Rev. Oncol. Hematol. 2002, 43, 33.
– reference: b) K. König, in Handbook of Biological Confocal Microscopy, (Ed: J. B. Pawley), Springer Science+Business Media, LLC, New York, NY, USA 2006.
– reference: R. Wang, X. Li, L. Zhou, F. Zhang, Angew. Chem. 2014, 126, 12282.
– reference: b) E. J. Henderson, A. J. Shuhendler, P. Prasad, V. Baumann, F. Maier-Flaig, D. O. Faulkner, U. Lemmer, X. Y. Wu, G. A. Ozin, Small 2011, 7, 2507;
– reference: K. Welsher, S. P. Sherlock, H. Dai, Proc. Natl. Acad. Sci. USA 2011, 108, 8943.
– reference: M. A. Hines, G. D. Scholes, Adv. Mater. 2003, 15, 1844.
– reference: I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, D. García, Nano Res. 2014, 8, 649.
– reference: K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318.
– reference: F. C. J. M. van Veggel, Chem. Mater. 2013, 26, 111.
– reference: A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2003, 4, 11.
– reference: b) D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, M. C. Beard, ACS Nano 2010, 5, 183.
– reference: a) R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, A. J. Houtepen, Small 2008, 4, 127;
– reference: S. L. Jacques, Phys. Med. Biol. 2013, 58, R37.
– reference: b) N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, K. Soga, J. Am. Ceram. Soc. 2013, 96, 2759;
– reference: c) S.-H. Tseng, A. Grant, A. J. Durkin, J. Biomed. Opt. 2008, 13, 014016.
– reference: J. Gao, K. Chen, R. Xie, J. Xie, S. Lee, Z. Cheng, X. Peng, X. Chen, Small 2010, 6, 256.
– reference: a) H. S. Jensen, F. O. Andersen, Limnol. Oceanogr. 1992, 37, 577;
– reference: b) Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, Q. Wang, ACS Nano 2012, 6, 3695;
– reference: a) J.-W. Yoo, E. Chambers, S. Mitragotri, Curr. Pharm. Des. 2010, 16, 2298;
– reference: a) H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, M. W. Berns, Biophys. J. 1996, 70, 1529;
– reference: Y. Zhang, Y. Zhang, G. Hong, W. He, K. Zhou, K. Yang, F. Li, G. Chen, Z. Liu, H. Dai, Biomaterials 2013, 34, 3639.
– reference: b) A. R. Cossins, K. Bowler, Temperature Biology of Animals, Chapman and Hall, London, UK 1987;
– reference: D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, P. Moghe, Nat. Commun. 2013, 4, 2199.
– reference: a) D. F. Flick, H. F. Kraybill, J. M. Dlmitroff, Environ. Res. 1971, 4, 71;
– reference: D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, USA 2004.
– reference: P. A. Jarzyna, A. Gianella, T. Skajaa, G. Knudsen, L. H. Deddens, D. P. Cormode, Z. A. Fayad, W. J. M. Mulder, Wiley Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2010, 2, 138.
– reference: a) C. Chouly, D. Pouliquen, I. Lucet, J. J. Jeune, P. Jallet, J. Microencapsulation 1996, 13, 245;
– reference: Y. Tang, S. Han, H. Liu, X. Chen, L. Huang, X. Li, J. Zhang, Biomaterials 2013, 34, 8741.
– reference: a) L. M. Maestro, E. M. Rodriguez, F. S. Rodriguez, M. C. I. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, J. G. Sole, Nano Lett. 2010, 10, 5109;
– reference: c) C. Stefanadis, C. Chrysochoou, D. Markou, K. Petraki, D. B. Panagiotakos, C. Fasoulakis, A. Kyriakidis, C. Papadimitriou, P. K. Toutouzas, J. Clin. Oncol. 2001, 19, 676;
– reference: a) C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, Phys. Med. Biol. 1998, 43, 2465;
– reference: b) Y. Tang, S. Han, H. Liu, X. Chen, L. Huang, X. Li, J. Zhang, Biomaterials 2013, 34, 8741.
– reference: c) E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, K. Soga, Nanoscale 2013, 5, 11339.
– reference: b) L. M. Maestro, J. E. Ramirez-Hernandez, N. Bogdan, J. A. Capobianco, F. Vetrone, J. G. Sole, D. Jaque, Nanoscale 2012, 4, 298.
– reference: A. Choi, D. Maysinger, in Semiconductor Nanocrystal Quantum Dots, (Ed: A. Rogach), Springer, Vienna, Austria 2008, 349.
– reference: b) E. Salomatina, B. Jiang, J. Novak, A. N. Yaroslavsky, J. Biomed. Opt. 2006, 11, 064026;
– reference: L. Ye, K.-T. Yong, L. Liu, I. Roy, R. Hu, J. Zhu, H. Cai, W.-C. Law, J. Liu, K. Wang, J. Liu, Y. Liu, Y. Hu, X. Zhang, M. T. Swihart, P. N. Prasad, Nat. Nanotechnol. 2012, 7, 453.
– reference: b) E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, R. M. Levenson, Philos. Trans. R. Soc., A 2011, 369, 4620.
– reference: a) G. Choy, P. Choyke, S. K. Libutti, Mol. Imaging 2003, 2, 303;
– reference: c) J.-C. Boyer, M.-P. Manseau, J. I. Murray, F. C. J. M. van Veggel, Langmuir 2009, 26, 1157.
– reference: W.-F. Cheong, S. A. Prahl, A. J. Welch, IEEE J. Quantum Electron. 1990, 26, 2166.
– reference: G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, H. Dai, Angew. Chem. 2012, 124, 9956.
– reference: b) H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165.
– reference: A. M. Smith, M. C. Mancini, S. Nie, Nat. Nanotechnol. 2009, 4, 710.
– volume: 16 25
  start-page: 2298 1165
  year: 2010 2007
  publication-title: Curr. Pharm. Des. Nat. Biotechnol.
– volume: 4
  start-page: 11
  year: 2003
  publication-title: Nano Lett.
– volume: 2 369
  start-page: 303 4620
  year: 2003 2011
  publication-title: Mol. Imaging Philos. Trans. R. Soc., A
– volume: 6
  start-page: 256
  year: 2010
  publication-title: Small
– volume: 15
  start-page: 1844
  year: 2003
  publication-title: Adv. Mater.
– volume: 25
  start-page: 615
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 11 7 26
  start-page: 338 2507 1157
  year: 2012 2011 2009
  publication-title: Mol. Imaging Small Langmuir
– volume: 4 41
  start-page: 71 91
  year: 1971 1972
  publication-title: Environ. Res. Annu. Rev. Biochem.
– start-page: 349
  year: 2008
– volume: 4
  start-page: 2199
  year: 2013
  publication-title: Nat. Commun.
– volume: 43 11 13
  start-page: 2465 064026 014016
  year: 1998 2006 2008
  publication-title: Phys. Med. Biol. J. Biomed. Opt. J. Biomed. Opt.
– volume: 108
  start-page: 8943
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 331
  year: 2004
  publication-title: Nano Lett.
– volume: 126
  start-page: 12282
  year: 2014
  publication-title: Angew. Chem.
– volume: 8
  start-page: 649
  year: 2014
  publication-title: Nano Res.
– volume: 2
  start-page: 138
  year: 2010
  publication-title: Wiley Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
– volume: 37 19 43
  start-page: 577 676 33
  year: 1992 1987 2001 2002
  publication-title: Limnol. Oceanogr. J. Clin. Oncol. Crit. Rev. Oncol. Hematol.
– volume: 34
  start-page: 8741
  year: 2013
  publication-title: Biomaterials
– volume: 7
  start-page: 453
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 114
  start-page: 10153
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 2166
  year: 1990
  publication-title: IEEE J. Quantum Electron.
– volume: 58
  start-page: R37
  year: 2013
  publication-title: Phys. Med. Biol.
– volume: 10 4
  start-page: 5109 298
  year: 2010 2012
  publication-title: Nano Lett. Nanoscale
– volume: 70
  start-page: 1529
  year: 1996 2006
  publication-title: Biophys. J.
– volume: 4 5
  start-page: 127 183
  year: 2008 2010
  publication-title: Small ACS Nano
– volume: 49
  start-page: 7584
  year: 2013
  publication-title: Chem. Commun.
– year: 2004
– volume: 124
  start-page: 9956
  year: 2012
  publication-title: Angew. Chem.
– volume: 26
  start-page: 111
  year: 2013
  publication-title: Chem. Mater.
– volume: 3
  start-page: 687
  year: 2015
  publication-title: Adv. Opt. Mater.
– volume: 34
  start-page: 3639
  year: 2013
  publication-title: Biomaterials
– volume: 4
  start-page: 710
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 2 6 96 5
  start-page: 50 3695 2759 11339
  year: 2003 2012 2013 2013
  publication-title: Mol. Imaging ACS Nano J. Am. Ceram. Soc. Nanoscale
– volume: 13 34
  start-page: 245 8741
  year: 1996 2013
  publication-title: J. Microencapsulation Biomaterials
– volume: 10
  start-page: 3318
  year: 2010
  publication-title: Nano Lett.
– volume: 5
  start-page: 7800
  year: 2013
  publication-title: Nanoscale
– ident: e_1_2_6_9_1
  doi: 10.1002/smll.200901672
– ident: e_1_2_6_3_1
  doi: 10.4319/lo.1992.37.3.0577
– ident: e_1_2_6_22_1
  doi: 10.1038/nnano.2012.74
– ident: e_1_2_6_11_3
  doi: 10.1117/1.2829772
– ident: e_1_2_6_23_1
  doi: 10.1021/jp1025152
– ident: e_1_2_6_13_3
  doi: 10.1111/jace.12476
– ident: e_1_2_6_12_1
  doi: 10.2310/7290.2011.00057
– ident: e_1_2_6_24_2
  doi: 10.1038/nbt1340
– ident: e_1_2_6_8_1
  doi: 10.1002/ange.201407420
– ident: e_1_2_6_21_2
  doi: 10.1146/annurev.bi.41.070172.000515
– ident: e_1_2_6_29_1
  doi: 10.1016/S0006-3495(96)79716-3
– ident: e_1_2_6_34_1
  doi: 10.1021/nl1036098
– ident: e_1_2_6_31_1
  doi: 10.1016/j.biomaterials.2013.01.089
– ident: e_1_2_6_11_2
  doi: 10.1117/1.2398928
– ident: e_1_2_6_27_1
  doi: 10.1002/adfm.201403653
– ident: e_1_2_6_5_1
  doi: 10.1021/nl100996u
– ident: e_1_2_6_17_2
  doi: 10.1021/nn102878u
– ident: e_1_2_6_20_1
  doi: 10.1039/c3nr02181e
– ident: e_1_2_6_12_2
  doi: 10.1002/smll.201100845
– ident: e_1_2_6_28_1
  doi: 10.1021/nl047996m
– ident: e_1_2_6_1_2
  doi: 10.1098/rsta.2011.0264
– ident: e_1_2_6_4_1
  doi: 10.1007/978-3-211-75237-1_12
– ident: e_1_2_6_12_3
  doi: 10.1021/la902260j
– ident: e_1_2_6_34_2
  doi: 10.1039/C1NR11285F
– ident: e_1_2_6_35_1
  doi: 10.1002/adom.201400484
– ident: e_1_2_6_14_1
  doi: 10.1073/pnas.1014501108
– ident: e_1_2_6_6_1
  doi: 10.1002/ange.201206059
– ident: e_1_2_6_16_1
  doi: 10.1021/cm4021436
– ident: e_1_2_6_19_1
  doi: 10.1039/c3cc44000a
– ident: e_1_2_6_13_4
  doi: 10.1039/c3nr02286b
– ident: e_1_2_6_17_1
  doi: 10.1002/smll.200700632
– ident: e_1_2_6_10_1
  doi: 10.1038/nnano.2009.326
– ident: e_1_2_6_13_2
  doi: 10.1021/nn301218z
– ident: e_1_2_6_30_1
  doi: 10.1109/3.64354
– ident: e_1_2_6_25_1
  doi: 10.3109/02652049609026013
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2004
  ident: e_1_2_6_15_1
– ident: e_1_2_6_33_1
  doi: 10.1016/j.biomaterials.2013.07.087
– ident: e_1_2_6_3_2
  doi: 10.1007/978-94-009-3127-5
– ident: e_1_2_6_18_1
  doi: 10.1002/adma.200305395
– ident: e_1_2_6_1_1
  doi: 10.1162/153535003322750646
– ident: e_1_2_6_3_3
  doi: 10.1200/JCO.2001.19.3.676
– ident: e_1_2_6_7_1
  doi: 10.1038/ncomms3199
– ident: e_1_2_6_26_1
  doi: 10.1021/nl0347334
– ident: e_1_2_6_2_1
  doi: 10.1002/wnan.72
– ident: e_1_2_6_13_1
  doi: 10.1162/153535003765276282
– ident: e_1_2_6_21_1
  doi: 10.1016/0013-9351(71)90036-3
– ident: e_1_2_6_24_1
  doi: 10.2174/138161210791920496
– ident: e_1_2_6_29_2
  doi: 10.1007/978-0-387-45524-2_38
– ident: e_1_2_6_25_2
  doi: 10.1016/j.biomaterials.2013.07.087
– ident: e_1_2_6_32_1
  doi: 10.1007/s12274-014-0549-1
– ident: e_1_2_6_36_1
  doi: 10.1088/0031-9155/58/11/R37
– ident: e_1_2_6_11_1
  doi: 10.1088/0031-9155/43/9/003
– ident: e_1_2_6_3_4
  doi: 10.1016/S1040-8428(01)00179-2
SSID ssj0017734
Score 2.5038335
Snippet Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging...
Over the past decade, near-infrared (NIR)-emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6650
SubjectTerms Biocompatibility
Biomedical materials
Fluorescence
fluorescent nanothermometry
Imaging
In vitro testing
in vivo bioimaging
near-infrared quantum dots
Quantum dots
second biological window
subtissue penetration depth
Surgical implants
Zinc sulfides
Title PbS/CdS/ZnS Quantum Dots: A Multifunctional Platform for In Vivo Near-Infrared Low-Dose Fluorescence Imaging
URI https://api.istex.fr/ark:/67375/WNG-C53L8ZWK-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201502632
https://www.proquest.com/docview/1778026536
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQ9gIP3BHlMhkJwVPWOXacjLeqXVmhrQZlrNqLdezYElqXTG0C0574CfxGfsl8kja0SAgJXqIkOs7Fx-di-5zvEPISMby94YBAcBMFfv4FAaSWBfvgdaGNpREVAt9oLA-PxbtpNF3L4q_xIZoFN5SMSl-jgINetH-BhkLqMJPcOzQIOe6VMAZsoVf0scGPYnFcbytLhgFebLpCbdwL25vNN6zSNnbw5YbLue64Vpanf4fA6pvrgJOz3bLQu-bqNzjH__mpu-T20i2lnXoc3SM3bHaf3FoDK3xALo70pN1NJ-3TbEI_lJ4j5Tnt5cXiDe3QKo8XbWS9tEiPZlCgO0z9gQ4y-vnL15yOvVT9_P5jkLk5hr3TYf7NX_byhaX9WZnPK2QpY-ngvCqd9JAc9w8-dQ-DZb2GwCCufSBj0H5GzSF0loHUJtTO6JQ7mUjOuWGxllh6PYlif9sBgwSEcdE-d95ChoI_IltZntnHhAotbGqNFrBnRWp4oj0BgANrvZZJwxYJVvxSZglmjjU1ZqqGYQ4V9qRqerJFXjf0FzWMxx8pX1Xsb8hgfobBb3GkTsZvVTfiw-T05L3qtsiL1fhQXiRxnwUym5cL5Ydd4p8VcdkiYcXtv7xTdXr9UXP15F8aPSU38RyzJBl7RraKeWmfe3ep0Dtku9MbDSc7lWhcAyUdDuI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V9gAceCOWp5F4nNJt4ryKxGG1YdmwDxW2patejO04Euo2qXY3FDjxE_gr_BV-Ar-EmWQ3dJEQElIPXCLZmjix5-GxPfMZ4BFheOPEIS2Xa8_C9Ze0ZGJsa1uiLTSBr90SgW8w9Lt77quxN16Db8tcmAofot5wI80o7TUpOG1IN3-hhsokpVRy9GgIc3wRV9kzn05w1TZ7HkfI4seO03mx2-5ai4sFLE0A7JYfSIVLPy6d1NjSV9pRqVYJT_3Q55xrO1A-3REeegFWp9KWoXR16m3zFE2543Js9xxsEAnB9UdvasQqOwiqg2zfppAye7zEidxymqv_uzIPbhBLP644uadd5XKu61yG78tRqkJcDjeLudrUn38DkPyvhvEKXFp43qxVqcpVWDPZNbh4Co_xOhzvqFGznYyaB9mIvS5Q6IojFuXz2TPWYmWqMrkB1e4p25nIOXn8DB8sztjb9x9yNsR-_fjyNc7SKUX2s35-gsUonxnWmRT5tATP0obFR-XtUDdg70y6fBPWszwzt4C5yjWJ0cqVW8ZNNA8VEkiZSmPQkCZOA6ylgAi9wGuna0MmokKadgRxTtSca8DTmv64Qir5I-WTUt5qMjk9pPi-wBP7w5ei7fF-eLDfE-0GPFwKpECrQ0dJMjN5MRMo5yG25XG_AU4pXn_5pmhFnUFduv0vLz2A893dQV_042HvDlygekoKte27sD6fFuYeeodzdb_URwbvzlpyfwKAn2u0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwELaWXQnBgX9E-TUSP6dsm9j5KRKHqiFsaLcqlN2t9mJsx5bQdpOqTVjgxCPwKLwKr8CTME6asEVCSEh74BLJ1sSJPePx2J75BqFHBsMbFg5uUSJdC_Zf3OKJsq0uB12ofE_SEoFvd-Tt7NFXU3e6gb7VsTAVPkRz4GZmRqmvzQSfJ7r9CzSUJ9pEkoNBYyDHV26VA_XpBDZty-dxCBx-7DjRi7f9HWuVV8CSBn_d8nwuYOdHuKOVzT0hHaGlSIj2Ao8QIm1feCZFeOD6UK25zQNOpXa7RIMmdyiBds-hLep1uiZZRPimAayyfb-6x_Zs41FmT2uYyI7TXv_ftWVwy3D045qNe9pSLpe66DL6Xg9S5eFytF3kYlt-_g0_8n8axSvo0sruxr1qolxFGyq9hi6eQmO8juZjMWn3k0n7MJ3g1wWIXHGMwyxfPsM9XAYqGyOgOjvF4xnPjb2P4YHjFO-__5DhEfTrx5evcaoXxq8fD7MTKIbZUuFoVmSLEjpLKhwfl7mhbqC9M-nyTbSZZqm6hTAVVCVKCso7iiaSBAIIONdcKVCjidNCVi0fTK7Q2k3SkBmrcKYdZjjHGs610NOGfl7hlPyR8kkpbg0ZXxwZ7z7fZQejl6zvkmFweDBg_RZ6WMsjA51jLpJ4qrJiyUDMA2jLJV4LOaV0_eWbrBdGu03p9r-89ACdH4cRG8ajwR10wVSbiFDbvos280Wh7oFpmIv75WzE6N1ZC-5PuNVqYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PbS%2FCdS%2FZnS+Quantum+Dots%3A+A+Multifunctional+Platform+for+In+Vivo+Near-Infrared+Low-Dose+Fluorescence+Imaging&rft.jtitle=Advanced+functional+materials&rft.au=Benayas%2C+Antonio&rft.au=Ren%2C+Fuqiang&rft.au=Carrasco%2C+Elisa&rft.au=Marzal%2C+Vicente&rft.date=2015-11-11&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=42&rft.spage=6650&rft.epage=6659&rft_id=info:doi/10.1002%2Fadfm.201502632&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_C53L8ZWK_C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon