PbS/CdS/ZnS Quantum Dots: A Multifunctional Platform for In Vivo Near-Infrared Low-Dose Fluorescence Imaging
Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high‐quality water‐dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a...
Saved in:
Published in | Advanced functional materials Vol. 25; no. 42; pp. 6650 - 6659 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
11.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high‐quality water‐dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a rapid, cost‐effective microwave‐assisted cation exchange procedure are reported. These QDs have proven to be water dispersible, stable, and are expected to be nontoxic, resulting from the growth of an outer ZnS shell and the simultaneous surface functionalization with mercaptopropionic acid ligands. Care is taken to design the emission wavelength of the QDs probe lying within the second biological window (1000–1350 nm), which leads to higher penetration depths because of the low extinction coefficient of biological tissues in this spectral range. Furthermore, their intense fluorescence emission enables to follow the real‐time evolution of QD biodistribution among different organs of living mice, after low‐dose intravenous administration. In this paper, QD platform has proven to be capable (ex vivo and in vitro) of high‐resolution thermal sensing in the physiological temperature range. The investigation, together with the lack of noticeable toxicity from these PbS/CdS/ZnS QDs after preliminary studies, paves the way for their use as outstanding multifunctional probes both for in vitro and in vivo applications in biomedicine.
Low‐dose in vivo near‐infrared (NIR) fluorescence imaging is achieved by using carefully designed PbS/CdS/ZnS quantum dots (QDs), intensely emitting within the second biological window (1000–1350 nm). Moreover, preliminary studies both in vitro and in vivo have proven the lack of noticeable toxicity of these QDs. As an additional advantage, this NIR‐fluorescence imaging platform has demonstrated useful multifunctionality, thus being capable, both ex vivo and in vitro, of high‐resolution thermal sensing in the physiological temperature range. |
---|---|
AbstractList | Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high‐quality water‐dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a rapid, cost‐effective microwave‐assisted cation exchange procedure are reported. These QDs have proven to be water dispersible, stable, and are expected to be nontoxic, resulting from the growth of an outer ZnS shell and the simultaneous surface functionalization with mercaptopropionic acid ligands. Care is taken to design the emission wavelength of the QDs probe lying within the second biological window (1000–1350 nm), which leads to higher penetration depths because of the low extinction coefficient of biological tissues in this spectral range. Furthermore, their intense fluorescence emission enables to follow the real‐time evolution of QD biodistribution among different organs of living mice, after low‐dose intravenous administration. In this paper, QD platform has proven to be capable (ex vivo and in vitro) of high‐resolution thermal sensing in the physiological temperature range. The investigation, together with the lack of noticeable toxicity from these PbS/CdS/ZnS QDs after preliminary studies, paves the way for their use as outstanding multifunctional probes both for in vitro and in vivo applications in biomedicine. Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high‐quality water‐dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a rapid, cost‐effective microwave‐assisted cation exchange procedure are reported. These QDs have proven to be water dispersible, stable, and are expected to be nontoxic, resulting from the growth of an outer ZnS shell and the simultaneous surface functionalization with mercaptopropionic acid ligands. Care is taken to design the emission wavelength of the QDs probe lying within the second biological window (1000–1350 nm), which leads to higher penetration depths because of the low extinction coefficient of biological tissues in this spectral range. Furthermore, their intense fluorescence emission enables to follow the real‐time evolution of QD biodistribution among different organs of living mice, after low‐dose intravenous administration. In this paper, QD platform has proven to be capable (ex vivo and in vitro) of high‐resolution thermal sensing in the physiological temperature range. The investigation, together with the lack of noticeable toxicity from these PbS/CdS/ZnS QDs after preliminary studies, paves the way for their use as outstanding multifunctional probes both for in vitro and in vivo applications in biomedicine. Low‐dose in vivo near‐infrared (NIR) fluorescence imaging is achieved by using carefully designed PbS/CdS/ZnS quantum dots (QDs), intensely emitting within the second biological window (1000–1350 nm). Moreover, preliminary studies both in vitro and in vivo have proven the lack of noticeable toxicity of these QDs. As an additional advantage, this NIR‐fluorescence imaging platform has demonstrated useful multifunctionality, thus being capable, both ex vivo and in vitro, of high‐resolution thermal sensing in the physiological temperature range. Over the past decade, near-infrared (NIR)-emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high-quality water-dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a rapid, cost-effective microwave-assisted cation exchange procedure are reported. These QDs have proven to be water dispersible, stable, and are expected to be nontoxic, resulting from the growth of an outer ZnS shell and the simultaneous surface functionalization with mercaptopropionic acid ligands. Care is taken to design the emission wavelength of the QDs probe lying within the second biological window (1000-1350 nm), which leads to higher penetration depths because of the low extinction coefficient of biological tissues in this spectral range. Furthermore, their intense fluorescence emission enables to follow the real-time evolution of QD biodistribution among different organs of living mice, after low-dose intravenous administration. In this paper, QD platform has proven to be capable (ex vivo and in vitro) of high-resolution thermal sensing in the physiological temperature range. The investigation, together with the lack of noticeable toxicity from these PbS/CdS/ZnS QDs after preliminary studies, paves the way for their use as outstanding multifunctional probes both for in vitro and in vivo applications in biomedicine. Low-dose in vivo near-infrared (NIR) fluorescence imaging is achieved by using carefully designed PbS/CdS/ZnS quantum dots (QDs), intensely emitting within the second biological window (1000-1350 nm). Moreover, preliminary studies both in vitro and in vivo have proven the lack of noticeable toxicity of these QDs. As an additional advantage, this NIR-fluorescence imaging platform has demonstrated useful multifunctionality, thus being capable, both ex vivo and in vitro, of high-resolution thermal sensing in the physiological temperature range. |
Author | Juarranz, Ángeles Marzal, Vicente Carrasco, Elisa Sanz-Rodríguez, Francisco Benayas, Antonio Gonfa, Belete A. García-Solé, José Ma, Dongling Ren, Fuqiang Vetrone, Fiorenzo del Rosal, Blanca Jaque, Daniel |
Author_xml | – sequence: 1 givenname: Antonio surname: Benayas fullname: Benayas, Antonio organization: Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, QC, J3X 1S2, Varennes, Canada – sequence: 2 givenname: Fuqiang surname: Ren fullname: Ren, Fuqiang organization: Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, QC, J3X 1S2, Varennes, Canada – sequence: 3 givenname: Elisa surname: Carrasco fullname: Carrasco, Elisa organization: Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, 28029, Madrid, Spain – sequence: 4 givenname: Vicente surname: Marzal fullname: Marzal, Vicente organization: Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain – sequence: 5 givenname: Blanca surname: del Rosal fullname: del Rosal, Blanca organization: Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain – sequence: 6 givenname: Belete A. surname: Gonfa fullname: Gonfa, Belete A. organization: Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, QC, J3X 1S2, Varennes, Canada – sequence: 7 givenname: Ángeles surname: Juarranz fullname: Juarranz, Ángeles organization: Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, 28029, Madrid, Spain – sequence: 8 givenname: Francisco surname: Sanz-Rodríguez fullname: Sanz-Rodríguez, Francisco organization: Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain – sequence: 9 givenname: Daniel surname: Jaque fullname: Jaque, Daniel email: daniel.jaque@uam.es organization: Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain – sequence: 10 givenname: José surname: García-Solé fullname: García-Solé, José organization: Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain – sequence: 11 givenname: Dongling surname: Ma fullname: Ma, Dongling email: daniel.jaque@uam.es organization: Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, QC, J3X 1S2, Varennes, Canada – sequence: 12 givenname: Fiorenzo surname: Vetrone fullname: Vetrone, Fiorenzo email: daniel.jaque@uam.es organization: Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada |
BookMark | eNqFkEtvEzEQgFeoSLSFK2cfuWyytndtl1u0ISVqWooCFPVizTp2ZfDaxfb28e-7UVCEKlVcPNZovnl8R8WBD14XxXtcTXBVkSlsTD8hFW4qwih5VRxihllJKyIO9n_8801xlNKvqsKc0_qwcJfdetpu1tNrv0ZfB_B56NE85PQRzdD54LI1g1fZBg8OXTrIJsQejQ9aevTD3gV0oSGWS28iRL1Bq3BfzkPSaOGGEHVS2iuNlj3cWH_ztnhtwCX97m88Lr4vPn1rP5erL6fLdrYqVU0YKRmHjgtBgRiNgXWKdEZ1G2qYYJRShXnHatZg0fAxbQCDgFqZ5oQajgWp6XHxYdf3NoY_g05Z9nbcxDnwOgxJjreLUVJD2Vg62ZWqGFKK2sjbaHuIjxJXcqtVbrXKvdYRqJ8BymbYCsoRrHsZO9lh99bpx_8MkbP54vxfttyxNmX9sGch_paMU97Iq4tT2TZ0Ja6vzmRLnwAw5Z3o |
CitedBy_id | crossref_primary_10_1016_j_talanta_2019_120625 crossref_primary_10_1002_adfm_201706235 crossref_primary_10_1002_adfm_201806088 crossref_primary_10_1016_j_biomaterials_2016_05_026 crossref_primary_10_1039_C7RA12864A crossref_primary_10_1016_j_talanta_2016_10_021 crossref_primary_10_1039_D1CS00427A crossref_primary_10_1038_ncomms12749 crossref_primary_10_1016_j_physrep_2022_02_004 crossref_primary_10_1021_acs_chemmater_8b01421 crossref_primary_10_1016_j_jlumin_2021_117967 crossref_primary_10_1039_D4NR00014E crossref_primary_10_1186_s12951_022_01648_7 crossref_primary_10_1088_1361_6528_aaf6c5 crossref_primary_10_1002_smtd_201800075 crossref_primary_10_1002_smll_201603133 crossref_primary_10_1016_j_inoche_2025_114062 crossref_primary_10_1021_acsanm_9b00317 crossref_primary_10_1002_adfm_202200016 crossref_primary_10_1002_adma_201801140 crossref_primary_10_1021_acschembio_7b00887 crossref_primary_10_1007_s12274_017_1727_8 crossref_primary_10_1002_adfm_201803417 crossref_primary_10_3390_catal14050298 crossref_primary_10_1021_acsami_4c04913 crossref_primary_10_1063_1_5132562 crossref_primary_10_1021_accountsmr_3c00012 crossref_primary_10_1039_C8NR02382D crossref_primary_10_1021_jacs_0c07022 crossref_primary_10_1016_j_apcatb_2019_118526 crossref_primary_10_1016_j_tibtech_2019_07_013 crossref_primary_10_1039_C6NR08534B crossref_primary_10_1039_C9NR02801C crossref_primary_10_1039_D1TC04107J crossref_primary_10_1039_D0TB02728F crossref_primary_10_1039_D0NR03568H crossref_primary_10_1149_2_0141801jss crossref_primary_10_1021_acs_analchem_0c00499 crossref_primary_10_3390_nano10050993 crossref_primary_10_1038_s41467_018_05160_1 crossref_primary_10_1039_D0NA00846J crossref_primary_10_1016_j_optmat_2016_06_004 crossref_primary_10_1039_C9NR05733A crossref_primary_10_1039_C5NH00073D crossref_primary_10_1016_j_jallcom_2018_03_002 crossref_primary_10_1002_smll_202004118 crossref_primary_10_1016_j_ccr_2016_03_002 crossref_primary_10_2142_biophys_57_081 crossref_primary_10_1002_advs_202000370 crossref_primary_10_1007_s10854_021_05670_7 crossref_primary_10_1016_j_apcatb_2020_118879 crossref_primary_10_1021_acsanm_4c04273 crossref_primary_10_1002_adfm_201807376 crossref_primary_10_1515_nanoph_2017_0039 crossref_primary_10_1002_adhm_201601195 crossref_primary_10_1039_D4TC01396D crossref_primary_10_1002_advs_201801834 crossref_primary_10_1016_j_jphotochemrev_2017_01_002 crossref_primary_10_3390_nano10061214 crossref_primary_10_1002_smll_202107963 crossref_primary_10_1063_5_0149119 crossref_primary_10_1063_5_0030295 crossref_primary_10_1016_j_bios_2016_11_002 crossref_primary_10_1002_smll_201907171 crossref_primary_10_1002_ppsc_201600242 crossref_primary_10_1016_j_cis_2020_102209 crossref_primary_10_1039_C6TB01186A crossref_primary_10_1002_smll_202000804 crossref_primary_10_3389_fchem_2019_00088 crossref_primary_10_1021_acs_nanolett_4c05710 crossref_primary_10_1149_2_0111901jss crossref_primary_10_1002_adfm_201803733 crossref_primary_10_1007_s12274_019_2280_4 crossref_primary_10_1021_acsnano_9b05038 crossref_primary_10_1016_j_addr_2021_03_008 crossref_primary_10_1002_advs_201801201 crossref_primary_10_1039_D0TB01430C crossref_primary_10_1002_wnan_1483 crossref_primary_10_1021_acsnano_0c08349 crossref_primary_10_1016_j_mtadv_2022_100306 crossref_primary_10_1002_adom_201900917 crossref_primary_10_1021_acs_jpclett_4c01982 crossref_primary_10_1002_adfm_201601953 crossref_primary_10_1088_2050_6120_ac10ae crossref_primary_10_1002_adfm_202003147 crossref_primary_10_1007_s12274_020_2843_4 crossref_primary_10_1021_acsami_9b06194 crossref_primary_10_1039_C8NR00305J crossref_primary_10_1021_acsnano_8b07938 crossref_primary_10_1021_acsmaterialslett_1c00334 crossref_primary_10_1038_s41598_020_76851_3 crossref_primary_10_1063_1_4993819 crossref_primary_10_1002_adfm_201703553 crossref_primary_10_1016_j_apsadv_2022_100296 crossref_primary_10_1016_j_bioactmat_2023_10_019 crossref_primary_10_1039_D4QI02869D crossref_primary_10_1038_s41598_019_44023_7 crossref_primary_10_1016_j_biomaterials_2016_07_021 crossref_primary_10_1021_acsnano_8b06563 crossref_primary_10_1021_acs_chemmater_9b00028 crossref_primary_10_1002_adfm_201802029 crossref_primary_10_1002_adfm_201910536 crossref_primary_10_1021_acsanm_8b00359 crossref_primary_10_1038_s41598_024_65529_9 crossref_primary_10_1016_j_saa_2019_117279 crossref_primary_10_1016_j_omx_2022_100225 |
Cites_doi | 10.1002/smll.200901672 10.4319/lo.1992.37.3.0577 10.1038/nnano.2012.74 10.1117/1.2829772 10.1021/jp1025152 10.1111/jace.12476 10.2310/7290.2011.00057 10.1038/nbt1340 10.1002/ange.201407420 10.1146/annurev.bi.41.070172.000515 10.1016/S0006-3495(96)79716-3 10.1021/nl1036098 10.1016/j.biomaterials.2013.01.089 10.1117/1.2398928 10.1002/adfm.201403653 10.1021/nl100996u 10.1021/nn102878u 10.1039/c3nr02181e 10.1002/smll.201100845 10.1021/nl047996m 10.1098/rsta.2011.0264 10.1007/978-3-211-75237-1_12 10.1021/la902260j 10.1039/C1NR11285F 10.1002/adom.201400484 10.1073/pnas.1014501108 10.1002/ange.201206059 10.1021/cm4021436 10.1039/c3cc44000a 10.1039/c3nr02286b 10.1002/smll.200700632 10.1038/nnano.2009.326 10.1021/nn301218z 10.1109/3.64354 10.3109/02652049609026013 10.1016/j.biomaterials.2013.07.087 10.1007/978-94-009-3127-5 10.1002/adma.200305395 10.1162/153535003322750646 10.1200/JCO.2001.19.3.676 10.1038/ncomms3199 10.1021/nl0347334 10.1002/wnan.72 10.1162/153535003765276282 10.1016/0013-9351(71)90036-3 10.2174/138161210791920496 10.1007/978-0-387-45524-2_38 10.1007/s12274-014-0549-1 10.1088/0031-9155/58/11/R37 10.1088/0031-9155/43/9/003 10.1016/S1040-8428(01)00179-2 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201502632 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 6659 |
ExternalDocumentID | 10_1002_adfm_201502632 ADFM201502632 ark_67375_WNG_C53L8ZWK_C |
Genre | article |
GrantInformation_xml | – fundername: Fonds de recherche du Québec‐Nature et Technologies – fundername: Natural Sciences and Engineering Research Council of Canada – fundername: Canadian Institutes of Health Research–Breast Cancer Society of Canada – fundername: Ministére de L'Education, du Loisir et du Sport du Québec – fundername: FRQNT |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMNL AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4262-67ab7883a2fe1a6bc2bfcbd3f686333c17b64651857cbdfa1a8a4cf593f718243 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Jul 10 17:41:31 EDT 2025 Tue Jul 01 01:30:21 EDT 2025 Thu Apr 24 23:10:32 EDT 2025 Wed Jan 22 17:01:34 EST 2025 Mon Nov 18 03:20:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4262-67ab7883a2fe1a6bc2bfcbd3f686333c17b64651857cbdfa1a8a4cf593f718243 |
Notes | Ministére de L'Education, du Loisir et du Sport du Québec Natural Sciences and Engineering Research Council of Canada istex:5DA55EAD1FDA89EB8D4514C7E7219E49ACAA8DFA FRQNT ark:/67375/WNG-C53L8ZWK-C Fonds de recherche du Québec-Nature et Technologies Canadian Institutes of Health Research-Breast Cancer Society of Canada ArticleID:ADFM201502632 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1778026536 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1778026536 crossref_primary_10_1002_adfm_201502632 crossref_citationtrail_10_1002_adfm_201502632 wiley_primary_10_1002_adfm_201502632_ADFM201502632 istex_primary_ark_67375_WNG_C53L8ZWK_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 11, 2015 |
PublicationDateYYYYMMDD | 2015-11-11 |
PublicationDate_xml | – month: 11 year: 2015 text: November 11, 2015 day: 11 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, F. Vetrone, Adv. Opt. Mater. 2015, 3, 687. R. Wang, X. Li, L. Zhou, F. Zhang, Angew. Chem. 2014, 126, 12282. D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, P. Moghe, Nat. Commun. 2013, 4, 2199. b) E. Salomatina, B. Jiang, J. Novak, A. N. Yaroslavsky, J. Biomed. Opt. 2006, 11, 064026 E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, D. Jaque, Adv. Funct. Mater. 2015, 25, 615. c) S.-H. Tseng, A. Grant, A. J. Durkin, J. Biomed. Opt. 2008, 13, 014016. b) E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, R. M. Levenson, Philos. Trans. R. Soc., A 2011, 369, 4620. c) C. Stefanadis, C. Chrysochoou, D. Markou, K. Petraki, D. B. Panagiotakos, C. Fasoulakis, A. Kyriakidis, C. Papadimitriou, P. K. Toutouzas, J. Clin. Oncol. 2001, 19, 676 a) C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, Phys. Med. Biol. 1998, 43, 2465 a) R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, A. J. Houtepen, Small 2008, 4, 127 a) H. S. Jensen, F. O. Andersen, Limnol. Oceanogr. 1992, 37, 577 b) E. J. Henderson, A. J. Shuhendler, P. Prasad, V. Baumann, F. Maier-Flaig, D. O. Faulkner, U. Lemmer, X. Y. Wu, G. A. Ozin, Small 2011, 7, 2507 I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, D. García, Nano Res. 2014, 8, 649. Y. Zhang, Y. Zhang, G. Hong, W. He, K. Zhou, K. Yang, F. Li, G. Chen, Z. Liu, H. Dai, Biomaterials 2013, 34, 3639. d) B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, Crit. Rev. Oncol. Hematol. 2002, 43, 33. W.-F. Cheong, S. A. Prahl, A. J. Welch, IEEE J. Quantum Electron. 1990, 26, 2166. J. Gao, K. Chen, R. Xie, J. Xie, S. Lee, Z. Cheng, X. Peng, X. Chen, Small 2010, 6, 256. a) G. Choy, P. Choyke, S. K. Libutti, Mol. Imaging 2003, 2, 303 b) Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, Q. Wang, ACS Nano 2012, 6, 3695 A. M. Smith, M. C. Mancini, S. Nie, Nat. Nanotechnol. 2009, 4, 710. b) N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, K. Soga, J. Am. Ceram. Soc. 2013, 96, 2759 P. A. Jarzyna, A. Gianella, T. Skajaa, G. Knudsen, L. H. Deddens, D. P. Cormode, Z. A. Fayad, W. J. M. Mulder, Wiley Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2010, 2, 138. C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. Muñoz Javier, H. E. Gaub, S. Stölzle, N. Fertig, W. J. Parak, Nano Lett. 2004, 5, 331. a) Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, J. V. Frangioni, Mol. Imaging 2003, 2, 50 b) Y. Tang, S. Han, H. Liu, X. Chen, L. Huang, X. Li, J. Zhang, Biomaterials 2013, 34, 8741. a) N. Won, S. Jeong, K. Kim, J. Kwag, J. Park, S. G. Kim, S. Kim, Mol. Imaging 2012, 11, 338 F. Ren, H. Zhao, F. Vetrone, D. Ma, Nanoscale 2013, 5, 7800. c) E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, K. Soga, Nanoscale 2013, 5, 11339. a) C. Chouly, D. Pouliquen, I. Lucet, J. J. Jeune, P. Jallet, J. Microencapsulation 1996, 13, 245 b) D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, M. C. Beard, ACS Nano 2010, 5, 183. K. Welsher, S. P. Sherlock, H. Dai, Proc. Natl. Acad. Sci. USA 2011, 108, 8943. F. C. J. M. van Veggel, Chem. Mater. 2013, 26, 111. D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, USA 2004. Y. Nakane, Y. Tsukasaki, T. Sakata, H. Yasuda, T. Jin, Chem. Commun. 2013, 49, 7584. Y. Tang, S. Han, H. Liu, X. Chen, L. Huang, X. Li, J. Zhang, Biomaterials 2013, 34, 8741. L. Ye, K.-T. Yong, L. Liu, I. Roy, R. Hu, J. Zhu, H. Cai, W.-C. Law, J. Liu, K. Wang, J. Liu, Y. Liu, Y. Hu, X. Zhang, M. T. Swihart, P. N. Prasad, Nat. Nanotechnol. 2012, 7, 453. b) H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165. b) K. König, in Handbook of Biological Confocal Microscopy, (Ed: J. B. Pawley), Springer Science+Business Media, LLC, New York, NY, USA 2006. K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318. S. L. Jacques, Phys. Med. Biol. 2013, 58, R37. b) B. L. Vallee, D. D. Ulmer, Annu. Rev. Biochem. 1972, 41, 91. M. A. Hines, G. D. Scholes, Adv. Mater. 2003, 15, 1844. T. Zhang, H. Zhao, D. Riabinina, M. Chaker, D. Ma, J. Phys. Chem. C 2010, 114, 10153. A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2003, 4, 11. b) A. R. Cossins, K. Bowler, Temperature Biology of Animals, Chapman and Hall, London, UK 1987 a) L. M. Maestro, E. M. Rodriguez, F. S. Rodriguez, M. C. I. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, J. G. Sole, Nano Lett. 2010, 10, 5109 A. Choi, D. Maysinger, in Semiconductor Nanocrystal Quantum Dots, (Ed: A. Rogach), Springer, Vienna, Austria 2008, 349. c) J.-C. Boyer, M.-P. Manseau, J. I. Murray, F. C. J. M. van Veggel, Langmuir 2009, 26, 1157. b) L. M. Maestro, J. E. Ramirez-Hernandez, N. Bogdan, J. A. Capobianco, F. Vetrone, J. G. Sole, D. Jaque, Nanoscale 2012, 4, 298. G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, H. Dai, Angew. Chem. 2012, 124, 9956. a) J.-W. Yoo, E. Chambers, S. Mitragotri, Curr. Pharm. Des. 2010, 16, 2298 a) H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, M. W. Berns, Biophys. J. 1996, 70, 1529 a) D. F. Flick, H. F. Kraybill, J. M. Dlmitroff, Environ. Res. 1971, 4, 71 2010; 10 2013; 26 1971 1972; 4 41 2003 2011; 2 369 2013; 4 2012; 124 2013; 49 2015; 3 2008 2010; 4 5 2010 2012; 10 4 2008 2003; 15 2004; 5 2004 2003 2012 2013 2013; 2 6 96 5 2013; 5 1998 2006 2008; 43 11 13 1996 2006; 70 2015; 25 2011; 108 1996 2013; 13 34 2013; 58 2012 2011 2009; 11 7 26 2010 2007; 16 25 1990; 26 2013; 34 2010; 114 2003; 4 1992 1987 2001 2002; 37 19 43 2009; 4 2010; 2 2012; 7 2014; 8 2014; 126 2010; 6 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_11_3 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_17_1 e_1_2_6_17_2 e_1_2_6_13_3 e_1_2_6_13_4 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_3_3 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_7_1 Lide D. R. (e_1_2_6_15_1) 2004 e_1_2_6_3_4 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_1_2 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_12_2 e_1_2_6_12_3 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_8_1 e_1_2_6_29_2 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_25_2 |
References_xml | – reference: a) N. Won, S. Jeong, K. Kim, J. Kwag, J. Park, S. G. Kim, S. Kim, Mol. Imaging 2012, 11, 338; – reference: a) Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, J. V. Frangioni, Mol. Imaging 2003, 2, 50; – reference: C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. Muñoz Javier, H. E. Gaub, S. Stölzle, N. Fertig, W. J. Parak, Nano Lett. 2004, 5, 331. – reference: A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, F. Vetrone, Adv. Opt. Mater. 2015, 3, 687. – reference: T. Zhang, H. Zhao, D. Riabinina, M. Chaker, D. Ma, J. Phys. Chem. C 2010, 114, 10153. – reference: Y. Nakane, Y. Tsukasaki, T. Sakata, H. Yasuda, T. Jin, Chem. Commun. 2013, 49, 7584. – reference: b) B. L. Vallee, D. D. Ulmer, Annu. Rev. Biochem. 1972, 41, 91. – reference: E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á. J. de la Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, D. Jaque, Adv. Funct. Mater. 2015, 25, 615. – reference: F. Ren, H. Zhao, F. Vetrone, D. Ma, Nanoscale 2013, 5, 7800. – reference: d) B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, Crit. Rev. Oncol. Hematol. 2002, 43, 33. – reference: b) K. König, in Handbook of Biological Confocal Microscopy, (Ed: J. B. Pawley), Springer Science+Business Media, LLC, New York, NY, USA 2006. – reference: R. Wang, X. Li, L. Zhou, F. Zhang, Angew. Chem. 2014, 126, 12282. – reference: b) E. J. Henderson, A. J. Shuhendler, P. Prasad, V. Baumann, F. Maier-Flaig, D. O. Faulkner, U. Lemmer, X. Y. Wu, G. A. Ozin, Small 2011, 7, 2507; – reference: K. Welsher, S. P. Sherlock, H. Dai, Proc. Natl. Acad. Sci. USA 2011, 108, 8943. – reference: M. A. Hines, G. D. Scholes, Adv. Mater. 2003, 15, 1844. – reference: I. Villa, A. Vedda, I. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F. Rodríguez, Á. Juarranz, B. del Rosal, D. Ortgies, P. Gonzalez, J. Solé, D. García, Nano Res. 2014, 8, 649. – reference: K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318. – reference: F. C. J. M. van Veggel, Chem. Mater. 2013, 26, 111. – reference: A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2003, 4, 11. – reference: b) D. K. Smith, J. M. Luther, O. E. Semonin, A. J. Nozik, M. C. Beard, ACS Nano 2010, 5, 183. – reference: a) R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, A. J. Houtepen, Small 2008, 4, 127; – reference: S. L. Jacques, Phys. Med. Biol. 2013, 58, R37. – reference: b) N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, K. Soga, J. Am. Ceram. Soc. 2013, 96, 2759; – reference: c) S.-H. Tseng, A. Grant, A. J. Durkin, J. Biomed. Opt. 2008, 13, 014016. – reference: J. Gao, K. Chen, R. Xie, J. Xie, S. Lee, Z. Cheng, X. Peng, X. Chen, Small 2010, 6, 256. – reference: a) H. S. Jensen, F. O. Andersen, Limnol. Oceanogr. 1992, 37, 577; – reference: b) Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, Q. Wang, ACS Nano 2012, 6, 3695; – reference: a) J.-W. Yoo, E. Chambers, S. Mitragotri, Curr. Pharm. Des. 2010, 16, 2298; – reference: a) H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, M. W. Berns, Biophys. J. 1996, 70, 1529; – reference: Y. Zhang, Y. Zhang, G. Hong, W. He, K. Zhou, K. Yang, F. Li, G. Chen, Z. Liu, H. Dai, Biomaterials 2013, 34, 3639. – reference: b) A. R. Cossins, K. Bowler, Temperature Biology of Animals, Chapman and Hall, London, UK 1987; – reference: D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, P. Moghe, Nat. Commun. 2013, 4, 2199. – reference: a) D. F. Flick, H. F. Kraybill, J. M. Dlmitroff, Environ. Res. 1971, 4, 71; – reference: D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, USA 2004. – reference: P. A. Jarzyna, A. Gianella, T. Skajaa, G. Knudsen, L. H. Deddens, D. P. Cormode, Z. A. Fayad, W. J. M. Mulder, Wiley Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2010, 2, 138. – reference: a) C. Chouly, D. Pouliquen, I. Lucet, J. J. Jeune, P. Jallet, J. Microencapsulation 1996, 13, 245; – reference: Y. Tang, S. Han, H. Liu, X. Chen, L. Huang, X. Li, J. Zhang, Biomaterials 2013, 34, 8741. – reference: a) L. M. Maestro, E. M. Rodriguez, F. S. Rodriguez, M. C. I. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, J. G. Sole, Nano Lett. 2010, 10, 5109; – reference: c) C. Stefanadis, C. Chrysochoou, D. Markou, K. Petraki, D. B. Panagiotakos, C. Fasoulakis, A. Kyriakidis, C. Papadimitriou, P. K. Toutouzas, J. Clin. Oncol. 2001, 19, 676; – reference: a) C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, Phys. Med. Biol. 1998, 43, 2465; – reference: b) Y. Tang, S. Han, H. Liu, X. Chen, L. Huang, X. Li, J. Zhang, Biomaterials 2013, 34, 8741. – reference: c) E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, K. Soga, Nanoscale 2013, 5, 11339. – reference: b) L. M. Maestro, J. E. Ramirez-Hernandez, N. Bogdan, J. A. Capobianco, F. Vetrone, J. G. Sole, D. Jaque, Nanoscale 2012, 4, 298. – reference: A. Choi, D. Maysinger, in Semiconductor Nanocrystal Quantum Dots, (Ed: A. Rogach), Springer, Vienna, Austria 2008, 349. – reference: b) E. Salomatina, B. Jiang, J. Novak, A. N. Yaroslavsky, J. Biomed. Opt. 2006, 11, 064026; – reference: L. Ye, K.-T. Yong, L. Liu, I. Roy, R. Hu, J. Zhu, H. Cai, W.-C. Law, J. Liu, K. Wang, J. Liu, Y. Liu, Y. Hu, X. Zhang, M. T. Swihart, P. N. Prasad, Nat. Nanotechnol. 2012, 7, 453. – reference: b) E. M. Hillman, C. B. Amoozegar, T. Wang, A. F. McCaslin, M. B. Bouchard, J. Mansfield, R. M. Levenson, Philos. Trans. R. Soc., A 2011, 369, 4620. – reference: a) G. Choy, P. Choyke, S. K. Libutti, Mol. Imaging 2003, 2, 303; – reference: c) J.-C. Boyer, M.-P. Manseau, J. I. Murray, F. C. J. M. van Veggel, Langmuir 2009, 26, 1157. – reference: W.-F. Cheong, S. A. Prahl, A. J. Welch, IEEE J. Quantum Electron. 1990, 26, 2166. – reference: G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris, Q. Wang, H. Dai, Angew. Chem. 2012, 124, 9956. – reference: b) H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165. – reference: A. M. Smith, M. C. Mancini, S. Nie, Nat. Nanotechnol. 2009, 4, 710. – volume: 16 25 start-page: 2298 1165 year: 2010 2007 publication-title: Curr. Pharm. Des. Nat. Biotechnol. – volume: 4 start-page: 11 year: 2003 publication-title: Nano Lett. – volume: 2 369 start-page: 303 4620 year: 2003 2011 publication-title: Mol. Imaging Philos. Trans. R. Soc., A – volume: 6 start-page: 256 year: 2010 publication-title: Small – volume: 15 start-page: 1844 year: 2003 publication-title: Adv. Mater. – volume: 25 start-page: 615 year: 2015 publication-title: Adv. Funct. Mater. – volume: 11 7 26 start-page: 338 2507 1157 year: 2012 2011 2009 publication-title: Mol. Imaging Small Langmuir – volume: 4 41 start-page: 71 91 year: 1971 1972 publication-title: Environ. Res. Annu. Rev. Biochem. – start-page: 349 year: 2008 – volume: 4 start-page: 2199 year: 2013 publication-title: Nat. Commun. – volume: 43 11 13 start-page: 2465 064026 014016 year: 1998 2006 2008 publication-title: Phys. Med. Biol. J. Biomed. Opt. J. Biomed. Opt. – volume: 108 start-page: 8943 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 331 year: 2004 publication-title: Nano Lett. – volume: 126 start-page: 12282 year: 2014 publication-title: Angew. Chem. – volume: 8 start-page: 649 year: 2014 publication-title: Nano Res. – volume: 2 start-page: 138 year: 2010 publication-title: Wiley Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 37 19 43 start-page: 577 676 33 year: 1992 1987 2001 2002 publication-title: Limnol. Oceanogr. J. Clin. Oncol. Crit. Rev. Oncol. Hematol. – volume: 34 start-page: 8741 year: 2013 publication-title: Biomaterials – volume: 7 start-page: 453 year: 2012 publication-title: Nat. Nanotechnol. – volume: 114 start-page: 10153 year: 2010 publication-title: J. Phys. Chem. C – volume: 26 start-page: 2166 year: 1990 publication-title: IEEE J. Quantum Electron. – volume: 58 start-page: R37 year: 2013 publication-title: Phys. Med. Biol. – volume: 10 4 start-page: 5109 298 year: 2010 2012 publication-title: Nano Lett. Nanoscale – volume: 70 start-page: 1529 year: 1996 2006 publication-title: Biophys. J. – volume: 4 5 start-page: 127 183 year: 2008 2010 publication-title: Small ACS Nano – volume: 49 start-page: 7584 year: 2013 publication-title: Chem. Commun. – year: 2004 – volume: 124 start-page: 9956 year: 2012 publication-title: Angew. Chem. – volume: 26 start-page: 111 year: 2013 publication-title: Chem. Mater. – volume: 3 start-page: 687 year: 2015 publication-title: Adv. Opt. Mater. – volume: 34 start-page: 3639 year: 2013 publication-title: Biomaterials – volume: 4 start-page: 710 year: 2009 publication-title: Nat. Nanotechnol. – volume: 2 6 96 5 start-page: 50 3695 2759 11339 year: 2003 2012 2013 2013 publication-title: Mol. Imaging ACS Nano J. Am. Ceram. Soc. Nanoscale – volume: 13 34 start-page: 245 8741 year: 1996 2013 publication-title: J. Microencapsulation Biomaterials – volume: 10 start-page: 3318 year: 2010 publication-title: Nano Lett. – volume: 5 start-page: 7800 year: 2013 publication-title: Nanoscale – ident: e_1_2_6_9_1 doi: 10.1002/smll.200901672 – ident: e_1_2_6_3_1 doi: 10.4319/lo.1992.37.3.0577 – ident: e_1_2_6_22_1 doi: 10.1038/nnano.2012.74 – ident: e_1_2_6_11_3 doi: 10.1117/1.2829772 – ident: e_1_2_6_23_1 doi: 10.1021/jp1025152 – ident: e_1_2_6_13_3 doi: 10.1111/jace.12476 – ident: e_1_2_6_12_1 doi: 10.2310/7290.2011.00057 – ident: e_1_2_6_24_2 doi: 10.1038/nbt1340 – ident: e_1_2_6_8_1 doi: 10.1002/ange.201407420 – ident: e_1_2_6_21_2 doi: 10.1146/annurev.bi.41.070172.000515 – ident: e_1_2_6_29_1 doi: 10.1016/S0006-3495(96)79716-3 – ident: e_1_2_6_34_1 doi: 10.1021/nl1036098 – ident: e_1_2_6_31_1 doi: 10.1016/j.biomaterials.2013.01.089 – ident: e_1_2_6_11_2 doi: 10.1117/1.2398928 – ident: e_1_2_6_27_1 doi: 10.1002/adfm.201403653 – ident: e_1_2_6_5_1 doi: 10.1021/nl100996u – ident: e_1_2_6_17_2 doi: 10.1021/nn102878u – ident: e_1_2_6_20_1 doi: 10.1039/c3nr02181e – ident: e_1_2_6_12_2 doi: 10.1002/smll.201100845 – ident: e_1_2_6_28_1 doi: 10.1021/nl047996m – ident: e_1_2_6_1_2 doi: 10.1098/rsta.2011.0264 – ident: e_1_2_6_4_1 doi: 10.1007/978-3-211-75237-1_12 – ident: e_1_2_6_12_3 doi: 10.1021/la902260j – ident: e_1_2_6_34_2 doi: 10.1039/C1NR11285F – ident: e_1_2_6_35_1 doi: 10.1002/adom.201400484 – ident: e_1_2_6_14_1 doi: 10.1073/pnas.1014501108 – ident: e_1_2_6_6_1 doi: 10.1002/ange.201206059 – ident: e_1_2_6_16_1 doi: 10.1021/cm4021436 – ident: e_1_2_6_19_1 doi: 10.1039/c3cc44000a – ident: e_1_2_6_13_4 doi: 10.1039/c3nr02286b – ident: e_1_2_6_17_1 doi: 10.1002/smll.200700632 – ident: e_1_2_6_10_1 doi: 10.1038/nnano.2009.326 – ident: e_1_2_6_13_2 doi: 10.1021/nn301218z – ident: e_1_2_6_30_1 doi: 10.1109/3.64354 – ident: e_1_2_6_25_1 doi: 10.3109/02652049609026013 – volume-title: CRC Handbook of Chemistry and Physics year: 2004 ident: e_1_2_6_15_1 – ident: e_1_2_6_33_1 doi: 10.1016/j.biomaterials.2013.07.087 – ident: e_1_2_6_3_2 doi: 10.1007/978-94-009-3127-5 – ident: e_1_2_6_18_1 doi: 10.1002/adma.200305395 – ident: e_1_2_6_1_1 doi: 10.1162/153535003322750646 – ident: e_1_2_6_3_3 doi: 10.1200/JCO.2001.19.3.676 – ident: e_1_2_6_7_1 doi: 10.1038/ncomms3199 – ident: e_1_2_6_26_1 doi: 10.1021/nl0347334 – ident: e_1_2_6_2_1 doi: 10.1002/wnan.72 – ident: e_1_2_6_13_1 doi: 10.1162/153535003765276282 – ident: e_1_2_6_21_1 doi: 10.1016/0013-9351(71)90036-3 – ident: e_1_2_6_24_1 doi: 10.2174/138161210791920496 – ident: e_1_2_6_29_2 doi: 10.1007/978-0-387-45524-2_38 – ident: e_1_2_6_25_2 doi: 10.1016/j.biomaterials.2013.07.087 – ident: e_1_2_6_32_1 doi: 10.1007/s12274-014-0549-1 – ident: e_1_2_6_36_1 doi: 10.1088/0031-9155/58/11/R37 – ident: e_1_2_6_11_1 doi: 10.1088/0031-9155/43/9/003 – ident: e_1_2_6_3_4 doi: 10.1016/S1040-8428(01)00179-2 |
SSID | ssj0017734 |
Score | 2.5038335 |
Snippet | Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging... Over the past decade, near-infrared (NIR)-emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6650 |
SubjectTerms | Biocompatibility Biomedical materials Fluorescence fluorescent nanothermometry Imaging In vitro testing in vivo bioimaging near-infrared quantum dots Quantum dots second biological window subtissue penetration depth Surgical implants Zinc sulfides |
Title | PbS/CdS/ZnS Quantum Dots: A Multifunctional Platform for In Vivo Near-Infrared Low-Dose Fluorescence Imaging |
URI | https://api.istex.fr/ark:/67375/WNG-C53L8ZWK-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201502632 https://www.proquest.com/docview/1778026536 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQ9gIP3BHlMhkJwVPWOXacjLeqXVmhrQZlrNqLdezYElqXTG0C0574CfxGfsl8kja0SAgJXqIkOs7Fx-di-5zvEPISMby94YBAcBMFfv4FAaSWBfvgdaGNpREVAt9oLA-PxbtpNF3L4q_xIZoFN5SMSl-jgINetH-BhkLqMJPcOzQIOe6VMAZsoVf0scGPYnFcbytLhgFebLpCbdwL25vNN6zSNnbw5YbLue64Vpanf4fA6pvrgJOz3bLQu-bqNzjH__mpu-T20i2lnXoc3SM3bHaf3FoDK3xALo70pN1NJ-3TbEI_lJ4j5Tnt5cXiDe3QKo8XbWS9tEiPZlCgO0z9gQ4y-vnL15yOvVT9_P5jkLk5hr3TYf7NX_byhaX9WZnPK2QpY-ngvCqd9JAc9w8-dQ-DZb2GwCCufSBj0H5GzSF0loHUJtTO6JQ7mUjOuWGxllh6PYlif9sBgwSEcdE-d95ChoI_IltZntnHhAotbGqNFrBnRWp4oj0BgANrvZZJwxYJVvxSZglmjjU1ZqqGYQ4V9qRqerJFXjf0FzWMxx8pX1Xsb8hgfobBb3GkTsZvVTfiw-T05L3qtsiL1fhQXiRxnwUym5cL5Ydd4p8VcdkiYcXtv7xTdXr9UXP15F8aPSU38RyzJBl7RraKeWmfe3ep0Dtku9MbDSc7lWhcAyUdDuI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V9gAceCOWp5F4nNJt4ryKxGG1YdmwDxW2patejO04Euo2qXY3FDjxE_gr_BV-Ar-EmWQ3dJEQElIPXCLZmjix5-GxPfMZ4BFheOPEIS2Xa8_C9Ze0ZGJsa1uiLTSBr90SgW8w9Lt77quxN16Db8tcmAofot5wI80o7TUpOG1IN3-hhsokpVRy9GgIc3wRV9kzn05w1TZ7HkfI4seO03mx2-5ai4sFLE0A7JYfSIVLPy6d1NjSV9pRqVYJT_3Q55xrO1A-3REeegFWp9KWoXR16m3zFE2543Js9xxsEAnB9UdvasQqOwiqg2zfppAye7zEidxymqv_uzIPbhBLP644uadd5XKu61yG78tRqkJcDjeLudrUn38DkPyvhvEKXFp43qxVqcpVWDPZNbh4Co_xOhzvqFGznYyaB9mIvS5Q6IojFuXz2TPWYmWqMrkB1e4p25nIOXn8DB8sztjb9x9yNsR-_fjyNc7SKUX2s35-gsUonxnWmRT5tATP0obFR-XtUDdg70y6fBPWszwzt4C5yjWJ0cqVW8ZNNA8VEkiZSmPQkCZOA6ylgAi9wGuna0MmokKadgRxTtSca8DTmv64Qir5I-WTUt5qMjk9pPi-wBP7w5ei7fF-eLDfE-0GPFwKpECrQ0dJMjN5MRMo5yG25XG_AU4pXn_5pmhFnUFduv0vLz2A893dQV_042HvDlygekoKte27sD6fFuYeeodzdb_URwbvzlpyfwKAn2u0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwELaWXQnBgX9E-TUSP6dsm9j5KRKHqiFsaLcqlN2t9mJsx5bQdpOqTVjgxCPwKLwKr8CTME6asEVCSEh74BLJ1sSJPePx2J75BqFHBsMbFg5uUSJdC_Zf3OKJsq0uB12ofE_SEoFvd-Tt7NFXU3e6gb7VsTAVPkRz4GZmRqmvzQSfJ7r9CzSUJ9pEkoNBYyDHV26VA_XpBDZty-dxCBx-7DjRi7f9HWuVV8CSBn_d8nwuYOdHuKOVzT0hHaGlSIj2Ao8QIm1feCZFeOD6UK25zQNOpXa7RIMmdyiBds-hLep1uiZZRPimAayyfb-6x_Zs41FmT2uYyI7TXv_ftWVwy3D045qNe9pSLpe66DL6Xg9S5eFytF3kYlt-_g0_8n8axSvo0sruxr1qolxFGyq9hi6eQmO8juZjMWn3k0n7MJ3g1wWIXHGMwyxfPsM9XAYqGyOgOjvF4xnPjb2P4YHjFO-__5DhEfTrx5evcaoXxq8fD7MTKIbZUuFoVmSLEjpLKhwfl7mhbqC9M-nyTbSZZqm6hTAVVCVKCso7iiaSBAIIONdcKVCjidNCVi0fTK7Q2k3SkBmrcKYdZjjHGs610NOGfl7hlPyR8kkpbg0ZXxwZ7z7fZQejl6zvkmFweDBg_RZ6WMsjA51jLpJ4qrJiyUDMA2jLJV4LOaV0_eWbrBdGu03p9r-89ACdH4cRG8ajwR10wVSbiFDbvos280Wh7oFpmIv75WzE6N1ZC-5PuNVqYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PbS%2FCdS%2FZnS+Quantum+Dots%3A+A+Multifunctional+Platform+for+In+Vivo+Near-Infrared+Low-Dose+Fluorescence+Imaging&rft.jtitle=Advanced+functional+materials&rft.au=Benayas%2C+Antonio&rft.au=Ren%2C+Fuqiang&rft.au=Carrasco%2C+Elisa&rft.au=Marzal%2C+Vicente&rft.date=2015-11-11&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=42&rft.spage=6650&rft.epage=6659&rft_id=info:doi/10.1002%2Fadfm.201502632&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_C53L8ZWK_C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |