Preservation of segmental hindbrain organization in adult frogs

To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively mapped and compared with the segmental organization of these nuclei in larvae. Cranial nerve roots IV–X were labeled in larvae with fluoresc...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative neurology (1911) Vol. 494; no. 2; pp. 228 - 245
Main Authors Straka, Hans, Baker, Robert, Gilland, Edwin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 10.01.2006
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively mapped and compared with the segmental organization of these nuclei in larvae. Cranial nerve roots IV–X were labeled in larvae with fluorescent dextran amines. Each cranial nerve efferent nucleus resided in a characteristic segmental position within the clearly visible larval hindbrain rhombomeres (r). Trochlear motoneurons were located in r0, trigeminal motoneurons in r2–r3, facial branchiomotor and vestibuloacoustic efferent neurons in r4, abducens and facial parasympathetic neurons in r5, glossopharyngeal motoneurons in r6, and vagal efferent neurons in r7–r8 and rostral spinal cord. In adult frogs, biocytin labeling of cranial nerve roots IV–XII and spinal ventral root 2 in various combinations on both sides of the brain revealed precisely the same rostrocaudal sequence of efferent nuclei relative to each other as observed in larvae. This indicates that no longitudinal migratory rearrangement of hindbrain efferent neurons occurs. Although rhombomeres are not visible in adults, a segmental map of adult cranial nerve efferent nuclei can be inferred from the strict retention of the larval hindbrain pattern. Precise measurements of the borders of adjacent efferent nuclei within a coordinate system based on external landmarks were used to create a quantitative adult segmental map that mirrors the organization of the larval rhombomeric framework. Plotting morphologically and physiologically identified hindbrain neurons onto this map allows the physiological properties of adult hindbrain neurons to be linked with the underlying genetically specified segmental framework. J. Comp. Neurol. 494:228–245, 2006. © 2005 Wiley‐Liss, Inc.
AbstractList To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively mapped and compared with the segmental organization of these nuclei in larvae. Cranial nerve roots IV-X were labeled in larvae with fluorescent dextran amines. Each cranial nerve efferent nucleus resided in a characteristic segmental position within the clearly visible larval hindbrain rhombomeres (r). Trochlear motoneurons were located in r0, trigeminal motoneurons in r2-r3, facial branchiomotor and vestibuloacoustic efferent neurons in r4, abducens and facial parasympathetic neurons in r5, glossopharyngeal motoneurons in r6, and vagal efferent neurons in r7-r8 and rostral spinal cord. In adult frogs, biocytin labeling of cranial nerve roots IV-XII and spinal ventral root 2 in various combinations on both sides of the brain revealed precisely the same rostrocaudal sequence of efferent nuclei relative to each other as observed in larvae. This indicates that no longitudinal migratory rearrangement of hindbrain efferent neurons occurs. Although rhombomeres are not visible in adults, a segmental map of adult cranial nerve efferent nuclei can be inferred from the strict retention of the larval hindbrain pattern. Precise measurements of the borders of adjacent efferent nuclei within a coordinate system based on external landmarks were used to create a quantitative adult segmental map that mirrors the organization of the larval rhombomeric framework. Plotting morphologically and physiologically identified hindbrain neurons onto this map allows the physiological properties of adult hindbrain neurons to be linked with the underlying genetically specified segmental framework.
Abstract To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively mapped and compared with the segmental organization of these nuclei in larvae. Cranial nerve roots IV–X were labeled in larvae with fluorescent dextran amines. Each cranial nerve efferent nucleus resided in a characteristic segmental position within the clearly visible larval hindbrain rhombomeres (r). Trochlear motoneurons were located in r0, trigeminal motoneurons in r2–r3, facial branchiomotor and vestibuloacoustic efferent neurons in r4, abducens and facial parasympathetic neurons in r5, glossopharyngeal motoneurons in r6, and vagal efferent neurons in r7–r8 and rostral spinal cord. In adult frogs, biocytin labeling of cranial nerve roots IV–XII and spinal ventral root 2 in various combinations on both sides of the brain revealed precisely the same rostrocaudal sequence of efferent nuclei relative to each other as observed in larvae. This indicates that no longitudinal migratory rearrangement of hindbrain efferent neurons occurs. Although rhombomeres are not visible in adults, a segmental map of adult cranial nerve efferent nuclei can be inferred from the strict retention of the larval hindbrain pattern. Precise measurements of the borders of adjacent efferent nuclei within a coordinate system based on external landmarks were used to create a quantitative adult segmental map that mirrors the organization of the larval rhombomeric framework. Plotting morphologically and physiologically identified hindbrain neurons onto this map allows the physiological properties of adult hindbrain neurons to be linked with the underlying genetically specified segmental framework. J. Comp. Neurol. 494:228–245, 2006. © 2005 Wiley‐Liss, Inc.
To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively mapped and compared with the segmental organization of these nuclei in larvae. Cranial nerve roots IV-X were labeled in larvae with fluorescent dextran amines. Each cranial nerve efferent nucleus resided in a characteristic segmental position within the clearly visible larval hindbrain rhombomeres (r). Trochlear motoneurons were located in r0, trigeminal motoneurons in r2-r3, facial branchiomotor and vestibuloacoustic efferent neurons in r4, abducens and facial parasympathetic neurons in r5, glossopharyngeal motoneurons in r6, and vagal efferent neurons in r7-r8 and rostral spinal cord. In adult frogs, biocytin labeling of cranial nerve roots IV-XII and spinal ventral root 2 in various combinations on both sides of the brain revealed precisely the same rostrocaudal sequence of efferent nuclei relative to each other as observed in larvae. This indicates that no longitudinal migratory rearrangement of hindbrain efferent neurons occurs. Although rhombomeres are not visible in adults, a segmental map of adult cranial nerve efferent nuclei can be inferred from the strict retention of the larval hindbrain pattern. Precise measurements of the borders of adjacent efferent nuclei within a coordinate system based on external landmarks were used to create a quantitative adult segmental map that mirrors the organization of the larval rhombomeric framework. Plotting morphologically and physiologically identified hindbrain neurons onto this map allows the physiological properties of adult hindbrain neurons to be linked with the underlying genetically specified segmental framework. J. Comp. Neurol. 494:228-245, 2006.
To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively mapped and compared with the segmental organization of these nuclei in larvae. Cranial nerve roots IV–X were labeled in larvae with fluorescent dextran amines. Each cranial nerve efferent nucleus resided in a characteristic segmental position within the clearly visible larval hindbrain rhombomeres (r). Trochlear motoneurons were located in r0, trigeminal motoneurons in r2–r3, facial branchiomotor and vestibuloacoustic efferent neurons in r4, abducens and facial parasympathetic neurons in r5, glossopharyngeal motoneurons in r6, and vagal efferent neurons in r7–r8 and rostral spinal cord. In adult frogs, biocytin labeling of cranial nerve roots IV–XII and spinal ventral root 2 in various combinations on both sides of the brain revealed precisely the same rostrocaudal sequence of efferent nuclei relative to each other as observed in larvae. This indicates that no longitudinal migratory rearrangement of hindbrain efferent neurons occurs. Although rhombomeres are not visible in adults, a segmental map of adult cranial nerve efferent nuclei can be inferred from the strict retention of the larval hindbrain pattern. Precise measurements of the borders of adjacent efferent nuclei within a coordinate system based on external landmarks were used to create a quantitative adult segmental map that mirrors the organization of the larval rhombomeric framework. Plotting morphologically and physiologically identified hindbrain neurons onto this map allows the physiological properties of adult hindbrain neurons to be linked with the underlying genetically specified segmental framework. J. Comp. Neurol. 494:228–245, 2006. © 2005 Wiley‐Liss, Inc.
Author Straka, Hans
Baker, Robert
Gilland, Edwin
Author_xml – sequence: 1
  givenname: Hans
  surname: Straka
  fullname: Straka, Hans
  email: hans.straka@univ-paris5.fr
  organization: Laboratoire de Neurobiologie des Réseaux Sensorimoteurs, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7060, Université Paris 5, 75270 Paris, Cédex 06, France
– sequence: 2
  givenname: Robert
  surname: Baker
  fullname: Baker, Robert
  organization: Department of Physiology and Neuroscience, New York University Medical Center, New York, New York 10016
– sequence: 3
  givenname: Edwin
  surname: Gilland
  fullname: Gilland, Edwin
  organization: Department of Physiology and Neuroscience, New York University Medical Center, New York, New York 10016
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16320236$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00091267$$DView record in HAL
BookMark eNqFkU1PAyEQhonRaK0e_AOmJxMPq8PCwnIy2mhrbKomGo-ELlDR7a7C1q9fL3WrnowXCDPPvDPDu4lWq7oyCO1gOMAA6WFRmYMUcsArqINBsETkDK-iTszhRAjGN9BmCA8AIATJ19EGZiSFlLAOOrryJhj_ohpXV73a9oKZzkzVqLJ37yo98crFsJ-qyn20THwrPS-bnvX1NGyhNavKYLaXdxfdnp3e9IfJ6HJw3j8eJQVNGU64yiybZBxTnGo-IRo4YE0zY4hmYnEQrgEU1jllkBErqLU0VwVTliidki7ab3XvVSmfvJsp_y5r5eTweCQXscVyOGX8BUd2r2WffP08N6GRMxcKU5aqMvU8yNhaUCbov2DECAARv90LX4fgjf0ZAYNcWCCjBfLLgsjuLkXnk5nRv-TyzyNw2AKvrjTvfyvJ_vj0WzJpK1xozNtPhfKPknHCM3k3Hsjr7Hp8MTih8o58Au_qnzE
CitedBy_id crossref_primary_10_1002_cne_25484
crossref_primary_10_1002_cne_23163
crossref_primary_10_1016_j_cub_2012_07_019
crossref_primary_10_1016_j_resp_2010_04_013
crossref_primary_10_1113_JP270380
crossref_primary_10_1523_JNEUROSCI_5318_09_2010
crossref_primary_10_1002_cne_23544
crossref_primary_10_1002_cne_23644
crossref_primary_10_1002_dneu_22752
crossref_primary_10_1016_j_cub_2017_05_033
crossref_primary_10_1086_BBLv221n1p18
crossref_primary_10_1016_j_resp_2019_103266
crossref_primary_10_1073_pnas_0903060106
crossref_primary_10_1073_pnas_1201886109
crossref_primary_10_1016_j_jchemneu_2010_09_004
crossref_primary_10_1016_j_conb_2014_06_006
crossref_primary_10_1007_s00415_022_11311_8
crossref_primary_10_1152_ajpregu_00303_2018
crossref_primary_10_1016_j_resp_2015_06_010
crossref_primary_10_1016_j_brainres_2009_06_048
crossref_primary_10_1016_j_resp_2012_12_007
crossref_primary_10_1002_dneu_20965
crossref_primary_10_1159_000516409
crossref_primary_10_1002_cne_22060
crossref_primary_10_1159_000505473
crossref_primary_10_3389_fncir_2016_00091
crossref_primary_10_1002_cne_23155
crossref_primary_10_1002_cne_23276
crossref_primary_10_1002_cne_24266
crossref_primary_10_1007_s00429_012_0442_1
crossref_primary_10_1002_cne_24422
crossref_primary_10_1002_dneu_22108
crossref_primary_10_1002_cne_24645
crossref_primary_10_1016_j_acthis_2018_08_014
crossref_primary_10_1002_cne_24548
crossref_primary_10_1016_j_resp_2015_09_005
crossref_primary_10_3389_fnana_2014_00075
crossref_primary_10_1111_joa_13026
crossref_primary_10_1159_000503769
crossref_primary_10_1016_j_jchemneu_2014_03_006
crossref_primary_10_3389_fnana_2022_826087
crossref_primary_10_1523_JNEUROSCI_4521_12_2013
crossref_primary_10_1016_j_heares_2023_108766
crossref_primary_10_1159_000347111
crossref_primary_10_1523_JNEUROSCI_2626_16_2017
crossref_primary_10_1126_science_1157632
crossref_primary_10_1007_s00429_011_0341_x
Cites_doi 10.1016/S0006-8993(01)03075-X
10.1002/(SICI)1096-9861(19970113)377:2<149::AID-CNE1>3.0.CO;2-3
10.1016/j.ydbio.2004.12.030
10.1242/dev.00815
10.1016/S0006-8993(00)02768-2
10.1159/000147533
10.1007/BF00214812
10.1242/dev.01029
10.1007/978-3-642-18262-4
10.1016/0304-3940(87)90579-9
10.1002/(SICI)1096-9861(19960603)369:3<451::AID-CNE9>3.0.CO;2-4
10.1006/dbio.2001.0532
10.1159/000143831
10.1002/glia.10238
10.1002/cne.902780203
10.1002/cne.901890105
10.1073/pnas.0406382102
10.1002/(SICI)1096-9861(19960722)371:2<258::AID-CNE6>3.0.CO;2-1
10.1002/1096-9861(20010226)431:1<105::AID-CNE1058>3.0.CO;2-P
10.1242/dev.127.24.5297
10.1002/aja.1002040308
10.1002/cne.902590308
10.1002/cne.902220304
10.1002/cne.900280205
10.1076/ejom.37.2.190.4736
10.1016/0304-3940(88)90631-3
10.1002/1096-9861(20000814)424:1<47::AID-CNE4>3.0.CO;2-5
10.1523/JNEUROSCI.20-20-07664.2000
10.1007/BF00218392
10.1002/1096-9861(20001127)427:4<522::AID-CNE3>3.0.CO;2-Y
10.1159/000006564
10.1002/cne.902610308
10.1111/j.1460-9568.1995.tb00693.x
10.1242/dev.00986
10.1002/cne.903310209
10.1016/0304-3940(90)90376-K
10.1007/s002210000670
10.1152/jn.00372.2003
10.1002/cne.902780204
10.1086/BBLv183n2p356
10.1002/(SICI)1096-9861(19970616)382:4<499::AID-CNE6>3.0.CO;2-Y
10.1007/BF00315925
10.1002/cne.1268
10.1038/13172
10.1002/cne.20006
10.1159/000113323
10.1111/j.1460-9568.1993.tb00491.x
10.1242/dev.124.13.2633
10.1152/jn.1997.77.5.2765
10.1002/cne.901780109
10.1002/cne.902170407
10.1242/dev.122.7.2143
10.1016/0304-3940(84)90430-0
10.1016/0006-8993(86)91072-3
10.1002/cne.903080402
10.1016/0006-8993(87)90639-1
10.1002/cne.1356
10.1016/S0361-9230(01)00670-0
10.1016/0014-4886(85)90130-X
10.1523/JNEUROSCI.09-08-02718.1989
10.1038/337424a0
10.1016/0896-6273(93)90179-U
10.2307/1542849
10.1016/S0304-3940(98)00111-6
10.1159/000147530
10.1016/S0736-5748(96)00120-7
10.1007/978-1-4612-2784-7_16
10.1016/0306-4522(92)90529-B
10.1523/JNEUROSCI.20-01-00206.2000
ContentType Journal Article
Copyright Copyright © 2005 Wiley‐Liss, Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
1XC
DOI 10.1002/cne.20801
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Neurosciences Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1096-9861
EndPage 245
ExternalDocumentID oai_HAL_hal_00091267v1
10_1002_cne_20801
16320236
CNE20801
ark_67375_WNG_Q5QNKGB4_W
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
– fundername: National Eye Institute
– fundername: Max‐Kade‐Foundation, New York
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMDK
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABHUG
ABIJN
ABIVO
ABJNI
ABOCM
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XJT
XV2
YQT
ZZTAW
~IA
~WT
79B
AITYG
HGLYW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
.55
.GJ
1XC
53G
ABEML
ACSCC
AETEA
EMOBN
GAKWD
HF~
M6M
OHT
RYL
SAMSI
SV3
X7M
XOL
ZGI
ZXP
ID FETCH-LOGICAL-c4261-7a5f6b571412d7b3d0701d45ee3d69e3d637d00a1d846053f94ff48ac6af3ad23
IEDL.DBID DR2
ISSN 0021-9967
IngestDate Fri Sep 06 13:08:28 EDT 2024
Fri Aug 16 10:53:51 EDT 2024
Fri Aug 16 10:29:13 EDT 2024
Fri Aug 23 03:41:13 EDT 2024
Sat Sep 28 07:50:39 EDT 2024
Sat Aug 24 01:08:00 EDT 2024
Wed Jan 17 05:00:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4261-7a5f6b571412d7b3d0701d45ee3d69e3d637d00a1d846053f94ff48ac6af3ad23
Notes istex:504CCE9221CD3B443342346CE390630CEC4F0AC1
National Eye Institute
ark:/67375/WNG-Q5QNKGB4-W
National Institutes of Health
Max-Kade-Foundation, New York
ArticleID:CNE20801
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16320236
PQID 19430039
PQPubID 23462
PageCount 18
ParticipantIDs hal_primary_oai_HAL_hal_00091267v1
proquest_miscellaneous_70194694
proquest_miscellaneous_19430039
crossref_primary_10_1002_cne_20801
pubmed_primary_16320236
wiley_primary_10_1002_cne_20801_CNE20801
istex_primary_ark_67375_WNG_Q5QNKGB4_W
PublicationCentury 2000
PublicationDate 10 January 2006
PublicationDateYYYYMMDD 2006-01-10
PublicationDate_xml – month: 01
  year: 2006
  text: 10 January 2006
  day: 10
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of comparative neurology (1911)
PublicationTitleAlternate J. Comp. Neurol
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Will U. 1982. Efferent neurons of the lateral-line system and the VIIIth cranial nerve in the brainstem of anurans. Cell Tissue Res 225: 673-685.
Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rigli FM, Kuratani S. 2004. Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 131: 983-995.
Matesz C, Székely G. 1978. The motor column and sensory projections of the branchial cranial nerves in the frog. J Comp Neurol 178: 157-178.
Muller M, Jabs N, Lorke DE, Fritzsch B, Sander M. 2003. Nkx6.1 controls migration and axon pathfinding of cranial branchio-motoneurons. Development 130: 5815-5826.
Straka H, Gilland E, Baker R. 2000b. Rhombomeric pattern of hindbrain efferent neurons is retained in adult frogs. Soc Neurosci Abstr 26: 310.
de Beer G. 1937. Development of the vertebrate skull. Oxford: Oxford University Press.
Puelles L. 1978. A Golgi-study of oculomotor neuroblasts migrating across the midline in chick embryos. Anat Embryol 152: 205-215.
Wake DB, Nishikawa KC, Dicke U, Roth G. 1988. Organization of the motor nuclei in the cervical spinal cord of salamanders. J Comp Neurol 278: 195-208.
Matesz C, Birinyi A, Hevessy Z. 1994. Motoneurons differ in size and peripheral target in the trigeminal and facial nuclear complex of the frog. J Brain Res 35: 67-70.
Schubert W, Kaprielian C. 2001. Identification and characterization of a cell surface marker for embryonic rat spinal accessory motor neurons. J Comp Neurol 439: 368-383.
Straka H, Baker R, Gilland E. 2002. The frog as a unique vertebrate model for studying the rhombomeric organization of functionally identified hindbrain neurons. Brain Res Bull 57: 301-305.
Reichenberger I, Straka H, Ottersen OP, Streit P, Gerrits NM, Dieringer N. 1997. Distribution of GABA, glycine and glutamate immunoreactivities in the vestibular nuclear complex of the frog. J Comp Neurol 377: 149-164.
Simon H, Lumsden A. 1993. Rhombomere-specific origin of the contralateral vestibulo-acoustic efferent neurons and their migration across the embryonic midline. Neuron 11: 209-220.
Kishida R, Onishi H, Nishizawa H, Kadota T, Goris RC, Kusunoki T. 1986. Organization of the trigeminal and facial motor nuclei in the hagfish, Eptatretus burgeri: a retrograde HRP study. Brain Res 385: 263-272.
Straka H, Biesdorf S, Dieringer N. 2000a. Spatial distribution of semicircular canal nerve evoked monosynaptic response components in frog vestibular nuclei. Brain Res 880: 70-83.
Auclair F, Valdés N, Marchand R. 1996. Rhombomere-specific origin of branchial and visceral motoneurons of the facial nerve in the rat embryo. J Comp Neurol 369: 451-461.
Gosner KL. 1960. A simplified table for staging of anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190.
Prin F, Ng KE, Thaker U, Drescher U, Guthrie S. 2005. Ephrin-As play a rhombomere-specific role in trigeminal motor axon projections in the chick embryo. Dev Biol 279: 402-419.
Jacob J, Guthrie S. 2000. Facial visceral motor neurons display specific rhombomere origin and axon pathfinding behavior in the chick. J Neurosci 20: 7664-7671.
Straka H, Gilland E. 2002. Anatomical and functional organization of the vestibular commissure in frogs. Soc Neurosci Abstr 28: 564.19.
Stuesse SL, Cruce WL. 1986. Afferent and efferent components of the facial nerve in a frog, Rana pipiens. Cell Tissue Res 244: 147-151.
Graf W, Spencer R, Baker H, Baker R. 1997. Excitatory and inhibitory vestibular pathways to the extraocular motor nuclei in goldfish. J Neurophysiol 77: 2765-2779.
Marín F, Puelles L. 1995. Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7: 1714-1738.
Straka H, Gilland E, Baker R. 1998. Rhombomeric organization of brainstem motor neurons in larval frogs. Biol Bull 195: 220-222.
Sapède D, Rossel M, Dambly-Chaudière C, Ghysen A. 2005. Role of SDF1 chemokine in the development of lateral line efferent and facial motor neurons. Proc Natl Acad Sci U S A 102: 1714-1718.
Marín O, Smeets WJ, Gonzalez A. 1997. Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians. J Comp Neurol 382: 499-534.
Gilland E, Baker R. 1993. Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. Acta Anat 148: 110-123.
Nieuwenhuys R, ten Donkelaar HJ, Nicholson C. 1998. The central nervous system of vertebrates. Berlin: Springer.
Straka H, Dieringer N. 1993. Electrophysiological and pharmacological characterization of vestibular inputs to identified frog abducens motoneurons and internuclear neurons in vitro. Eur J Neurosci 5: 251-260.
Lumsden A, Keynes R. 1989. Segmental patterns of neuronal development in the chick hindbrain. Nature 337: 424-428.
Medina L, Smeets WJ, Hoogland PV, Puelles L. 1993. Distribution of choline acetyltransferase immunoreactivity in the brain of the lizard Gallotia galloti. J Comp Neurol 331: 261-285.
Roth G, Nishikawa K, Dicke U, Wake DB. 1988. Topography and cytoarchitecture of the motor nuclei in the brainstem of salamanders. J Comp Neurol 278: 181-194.
Cambronero F, Puelles L. 2000. Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427: 522-545.
Matesz C, Székely G. 1996. Organization of the ambiguus nucleus in the frog (Rana esculenta). J Comp Neurol 371: 258-269.
Rosenthal BM, Alley KE. 1988. Trigeminal motoneurons in frog develop a new dendritic field during metamorphosis. Neurosci Lett 95: 53-58.
Székely G, Matesz C. 1987. Trigeminal motoneurons with disparate dendritic geometry innervate different muscle groups in the frog. Neurosci Lett 77: 161-165.
Matesz C. 1990. Development of the oculomotor and trochlear nuclei in the Xenopus toad. Neurosci Lett 116: 1-6.
Straka H, Baker R, Gilland E. 2001. Rhombomeric organization of vestibular pathways in larval frogs. J Comp Neurol 437: 42-55.
Fortin G, Jungbluth S, Lumsden A, Champagnat J. 1999. Segmental specification of GABAergic inhibition during development of hindbrain neural networks. Nat Neurosci 2: 873-877.
Schlosser G, Roth G. 1997. Evolution of nerve development in frogs. I. The development of the peripheral nervous system in Discoglossus pictus (Discoglossidae). Brain Behav Evol 50: 61-93.
Garel S, Garcia-Dominguez M, Charnay P. 2000. Control of the migratory pathway of facial branchiomotor neurones. Development 127: 5297-5307.
Oka Y, Takeuchi H, Satou M, Ueda K. 1987a. Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the Japanese toad. J Comp Neurol 259: 400-423.
Black D. 1917. The motor nuclei of the cerebral nerves in phylogeny. A study of the phenomena of neurobiotaxis. J Comp Neurol 28: 379-427.
Heyman I, Faissner A, Lumsden A. 1995. Cell and matrix specialisations of rhombomere boundaries. Dev Dyn 204: 301-315.
Chandrasekhar A, Moens CB, Warren JT Jr, Kimmel CB, Kuwada JY. 1997. Development of branchiomotor neurons in zebrafish. Development 124: 2633-2644.
Roberts A, Dale N, Ottersen OP, Storm-Mathisen J. 1987. The early development of neurons with GABA immunoreactivity in the CNS of Xenopus laevis embryos. J Comp Neurol 261: 435-449.
Birinyi A, Straka H, Matesz C, Dieringer N. 2001. Location of dye-coupled second order and of efferent vestibular neurons labeled from individual semicircular canal or otolith organs in the frog. Brain Res 921: 44-59.
Yoshida M, Colman D. 2000. Glial-defined rhombomere boundaries in developing Xenopus hindbrain. J Comp Neurol 424: 47-57.
de la Cruz RR, Pastor AM, Martinez-Guijarro FJ, Lopez-Garcia C, Delgado-Garcia JM. 1992. Role of GABA in the extraocular motor nuclei of the cat: a postembedding immunocytochemical study. Neuroscience 51: 911-929.
Anderson CW, Nishikawa KC, Keiffer J. 1998. Distribution of hypoglossal motor neurons innervating the prehensile tongue of the African pig-nosed frog, Hemisus marmoratum. Neurosci Lett 244: 5-8.
Heaton MB, Moody SA. 1980. Early development and migration of the trigeminal motor nucleus in the chick embryo. J Comp Neurol 189: 61-99.
Fritzsch B. 1998. Of mice and genes: evolution of vertebrate brain development. Brain Behav Evol 52: 207-217.
Vaage S. 1969. The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. Ergeb Anat Entwicklungsgesch 41: 1-88.
Higashijima S, Hotta Y, Okamoto H. 2000. Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci 20: 206-218.
Gaufo GO, Wu S, Capecchi MR. 2004. Contribution of Hox genes to the diversity of the hindbrain sensory system. Development 131: 1259-1266.
Senn DG. 1972. Development of tegmental and rhombencephalic structures in a frog (Rana temporaria L.). Acta Anat 83: 525-548.
Fritzsch B, Crapon de Caprona D. 1984. The origin of centrifugal inner ear fibers of gymnophions (Amphibia). A horseradish peroxidase study. Neurosci Lett 46: 131-136.
Bruce LL, Kingsley J, Nichols DH, Fritzsch B. 1997. The development of vestibulocochlear efferents and cochlear afferents in mice. Int J Dev Neurosci 15: 671-692.
Song J, Boord RL. 1993. Motor components of the trigeminal nerve and organization of the mandibular arch muscles in vertebrates. Phylogenetically conservative patterns and their ontogenetic basis. Acta Anat 148: 139-149.
Stuesse SL, Cruce WL, Powell KS. 1983. Afferent and efferent components of the hypoglossal nerve in the grass frog, Rana pipiens. J Comp Neurol 217: 432-439.
Sokoloff AJ. 1991. Musculotopic organization of the hypoglossal nucleus in the grass frog, Rana pipiens. J Comp Neurol 308: 505-512.
Wingate RJ, Lumsden A. 1996. Persistence of rhombomeric organisation in the postsegmental hindbrain. Development 122: 2143-21
1987; 77
1987; 261
1917; 28
2000b; 26
2002; 57
1899
1972; 83
1992; 18
1982; 225
1978; 178
1987b; 400
1937
1998; 195
1992; 51
1993; 5
2004; 131
1997; 50
2003; 90
1986; 385
1997; 382
2000; 127
2005; 102
1997; 15
1969; 41
2000a; 880
1996; 371
1995; 204
1994; 35
1998; 52
1998; 244
2001; 137
1980; 189
2003; 43
1991; 308
1993; 331
1997; 377
1989; 337
1992; 183
1984; 222
2005; 279
1960; 16
1989; 9
1984; 46
2000; 20
1987a; 259
1998
1978; 152
1996; 122
1988; 95
1999; 2
1992
2001; 921
1993; 148
1985; 87
1996; 369
1995; 7
2003; 130
1983; 217
1997; 124
2002; 28
2001; 431
1990; 116
1997; 77
2002; 242
1986; 244
2000; 424
1993; 11
2004; 470
2000; 427
1999; 37
1988; 278
2001; 437
2001; 439
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Wingate RJ (e_1_2_6_77_1) 1996; 122
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
Gosner KL (e_1_2_6_22_1) 1960; 16
e_1_2_6_34_1
Vaage S (e_1_2_6_74_1) 1969; 41
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
Matesz C (e_1_2_6_38_1) 1999; 37
e_1_2_6_41_1
e_1_2_6_60_1
Jacob J (e_1_2_6_28_1) 2000; 20
Senn DG (e_1_2_6_57_1) 1972; 83
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
Stuesse SL (e_1_2_6_71_1) 1986; 244
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_31_1
Straka H (e_1_2_6_66_1) 2000; 26
e_1_2_6_50_1
Straka H (e_1_2_6_63_1) 2002; 28
Gaupp E (e_1_2_6_19_1) 1899
de Beer G (e_1_2_6_12_1) 1937
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
Chandrasekhar A (e_1_2_6_10_1) 1997; 124
Matesz C (e_1_2_6_37_1) 1994; 35
Cochran SL (e_1_2_6_11_1) 1992; 18
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 279
  start-page: 402
  year: 2005
  end-page: 419
  article-title: Ephrin‐As play a rhombomere‐specific role in trigeminal motor axon projections in the chick embryo
  publication-title: Dev Biol
– year: 1899
– volume: 77
  start-page: 161
  year: 1987
  end-page: 165
  article-title: Trigeminal motoneurons with disparate dendritic geometry innervate different muscle groups in the frog
  publication-title: Neurosci Lett
– volume: 222
  start-page: 358
  year: 1984
  end-page: 365
  article-title: Organization within the cranial IX‐X complex in ranid frogs: a horseradish peroxidase transport study
  publication-title: J Comp Neurol
– year: 1937
– volume: 424
  start-page: 47
  year: 2000
  end-page: 57
  article-title: Glial‐defined rhombomere boundaries in developing hindbrain
  publication-title: J Comp Neurol
– volume: 102
  start-page: 1714
  year: 2005
  end-page: 1718
  article-title: Role of SDF1 chemokine in the development of lateral line efferent and facial motor neurons
  publication-title: Proc Natl Acad Sci U S A
– volume: 278
  start-page: 181
  year: 1988
  end-page: 194
  article-title: Topography and cytoarchitecture of the motor nuclei in the brainstem of salamanders
  publication-title: J Comp Neurol
– volume: 15
  start-page: 671
  year: 1997
  end-page: 692
  article-title: The development of vestibulocochlear efferents and cochlear afferents in mice
  publication-title: Int J Dev Neurosci
– volume: 124
  start-page: 2633
  year: 1997
  end-page: 2644
  article-title: Development of branchiomotor neurons in zebrafish
  publication-title: Development
– volume: 331
  start-page: 261
  year: 1993
  end-page: 285
  article-title: Distribution of choline acetyltransferase immunoreactivity in the brain of the lizard
  publication-title: J Comp Neurol
– volume: 90
  start-page: 3501
  year: 2003
  end-page: 3512
  article-title: Differential spatial organization of otolith signals in frog vestibular nuclei
  publication-title: J Neurophysiol
– volume: 470
  start-page: 409
  year: 2004
  end-page: 421
  article-title: Quantitative morphological analysis of the motoneurons innervating muscles involved in tongue movements of the frog
  publication-title: J Comp Neurol
– volume: 382
  start-page: 499
  year: 1997
  end-page: 534
  article-title: Distribution of choline acetyltransferase immunoreactivity in the brain of anuran ( , ) and urodele ( ) amphibians
  publication-title: J Comp Neurol
– volume: 43
  start-page: 6
  year: 2003
  end-page: 18
  article-title: Precursors of neurons, neuroglia, and ependymal cells in the CNS: what are they? Where are they from? How do they get where they are going?
  publication-title: Glia
– volume: 28
  start-page: 379
  year: 1917
  end-page: 427
  article-title: The motor nuclei of the cerebral nerves in phylogeny. A study of the phenomena of neurobiotaxis
  publication-title: J Comp Neurol
– volume: 183
  start-page: 354
  year: 1992
  end-page: 356
  article-title: Longitudinal and tangential migration of cranial nerve efferent neurons in the developing hindbrain of
  publication-title: Biol Bull
– volume: 439
  start-page: 368
  year: 2001
  end-page: 383
  article-title: Identification and characterization of a cell surface marker for embryonic rat spinal accessory motor neurons
  publication-title: J Comp Neurol
– volume: 127
  start-page: 5297
  year: 2000
  end-page: 5307
  article-title: Control of the migratory pathway of facial branchiomotor neurones
  publication-title: Development
– volume: 244
  start-page: 147
  year: 1986
  end-page: 151
  article-title: Afferent and efferent components of the facial nerve in a frog,
  publication-title: Cell Tissue Res
– volume: 37
  start-page: 190
  year: 1999
  end-page: 194
  article-title: Organization of the motor centres for the innervation of different muscles of the tongue: a neuromorphological study in the frog
  publication-title: Eur J Morphol
– volume: 28
  start-page: 564.19
  year: 2002
  article-title: Anatomical and functional organization of the vestibular commissure in frogs
  publication-title: Soc Neurosci Abstr
– volume: 337
  start-page: 424
  year: 1989
  end-page: 428
  article-title: Segmental patterns of neuronal development in the chick hindbrain
  publication-title: Nature
– volume: 261
  start-page: 435
  year: 1987
  end-page: 449
  article-title: The early development of neurons with GABA immunoreactivity in the CNS of embryos
  publication-title: J Comp Neurol
– year: 1998
– volume: 77
  start-page: 2765
  year: 1997
  end-page: 2779
  article-title: Excitatory and inhibitory vestibular pathways to the extraocular motor nuclei in goldfish
  publication-title: J Neurophysiol
– volume: 308
  start-page: 505
  year: 1991
  end-page: 512
  article-title: Musculotopic organization of the hypoglossal nucleus in the grass frog,
  publication-title: J Comp Neurol
– volume: 11
  start-page: 209
  year: 1993
  end-page: 220
  article-title: Rhombomere‐specific origin of the contralateral vestibulo‐acoustic efferent neurons and their migration across the embryonic midline
  publication-title: Neuron
– volume: 46
  start-page: 131
  year: 1984
  end-page: 136
  article-title: The origin of centrifugal inner ear fibers of gymnophions (Amphibia). A horseradish peroxidase study
  publication-title: Neurosci Lett
– volume: 385
  start-page: 263
  year: 1986
  end-page: 272
  article-title: Organization of the trigeminal and facial motor nuclei in the hagfish, : a retrograde HRP study
  publication-title: Brain Res
– volume: 83
  start-page: 525
  year: 1972
  end-page: 548
  article-title: Development of tegmental and rhombencephalic structures in a frog ( L.)
  publication-title: Acta Anat
– volume: 18
  start-page: 28
  year: 1992
  article-title: Synaptic input to oculomotor motoneurons in the frog
  publication-title: Soc Neurosci Abstr
– volume: 41
  start-page: 1
  year: 1969
  end-page: 88
  article-title: The segmentation of the primitive neural tube in chick embryos ( ). A morphological, histochemical and autoradiographical investigation
  publication-title: Ergeb Anat Entwicklungsgesch
– volume: 130
  start-page: 5815
  year: 2003
  end-page: 5826
  article-title: Nkx6.1 controls migration and axon pathfinding of cranial branchio‐motoneurons
  publication-title: Development
– volume: 427
  start-page: 522
  year: 2000
  end-page: 545
  article-title: Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras
  publication-title: J Comp Neurol
– volume: 242
  start-page: 149
  year: 2002
  end-page: 160
  article-title: The zebrafish trilobite gene is essential for tangential migration of branchiomotor neurons
  publication-title: Dev Biol
– volume: 278
  start-page: 195
  year: 1988
  end-page: 208
  article-title: Organization of the motor nuclei in the cervical spinal cord of salamanders
  publication-title: J Comp Neurol
– volume: 189
  start-page: 61
  year: 1980
  end-page: 99
  article-title: Early development and migration of the trigeminal motor nucleus in the chick embryo
  publication-title: J Comp Neurol
– volume: 2
  start-page: 873
  year: 1999
  end-page: 877
  article-title: Segmental specification of GABAergic inhibition during development of hindbrain neural networks
  publication-title: Nat Neurosci
– volume: 225
  start-page: 673
  year: 1982
  end-page: 685
  article-title: Efferent neurons of the lateral‐line system and the VIIIth cranial nerve in the brainstem of anurans
  publication-title: Cell Tissue Res
– volume: 880
  start-page: 70
  year: 2000a
  end-page: 83
  article-title: Spatial distribution of semicircular canal nerve evoked monosynaptic response components in frog vestibular nuclei
  publication-title: Brain Res
– volume: 95
  start-page: 53
  year: 1988
  end-page: 58
  article-title: Trigeminal motoneurons in frog develop a new dendritic field during metamorphosis
  publication-title: Neurosci Lett
– volume: 921
  start-page: 44
  year: 2001
  end-page: 59
  article-title: Location of dye‐coupled second order and of efferent vestibular neurons labeled from individual semicircular canal or otolith organs in the frog
  publication-title: Brain Res
– volume: 52
  start-page: 207
  year: 1998
  end-page: 217
  article-title: Of mice and genes: evolution of vertebrate brain development
  publication-title: Brain Behav Evol
– volume: 137
  start-page: 190
  year: 2001
  end-page: 196
  article-title: Plane‐specific brainstem commissural inhibition in frog second‐order semicircular canal neurons
  publication-title: Exp Brain Res
– volume: 131
  start-page: 983
  year: 2004
  end-page: 995
  article-title: Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain
  publication-title: Development
– volume: 437
  start-page: 42
  year: 2001
  end-page: 55
  article-title: Rhombomeric organization of vestibular pathways in larval frogs
  publication-title: J Comp Neurol
– volume: 87
  start-page: 20
  year: 1985
  end-page: 34
  article-title: A horseradish peroxidase study of rat lingual motoneurons with axons passing through the cervical nerve
  publication-title: Exp Neurol
– volume: 244
  start-page: 5
  year: 1998
  end-page: 8
  article-title: Distribution of hypoglossal motor neurons innervating the prehensile tongue of the African pig‐nosed frog,
  publication-title: Neurosci Lett
– volume: 148
  start-page: 139
  year: 1993
  end-page: 149
  article-title: Motor components of the trigeminal nerve and organization of the mandibular arch muscles in vertebrates. Phylogenetically conservative patterns and their ontogenetic basis
  publication-title: Acta Anat
– volume: 400
  start-page: 383
  year: 1987b
  end-page: 388
  article-title: Morphology and distribution of the motor neurons of the accessory nerve (nXI) in the Japanese toad: a cobaltic lysine study
  publication-title: Brain Res
– volume: 20
  start-page: 206
  year: 2000
  end-page: 218
  article-title: Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet‐1 promoter/enhancer
  publication-title: J Neurosci
– volume: 217
  start-page: 432
  year: 1983
  end-page: 439
  article-title: Afferent and efferent components of the hypoglossal nerve in the grass frog,
  publication-title: J Comp Neurol
– volume: 116
  start-page: 1
  year: 1990
  end-page: 6
  article-title: Development of the oculomotor and trochlear nuclei in the toad
  publication-title: Neurosci Lett
– volume: 50
  start-page: 61
  year: 1997
  end-page: 93
  article-title: Evolution of nerve development in frogs. I. The development of the peripheral nervous system in (Discoglossidae)
  publication-title: Brain Behav Evol
– volume: 20
  start-page: 7664
  year: 2000
  end-page: 7671
  article-title: Facial visceral motor neurons display specific rhombomere origin and axon pathfinding behavior in the chick
  publication-title: J Neurosci
– volume: 35
  start-page: 67
  year: 1994
  end-page: 70
  article-title: Motoneurons differ in size and peripheral target in the trigeminal and facial nuclear complex of the frog
  publication-title: J Brain Res
– volume: 131
  start-page: 1259
  year: 2004
  end-page: 1266
  article-title: Contribution of Hox genes to the diversity of the hindbrain sensory system
  publication-title: Development
– volume: 148
  start-page: 110
  year: 1993
  end-page: 123
  article-title: Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head
  publication-title: Acta Anat
– volume: 9
  start-page: 2718
  year: 1989
  end-page: 2736
  article-title: Evidence for glycine as an inhibitory neurotransmitter of vestibular, reticular, and prepositus hypoglossi neurons that project to the cat abducens nucleus
  publication-title: J Neurosci
– volume: 57
  start-page: 301
  year: 2002
  end-page: 305
  article-title: The frog as a unique vertebrate model for studying the rhombomeric organization of functionally identified hindbrain neurons
  publication-title: Brain Res Bull
– volume: 178
  start-page: 157
  year: 1978
  end-page: 178
  article-title: The motor column and sensory projections of the branchial cranial nerves in the frog
  publication-title: J Comp Neurol
– volume: 259
  start-page: 400
  year: 1987a
  end-page: 423
  article-title: Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the Japanese toad
  publication-title: J Comp Neurol
– volume: 195
  start-page: 220
  year: 1998
  end-page: 222
  article-title: Rhombomeric organization of brainstem motor neurons in larval frogs
  publication-title: Biol Bull
– volume: 5
  start-page: 251
  year: 1993
  end-page: 260
  article-title: Electrophysiological and pharmacological characterization of vestibular inputs to identified frog abducens motoneurons and internuclear neurons in vitro
  publication-title: Eur J Neurosci
– volume: 369
  start-page: 451
  year: 1996
  end-page: 461
  article-title: Rhombomere‐specific origin of branchial and visceral motoneurons of the facial nerve in the rat embryo
  publication-title: J Comp Neurol
– volume: 16
  start-page: 183
  year: 1960
  end-page: 190
  article-title: A simplified table for staging of anuran embryos and larvae with notes on identification
  publication-title: Herpetologica
– volume: 7
  start-page: 1714
  year: 1995
  end-page: 1738
  article-title: Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei
  publication-title: Eur J Neurosci
– volume: 371
  start-page: 258
  year: 1996
  end-page: 269
  article-title: Organization of the ambiguus nucleus in the frog ( )
  publication-title: J Comp Neurol
– volume: 122
  start-page: 2143
  year: 1996
  end-page: 2152
  article-title: Persistence of rhombomeric organisation in the postsegmental hindbrain
  publication-title: Development
– volume: 204
  start-page: 301
  year: 1995
  end-page: 315
  article-title: Cell and matrix specialisations of rhombomere boundaries
  publication-title: Dev Dyn
– volume: 377
  start-page: 149
  year: 1997
  end-page: 164
  article-title: Distribution of GABA, glycine and glutamate immunoreactivities in the vestibular nuclear complex of the frog
  publication-title: J Comp Neurol
– volume: 51
  start-page: 911
  year: 1992
  end-page: 929
  article-title: Role of GABA in the extraocular motor nuclei of the cat: a postembedding immunocytochemical study
  publication-title: Neuroscience
– volume: 431
  start-page: 105
  year: 2001
  end-page: 126
  article-title: Distribution of choline acetyltransferase‐immunoreactive structures in the lamprey brain
  publication-title: J Comp Neurol
– volume: 26
  start-page: 310
  year: 2000b
  article-title: Rhombomeric pattern of hindbrain efferent neurons is retained in adult frogs
  publication-title: Soc Neurosci Abstr
– volume: 152
  start-page: 205
  year: 1978
  end-page: 215
  article-title: A Golgi‐study of oculomotor neuroblasts migrating across the midline in chick embryos
  publication-title: Anat Embryol
– start-page: 185
  year: 1992
  end-page: 210
– ident: e_1_2_6_5_1
  doi: 10.1016/S0006-8993(01)03075-X
– ident: e_1_2_6_49_1
  doi: 10.1002/(SICI)1096-9861(19970113)377:2<149::AID-CNE1>3.0.CO;2-3
– ident: e_1_2_6_47_1
  doi: 10.1016/j.ydbio.2004.12.030
– volume: 28
  start-page: 564.19
  year: 2002
  ident: e_1_2_6_63_1
  article-title: Anatomical and functional organization of the vestibular commissure in frogs
  publication-title: Soc Neurosci Abstr
  contributor:
    fullname: Straka H
– ident: e_1_2_6_41_1
  doi: 10.1242/dev.00815
– ident: e_1_2_6_65_1
  doi: 10.1016/S0006-8993(00)02768-2
– ident: e_1_2_6_60_1
  doi: 10.1159/000147533
– ident: e_1_2_6_76_1
  doi: 10.1007/BF00214812
– ident: e_1_2_6_18_1
  doi: 10.1242/dev.01029
– ident: e_1_2_6_43_1
  doi: 10.1007/978-3-642-18262-4
– ident: e_1_2_6_73_1
  doi: 10.1016/0304-3940(87)90579-9
– ident: e_1_2_6_3_1
  doi: 10.1002/(SICI)1096-9861(19960603)369:3<451::AID-CNE9>3.0.CO;2-4
– ident: e_1_2_6_4_1
  doi: 10.1006/dbio.2001.0532
– volume: 83
  start-page: 525
  year: 1972
  ident: e_1_2_6_57_1
  article-title: Development of tegmental and rhombencephalic structures in a frog (Rana temporaria L.)
  publication-title: Acta Anat
  doi: 10.1159/000143831
  contributor:
    fullname: Senn DG
– ident: e_1_2_6_40_1
  doi: 10.1002/glia.10238
– ident: e_1_2_6_53_1
  doi: 10.1002/cne.902780203
– ident: e_1_2_6_24_1
  doi: 10.1002/cne.901890105
– ident: e_1_2_6_54_1
  doi: 10.1073/pnas.0406382102
– ident: e_1_2_6_36_1
  doi: 10.1002/(SICI)1096-9861(19960722)371:2<258::AID-CNE6>3.0.CO;2-1
– ident: e_1_2_6_46_1
  doi: 10.1002/1096-9861(20010226)431:1<105::AID-CNE1058>3.0.CO;2-P
– ident: e_1_2_6_17_1
  doi: 10.1242/dev.127.24.5297
– ident: e_1_2_6_25_1
  doi: 10.1002/aja.1002040308
– ident: e_1_2_6_44_1
  doi: 10.1002/cne.902590308
– ident: e_1_2_6_72_1
  doi: 10.1002/cne.902220304
– ident: e_1_2_6_7_1
  doi: 10.1002/cne.900280205
– volume: 37
  start-page: 190
  year: 1999
  ident: e_1_2_6_38_1
  article-title: Organization of the motor centres for the innervation of different muscles of the tongue: a neuromorphological study in the frog
  publication-title: Eur J Morphol
  doi: 10.1076/ejom.37.2.190.4736
  contributor:
    fullname: Matesz C
– ident: e_1_2_6_52_1
  doi: 10.1016/0304-3940(88)90631-3
– volume: 16
  start-page: 183
  year: 1960
  ident: e_1_2_6_22_1
  article-title: A simplified table for staging of anuran embryos and larvae with notes on identification
  publication-title: Herpetologica
  contributor:
    fullname: Gosner KL
– volume: 35
  start-page: 67
  year: 1994
  ident: e_1_2_6_37_1
  article-title: Motoneurons differ in size and peripheral target in the trigeminal and facial nuclear complex of the frog
  publication-title: J Brain Res
  contributor:
    fullname: Matesz C
– volume: 18
  start-page: 28
  year: 1992
  ident: e_1_2_6_11_1
  article-title: Synaptic input to oculomotor motoneurons in the frog
  publication-title: Soc Neurosci Abstr
  contributor:
    fullname: Cochran SL
– ident: e_1_2_6_78_1
  doi: 10.1002/1096-9861(20000814)424:1<47::AID-CNE4>3.0.CO;2-5
– volume: 20
  start-page: 7664
  year: 2000
  ident: e_1_2_6_28_1
  article-title: Facial visceral motor neurons display specific rhombomere origin and axon pathfinding behavior in the chick
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-20-07664.2000
  contributor:
    fullname: Jacob J
– volume: 244
  start-page: 147
  year: 1986
  ident: e_1_2_6_71_1
  article-title: Afferent and efferent components of the facial nerve in a frog, Rana pipiens
  publication-title: Cell Tissue Res
  doi: 10.1007/BF00218392
  contributor:
    fullname: Stuesse SL
– ident: e_1_2_6_9_1
  doi: 10.1002/1096-9861(20001127)427:4<522::AID-CNE3>3.0.CO;2-Y
– ident: e_1_2_6_15_1
  doi: 10.1159/000006564
– ident: e_1_2_6_51_1
  doi: 10.1002/cne.902610308
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1460-9568.1995.tb00693.x
– ident: e_1_2_6_42_1
  doi: 10.1242/dev.00986
– ident: e_1_2_6_39_1
  doi: 10.1002/cne.903310209
– ident: e_1_2_6_34_1
  doi: 10.1016/0304-3940(90)90376-K
– ident: e_1_2_6_27_1
  doi: 10.1007/s002210000670
– ident: e_1_2_6_69_1
  doi: 10.1152/jn.00372.2003
– ident: e_1_2_6_75_1
  doi: 10.1002/cne.902780204
– ident: e_1_2_6_20_1
  doi: 10.1086/BBLv183n2p356
– ident: e_1_2_6_33_1
  doi: 10.1002/(SICI)1096-9861(19970616)382:4<499::AID-CNE6>3.0.CO;2-Y
– ident: e_1_2_6_48_1
  doi: 10.1007/BF00315925
– ident: e_1_2_6_67_1
  doi: 10.1002/cne.1268
– ident: e_1_2_6_14_1
  doi: 10.1038/13172
– ident: e_1_2_6_6_1
  doi: 10.1002/cne.20006
– ident: e_1_2_6_55_1
  doi: 10.1159/000113323
– ident: e_1_2_6_62_1
  doi: 10.1111/j.1460-9568.1993.tb00491.x
– volume: 124
  start-page: 2633
  year: 1997
  ident: e_1_2_6_10_1
  article-title: Development of branchiomotor neurons in zebrafish
  publication-title: Development
  doi: 10.1242/dev.124.13.2633
  contributor:
    fullname: Chandrasekhar A
– ident: e_1_2_6_23_1
  doi: 10.1152/jn.1997.77.5.2765
– volume: 26
  start-page: 310
  year: 2000
  ident: e_1_2_6_66_1
  article-title: Rhombomeric pattern of hindbrain efferent neurons is retained in adult frogs
  publication-title: Soc Neurosci Abstr
  contributor:
    fullname: Straka H
– ident: e_1_2_6_35_1
  doi: 10.1002/cne.901780109
– ident: e_1_2_6_70_1
  doi: 10.1002/cne.902170407
– volume: 122
  start-page: 2143
  year: 1996
  ident: e_1_2_6_77_1
  article-title: Persistence of rhombomeric organisation in the postsegmental hindbrain
  publication-title: Development
  doi: 10.1242/dev.122.7.2143
  contributor:
    fullname: Wingate RJ
– ident: e_1_2_6_16_1
  doi: 10.1016/0304-3940(84)90430-0
– volume-title: A. Ecker's und R. Wiedersheim's Anatomie des Frosches. Bd. II
  year: 1899
  ident: e_1_2_6_19_1
  contributor:
    fullname: Gaupp E
– ident: e_1_2_6_29_1
  doi: 10.1016/0006-8993(86)91072-3
– ident: e_1_2_6_59_1
  doi: 10.1002/cne.903080402
– ident: e_1_2_6_45_1
  doi: 10.1016/0006-8993(87)90639-1
– ident: e_1_2_6_56_1
  doi: 10.1002/cne.1356
– ident: e_1_2_6_68_1
  doi: 10.1016/S0361-9230(01)00670-0
– ident: e_1_2_6_30_1
  doi: 10.1016/0014-4886(85)90130-X
– ident: e_1_2_6_61_1
  doi: 10.1523/JNEUROSCI.09-08-02718.1989
– ident: e_1_2_6_31_1
  doi: 10.1038/337424a0
– volume-title: Development of the vertebrate skull
  year: 1937
  ident: e_1_2_6_12_1
  contributor:
    fullname: de Beer G
– ident: e_1_2_6_58_1
  doi: 10.1016/0896-6273(93)90179-U
– ident: e_1_2_6_64_1
  doi: 10.2307/1542849
– volume: 41
  start-page: 1
  year: 1969
  ident: e_1_2_6_74_1
  article-title: The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation
  publication-title: Ergeb Anat Entwicklungsgesch
  contributor:
    fullname: Vaage S
– ident: e_1_2_6_2_1
  doi: 10.1016/S0304-3940(98)00111-6
– ident: e_1_2_6_21_1
  doi: 10.1159/000147530
– ident: e_1_2_6_8_1
  doi: 10.1016/S0736-5748(96)00120-7
– ident: e_1_2_6_50_1
  doi: 10.1007/978-1-4612-2784-7_16
– ident: e_1_2_6_13_1
  doi: 10.1016/0306-4522(92)90529-B
– ident: e_1_2_6_26_1
  doi: 10.1523/JNEUROSCI.20-01-00206.2000
SSID ssj0009938
Score 2.1243827
Snippet To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively...
Abstract To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were...
SourceID hal
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 228
SubjectTerms Animals
Anura
Body Patterning
cranial nerve
Cranial Nerves - cytology
Cranial Nerves - metabolism
efferent
Efferent Pathways - anatomy & histology
Immunohistochemistry
Larva - anatomy & histology
Larva - growth & development
Life Sciences
motoneuron
Neurobiology
Neurons - cytology
Neurons - metabolism
Neurons and Cognition
Ranidae - anatomy & histology
Ranidae - embryology
Ranidae - growth & development
Rhombencephalon - anatomy & histology
Rhombencephalon - growth & development
rhombomere
Title Preservation of segmental hindbrain organization in adult frogs
URI https://api.istex.fr/ark:/67375/WNG-Q5QNKGB4-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.20801
https://www.ncbi.nlm.nih.gov/pubmed/16320236
https://search.proquest.com/docview/19430039
https://search.proquest.com/docview/70194694
https://hal.science/hal-00091267
Volume 494
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rSxwxEB-spdAvrbW2vVbrIkX8srp5bHaDH8SKerT2QPE4KULIbhIFYbfcQ6R_vZmse1elgvhl2ccsJPnlMZnM_Abgm5BOC57rmEhLY65LF2tu0zjhlkmvohJSYoDzr57o9vmPs_RsDrbbWJiGH2JqcMOREeZrHOC6GG3NSEPLClku8xC7hUR6qBCdzKij_LrbzMLogiBF1rIKJXRr-ue9tejFJXpCvsTGvfmfunlfew3Lz8FbOG8L3nidXG1OxsVm-fcBp-Mza7YAb-7U0mi36UfvYM5Wi_Dqdx2M7u9hBz01WvNtVLtoZC-arADRpd_UF5hnIqr_CeuM_HOg9ojcsL4YLUH_YP90rxvfpV6IS9xTxZlOnSjSjHBCTVYw42cGYnhqLTNC4oVlJkk0MTkerDInuXMe8lJox7Sh7APMV3VlP0FEhDVO5JrqHH1KhSQyNSVxVFKaWOY6sNaCoP40DBuq4VKmyreECi3hhTw80-_Iid3dPVL4DrEmVGTXXmg9oDcV08Mr9FvLUjXoHarj9Lj38_A7V4MOrLbwKj-a8IhEV7aejBRBNvqEycclkL6eC8k78LHpF7NCi5CLXnRgI6D7eG3UXm8_3Hx-uugXeN1af0iyDPPj4cSueH1oXHwNHf8Wl4ACpg
link.rule.ids 230,315,786,790,891,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qi9gvvq3nq4uI-GXbzXM3IEgtbU97Xai0tBQkZDdJC4VduYeIf72ZbPfOigXxy7KPWUgymWRmMvMbgDdSeSN5YVKiHE25qX1quBNpxh1TQUUlpMYE54NSDo_551NxugTv-1yYDh9i7nBDyYjrNQo4OqQ3F6ihdYMwlwUmb60EcRfRoPqyAI8KO2-3DmMQgpJ5jyuU0c35r9d2o1sXGAu5gsP7428K53X9NW5Au_fga9_0Lu7kcmM2rTbqn3-gOv5v3-7D3SvNNNnqptIDWHLNQ7h91ka_-yP4gMEavQc3aX0yceddYYDkItj1FZaaSNrfMjuT8BzRPRI_bs8nj-F4d-doe5heVV9IazSr0twILyuRE06ozStmw-JALBfOMSsVXlhus8wQW-DZKvOKex-4XkvjmbGUPYHlpm3cU0iIdNbLwlBTYFipVEQJWxNPFaWZY34Ar3su6G8dyIbu4JSpDiOh40gEosCf-XeExR5ujTS-Q2YTKvPvgehtZN-czIwvMXQtF_qk3NOH4rDc3_vI9ckA1nv-6iBQeEpiGtfOJpogIH3G1M0UiGDPpeIDWOsmxqLRMpajlwN4F9l7c2_0drkTb579O-k63BkeHYz06FO5_xxWe2cQyV7A8nQ8cy-DejStXkUp-AXUAgbI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSx0xEB6s0tKX2nuP1rqUUvqyurlsdkMfirfjabVLLRVFCiG7SRSEXTkXEX99M1n3nFoqlL4se5mFZCaTTCYz3wC8E9JpwXMdE2lpzHXlYs1tGifcMulNVEIqTHD-WojBIf9ynB7PwccuF6bFh5g63FAzwnyNCn5h3PoMNLSqEeUyx9ytBS4YxSG9_X2GHeUX3nYaxhgEKbIOViih69Nfby1G984wFHIBuXv1N3vztvka1p_-IvzsWt6GnZyvTcblWnX9B6jjf3btMTy6sUujjXYgPYE5Wz-F-ydN8Lo_g08YqtH5b6PGRSN72pYFiM78rr7EQhNR81teZ-SfA7ZH5IbN6eg5HPZ3fmwN4pvaC3GFm6o406kTZZoRTqjJSmb81EAMT61lRki8sMwkiSYmx5NV5iR3zsu8EtoxbSh7AfN1U9tXEBFhjRO5pjrHoFIhiUxNRRyVlCaWuR687YSgLlqIDdWCKVPlOaECJzyRF8_0O4JiDzb2Fb5DWRMqsktP9D5Ib0qmh-cYuJal6qjYVQfpQbG3u8nVUQ9WO_Eqr054RqJr20xGiiAcfcLk3RSIX8-F5D142Y6LWaNFKEYvevAhSPfu3qitYifcLP076So8-LbdV_ufi71leNh5gkjyGubHw4ld8bbRuHwTdOAXuL8Fdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preservation+of+segmental+hindbrain+organization+in+adult+frogs&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Straka%2C+Hans&rft.au=Baker%2C+Robert&rft.au=Gilland%2C+Edwin&rft.date=2006-01-10&rft.issn=0021-9967&rft.volume=494&rft.issue=2&rft.spage=228&rft_id=info:doi/10.1002%2Fcne.20801&rft_id=info%3Apmid%2F16320236&rft.externalDocID=16320236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon