Spatial Gradients of Ecosystem Health Indicators across a Human‐Impacted Semiarid Savanna
Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High‐resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical manag...
Saved in:
Published in | Journal of environmental quality Vol. 47; no. 4; pp. 746 - 757 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High‐resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field‐based approach coupled with statistical modeling and remote sensing to develop accurate, high‐resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100‐km2 landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid‐infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5‐m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out‐of‐bag) random forest model performance for mapping of soil properties, reported using R2, was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg−1 for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions.
Core Ideas
Systematic field sampling coupled with remote sensing produces spatially explicit assessments.
Key indicators of ecosystem health include soil erosion prevalence and herbaceous cover.
Soil organic C dynamics are key indicators of ecosystem health.
There are several key edaphic drivers of SOC, including soil texture and climate. |
---|---|
AbstractList | Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High-resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field-based approach coupled with statistical modeling and remote sensing to develop accurate, high-resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100-km landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid-infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5-m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out-of-bag) random forest model performance for mapping of soil properties, reported using , was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions.Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High-resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field-based approach coupled with statistical modeling and remote sensing to develop accurate, high-resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100-km landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid-infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5-m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out-of-bag) random forest model performance for mapping of soil properties, reported using , was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions. Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High‐resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field‐based approach coupled with statistical modeling and remote sensing to develop accurate, high‐resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100‐km2 landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid‐infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5‐m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out‐of‐bag) random forest model performance for mapping of soil properties, reported using R2, was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg−1 for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions. Core Ideas Systematic field sampling coupled with remote sensing produces spatially explicit assessments. Key indicators of ecosystem health include soil erosion prevalence and herbaceous cover. Soil organic C dynamics are key indicators of ecosystem health. There are several key edaphic drivers of SOC, including soil texture and climate. Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High-resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field-based approach coupled with statistical modeling and remote sensing to develop accurate, high-resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100-km landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid-infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5-m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out-of-bag) random forest model performance for mapping of soil properties, reported using , was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions. Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High‐resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field‐based approach coupled with statistical modeling and remote sensing to develop accurate, high‐resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100‐km² landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid‐infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5‐m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out‐of‐bag) random forest model performance for mapping of soil properties, reported using R², was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg⁻¹ for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions. CORE IDEAS: Systematic field sampling coupled with remote sensing produces spatially explicit assessments. Key indicators of ecosystem health include soil erosion prevalence and herbaceous cover. Soil organic C dynamics are key indicators of ecosystem health. There are several key edaphic drivers of SOC, including soil texture and climate. |
Author | Twine, Wayne Vaughan, Karen Vågen, Tor‐Gunnar Winowiecki, Leigh Ann |
Author_xml | – sequence: 1 givenname: Tor‐Gunnar surname: Vågen fullname: Vågen, Tor‐Gunnar – sequence: 2 givenname: Leigh Ann surname: Winowiecki fullname: Winowiecki, Leigh Ann – sequence: 3 givenname: Wayne surname: Twine fullname: Twine, Wayne organization: School of Animal, Plant and Environmental Sciences, Univ. of the Witwatersrand – sequence: 4 givenname: Karen surname: Vaughan fullname: Vaughan, Karen email: karen.vaughan@uwyo.edu organization: Univ. of Wyoming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30025036$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFLHDEUx0Ox1NX23FuZo5fVl2Qms7kURLbuilCK7amH8CbzhkZmMmuSVfbWj-Bn9JMY3fUiiPCS9wi__x_yfwdsz4-eGPvK4VhwWZ5c040AXh9DLgnwgU14JeupyNcemwCUeS5Ftc8OYrwG4AJq9YntZ1RUINWE_b1aYXLYF-cBW0c-xWLsirkd4yYmGooFYZ_-FUvfOotpDLFAG8aYW7FYD-gf_t8vhxXaRG1xRYPD4PKAt-g9fmYfO-wjfdn1Q_bnx_z32WJ6-fN8eXZ6ObWlUDBtNXRagrZcNJq3jbVag2hLrDlQp3HWqHLWICjVaaEkkFRaUpP_UpLt6k4esqOt7yqMN2uKyQwuWup79DSuoxFSVpmuVPk-CrWUoqrqWUa_7dB1M1BrVsENGDbmJbsMVFvgOZBAnbEu5TBHnwK63nAwTzsyux0ZyJXFWXfySvdi_bbi-1Zx53ravIebi_kv8XTyG9TPBo9CuqVE |
CitedBy_id | crossref_primary_10_1016_j_envdev_2023_100892 crossref_primary_10_1088_2515_7620_acd0f3 crossref_primary_10_1002_ldr_4149 crossref_primary_10_3390_rs11151800 crossref_primary_10_2134_jeq2018_05_0213 crossref_primary_10_3390_w11050910 |
Cites_doi | 10.1002/joc.1314 10.1111/1365-2664.12713 10.1007/s10705-015-9750-1 10.1016/j.gloenvcha.2006.04.002 10.1579/0044-7447-31.6.471 10.1016/j.cosust.2015.09.002 10.1016/j.ecolind.2005.03.017 10.1007/s10705-007-9138-y 10.1080/713683611 10.1007/s10980-011-9578-2 10.1111/gcb.12632 10.1098/rstb.2007.2178 10.1016/j.jaridenv.2005.04.014 10.1016/j.geodrs.2015.06.002 10.2307/2845587 10.1146/annurev.ecolsys.28.1.517 10.1890/ES14-00034.1 10.4102/sajs.v106i7/8.221 10.1006/jare.1997.0283 10.1890/13-0307.1 10.1016/j.geoderma.2005.07.014 10.1016/S0016-7061(03)00223-4 10.1002/(SICI)1097-0088(19970315)17:3<291::AID-JOC120>3.0.CO;2-1 10.1016/j.geoderma.2006.03.026 10.2136/sssaj2002.9880 10.1016/S0160-4120(02)00192-7 10.5194/bg-9-1809-2012 10.1016/j.geoderma.2015.03.010 10.1016/j.geoderma.2007.04.021 10.1016/j.envdev.2016.06.001 10.1126/science.1261071 10.1088/1748-9326/8/1/015011 10.1002/wcc.295 10.2136/sssaj2009.0218 10.3354/cr017145 10.1017/S0376892911000592 10.1016/j.rse.2004.02.005 10.1186/1472-6785-4-17 10.1016/j.geoderma.2017.01.002 10.1016/j.rse.2013.03.006 10.4102/koedoe.v29i1.525 10.1016/j.earscirev.2016.01.012 10.1016/S0006-3207(00)00001-X 10.4141/cjss94-051 10.1002/ldr.644 10.1111/j.1475-4959.2007.00227.x 10.1007/BF00044870 10.2989/AJRF.2009.26.3.2.947 10.1146/annurev.es.04.110173.000245 10.4102/koedoe.v43i1.210 10.1002/(SICI)1099-145X(199905/06)10:3<225::AID-LDR337>3.0.CO;2-T 10.1016/j.foreco.2010.09.012 10.1016/j.ecolind.2011.05.012 10.1007/978-94-007-4676-3_22 10.1016/j.geoderma.2015.06.023 10.1177/0309133309341426 10.1016/j.jaridenv.2013.07.004 10.1046/j.1365-2699.1999.t01-1-00317.x 10.1006/jare.1997.0344 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 10.1080/00103620600819461 10.1007/s00267-003-9110-9 10.2136/sssaj2011.0025 10.1371/journal.pone.0127093 10.1038/nature04070 |
ContentType | Journal Article |
Copyright | 2018 The Authors. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc. |
Copyright_xml | – notice: 2018 The Authors. – notice: Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc. |
DBID | 24P AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.2134/jeq2017.07.0300 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Environmental Sciences |
EISSN | 1537-2537 |
EndPage | 757 |
ExternalDocumentID | 30025036 10_2134_jeq2017_07_0300 JEQ2JEQ2017070300 |
Genre | article Journal Article |
GeographicLocations | South Africa |
GeographicLocations_xml | – name: South Africa |
GrantInformation_xml | – fundername: CGIAR Research Program on Forests, Trees, and Agroforestry – fundername: European Commission funderid: 2000000976 – fundername: University of Wyoming – fundername: College of Agriculture and Natural Resources Global – fundername: International Fund for Agricultural Development (IFAD) funderid: 2000000520 |
GroupedDBID | --- .4S .DC .~0 0R~ 186 18M 1OB 1OC 24P 29K 2WC 33P 3V. 42X 53G 5GY 6KN 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8FE 8FG 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 8WZ A6W AAHBH AAHHS AAHQN AAMNL AANLZ AAYCA ABCQX ABCUV ABDNZ ABJCF ABJNI ABTAH ABUWG ACAWQ ACCFJ ACCZN ACGFO ACGOD ACIWK ACPOU ACPRK ACXQS ACYGS ADBBV ADFRT ADKYN ADYHW ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFFPM AFKRA AFRAH AFWVQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARCSS ATCPS AZQEC BAWUL BCR BCU BEC BENPR BES BFHJK BGLVJ BHPHI BLC BPHCQ BVXVI C1A CCPQU CS3 D-I DCZOG DDYGU DU5 DWQXO E3Z EBS ECGQY EJD F5P FA8 FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HGLYW HMCUK H~9 L6V L7B LATKE LEEKS M0K M1P M2O M2P M2Q M7S MEWTI MV1 NHAZY NHB O9- P2P PATMY PEA PQQKQ PROAC PSQYO PTHSS PYCSY Q2X QF4 QM1 QM4 QN7 RAK ROL RWL RXW S0X SAMSI SJFOW SUPJJ TAE TN5 TR2 TWZ UKHRP UKR VH1 VJK WH7 WOQ WXSBR XJT Y6R ZCA ZY4 ~02 ~KM AAYXX ADXHL AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT NPM YIF YIN 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7S9 L.6 |
ID | FETCH-LOGICAL-c4260-d90f9309c12b91dbcc9902d4a710ef9a8b648ba066f92630e3693eb1204ecf7f3 |
IEDL.DBID | 24P |
ISSN | 0047-2425 |
IngestDate | Fri Jul 11 18:32:12 EDT 2025 Fri Jul 11 09:23:16 EDT 2025 Wed Feb 19 02:44:43 EST 2025 Thu Apr 24 23:09:04 EDT 2025 Tue Jul 01 03:32:59 EDT 2025 Wed Jan 22 16:36:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution-NonCommercial-NoDerivs Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4260-d90f9309c12b91dbcc9902d4a710ef9a8b648ba066f92630e3693eb1204ecf7f3 |
Notes | Assigned to Associate Editor Hero Gollany. All rights reserved. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fjeq2017.07.0300 |
PMID | 30025036 |
PQID | 2073325578 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2335120564 proquest_miscellaneous_2073325578 pubmed_primary_30025036 crossref_citationtrail_10_2134_jeq2017_07_0300 crossref_primary_10_2134_jeq2017_07_0300 wiley_primary_10_2134_jeq2017_07_0300_JEQ2JEQ2017070300 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July-August 2018 2018-07-00 2018-Jul 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July-August 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of environmental quality |
PublicationTitleAlternate | J Environ Qual |
PublicationYear | 2018 |
Publisher | The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc |
Publisher_xml | – name: The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc |
References | 2007; 140 2010; 106 2000; 43 1993; 20 2006; 37 2000; 94 2004; 4 2014; 24 2012; 16 2015; 348 1939 2001; 45 2013; 8 2016; 263 2006; 133 2006; 136 2003; 99 2004; 33 2014; 5 2006; 64 2007; 173 2013; 97 2006; 26 1997; 17 2016; 155 1999; 10 2001; 17 2011; 26 2001; 11 1994; 74 2010; 74 2015; 15 2015; 5 2016; 19 1994; 115 2016a; 263 2012 2000; 26 2002; 31 2006; 16 1999; 26 2015; 10 2011; 75 2005; 438 2016; 53 2017; 292 1997; 28 2006 2005 2012; 39 2013b 2004; 91 2008; 363 2006; 117 2009; 26 1998; 38 2009; 33 1997; 37 2015; 21 2002; 66 2005; 5 1986; 29 2016b; 105 2003; 29 2013a; 134 2015 2014 1928 2005; 16 2011; 261 2008; 81 2012; 9 1973; 4 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 Vågen T.‐G. (e_1_2_7_60_1) 2012 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 Braun‐Blanquet J (e_1_2_7_5_1) 1928 e_1_2_7_26_1 e_1_2_7_28_1 Breiman L (e_1_2_7_6_1) 2001; 45 Coetzer K.L. (e_1_2_7_8_1) 2010; 106 Mills A. (e_1_2_7_33_1) 2003; 99 e_1_2_7_73_1 McBratney A.B. (e_1_2_7_31_1) 2006; 117 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Shackleton C.M. (e_1_2_7_49_1) 1994; 115 Bennett H.H (e_1_2_7_4_1) 1939 Rutherford M. (e_1_2_7_43_1) 2006 Scholtz R. (e_1_2_7_47_1) 2014 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 Millennium Ecosystem Assessment (e_1_2_7_32_1) 2005 Smith P. (e_1_2_7_54_1) 2014 e_1_2_7_48_1 Vågen T.‐G. (e_1_2_7_65_1) 2013 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_55_1 Tews J. (e_1_2_7_56_1) 2004; 4 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Wand M (e_1_2_7_69_1) 2015 |
References_xml | – volume: 133 start-page: 281 year: 2006 end-page: 294 article-title: Sensing landscape level change in soil fertility following deforestation and conversion in the highlands of Madagascar using Vis‐NIR spectroscopy publication-title: Geoderma – volume: 173 start-page: 26 year: 2007 end-page: 42 article-title: Land‐cover change and human‐environment interactions in a rural cultural landscape in South Africa publication-title: Geogr. J. – volume: 115 start-page: 157 year: 1994 end-page: 167 article-title: Community structure and species composition along a disturbance gradient in a communally managed South African savanna publication-title: Vegetatio – volume: 64 start-page: 251 year: 2006 end-page: 269 article-title: Soil quality gradients around water‐points under different management systems in a semi‐arid savanna, South Africa publication-title: J. Arid Environ. – volume: 16 start-page: 53 year: 2005 end-page: 71 article-title: Soil carbon sequestration in sub‐Saharan Africa: A review publication-title: Land Degrad. Dev. – volume: 363 start-page: 685 year: 2008 end-page: 701 article-title: Soil health in agricultural systems publication-title: Philos. Trans. R. Soc., B. – volume: 66 start-page: 988 year: 2002 end-page: 998 article-title: Development of reflectance libraries for characterization of soil properties publication-title: Soil Sci. Soc. Am. J. – year: 2005 – volume: 99 start-page: 429 year: 2003 end-page: 436 article-title: Declining soil quality in South Africa: Effects of land use on soil organic matter and surface crusting publication-title: S. Afr. J. Sci. – volume: 39 start-page: 72 year: 2012 end-page: 82 article-title: Human‐modified landscapes: Patterns of fine‐scale woody vegetation structure in communal savannah rangelands publication-title: Environ. Conserv. – volume: 37 start-page: 2307 year: 2006 end-page: 2325 article-title: Can near or mid‐infrared diffuse reflectance spectroscopy be used to determine soil carbon pools? publication-title: Commun. Soil Sci. Plant Anal. – volume: 11 start-page: 343 year: 2001 end-page: 355 article-title: Grassland management and conversion into grassland: Effects on soil carbon publication-title: Ecol. Appl. – volume: 28 start-page: 517 year: 1997 end-page: 544 article-title: Tree‐grass interactions in savannas publication-title: Annu. Rev. Ecol. Syst. – volume: 261 start-page: 19 year: 2011 end-page: 29 article-title: Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa publication-title: For. Ecol. Manage. – volume: 9 start-page: 1809 year: 2012 end-page: 1821 article-title: Topo‐edaphic controls over woody plant biomass in South African savannas publication-title: Biogeosciences – volume: 33 start-page: 307 year: 2009 end-page: 318 article-title: Effects of rainfall change on water erosion processes in terrestrial ecosystems: A review publication-title: Prog. Phys. Geogr. – volume: 155 start-page: 198 year: 2016 end-page: 230 article-title: A global spectral library to characterize the world's soil publication-title: Earth‐Sci. Rev. – volume: 91 start-page: 47 year: 2004 end-page: 67 article-title: Assessing the effects of human‐induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time‐series publication-title: Remote Sens. Environ. – volume: 10 year: 2015 article-title: Biomass increases go under cover: Woody vegetation dynamics in South African rangelands publication-title: PLoS One – volume: 134 start-page: 266 year: 2013a end-page: 275 article-title: Landsat‐based approaches for mapping of land degradation prevalence and soil functional properties in Ethiopia publication-title: Remote Sens. Environ. – volume: 53 start-page: 1766 year: 2016 end-page: 1776 article-title: Fuelwood sustainability revisited: Integrating size structure and resprouting into a spatially realistic fuelshed model publication-title: J. Appl. Ecol. – volume: 37 start-page: 319 year: 1997 end-page: 329 article-title: Changes in herbaceous layer condition under contrasting land‐use systems in the semi‐arid Lowveld, South Africa publication-title: J. Arid Environ. – volume: 348 start-page: 1261071 year: 2015 article-title: Soil and human security in the 21st century publication-title: Science – volume: 33 start-page: 528 year: 2004 end-page: 544 article-title: Carbon sequestration in dryland ecosystems publication-title: Environ. Manage. – volume: 97 start-page: 220 year: 2013 end-page: 229 article-title: Rangeland management impacts on the properties of clayey soils along grazing gradients in the semi‐arid grassland biome of South Africa publication-title: J. Arid Environ. – volume: 16 start-page: 67 year: 2012 end-page: 75 article-title: Soil ecosystem health and services– Evaluation of ecological indicators susceptible to chemical stressors publication-title: Ecol. Indic. – volume: 38 start-page: 379 year: 1998 end-page: 396 article-title: Analysis of soil organic carbon and vegetation cover trends along the Botswana Kalahari transect publication-title: J. Arid Environ. – volume: 29 start-page: 125 year: 1986 end-page: 138 article-title: Soil patterns associated with major geological units of the Kruger National Park publication-title: Koedoe – volume: 5 start-page: 157 year: 2015 end-page: 168 article-title: Total elemental composition of soil in sub‐Saharan Africa and relationship with soil forming factors publication-title: Geoderma Reg. – volume: 26 start-page: 619 year: 1999 end-page: 627 article-title: Changes in woody community structure and composition under contrasting land use systems in a semi‐arid savanna, South Africa publication-title: J. Biogeogr. – volume: 24 start-page: 84 year: 2014 end-page: 93 article-title: Landscape‐scale variation in plant community composition of an African savanna from airborne species mapping publication-title: Ecol. Appl. – year: 1928 – volume: 43 start-page: 75 year: 2000 end-page: 81 article-title: Impact of fire frequency on woody community structure and soil nutrients in the Kruger National Park publication-title: Koedoe – start-page: 439 year: 2006 end-page: 539 – volume: 16 start-page: 253 year: 2006 end-page: 267 article-title: Resilience: The emergence of a perspective for social–ecological systems analyses publication-title: Glob. Environ. Change – volume: 17 start-page: 291 year: 1997 end-page: 301 article-title: Simulated changes in extreme rainfall over southern Africa publication-title: Int. J. Climatol. – volume: 263 start-page: 216 year: 2016 end-page: 225 article-title: Mapping of soil properties and land degradation risk in Africa using MODIS reflectance publication-title: Geoderma – volume: 75 start-page: 1201 year: 2011 end-page: 1213 article-title: Digital soil mapping and modeling at continental scales: Finding solution for global issues publication-title: Soil Sci. Soc. Am. J. – year: 2015 – volume: 26 start-page: 1315 year: 2006 end-page: 1337 article-title: Consensus between GCM climate change projections with empirical downscaling: Precipitation downscaling over South Africa publication-title: Int. J. Climatol. – volume: 74 start-page: 1792 year: 2010 end-page: 1799 article-title: Prediction of soil fertility properties from a globally distributed soil mid‐infrared spectral library publication-title: Soil Sci. Soc. Am. J. – volume: 5 start-page: 280 year: 2005 end-page: 294 article-title: Indicating ecosystem and landscape organisation publication-title: Ecol. Indic. – year: 1939 – volume: 136 start-page: 245 year: 2006 end-page: 259 article-title: Mid‐ and near‐infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols publication-title: Geoderma – volume: 94 start-page: 273 year: 2000 end-page: 285 article-title: Comparison of plant diversity in protected and communal lands in the Bushbuckridge Lowveld savanna, South Africa publication-title: Biol. Conserv. – start-page: 811 year: 2014 end-page: 922 – volume: 4 year: 2004 article-title: Modelling the impact of climate change on woody plant population dynamics in South African savanna publication-title: BMC Ecol. – volume: 263 start-page: 274 year: 2016a end-page: 283 article-title: Effects of land cover on ecosystem services in Tanzania: A spatial assessment of soil organic carbon publication-title: Geoderma – volume: 21 start-page: 10 year: 2015 end-page: 11 article-title: Soil spectroscopy: An opportunity to be seized publication-title: Global Change Biol. – volume: 4 start-page: 1 year: 1973 end-page: 23 article-title: Resilience and stability of ecological systems publication-title: Annu. Rev. Ecol. Syst. – volume: 81 start-page: 169 year: 2008 end-page: 178 article-title: Land use change and soil organic carbon dynamics publication-title: Nutr. Cycling Agroecosyst. – volume: 45 start-page: 35 year: 2001 article-title: Random forests publication-title: Mach. Learn. – volume: 15 start-page: 79 year: 2015 end-page: 86 article-title: Carbon sequestration in soil publication-title: Curr. Opin. Environ. Sustain. – volume: 8 start-page: 015011 year: 2013 article-title: Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential publication-title: Environ. Res. Lett. – volume: 5 start-page: 605 year: 2014 end-page: 620 article-title: Climate change impacts and adaptation in South Africa publication-title: Wiley Interdiscip. Rev. Clim. Chang. – volume: 292 start-page: 59 year: 2017 end-page: 86 article-title: Geoderma soil carbon 4 per mille publication-title: Geoderma – year: 2013b – volume: 31 start-page: 471 year: 2002 end-page: 477 article-title: Soil carbon sequestration in degraded semiarid agro‐ecosystems: Perils and potentials publication-title: Ambio – volume: 117 start-page: 3 year: 2006 end-page: 52 article-title: On digital soil mapping publication-title: Geoderma – volume: 438 start-page: 846 year: 2005 end-page: 849 article-title: Determinants of woody cover in African savannas publication-title: Nature – volume: 26 start-page: 743 year: 2000 end-page: 758 article-title: A national review of land degradation in South Africa: The influence of biophysical and socio‐economic factors publication-title: J. South. Afr. Stud. – volume: 29 start-page: 437 year: 2003 end-page: 450 article-title: Soil erosion and the global carbon budget publication-title: Environ. Int. – start-page: 455 year: 2012 end-page: 462 – volume: 74 start-page: 367 year: 1994 end-page: 385 article-title: Towards a minimum data set to assess soil organic matter quality in agricultural soils publication-title: Can. J. Soil Sci. – volume: 26 start-page: 113 year: 2009 end-page: 125 article-title: Syndromes of dryland degradation in southern Africa publication-title: Afr. J. Range Forage Sci. – volume: 10 start-page: 225 year: 1999 end-page: 239 article-title: Resilience of South African communal grazing lands after the removal of high grazing pressure publication-title: Land Degrad. Dev. – volume: 105 start-page: 263 year: 2016b end-page: 274 article-title: Landscape‐scale variability of soil health indicators: Effects of cultivation on soil organic carbon in the Usambara Mountains of Tanzania publication-title: Nutr. Cycling Agroecosyst. – volume: 19 start-page: 70 year: 2016 end-page: 74 article-title: Grazing lands in sub‐Saharan Africa and their potential role in climate change mitigation: What we do and don't know publication-title: Environ. Dev. – volume: 17 start-page: 145 year: 2001 end-page: 168 article-title: African climate change: 1900‐2100 publication-title: Clim. Res. – year: 2014 article-title: Identifying drivers that influence the spatial distribution of woody vegetation in Kruger National Park, South Africa publication-title: Ecosphere 5:art71 – volume: 106 start-page: 1 year: 2010 end-page: 10 article-title: Land‐cover change in the Kruger to Canyons Biosphere Reserve (1993– 2006): A first step towards creating a conservation plan for the subregion publication-title: S. Afr. J. Sci. – volume: 20 start-page: 383 year: 1993 end-page: 398 article-title: Landscape and climatic control of woody vegetation in a dry tropical ecosystem: Turkana District publication-title: J. Biogeogr. – volume: 140 start-page: 444 year: 2007 end-page: 453 article-title: Using a global VNIR soil‐spectral library for local soil characterization and landscape modeling in a 2nd‐order Uganda watershed publication-title: Geoderma – volume: 26 start-page: 515 year: 2011 end-page: 528 article-title: Context‐dependent vegetation dynamics in an African savanna publication-title: Landsc. Ecol. – ident: e_1_2_7_18_1 doi: 10.1002/joc.1314 – ident: e_1_2_7_59_1 doi: 10.1111/1365-2664.12713 – ident: e_1_2_7_74_1 doi: 10.1007/s10705-015-9750-1 – ident: e_1_2_7_13_1 doi: 10.1016/j.gloenvcha.2006.04.002 – volume: 99 start-page: 429 year: 2003 ident: e_1_2_7_33_1 article-title: Declining soil quality in South Africa: Effects of land use on soil organic matter and surface crusting publication-title: S. Afr. J. Sci. – ident: e_1_2_7_39_1 doi: 10.1579/0044-7447-31.6.471 – ident: e_1_2_7_27_1 doi: 10.1016/j.cosust.2015.09.002 – ident: e_1_2_7_37_1 doi: 10.1016/j.ecolind.2005.03.017 – ident: e_1_2_7_53_1 doi: 10.1007/s10705-007-9138-y – ident: e_1_2_7_20_1 doi: 10.1080/713683611 – ident: e_1_2_7_28_1 doi: 10.1007/s10980-011-9578-2 – ident: e_1_2_7_38_1 doi: 10.1111/gcb.12632 – ident: e_1_2_7_23_1 doi: 10.1098/rstb.2007.2178 – ident: e_1_2_7_52_1 doi: 10.1016/j.jaridenv.2005.04.014 – ident: e_1_2_7_58_1 doi: 10.1016/j.geodrs.2015.06.002 – ident: e_1_2_7_11_1 doi: 10.2307/2845587 – ident: e_1_2_7_46_1 doi: 10.1146/annurev.ecolsys.28.1.517 – year: 2014 ident: e_1_2_7_47_1 article-title: Identifying drivers that influence the spatial distribution of woody vegetation in Kruger National Park, South Africa publication-title: Ecosphere 5:art71 doi: 10.1890/ES14-00034.1 – volume: 106 start-page: 1 year: 2010 ident: e_1_2_7_8_1 article-title: Land‐cover change in the Kruger to Canyons Biosphere Reserve (1993– 2006): A first step towards creating a conservation plan for the subregion publication-title: S. Afr. J. Sci. doi: 10.4102/sajs.v106i7/8.221 – start-page: 811 volume-title: Climate Change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2014 ident: e_1_2_7_54_1 – ident: e_1_2_7_40_1 doi: 10.1006/jare.1997.0283 – ident: e_1_2_7_3_1 doi: 10.1890/13-0307.1 – ident: e_1_2_7_62_1 doi: 10.1016/j.geoderma.2005.07.014 – volume: 117 start-page: 3 year: 2006 ident: e_1_2_7_31_1 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – ident: e_1_2_7_30_1 doi: 10.1002/(SICI)1097-0088(19970315)17:3<291::AID-JOC120>3.0.CO;2-1 – ident: e_1_2_7_29_1 doi: 10.1016/j.geoderma.2006.03.026 – ident: e_1_2_7_51_1 doi: 10.2136/sssaj2002.9880 – ident: e_1_2_7_25_1 doi: 10.1016/S0160-4120(02)00192-7 – ident: e_1_2_7_9_1 doi: 10.5194/bg-9-1809-2012 – ident: e_1_2_7_73_1 doi: 10.1016/j.geoderma.2015.03.010 – ident: e_1_2_7_7_1 doi: 10.1016/j.geoderma.2007.04.021 – ident: e_1_2_7_34_1 doi: 10.1016/j.envdev.2016.06.001 – ident: e_1_2_7_2_1 doi: 10.1126/science.1261071 – volume: 45 start-page: 35 year: 2001 ident: e_1_2_7_6_1 article-title: Random forests publication-title: Mach. Learn. – ident: e_1_2_7_63_1 doi: 10.1088/1748-9326/8/1/015011 – ident: e_1_2_7_75_1 doi: 10.1002/wcc.295 – ident: e_1_2_7_55_1 doi: 10.2136/sssaj2009.0218 – ident: e_1_2_7_22_1 doi: 10.3354/cr017145 – volume-title: Soil conservation year: 1939 ident: e_1_2_7_4_1 – ident: e_1_2_7_12_1 doi: 10.1017/S0376892911000592 – ident: e_1_2_7_72_1 doi: 10.1016/j.rse.2004.02.005 – volume: 4 year: 2004 ident: e_1_2_7_56_1 article-title: Modelling the impact of climate change on woody plant population dynamics in South African savanna publication-title: BMC Ecol. doi: 10.1186/1472-6785-4-17 – volume-title: Field Guide 4.1 year: 2013 ident: e_1_2_7_65_1 – ident: e_1_2_7_35_1 doi: 10.1016/j.geoderma.2017.01.002 – ident: e_1_2_7_64_1 doi: 10.1016/j.rse.2013.03.006 – ident: e_1_2_7_67_1 doi: 10.4102/koedoe.v29i1.525 – ident: e_1_2_7_68_1 doi: 10.1016/j.earscirev.2016.01.012 – ident: e_1_2_7_48_1 doi: 10.1016/S0006-3207(00)00001-X – ident: e_1_2_7_15_1 doi: 10.4141/cjss94-051 – ident: e_1_2_7_61_1 doi: 10.1002/ldr.644 – ident: e_1_2_7_14_1 doi: 10.1111/j.1475-4959.2007.00227.x – volume-title: Pflanzensoziologie: Grundzüge der Vegetationskunde year: 1928 ident: e_1_2_7_5_1 – volume: 115 start-page: 157 year: 1994 ident: e_1_2_7_49_1 article-title: Community structure and species composition along a disturbance gradient in a communally managed South African savanna publication-title: Vegetatio doi: 10.1007/BF00044870 – volume-title: R Found. Stat year: 2015 ident: e_1_2_7_69_1 – ident: e_1_2_7_45_1 doi: 10.2989/AJRF.2009.26.3.2.947 – ident: e_1_2_7_21_1 doi: 10.1146/annurev.es.04.110173.000245 – ident: e_1_2_7_50_1 doi: 10.4102/koedoe.v43i1.210 – ident: e_1_2_7_17_1 doi: 10.1002/(SICI)1099-145X(199905/06)10:3<225::AID-LDR337>3.0.CO;2-T – ident: e_1_2_7_71_1 doi: 10.1016/j.foreco.2010.09.012 – ident: e_1_2_7_57_1 doi: 10.1016/j.ecolind.2011.05.012 – start-page: 455 volume-title: Agroforestry: The future of global land use year: 2012 ident: e_1_2_7_60_1 doi: 10.1007/978-94-007-4676-3_22 – ident: e_1_2_7_66_1 doi: 10.1016/j.geoderma.2015.06.023 – volume-title: Millennium Ecosyst year: 2005 ident: e_1_2_7_32_1 – ident: e_1_2_7_70_1 doi: 10.1177/0309133309341426 – start-page: 439 volume-title: The vegetation of South Africa, Lesotho and Swaziland, Strelitzia. South African Biodiv year: 2006 ident: e_1_2_7_43_1 – ident: e_1_2_7_24_1 doi: 10.1016/j.jaridenv.2013.07.004 – ident: e_1_2_7_19_1 doi: 10.1046/j.1365-2699.1999.t01-1-00317.x – ident: e_1_2_7_42_1 doi: 10.1006/jare.1997.0344 – ident: e_1_2_7_10_1 doi: 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2 – ident: e_1_2_7_41_1 doi: 10.1080/00103620600819461 – ident: e_1_2_7_26_1 doi: 10.1007/s00267-003-9110-9 – ident: e_1_2_7_16_1 doi: 10.2136/sssaj2011.0025 – ident: e_1_2_7_36_1 doi: 10.1371/journal.pone.0127093 – ident: e_1_2_7_44_1 doi: 10.1038/nature04070 |
SSID | ssj0012076 |
Score | 2.2872593 |
Snippet | Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 746 |
SubjectTerms | algorithms clay climatic factors ecosystems environmental health land management landscapes model validation prediction remote sensing sand sand fraction savannas soil erosion soil organic carbon soil texture South Africa spectroscopy statistical models topsoil |
Title | Spatial Gradients of Ecosystem Health Indicators across a Human‐Impacted Semiarid Savanna |
URI | https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fjeq2017.07.0300 https://www.ncbi.nlm.nih.gov/pubmed/30025036 https://www.proquest.com/docview/2073325578 https://www.proquest.com/docview/2335120564 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2Ib-uLCB68rGaTbB9HkXVXQVF0YcFDyVME7eo-7v4Ef6O_xJm0u6KigtCWFtI0dDKZb5LMN4TsWYmrW8LUfKLBQTHQjZVoICGABWvkrWcc453PL-J2R551G-PdhBgLU_JDTCbcUDPCeI0KrnTIQoIcZKjk7hmMVxKoNwUDr30GA2xxVx-Xl5OFBM5CfjkWCAmgf5bsPljF4ZcKPhumb2jzM3gN1udkgcxXsJEelXJeJFOuWCJzR3f9ijrDLZHV5kfMGhStlHawTG4x7TB0M9rqh_1dwwHtedo0vZLFmZaRSPS0wCUbTL5DVWgiVTRM8b-9vJ6GWEpn6bV7vAfvGm4UQPBCrZDOSfPmuF2rcirUDHLR12zGfCZYZupcZ3WrjQFzxK1UgDScz1SqY5lqBUDEZzwWzIk4EzCecyad8YkXq2S66BVunVBlleNMO_AQlXTCaOltnNkkFc7XtUwjcjD-obmpCMcx78VDDo4HSiCvJJAzOEACEdmfvPBUcm38XHR3LKEc9AEXOVTheqNBzjELJfhJSfpLGSEA5wD0kxFZK8U7-aAIqFDEEUmCvP9qSX7WvOJ4IhERDp9s499vbpJZeEjL3cBbZHrYH7ltwDxDvRN6NVxb3fo7VBj4IA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC6MOSQeJPER17w6ECGXNb3d7TwOOUiyZtcXkSgIHsZ-iqCzursScstPyG_JT8ovSVXP7IoGFQRhBgame6bp6np1dX0F8N4pim5J2wypQQfF4jLWcoUAARxqo-ACF5TvvLWddPbU-v7K_gT8GeXCVPgQ4w034owor4nBaUM6nl1uSUVc7s9Re6URe1NyXh-s3PA_f6DbNvjU_YI0XhJirb37udOsKws0LSGyN13OQy55blvC5C1nrEWhLJzSqG99yHVmEpUZjeo45CKR3MsklyjVBFfehjRI_O4jeKwSkVLVBKG-jSMXgseCdjwiICBDVHBCNOSP1wZ8VRP-Z95etZajult7BtO1ncpWq4X1HCZ8OQNTq0f9GqvDz8B8-zJJDpvWUmIwCwdU5xjXNfvajwfKhgPWC6xtexVsNKtSn1i3pBgRVfthOg6RaRZjCn9__e7G5E3v2Hd_eozuPD5otPlLPQd7DzLV8zBZ9kq_AEw77QU3Hl1Srby0RgWX5C7NpA8to7IGLI8mtLA1wjkV2jgp0NMhChQ1BQqOF1KgAR_GHc4qcI-bm74bUahABqSoii5972JQCCp7iY5Zmt3SRko0rNDWVA14UZF3_EMZzVCZNCCN9L5rJMV6e0fQTchHJK_54r17voUnnd2tzWKzu73xEp7ii6w6ivwKJof9C_8aDa6heRNXOIPDh2apf5-VNAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC7UQDCHkBhNNi87YMDLmt7u3nkccpC4G9cXigqCh7GfIiSzZncl5JafkL-Sv5Rfkqqe2RUjKgSEGRiGnpmmq-s1VfUVwJJTFN2SthlSgw6KxW2sZZsAARxqo-ACF1TvvL2TrB-qjaP20RT8HtfCVPgQkx9uxBlRXhODn7sQU5dbUhGT-2-ovNIIvSk5r_MqN_2P7-i1DT_21pDE74Xodg4-rTfrxgJNS4DsTZfzkEue25YwecsZa1EmC6c0qlsfcp2ZRGVGozYOuUgk9zLJJQo1wZW3IQ0S3zsNDyjESFlkQu1OAheCx352PAIgID9UaEI05Q__TPiqIrxm3V41lqO26z6Bx7WZylarffUUpnw5B49WTwc1VIefg4XOZY0cDq2FxPAZHFObY9zW7PMg5pONhqwfWMf2K9RoVlU-sV5JISJq9sN0nCLTLIYU_vz81Yu1m96xff_1DL15vNBo8pd6Hg7vZakXYKbsl_4FMO20F9x49Ei18tIaFVySuzSTPrSMyhqwMl7QwtYA59Rn40uBjg5RoKgpUHA8kAINWJ48cF5he9w89N2YQgXyHwVVdOn7F8NCUNdL9MvS7JYxUqJdhaamasDziryTD8pohcqkAWmk910zKTY6e4JOAj4icc1f_veTi_Bwd61bbPV2Nl_BLN7PqkTk1zAzGlz4N2hujczbuMEZnNw3R_0FguEzMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Gradients+of+Ecosystem+Health+Indicators+across+a+Human%E2%80%90Impacted+Semiarid+Savanna&rft.jtitle=Journal+of+environmental+quality&rft.au=V%C3%A5gen%2C+Tor%E2%80%90Gunnar&rft.au=Winowiecki%2C+Leigh+Ann&rft.au=Twine%2C+Wayne&rft.au=Vaughan%2C+Karen&rft.date=2018-07-01&rft.issn=0047-2425&rft.eissn=1537-2537&rft.volume=47&rft.issue=4&rft.spage=746&rft.epage=757&rft_id=info:doi/10.2134%2Fjeq2017.07.0300&rft.externalDBID=n%2Fa&rft.externalDocID=10_2134_jeq2017_07_0300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-2425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-2425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-2425&client=summon |