Spatial Gradients of Ecosystem Health Indicators across a Human‐Impacted Semiarid Savanna

Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High‐resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical manag...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental quality Vol. 47; no. 4; pp. 746 - 757
Main Authors Vågen, Tor‐Gunnar, Winowiecki, Leigh Ann, Twine, Wayne, Vaughan, Karen
Format Journal Article
LanguageEnglish
Published United States The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High‐resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field‐based approach coupled with statistical modeling and remote sensing to develop accurate, high‐resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100‐km2 landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid‐infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5‐m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out‐of‐bag) random forest model performance for mapping of soil properties, reported using R2, was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg−1 for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions. Core Ideas Systematic field sampling coupled with remote sensing produces spatially explicit assessments. Key indicators of ecosystem health include soil erosion prevalence and herbaceous cover. Soil organic C dynamics are key indicators of ecosystem health. There are several key edaphic drivers of SOC, including soil texture and climate.
AbstractList Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High-resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field-based approach coupled with statistical modeling and remote sensing to develop accurate, high-resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100-km landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid-infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5-m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out-of-bag) random forest model performance for mapping of soil properties, reported using , was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions.Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High-resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field-based approach coupled with statistical modeling and remote sensing to develop accurate, high-resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100-km landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid-infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5-m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out-of-bag) random forest model performance for mapping of soil properties, reported using , was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions.
Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High‐resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field‐based approach coupled with statistical modeling and remote sensing to develop accurate, high‐resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100‐km2 landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid‐infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5‐m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out‐of‐bag) random forest model performance for mapping of soil properties, reported using R2, was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg−1 for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions. Core Ideas Systematic field sampling coupled with remote sensing produces spatially explicit assessments. Key indicators of ecosystem health include soil erosion prevalence and herbaceous cover. Soil organic C dynamics are key indicators of ecosystem health. There are several key edaphic drivers of SOC, including soil texture and climate.
Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High-resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field-based approach coupled with statistical modeling and remote sensing to develop accurate, high-resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100-km landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid-infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5-m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out-of-bag) random forest model performance for mapping of soil properties, reported using , was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions.
Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution across the landscape. High‐resolution maps of key indicators of ecosystem health can enable assessments of these drivers and aid in critical management decisions. This study used a systematic field‐based approach coupled with statistical modeling and remote sensing to develop accurate, high‐resolution maps of key indicators of ecosystem health across savanna ecosystems in South Africa. Two 100‐km² landscapes in Bushbuckridge Local Municipality were surveyed, and 320 composite topsoil samples were collected. Mid‐infrared spectroscopy was used to predict soil properties, with good performance for all models and root mean squared error of prediction (RMSEP) values of 1.3, 0.2, 5, and 3.6 for SOC, pH, sand, and clay, respectively. Validation results for the mapping of soil erosion prevalence and herbaceous cover using RapidEye imagery at 5‐m spatial resolution showed good model performance with area under the curve values of 0.80 and 0.86, respectively. The overall (out‐of‐bag) random forest model performance for mapping of soil properties, reported using R², was 0.8, 0.77, and 0.82 for SOC, pH, and sand, respectively. Calibration model performance was good, with RMSEP values of 2.6 g kg⁻¹ for SOC, 0.2 for pH, and 6% for sand content. Strong gradients of increasing SOC and pH corresponded with decreasing sand content between the study sites. Although both sites had low SOC overall, important driving factors of SOC dynamics included soil texture, soil erosion prevalence, and climate. These data will inform strategic land management decisions focused particularly on improving ecosystem conditions. CORE IDEAS: Systematic field sampling coupled with remote sensing produces spatially explicit assessments. Key indicators of ecosystem health include soil erosion prevalence and herbaceous cover. Soil organic C dynamics are key indicators of ecosystem health. There are several key edaphic drivers of SOC, including soil texture and climate.
Author Twine, Wayne
Vaughan, Karen
Vågen, Tor‐Gunnar
Winowiecki, Leigh Ann
Author_xml – sequence: 1
  givenname: Tor‐Gunnar
  surname: Vågen
  fullname: Vågen, Tor‐Gunnar
– sequence: 2
  givenname: Leigh Ann
  surname: Winowiecki
  fullname: Winowiecki, Leigh Ann
– sequence: 3
  givenname: Wayne
  surname: Twine
  fullname: Twine, Wayne
  organization: School of Animal, Plant and Environmental Sciences, Univ. of the Witwatersrand
– sequence: 4
  givenname: Karen
  surname: Vaughan
  fullname: Vaughan, Karen
  email: karen.vaughan@uwyo.edu
  organization: Univ. of Wyoming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30025036$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFLHDEUx0Ox1NX23FuZo5fVl2Qms7kURLbuilCK7amH8CbzhkZmMmuSVfbWj-Bn9JMY3fUiiPCS9wi__x_yfwdsz4-eGPvK4VhwWZ5c040AXh9DLgnwgU14JeupyNcemwCUeS5Ftc8OYrwG4AJq9YntZ1RUINWE_b1aYXLYF-cBW0c-xWLsirkd4yYmGooFYZ_-FUvfOotpDLFAG8aYW7FYD-gf_t8vhxXaRG1xRYPD4PKAt-g9fmYfO-wjfdn1Q_bnx_z32WJ6-fN8eXZ6ObWlUDBtNXRagrZcNJq3jbVag2hLrDlQp3HWqHLWICjVaaEkkFRaUpP_UpLt6k4esqOt7yqMN2uKyQwuWup79DSuoxFSVpmuVPk-CrWUoqrqWUa_7dB1M1BrVsENGDbmJbsMVFvgOZBAnbEu5TBHnwK63nAwTzsyux0ZyJXFWXfySvdi_bbi-1Zx53ravIebi_kv8XTyG9TPBo9CuqVE
CitedBy_id crossref_primary_10_1016_j_envdev_2023_100892
crossref_primary_10_1088_2515_7620_acd0f3
crossref_primary_10_1002_ldr_4149
crossref_primary_10_3390_rs11151800
crossref_primary_10_2134_jeq2018_05_0213
crossref_primary_10_3390_w11050910
Cites_doi 10.1002/joc.1314
10.1111/1365-2664.12713
10.1007/s10705-015-9750-1
10.1016/j.gloenvcha.2006.04.002
10.1579/0044-7447-31.6.471
10.1016/j.cosust.2015.09.002
10.1016/j.ecolind.2005.03.017
10.1007/s10705-007-9138-y
10.1080/713683611
10.1007/s10980-011-9578-2
10.1111/gcb.12632
10.1098/rstb.2007.2178
10.1016/j.jaridenv.2005.04.014
10.1016/j.geodrs.2015.06.002
10.2307/2845587
10.1146/annurev.ecolsys.28.1.517
10.1890/ES14-00034.1
10.4102/sajs.v106i7/8.221
10.1006/jare.1997.0283
10.1890/13-0307.1
10.1016/j.geoderma.2005.07.014
10.1016/S0016-7061(03)00223-4
10.1002/(SICI)1097-0088(19970315)17:3<291::AID-JOC120>3.0.CO;2-1
10.1016/j.geoderma.2006.03.026
10.2136/sssaj2002.9880
10.1016/S0160-4120(02)00192-7
10.5194/bg-9-1809-2012
10.1016/j.geoderma.2015.03.010
10.1016/j.geoderma.2007.04.021
10.1016/j.envdev.2016.06.001
10.1126/science.1261071
10.1088/1748-9326/8/1/015011
10.1002/wcc.295
10.2136/sssaj2009.0218
10.3354/cr017145
10.1017/S0376892911000592
10.1016/j.rse.2004.02.005
10.1186/1472-6785-4-17
10.1016/j.geoderma.2017.01.002
10.1016/j.rse.2013.03.006
10.4102/koedoe.v29i1.525
10.1016/j.earscirev.2016.01.012
10.1016/S0006-3207(00)00001-X
10.4141/cjss94-051
10.1002/ldr.644
10.1111/j.1475-4959.2007.00227.x
10.1007/BF00044870
10.2989/AJRF.2009.26.3.2.947
10.1146/annurev.es.04.110173.000245
10.4102/koedoe.v43i1.210
10.1002/(SICI)1099-145X(199905/06)10:3<225::AID-LDR337>3.0.CO;2-T
10.1016/j.foreco.2010.09.012
10.1016/j.ecolind.2011.05.012
10.1007/978-94-007-4676-3_22
10.1016/j.geoderma.2015.06.023
10.1177/0309133309341426
10.1016/j.jaridenv.2013.07.004
10.1046/j.1365-2699.1999.t01-1-00317.x
10.1006/jare.1997.0344
10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
10.1080/00103620600819461
10.1007/s00267-003-9110-9
10.2136/sssaj2011.0025
10.1371/journal.pone.0127093
10.1038/nature04070
ContentType Journal Article
Copyright 2018 The Authors.
Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Copyright_xml – notice: 2018 The Authors.
– notice: Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DBID 24P
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.2134/jeq2017.07.0300
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Environmental Sciences
EISSN 1537-2537
EndPage 757
ExternalDocumentID 30025036
10_2134_jeq2017_07_0300
JEQ2JEQ2017070300
Genre article
Journal Article
GeographicLocations South Africa
GeographicLocations_xml – name: South Africa
GrantInformation_xml – fundername: CGIAR Research Program on Forests, Trees, and Agroforestry
– fundername: European Commission
  funderid: 2000000976
– fundername: University of Wyoming
– fundername: College of Agriculture and Natural Resources Global
– fundername: International Fund for Agricultural Development (IFAD)
  funderid: 2000000520
GroupedDBID ---
.4S
.DC
.~0
0R~
186
18M
1OB
1OC
24P
29K
2WC
33P
3V.
42X
53G
5GY
6KN
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8FE
8FG
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
8WZ
A6W
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
ABCQX
ABCUV
ABDNZ
ABJCF
ABJNI
ABTAH
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGFO
ACGOD
ACIWK
ACPOU
ACPRK
ACXQS
ACYGS
ADBBV
ADFRT
ADKYN
ADYHW
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFFPM
AFKRA
AFRAH
AFWVQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARCSS
ATCPS
AZQEC
BAWUL
BCR
BCU
BEC
BENPR
BES
BFHJK
BGLVJ
BHPHI
BLC
BPHCQ
BVXVI
C1A
CCPQU
CS3
D-I
DCZOG
DDYGU
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
FA8
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HGLYW
HMCUK
H~9
L6V
L7B
LATKE
LEEKS
M0K
M1P
M2O
M2P
M2Q
M7S
MEWTI
MV1
NHAZY
NHB
O9-
P2P
PATMY
PEA
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
QF4
QM1
QM4
QN7
RAK
ROL
RWL
RXW
S0X
SAMSI
SJFOW
SUPJJ
TAE
TN5
TR2
TWZ
UKHRP
UKR
VH1
VJK
WH7
WOQ
WXSBR
XJT
Y6R
ZCA
ZY4
~02
~KM
AAYXX
ADXHL
AEYWJ
AGHNM
AGYGG
CITATION
PHGZM
PHGZT
NPM
YIF
YIN
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7S9
L.6
ID FETCH-LOGICAL-c4260-d90f9309c12b91dbcc9902d4a710ef9a8b648ba066f92630e3693eb1204ecf7f3
IEDL.DBID 24P
ISSN 0047-2425
IngestDate Fri Jul 11 18:32:12 EDT 2025
Fri Jul 11 09:23:16 EDT 2025
Wed Feb 19 02:44:43 EST 2025
Thu Apr 24 23:09:04 EDT 2025
Tue Jul 01 03:32:59 EDT 2025
Wed Jan 22 16:36:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4260-d90f9309c12b91dbcc9902d4a710ef9a8b648ba066f92630e3693eb1204ecf7f3
Notes Assigned to Associate Editor Hero Gollany.
All rights reserved.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fjeq2017.07.0300
PMID 30025036
PQID 2073325578
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2335120564
proquest_miscellaneous_2073325578
pubmed_primary_30025036
crossref_citationtrail_10_2134_jeq2017_07_0300
crossref_primary_10_2134_jeq2017_07_0300
wiley_primary_10_2134_jeq2017_07_0300_JEQ2JEQ2017070300
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July-August 2018
2018-07-00
2018-Jul
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July-August 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of environmental quality
PublicationTitleAlternate J Environ Qual
PublicationYear 2018
Publisher The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc
Publisher_xml – name: The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc
References 2007; 140
2010; 106
2000; 43
1993; 20
2006; 37
2000; 94
2004; 4
2014; 24
2012; 16
2015; 348
1939
2001; 45
2013; 8
2016; 263
2006; 133
2006; 136
2003; 99
2004; 33
2014; 5
2006; 64
2007; 173
2013; 97
2006; 26
1997; 17
2016; 155
1999; 10
2001; 17
2011; 26
2001; 11
1994; 74
2010; 74
2015; 15
2015; 5
2016; 19
1994; 115
2016a; 263
2012
2000; 26
2002; 31
2006; 16
1999; 26
2015; 10
2011; 75
2005; 438
2016; 53
2017; 292
1997; 28
2006
2005
2012; 39
2013b
2004; 91
2008; 363
2006; 117
2009; 26
1998; 38
2009; 33
1997; 37
2015; 21
2002; 66
2005; 5
1986; 29
2016b; 105
2003; 29
2013a; 134
2015
2014
1928
2005; 16
2011; 261
2008; 81
2012; 9
1973; 4
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
Vågen T.‐G. (e_1_2_7_60_1) 2012
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
Braun‐Blanquet J (e_1_2_7_5_1) 1928
e_1_2_7_26_1
e_1_2_7_28_1
Breiman L (e_1_2_7_6_1) 2001; 45
Coetzer K.L. (e_1_2_7_8_1) 2010; 106
Mills A. (e_1_2_7_33_1) 2003; 99
e_1_2_7_73_1
McBratney A.B. (e_1_2_7_31_1) 2006; 117
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Shackleton C.M. (e_1_2_7_49_1) 1994; 115
Bennett H.H (e_1_2_7_4_1) 1939
Rutherford M. (e_1_2_7_43_1) 2006
Scholtz R. (e_1_2_7_47_1) 2014
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
Millennium Ecosystem Assessment (e_1_2_7_32_1) 2005
Smith P. (e_1_2_7_54_1) 2014
e_1_2_7_48_1
Vågen T.‐G. (e_1_2_7_65_1) 2013
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_55_1
Tews J. (e_1_2_7_56_1) 2004; 4
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Wand M (e_1_2_7_69_1) 2015
References_xml – volume: 133
  start-page: 281
  year: 2006
  end-page: 294
  article-title: Sensing landscape level change in soil fertility following deforestation and conversion in the highlands of Madagascar using Vis‐NIR spectroscopy
  publication-title: Geoderma
– volume: 173
  start-page: 26
  year: 2007
  end-page: 42
  article-title: Land‐cover change and human‐environment interactions in a rural cultural landscape in South Africa
  publication-title: Geogr. J.
– volume: 115
  start-page: 157
  year: 1994
  end-page: 167
  article-title: Community structure and species composition along a disturbance gradient in a communally managed South African savanna
  publication-title: Vegetatio
– volume: 64
  start-page: 251
  year: 2006
  end-page: 269
  article-title: Soil quality gradients around water‐points under different management systems in a semi‐arid savanna, South Africa
  publication-title: J. Arid Environ.
– volume: 16
  start-page: 53
  year: 2005
  end-page: 71
  article-title: Soil carbon sequestration in sub‐Saharan Africa: A review
  publication-title: Land Degrad. Dev.
– volume: 363
  start-page: 685
  year: 2008
  end-page: 701
  article-title: Soil health in agricultural systems
  publication-title: Philos. Trans. R. Soc., B.
– volume: 66
  start-page: 988
  year: 2002
  end-page: 998
  article-title: Development of reflectance libraries for characterization of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– year: 2005
– volume: 99
  start-page: 429
  year: 2003
  end-page: 436
  article-title: Declining soil quality in South Africa: Effects of land use on soil organic matter and surface crusting
  publication-title: S. Afr. J. Sci.
– volume: 39
  start-page: 72
  year: 2012
  end-page: 82
  article-title: Human‐modified landscapes: Patterns of fine‐scale woody vegetation structure in communal savannah rangelands
  publication-title: Environ. Conserv.
– volume: 37
  start-page: 2307
  year: 2006
  end-page: 2325
  article-title: Can near or mid‐infrared diffuse reflectance spectroscopy be used to determine soil carbon pools?
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 11
  start-page: 343
  year: 2001
  end-page: 355
  article-title: Grassland management and conversion into grassland: Effects on soil carbon
  publication-title: Ecol. Appl.
– volume: 28
  start-page: 517
  year: 1997
  end-page: 544
  article-title: Tree‐grass interactions in savannas
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 261
  start-page: 19
  year: 2011
  end-page: 29
  article-title: Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa
  publication-title: For. Ecol. Manage.
– volume: 9
  start-page: 1809
  year: 2012
  end-page: 1821
  article-title: Topo‐edaphic controls over woody plant biomass in South African savannas
  publication-title: Biogeosciences
– volume: 33
  start-page: 307
  year: 2009
  end-page: 318
  article-title: Effects of rainfall change on water erosion processes in terrestrial ecosystems: A review
  publication-title: Prog. Phys. Geogr.
– volume: 155
  start-page: 198
  year: 2016
  end-page: 230
  article-title: A global spectral library to characterize the world's soil
  publication-title: Earth‐Sci. Rev.
– volume: 91
  start-page: 47
  year: 2004
  end-page: 67
  article-title: Assessing the effects of human‐induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time‐series
  publication-title: Remote Sens. Environ.
– volume: 10
  year: 2015
  article-title: Biomass increases go under cover: Woody vegetation dynamics in South African rangelands
  publication-title: PLoS One
– volume: 134
  start-page: 266
  year: 2013a
  end-page: 275
  article-title: Landsat‐based approaches for mapping of land degradation prevalence and soil functional properties in Ethiopia
  publication-title: Remote Sens. Environ.
– volume: 53
  start-page: 1766
  year: 2016
  end-page: 1776
  article-title: Fuelwood sustainability revisited: Integrating size structure and resprouting into a spatially realistic fuelshed model
  publication-title: J. Appl. Ecol.
– volume: 37
  start-page: 319
  year: 1997
  end-page: 329
  article-title: Changes in herbaceous layer condition under contrasting land‐use systems in the semi‐arid Lowveld, South Africa
  publication-title: J. Arid Environ.
– volume: 348
  start-page: 1261071
  year: 2015
  article-title: Soil and human security in the 21st century
  publication-title: Science
– volume: 33
  start-page: 528
  year: 2004
  end-page: 544
  article-title: Carbon sequestration in dryland ecosystems
  publication-title: Environ. Manage.
– volume: 97
  start-page: 220
  year: 2013
  end-page: 229
  article-title: Rangeland management impacts on the properties of clayey soils along grazing gradients in the semi‐arid grassland biome of South Africa
  publication-title: J. Arid Environ.
– volume: 16
  start-page: 67
  year: 2012
  end-page: 75
  article-title: Soil ecosystem health and services– Evaluation of ecological indicators susceptible to chemical stressors
  publication-title: Ecol. Indic.
– volume: 38
  start-page: 379
  year: 1998
  end-page: 396
  article-title: Analysis of soil organic carbon and vegetation cover trends along the Botswana Kalahari transect
  publication-title: J. Arid Environ.
– volume: 29
  start-page: 125
  year: 1986
  end-page: 138
  article-title: Soil patterns associated with major geological units of the Kruger National Park
  publication-title: Koedoe
– volume: 5
  start-page: 157
  year: 2015
  end-page: 168
  article-title: Total elemental composition of soil in sub‐Saharan Africa and relationship with soil forming factors
  publication-title: Geoderma Reg.
– volume: 26
  start-page: 619
  year: 1999
  end-page: 627
  article-title: Changes in woody community structure and composition under contrasting land use systems in a semi‐arid savanna, South Africa
  publication-title: J. Biogeogr.
– volume: 24
  start-page: 84
  year: 2014
  end-page: 93
  article-title: Landscape‐scale variation in plant community composition of an African savanna from airborne species mapping
  publication-title: Ecol. Appl.
– year: 1928
– volume: 43
  start-page: 75
  year: 2000
  end-page: 81
  article-title: Impact of fire frequency on woody community structure and soil nutrients in the Kruger National Park
  publication-title: Koedoe
– start-page: 439
  year: 2006
  end-page: 539
– volume: 16
  start-page: 253
  year: 2006
  end-page: 267
  article-title: Resilience: The emergence of a perspective for social–ecological systems analyses
  publication-title: Glob. Environ. Change
– volume: 17
  start-page: 291
  year: 1997
  end-page: 301
  article-title: Simulated changes in extreme rainfall over southern Africa
  publication-title: Int. J. Climatol.
– volume: 263
  start-page: 216
  year: 2016
  end-page: 225
  article-title: Mapping of soil properties and land degradation risk in Africa using MODIS reflectance
  publication-title: Geoderma
– volume: 75
  start-page: 1201
  year: 2011
  end-page: 1213
  article-title: Digital soil mapping and modeling at continental scales: Finding solution for global issues
  publication-title: Soil Sci. Soc. Am. J.
– year: 2015
– volume: 26
  start-page: 1315
  year: 2006
  end-page: 1337
  article-title: Consensus between GCM climate change projections with empirical downscaling: Precipitation downscaling over South Africa
  publication-title: Int. J. Climatol.
– volume: 74
  start-page: 1792
  year: 2010
  end-page: 1799
  article-title: Prediction of soil fertility properties from a globally distributed soil mid‐infrared spectral library
  publication-title: Soil Sci. Soc. Am. J.
– volume: 5
  start-page: 280
  year: 2005
  end-page: 294
  article-title: Indicating ecosystem and landscape organisation
  publication-title: Ecol. Indic.
– year: 1939
– volume: 136
  start-page: 245
  year: 2006
  end-page: 259
  article-title: Mid‐ and near‐infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols
  publication-title: Geoderma
– volume: 94
  start-page: 273
  year: 2000
  end-page: 285
  article-title: Comparison of plant diversity in protected and communal lands in the Bushbuckridge Lowveld savanna, South Africa
  publication-title: Biol. Conserv.
– start-page: 811
  year: 2014
  end-page: 922
– volume: 4
  year: 2004
  article-title: Modelling the impact of climate change on woody plant population dynamics in South African savanna
  publication-title: BMC Ecol.
– volume: 263
  start-page: 274
  year: 2016a
  end-page: 283
  article-title: Effects of land cover on ecosystem services in Tanzania: A spatial assessment of soil organic carbon
  publication-title: Geoderma
– volume: 21
  start-page: 10
  year: 2015
  end-page: 11
  article-title: Soil spectroscopy: An opportunity to be seized
  publication-title: Global Change Biol.
– volume: 4
  start-page: 1
  year: 1973
  end-page: 23
  article-title: Resilience and stability of ecological systems
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 81
  start-page: 169
  year: 2008
  end-page: 178
  article-title: Land use change and soil organic carbon dynamics
  publication-title: Nutr. Cycling Agroecosyst.
– volume: 45
  start-page: 35
  year: 2001
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 15
  start-page: 79
  year: 2015
  end-page: 86
  article-title: Carbon sequestration in soil
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 8
  start-page: 015011
  year: 2013
  article-title: Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential
  publication-title: Environ. Res. Lett.
– volume: 5
  start-page: 605
  year: 2014
  end-page: 620
  article-title: Climate change impacts and adaptation in South Africa
  publication-title: Wiley Interdiscip. Rev. Clim. Chang.
– volume: 292
  start-page: 59
  year: 2017
  end-page: 86
  article-title: Geoderma soil carbon 4 per mille
  publication-title: Geoderma
– year: 2013b
– volume: 31
  start-page: 471
  year: 2002
  end-page: 477
  article-title: Soil carbon sequestration in degraded semiarid agro‐ecosystems: Perils and potentials
  publication-title: Ambio
– volume: 117
  start-page: 3
  year: 2006
  end-page: 52
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 438
  start-page: 846
  year: 2005
  end-page: 849
  article-title: Determinants of woody cover in African savannas
  publication-title: Nature
– volume: 26
  start-page: 743
  year: 2000
  end-page: 758
  article-title: A national review of land degradation in South Africa: The influence of biophysical and socio‐economic factors
  publication-title: J. South. Afr. Stud.
– volume: 29
  start-page: 437
  year: 2003
  end-page: 450
  article-title: Soil erosion and the global carbon budget
  publication-title: Environ. Int.
– start-page: 455
  year: 2012
  end-page: 462
– volume: 74
  start-page: 367
  year: 1994
  end-page: 385
  article-title: Towards a minimum data set to assess soil organic matter quality in agricultural soils
  publication-title: Can. J. Soil Sci.
– volume: 26
  start-page: 113
  year: 2009
  end-page: 125
  article-title: Syndromes of dryland degradation in southern Africa
  publication-title: Afr. J. Range Forage Sci.
– volume: 10
  start-page: 225
  year: 1999
  end-page: 239
  article-title: Resilience of South African communal grazing lands after the removal of high grazing pressure
  publication-title: Land Degrad. Dev.
– volume: 105
  start-page: 263
  year: 2016b
  end-page: 274
  article-title: Landscape‐scale variability of soil health indicators: Effects of cultivation on soil organic carbon in the Usambara Mountains of Tanzania
  publication-title: Nutr. Cycling Agroecosyst.
– volume: 19
  start-page: 70
  year: 2016
  end-page: 74
  article-title: Grazing lands in sub‐Saharan Africa and their potential role in climate change mitigation: What we do and don't know
  publication-title: Environ. Dev.
– volume: 17
  start-page: 145
  year: 2001
  end-page: 168
  article-title: African climate change: 1900‐2100
  publication-title: Clim. Res.
– year: 2014
  article-title: Identifying drivers that influence the spatial distribution of woody vegetation in Kruger National Park, South Africa
  publication-title: Ecosphere 5:art71
– volume: 106
  start-page: 1
  year: 2010
  end-page: 10
  article-title: Land‐cover change in the Kruger to Canyons Biosphere Reserve (1993– 2006): A first step towards creating a conservation plan for the subregion
  publication-title: S. Afr. J. Sci.
– volume: 20
  start-page: 383
  year: 1993
  end-page: 398
  article-title: Landscape and climatic control of woody vegetation in a dry tropical ecosystem: Turkana District
  publication-title: J. Biogeogr.
– volume: 140
  start-page: 444
  year: 2007
  end-page: 453
  article-title: Using a global VNIR soil‐spectral library for local soil characterization and landscape modeling in a 2nd‐order Uganda watershed
  publication-title: Geoderma
– volume: 26
  start-page: 515
  year: 2011
  end-page: 528
  article-title: Context‐dependent vegetation dynamics in an African savanna
  publication-title: Landsc. Ecol.
– ident: e_1_2_7_18_1
  doi: 10.1002/joc.1314
– ident: e_1_2_7_59_1
  doi: 10.1111/1365-2664.12713
– ident: e_1_2_7_74_1
  doi: 10.1007/s10705-015-9750-1
– ident: e_1_2_7_13_1
  doi: 10.1016/j.gloenvcha.2006.04.002
– volume: 99
  start-page: 429
  year: 2003
  ident: e_1_2_7_33_1
  article-title: Declining soil quality in South Africa: Effects of land use on soil organic matter and surface crusting
  publication-title: S. Afr. J. Sci.
– ident: e_1_2_7_39_1
  doi: 10.1579/0044-7447-31.6.471
– ident: e_1_2_7_27_1
  doi: 10.1016/j.cosust.2015.09.002
– ident: e_1_2_7_37_1
  doi: 10.1016/j.ecolind.2005.03.017
– ident: e_1_2_7_53_1
  doi: 10.1007/s10705-007-9138-y
– ident: e_1_2_7_20_1
  doi: 10.1080/713683611
– ident: e_1_2_7_28_1
  doi: 10.1007/s10980-011-9578-2
– ident: e_1_2_7_38_1
  doi: 10.1111/gcb.12632
– ident: e_1_2_7_23_1
  doi: 10.1098/rstb.2007.2178
– ident: e_1_2_7_52_1
  doi: 10.1016/j.jaridenv.2005.04.014
– ident: e_1_2_7_58_1
  doi: 10.1016/j.geodrs.2015.06.002
– ident: e_1_2_7_11_1
  doi: 10.2307/2845587
– ident: e_1_2_7_46_1
  doi: 10.1146/annurev.ecolsys.28.1.517
– year: 2014
  ident: e_1_2_7_47_1
  article-title: Identifying drivers that influence the spatial distribution of woody vegetation in Kruger National Park, South Africa
  publication-title: Ecosphere 5:art71
  doi: 10.1890/ES14-00034.1
– volume: 106
  start-page: 1
  year: 2010
  ident: e_1_2_7_8_1
  article-title: Land‐cover change in the Kruger to Canyons Biosphere Reserve (1993– 2006): A first step towards creating a conservation plan for the subregion
  publication-title: S. Afr. J. Sci.
  doi: 10.4102/sajs.v106i7/8.221
– start-page: 811
  volume-title: Climate Change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: e_1_2_7_54_1
– ident: e_1_2_7_40_1
  doi: 10.1006/jare.1997.0283
– ident: e_1_2_7_3_1
  doi: 10.1890/13-0307.1
– ident: e_1_2_7_62_1
  doi: 10.1016/j.geoderma.2005.07.014
– volume: 117
  start-page: 3
  year: 2006
  ident: e_1_2_7_31_1
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– ident: e_1_2_7_30_1
  doi: 10.1002/(SICI)1097-0088(19970315)17:3<291::AID-JOC120>3.0.CO;2-1
– ident: e_1_2_7_29_1
  doi: 10.1016/j.geoderma.2006.03.026
– ident: e_1_2_7_51_1
  doi: 10.2136/sssaj2002.9880
– ident: e_1_2_7_25_1
  doi: 10.1016/S0160-4120(02)00192-7
– ident: e_1_2_7_9_1
  doi: 10.5194/bg-9-1809-2012
– ident: e_1_2_7_73_1
  doi: 10.1016/j.geoderma.2015.03.010
– ident: e_1_2_7_7_1
  doi: 10.1016/j.geoderma.2007.04.021
– ident: e_1_2_7_34_1
  doi: 10.1016/j.envdev.2016.06.001
– ident: e_1_2_7_2_1
  doi: 10.1126/science.1261071
– volume: 45
  start-page: 35
  year: 2001
  ident: e_1_2_7_6_1
  article-title: Random forests
  publication-title: Mach. Learn.
– ident: e_1_2_7_63_1
  doi: 10.1088/1748-9326/8/1/015011
– ident: e_1_2_7_75_1
  doi: 10.1002/wcc.295
– ident: e_1_2_7_55_1
  doi: 10.2136/sssaj2009.0218
– ident: e_1_2_7_22_1
  doi: 10.3354/cr017145
– volume-title: Soil conservation
  year: 1939
  ident: e_1_2_7_4_1
– ident: e_1_2_7_12_1
  doi: 10.1017/S0376892911000592
– ident: e_1_2_7_72_1
  doi: 10.1016/j.rse.2004.02.005
– volume: 4
  year: 2004
  ident: e_1_2_7_56_1
  article-title: Modelling the impact of climate change on woody plant population dynamics in South African savanna
  publication-title: BMC Ecol.
  doi: 10.1186/1472-6785-4-17
– volume-title: Field Guide 4.1
  year: 2013
  ident: e_1_2_7_65_1
– ident: e_1_2_7_35_1
  doi: 10.1016/j.geoderma.2017.01.002
– ident: e_1_2_7_64_1
  doi: 10.1016/j.rse.2013.03.006
– ident: e_1_2_7_67_1
  doi: 10.4102/koedoe.v29i1.525
– ident: e_1_2_7_68_1
  doi: 10.1016/j.earscirev.2016.01.012
– ident: e_1_2_7_48_1
  doi: 10.1016/S0006-3207(00)00001-X
– ident: e_1_2_7_15_1
  doi: 10.4141/cjss94-051
– ident: e_1_2_7_61_1
  doi: 10.1002/ldr.644
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1475-4959.2007.00227.x
– volume-title: Pflanzensoziologie: Grundzüge der Vegetationskunde
  year: 1928
  ident: e_1_2_7_5_1
– volume: 115
  start-page: 157
  year: 1994
  ident: e_1_2_7_49_1
  article-title: Community structure and species composition along a disturbance gradient in a communally managed South African savanna
  publication-title: Vegetatio
  doi: 10.1007/BF00044870
– volume-title: R Found. Stat
  year: 2015
  ident: e_1_2_7_69_1
– ident: e_1_2_7_45_1
  doi: 10.2989/AJRF.2009.26.3.2.947
– ident: e_1_2_7_21_1
  doi: 10.1146/annurev.es.04.110173.000245
– ident: e_1_2_7_50_1
  doi: 10.4102/koedoe.v43i1.210
– ident: e_1_2_7_17_1
  doi: 10.1002/(SICI)1099-145X(199905/06)10:3<225::AID-LDR337>3.0.CO;2-T
– ident: e_1_2_7_71_1
  doi: 10.1016/j.foreco.2010.09.012
– ident: e_1_2_7_57_1
  doi: 10.1016/j.ecolind.2011.05.012
– start-page: 455
  volume-title: Agroforestry: The future of global land use
  year: 2012
  ident: e_1_2_7_60_1
  doi: 10.1007/978-94-007-4676-3_22
– ident: e_1_2_7_66_1
  doi: 10.1016/j.geoderma.2015.06.023
– volume-title: Millennium Ecosyst
  year: 2005
  ident: e_1_2_7_32_1
– ident: e_1_2_7_70_1
  doi: 10.1177/0309133309341426
– start-page: 439
  volume-title: The vegetation of South Africa, Lesotho and Swaziland, Strelitzia. South African Biodiv
  year: 2006
  ident: e_1_2_7_43_1
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jaridenv.2013.07.004
– ident: e_1_2_7_19_1
  doi: 10.1046/j.1365-2699.1999.t01-1-00317.x
– ident: e_1_2_7_42_1
  doi: 10.1006/jare.1997.0344
– ident: e_1_2_7_10_1
  doi: 10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
– ident: e_1_2_7_41_1
  doi: 10.1080/00103620600819461
– ident: e_1_2_7_26_1
  doi: 10.1007/s00267-003-9110-9
– ident: e_1_2_7_16_1
  doi: 10.2136/sssaj2011.0025
– ident: e_1_2_7_36_1
  doi: 10.1371/journal.pone.0127093
– ident: e_1_2_7_44_1
  doi: 10.1038/nature04070
SSID ssj0012076
Score 2.2872593
Snippet Drivers of soil organic carbon (SOC) dynamics involve a combination of edaphic, human, and climatic factors that influence and determine SOC distribution...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 746
SubjectTerms algorithms
clay
climatic factors
ecosystems
environmental health
land management
landscapes
model validation
prediction
remote sensing
sand
sand fraction
savannas
soil erosion
soil organic carbon
soil texture
South Africa
spectroscopy
statistical models
topsoil
Title Spatial Gradients of Ecosystem Health Indicators across a Human‐Impacted Semiarid Savanna
URI https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fjeq2017.07.0300
https://www.ncbi.nlm.nih.gov/pubmed/30025036
https://www.proquest.com/docview/2073325578
https://www.proquest.com/docview/2335120564
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2Ib-uLCB68rGaTbB9HkXVXQVF0YcFDyVME7eo-7v4Ef6O_xJm0u6KigtCWFtI0dDKZb5LMN4TsWYmrW8LUfKLBQTHQjZVoICGABWvkrWcc453PL-J2R551G-PdhBgLU_JDTCbcUDPCeI0KrnTIQoIcZKjk7hmMVxKoNwUDr30GA2xxVx-Xl5OFBM5CfjkWCAmgf5bsPljF4ZcKPhumb2jzM3gN1udkgcxXsJEelXJeJFOuWCJzR3f9ijrDLZHV5kfMGhStlHawTG4x7TB0M9rqh_1dwwHtedo0vZLFmZaRSPS0wCUbTL5DVWgiVTRM8b-9vJ6GWEpn6bV7vAfvGm4UQPBCrZDOSfPmuF2rcirUDHLR12zGfCZYZupcZ3WrjQFzxK1UgDScz1SqY5lqBUDEZzwWzIk4EzCecyad8YkXq2S66BVunVBlleNMO_AQlXTCaOltnNkkFc7XtUwjcjD-obmpCMcx78VDDo4HSiCvJJAzOEACEdmfvPBUcm38XHR3LKEc9AEXOVTheqNBzjELJfhJSfpLGSEA5wD0kxFZK8U7-aAIqFDEEUmCvP9qSX7WvOJ4IhERDp9s499vbpJZeEjL3cBbZHrYH7ltwDxDvRN6NVxb3fo7VBj4IA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC6MOSQeJPER17w6ECGXNb3d7TwOOUiyZtcXkSgIHsZ-iqCzursScstPyG_JT8ovSVXP7IoGFQRhBgame6bp6np1dX0F8N4pim5J2wypQQfF4jLWcoUAARxqo-ACF5TvvLWddPbU-v7K_gT8GeXCVPgQ4w034owor4nBaUM6nl1uSUVc7s9Re6URe1NyXh-s3PA_f6DbNvjU_YI0XhJirb37udOsKws0LSGyN13OQy55blvC5C1nrEWhLJzSqG99yHVmEpUZjeo45CKR3MsklyjVBFfehjRI_O4jeKwSkVLVBKG-jSMXgseCdjwiICBDVHBCNOSP1wZ8VRP-Z95etZajult7BtO1ncpWq4X1HCZ8OQNTq0f9GqvDz8B8-zJJDpvWUmIwCwdU5xjXNfvajwfKhgPWC6xtexVsNKtSn1i3pBgRVfthOg6RaRZjCn9__e7G5E3v2Hd_eozuPD5otPlLPQd7DzLV8zBZ9kq_AEw77QU3Hl1Srby0RgWX5C7NpA8to7IGLI8mtLA1wjkV2jgp0NMhChQ1BQqOF1KgAR_GHc4qcI-bm74bUahABqSoii5972JQCCp7iY5Zmt3SRko0rNDWVA14UZF3_EMZzVCZNCCN9L5rJMV6e0fQTchHJK_54r17voUnnd2tzWKzu73xEp7ii6w6ivwKJof9C_8aDa6heRNXOIPDh2apf5-VNAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC7UQDCHkBhNNi87YMDLmt7u3nkccpC4G9cXigqCh7GfIiSzZncl5JafkL-Sv5Rfkqqe2RUjKgSEGRiGnpmmq-s1VfUVwJJTFN2SthlSgw6KxW2sZZsAARxqo-ACF1TvvL2TrB-qjaP20RT8HtfCVPgQkx9uxBlRXhODn7sQU5dbUhGT-2-ovNIIvSk5r_MqN_2P7-i1DT_21pDE74Xodg4-rTfrxgJNS4DsTZfzkEue25YwecsZa1EmC6c0qlsfcp2ZRGVGozYOuUgk9zLJJQo1wZW3IQ0S3zsNDyjESFlkQu1OAheCx352PAIgID9UaEI05Q__TPiqIrxm3V41lqO26z6Bx7WZylarffUUpnw5B49WTwc1VIefg4XOZY0cDq2FxPAZHFObY9zW7PMg5pONhqwfWMf2K9RoVlU-sV5JISJq9sN0nCLTLIYU_vz81Yu1m96xff_1DL15vNBo8pd6Hg7vZakXYKbsl_4FMO20F9x49Ei18tIaFVySuzSTPrSMyhqwMl7QwtYA59Rn40uBjg5RoKgpUHA8kAINWJ48cF5he9w89N2YQgXyHwVVdOn7F8NCUNdL9MvS7JYxUqJdhaamasDziryTD8pohcqkAWmk910zKTY6e4JOAj4icc1f_veTi_Bwd61bbPV2Nl_BLN7PqkTk1zAzGlz4N2hujczbuMEZnNw3R_0FguEzMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Gradients+of+Ecosystem+Health+Indicators+across+a+Human%E2%80%90Impacted+Semiarid+Savanna&rft.jtitle=Journal+of+environmental+quality&rft.au=V%C3%A5gen%2C+Tor%E2%80%90Gunnar&rft.au=Winowiecki%2C+Leigh+Ann&rft.au=Twine%2C+Wayne&rft.au=Vaughan%2C+Karen&rft.date=2018-07-01&rft.issn=0047-2425&rft.eissn=1537-2537&rft.volume=47&rft.issue=4&rft.spage=746&rft.epage=757&rft_id=info:doi/10.2134%2Fjeq2017.07.0300&rft.externalDBID=n%2Fa&rft.externalDocID=10_2134_jeq2017_07_0300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-2425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-2425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-2425&client=summon