Strong, Machinable Carbon Aerogels for High Performance Supercapacitors

Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis, etc. This study reports a novel approach to fabricate polyaniline‐coated 3D carbon x‐aerogels, a special type of aerogels with mechanically...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 26; no. 27; pp. 4976 - 4983
Main Authors Kim, Christine H. J., Zhao, Dandan, Lee, Gyeonghee, Liu, Jie
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 19.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis, etc. This study reports a novel approach to fabricate polyaniline‐coated 3D carbon x‐aerogels, a special type of aerogels with mechanically strong, highly cross‐linked structure that allows the originally brittle aerogels machinable. This approach is accomplished by introducing a small amount of graphene into the sol–gel process of resorcinol and formaldehyde, followed by physical activation and subsequent cross‐linking with polyaniline via electropolymerization. The resulting x‐aerogels are not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The strong combination of these properties makes the x‐aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics. Such multi‐functionality leads to a significant increase in electrochemical performance, in particular high volumetric capacitance, which results from the more densely packed electroactive structure in three dimensions. More importantly, monoliths of carbon x‐aerogels are machinable into thin slices without losing their properties, thus enabling effective integration into devices with different sizes and shapes. Strong, machinable carbon aerogels are reported, developed to be not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The synergistic combination of these properties makes the aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics.
AbstractList Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis, etc. This study reports a novel approach to fabricate polyaniline-coated 3D carbon x-aerogels, a special type of aerogels with mechanically strong, highly cross-linked structure that allows the originally brittle aerogels machinable. This approach is accomplished by introducing a small amount of graphene into the sol-gel process of resorcinol and formaldehyde, followed by physical activation and subsequent cross-linking with polyaniline via electropolymerization. The resulting x-aerogels are not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The strong combination of these properties makes the x-aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics. Such multi-functionality leads to a significant increase in electrochemical performance, in particular high volumetric capacitance, which results from the more densely packed electroactive structure in three dimensions. More importantly, monoliths of carbon x-aerogels are machinable into thin slices without losing their properties, thus enabling effective integration into devices with different sizes and shapes. Strong, machinable carbon aerogels are reported, developed to be not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The synergistic combination of these properties makes the aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics.
Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis, etc. This study reports a novel approach to fabricate polyaniline‐coated 3D carbon x‐aerogels, a special type of aerogels with mechanically strong, highly cross‐linked structure that allows the originally brittle aerogels machinable. This approach is accomplished by introducing a small amount of graphene into the sol–gel process of resorcinol and formaldehyde, followed by physical activation and subsequent cross‐linking with polyaniline via electropolymerization. The resulting x‐aerogels are not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The strong combination of these properties makes the x‐aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics. Such multi‐functionality leads to a significant increase in electrochemical performance, in particular high volumetric capacitance, which results from the more densely packed electroactive structure in three dimensions. More importantly, monoliths of carbon x‐aerogels are machinable into thin slices without losing their properties, thus enabling effective integration into devices with different sizes and shapes.
Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis, etc. This study reports a novel approach to fabricate polyaniline‐coated 3D carbon x‐aerogels, a special type of aerogels with mechanically strong, highly cross‐linked structure that allows the originally brittle aerogels machinable. This approach is accomplished by introducing a small amount of graphene into the sol–gel process of resorcinol and formaldehyde, followed by physical activation and subsequent cross‐linking with polyaniline via electropolymerization. The resulting x‐aerogels are not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The strong combination of these properties makes the x‐aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics. Such multi‐functionality leads to a significant increase in electrochemical performance, in particular high volumetric capacitance, which results from the more densely packed electroactive structure in three dimensions. More importantly, monoliths of carbon x‐aerogels are machinable into thin slices without losing their properties, thus enabling effective integration into devices with different sizes and shapes. Strong, machinable carbon aerogels are reported, developed to be not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The synergistic combination of these properties makes the aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics.
Author Lee, Gyeonghee
Liu, Jie
Kim, Christine H. J.
Zhao, Dandan
Author_xml – sequence: 1
  givenname: Christine H. J.
  surname: Kim
  fullname: Kim, Christine H. J.
  organization: Department of Chemistry, Duke University, NC, 27708, Durham, USA
– sequence: 2
  givenname: Dandan
  surname: Zhao
  fullname: Zhao, Dandan
  organization: Department of Chemistry, Duke University, 27708, Durham, NC, USA
– sequence: 3
  givenname: Gyeonghee
  surname: Lee
  fullname: Lee, Gyeonghee
  organization: Department of Chemistry, Duke University, NC, 27708, Durham, USA
– sequence: 4
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  email: j.liu@duke.edu
  organization: Department of Chemistry, Duke University, NC, 27708, Durham, USA
BookMark eNqFkE1PwkAQhjcGExG9eu7Rg8Xdbr84IgqYUCXBr9tmuszCaunibony7y2pIcbEmDnMHJ7nzeQ9Jq3SlEjIGaNdRmlwCXO16gaUxZTVc0DaLGaxz2mQtvY3ezkix869UsqShIdtMppV1pSLCy8DudQl5AV6A7C5Kb0-WrPAwnnKWG-sF0tvira-V1BK9GabNVoJa5C6MtadkEMFhcPT790hj8Obh8HYn9yPbgf9iS_DIKZ-wrgMYxbwuQTOwh5yGjEVJ3kvT5NQciUVS6M8p8FcpTUFFBFU0FOShgFwxTvkvMldW_O-QVeJlXYSiwJKNBsnWMqjOj9OwxoNG1Ra45xFJepXodKmrCzoQjAqdr2JXW9i31utdX9pa6tXYLd_C71G-NAFbv-hRf96mP10_cbVrsLPvQv2TcQJTyLxfDcST1k0oFejTEz5F0k2kV8
CitedBy_id crossref_primary_10_1007_s10853_017_0832_0
crossref_primary_10_1021_acsami_7b01210
crossref_primary_10_1016_j_diamond_2020_108180
crossref_primary_10_1016_j_ijhydene_2024_07_287
crossref_primary_10_1002_ente_202100305
crossref_primary_10_1016_j_micromeso_2018_12_007
crossref_primary_10_1039_C7NR08494C
crossref_primary_10_1016_j_jiec_2023_12_038
crossref_primary_10_1016_j_jallcom_2021_159931
crossref_primary_10_1039_D0SM01261K
crossref_primary_10_1007_s10853_023_08221_z
crossref_primary_10_1016_j_electacta_2017_02_030
crossref_primary_10_1021_acs_jpcc_9b04046
crossref_primary_10_1016_j_carbon_2017_07_050
crossref_primary_10_1016_j_mtsust_2023_100375
crossref_primary_10_1016_j_jallcom_2022_165868
crossref_primary_10_1016_j_jpowsour_2017_10_045
crossref_primary_10_1016_j_electacta_2019_135398
crossref_primary_10_1021_acssuschemeng_8b04607
crossref_primary_10_1111_jace_15301
crossref_primary_10_34133_2020_7304767
crossref_primary_10_1016_j_carbon_2019_09_005
crossref_primary_10_1016_j_ceramint_2020_01_139
crossref_primary_10_1039_C9TA13282A
crossref_primary_10_1021_acsnano_7b07117
crossref_primary_10_3390_molecules27030924
crossref_primary_10_1002_ente_202000918
crossref_primary_10_1007_s10853_024_09531_6
crossref_primary_10_1016_j_jssc_2023_124492
crossref_primary_10_1039_C7NR03058D
crossref_primary_10_3390_gels10010004
crossref_primary_10_1016_j_jallcom_2018_12_244
crossref_primary_10_1016_j_carbon_2018_10_034
crossref_primary_10_1016_j_energy_2024_132471
crossref_primary_10_1039_D0QM00960A
crossref_primary_10_1007_s42114_017_0021_2
crossref_primary_10_1016_j_jelechem_2018_11_013
crossref_primary_10_1016_j_cej_2017_05_121
crossref_primary_10_1016_j_est_2022_105445
crossref_primary_10_1002_celc_202200972
crossref_primary_10_1016_j_cej_2023_146697
crossref_primary_10_1002_adfm_202401473
crossref_primary_10_1016_j_carbon_2017_10_083
crossref_primary_10_1002_adfm_202102184
crossref_primary_10_1016_j_chemosphere_2020_129319
crossref_primary_10_1039_D4GC02640C
crossref_primary_10_1039_C8DT00484F
crossref_primary_10_1016_j_cap_2018_10_010
crossref_primary_10_1016_j_apsusc_2024_161323
crossref_primary_10_1088_1361_6528_ab043a
crossref_primary_10_1039_C8NJ05128C
crossref_primary_10_1016_j_apsusc_2024_160874
crossref_primary_10_3390_molecules28145534
crossref_primary_10_1039_C7RA02288C
crossref_primary_10_1002_adma_201706705
crossref_primary_10_1016_j_indcrop_2021_113472
crossref_primary_10_1021_acsapm_9b00408
crossref_primary_10_1149_2_0111916jes
crossref_primary_10_1016_S1872_5805_24_60842_5
crossref_primary_10_1002_celc_201701286
crossref_primary_10_1002_adfm_201705879
crossref_primary_10_1007_s10971_020_05436_3
crossref_primary_10_1002_eem2_12637
crossref_primary_10_1016_j_vacuum_2020_109731
crossref_primary_10_1021_acsami_7b07746
crossref_primary_10_1039_D0QM00234H
crossref_primary_10_1016_j_coco_2024_101889
crossref_primary_10_1039_C8TA00860D
crossref_primary_10_1016_j_carbon_2018_02_076
crossref_primary_10_1016_j_est_2021_103058
crossref_primary_10_1021_acsanm_2c04880
crossref_primary_10_1557_jmr_2018_104
crossref_primary_10_1007_s11831_021_09669_5
crossref_primary_10_1016_j_electacta_2023_143514
crossref_primary_10_1039_C7TA03639F
crossref_primary_10_1002_celc_201901951
crossref_primary_10_1016_j_est_2024_112788
crossref_primary_10_1007_s10853_020_05351_6
crossref_primary_10_1021_acsami_9b12918
crossref_primary_10_1002_celc_201700880
crossref_primary_10_1002_cey2_427
Cites_doi 10.1002/adfm.201403273
10.1039/b800602d
10.1021/nn504544h
10.1002/anie.201209676
10.1002/adfm.201500538
10.1038/nmat1368
10.1016/j.carbon.2014.04.074
10.1002/adma.200701498
10.1002/adma.201100283
10.1021/am100422x
10.1021/ja1072299
10.1021/am8001617
10.1021/ar600033s
10.1002/anie.201200710
10.1002/adma.200390020
10.1002/adfm.201402964
10.1039/c0ee00627k
10.1021/cm102891d
10.1038/nmat1782
10.1021/am100081a
10.1021/acsami.5b07368
10.1038/nmat4170
10.1002/aenm.201100560
10.1039/C1CS15078B
10.1007/978-1-4419-7589-8
10.1002/anie.201302369
10.1021/cr020740l
10.1002/adma.201203578
10.1039/C2CS35353A
10.1016/j.carbon.2013.10.082
10.1021/nn400566d
10.1038/ncomms2251
10.1002/ange.201410668
10.1021/cm9023502
10.1002/adma.200902986
10.1039/C3NR04555B
10.1016/S0008-6223(99)00189-X
10.1021/ja01539a017
10.1039/B801151F
10.1016/j.carbon.2005.10.004
10.1038/ncomms5328
10.1021/acsami.5b01384
10.1021/am500579c
10.1021/cm801428p
10.1039/c3nr01932b
10.1002/aenm.201000002
10.1021/nl025690e
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201601010
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 4983
ExternalDocumentID 10_1002_adfm_201601010
ADFM201601010
ark_67375_WNG_VM5C0BGM_P
Genre article
GrantInformation_xml – fundername: NSF
  funderid: EECS‐1344745
– fundername: Army Research Office
  funderid: W911NF‐04‐D‐0001
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AANHP
AAYXX
ACRPL
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4260-713c46123dca3149e3051f67b9b874c3fcf185bb02df823da0eeaf29fc042a3f3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 09:13:56 EDT 2025
Tue Jul 01 01:30:27 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
Wed Jan 22 16:35:18 EST 2025
Wed Oct 30 09:56:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4260-713c46123dca3149e3051f67b9b874c3fcf185bb02df823da0eeaf29fc042a3f3
Notes NSF - No. EECS-1344745
istex:06FE4CCFC747310C603459547A5666E303A6A9F6
Army Research Office - No. W911NF-04-D-0001
ArticleID:ADFM201601010
ark:/67375/WNG-VM5C0BGM-P
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835612684
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1835612684
crossref_citationtrail_10_1002_adfm_201601010
crossref_primary_10_1002_adfm_201601010
wiley_primary_10_1002_adfm_201601010_ADFM201601010
istex_primary_ark_67375_WNG_VM5C0BGM_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 19, 2016
PublicationDateYYYYMMDD 2016-07-19
PublicationDate_xml – month: 07
  year: 2016
  text: July 19, 2016
  day: 19
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References d) X. Xu, J. Zhou, D. H. Nagaraju, L. Jiang, V. R. Marinov, G. Lubineau, H. N. Alshareef, M. Oh, Adv. Funct. Mater. 2015, 25, 3193.
f) Z. Y. Wu, C. Li, H. W. Liang, J. F. Chen, S. H. Yu, Angew. Chem. Int. Ed. 2013, 52, 2925.
W. S. Hummers Jr., R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
c) D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 2006, 5, 987.
L. Qiu, J. Z. Liu, S. L. Y. Chang, Y. Wu, D. Li, Nat. Commun. 2012, 3, 1241.
b) J. W. Long, B. Dunn, D. R. Rolison, H. S. White, Chem. Rev. 2004, 104, 4463
b) B. N. Nguyen, M. A. B. Meador, A. Medoro, V. Arendt, J. Randall, L. McCorkle, B. Shonkwiler, ACS App. Mater. Interfaces 2010, 2, 1430.
a) A. M. ElKhatat, S. A. Al-Muhtaseb, Adv. Mater. 2011, 23, 2887
b) S. Mulik, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 2008, 20, 6985
Z. Yin, Q. Zheng, Adv. Energy Mater. 2012, 2, 179.
c) S. A. Al-Muhtaseb, J. A. Ritter, Adv. Mater. 2003, 15, 101.
a) M. A. B. Meador, S. L. Vivod, L. McCorkle, D. Quade, R. M. Sullivan, L. J. Ghosn, N. Clark, L. A. Capadona, J. Mater. Chem. 2008, 18, 1843
L. Jiang, Z. Fan, Nanoscale 2014, 6, 1922.
a) X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Adv. Mater. 2010, 22, 617
e) H. W. Liang, Q. F. Guan, L. F. Chen, Z. Zhu, W. J. Zhang, S. H. Yu, Angew. Chem. Int. Ed. 2012, 51, 5101
b) A. Feaver, G. Cao, Carbon 2006, 44, 590
b) S. Barg, F. M. Perez, N. Ni, P. do Vale Pereira, R. C. Maher, E. Garcia-Tuñon, S. Eslava, S. Agnoli, C. Mattevi, E. Saiz, Nat. Commun. 2014, 5.
c) C. Lin, J. A. Ritter, Carbon 2000, 38, 849.
f) T. Bordjiba, M. Mohamedi, L. H. Dao, Adv. Mater. 2008, 20, 815.
a) T. Tsuchiya, T. Mori, S. Iwamura, I. Ogino, S. R. Mukai, Carbon 2014, 76, 240
a) N. Leventis, C. Sotiriou-Leventis, G. Zhang, A.-M. M. Rawashdeh, Nano Lett. 2002, 2, 957
Y. Qian, I. M. Ismail, A. Stein, Carbon 2014, 68, 221.
b) X. Wang, L. L. Lu, Z. L. Yu, X. W. Xu, Y. R. Zheng, S. H. Yu, Angew. Chem. 2015, 127, 2427
b) P. Li, Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, J. Wei, K. Wang, H. Zhu, Q. Yuan, ACS App. Mater. Interfaces 2014, 6, 5228
e) X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666
Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao, L. Qu, Adv. Mater. 2013, 25, 591.
a) E. Wilson, M. F. Islam, ACS App. Mater. Interfaces 2015, 7, 5612
c) M. A. B. Meador, C. M. Scherzer, S. L. Vivod, D. Quade, B. N. Nguyen, ACS App. Mater. Interfaces 2010, 2, 2162.
c) M. a. C. Gutiérrez, F. Rubio, F. del Monte, Chem. Mater. 2010, 22, 2711
c) T. Lin, F. Liu, F. Xu, H. Bi, Y. Du, Y. Tang, F. Huang, ACS App. Mater. Interfaces 2015, 7, 25306
d) A. H. Lu, G. P. Hao, Q. Sun, Angew. Chem. Int. Ed. 2013, 52, 7930
a) N. Leventis, Acc. Chem. Res. 2007, 40, 874
a) D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, A. M. Lubers, Chem. Soc. Rev. 2009, 38, 226
N. Leventis, C. Sotiriou-Leventis, N. Chandrasekaran, S. Mulik, Z. J. Larimore, H. Lu, G. Churu, J. T. Mang, Chem. Mater. 2010, 22, 6692.
b) X.-L. Wu, T. Wen, H.-L. Guo, S. Yang, X. Wang, A.-W. Xu, ACS Nano 2013, 7, 3589
a) A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366
b) J. Biener, M. Stadermann, M. Suss, M. A. Worsley, M. M. Biener, K. A. Rose, T. F. Baumann, Energy Environ. Sci. 2011, 4, 656
c) M. A. Aegerter, N. Leventis, M. M. Koebel, Aerogels Handbook, Springer Science & Business Media, New York, NY, USA, 2011.
b) S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutiérrez, F. del Monte, Chem. Soc. Rev. 2013, 42, 794
d) M. Yu, Y. Huang, C. Li, Y. Zeng, W. Wang, Y. Li, P. Fang, X. Lu, Y. Tong, Adv. Funct. Mater. 2015, 25, 324.
a) M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher Jr., T. F. Baumann, J. Am. Chem. Soc. 2010, 132, 14067
c) P. Li, C. Kong, Y. Shang, E. Shi, Y. Yu, W. Qian, F. Wei, J. Wei, K. Wang, H. Zhu, Nanoscale 2013, 5, 8472
a) R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 2015, 14, 271
b) B. N. Nguyen, M. A. B. Meador, M. E. Tousley, B. Shonkwiler, L. McCorkle, D. A. Scheiman, A. Palczer, ACS App. Mater. Interfaces 2009, 1, 621
c) J. F. M. Oudenhoven, L. Baggetto, P. H. L. Notten, Adv. Energy Mater. 2011, 1, 10
d) J. Y. Hong, B. M. Bak, J. J. Wie, J. Kong, H. S. Park, Adv. Funct. Mater. 2015, 25, 1053
R. L. D. Whitby, ACS Nano 2014, 8, 9733.
2010; 22
2015 2013 2006; 14 7 5
2012; 2
2013; 25
2012; 3
2009 2004 2011 2013 2012 2013; 38 104 1 52 51 52
2002 2010; 2 2
2005 2014; 4 5
2008 2009 2010; 18 1 2
2011 2011 2003; 23 4 15
2007 2008 2011; 40 20
2014; 68
2010 2013 2013 2015 2012 2008; 22 42 5 25 41 20
1958; 80
2014 2006 2000; 76 44 38
2014; 8
2014; 6
2015 2014 2015 2015; 7 6 7 25
2010 2015 2010 2015; 132 127 22 25
e_1_2_6_10_1
e_1_2_6_18_4
e_1_2_6_18_2
e_1_2_6_19_1
e_1_2_6_18_3
e_1_2_6_12_2
e_1_2_6_13_1
e_1_2_6_12_3
e_1_2_6_14_1
e_1_2_6_10_2
e_1_2_6_11_1
e_1_2_6_10_3
e_1_2_6_11_2
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_7_3
e_1_2_6_8_2
e_1_2_6_9_1
e_1_2_6_6_3
e_1_2_6_7_2
e_1_2_6_8_1
e_1_2_6_9_3
e_1_2_6_7_4
e_1_2_6_9_2
e_1_2_6_1_5
e_1_2_6_2_4
e_1_2_6_5_1
e_1_2_6_1_4
e_1_2_6_2_3
e_1_2_6_4_1
e_1_2_6_2_6
e_1_2_6_5_3
e_1_2_6_6_2
e_1_2_6_7_1
e_1_2_6_1_6
e_1_2_6_2_5
e_1_2_6_5_2
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_1_3
e_1_2_6_2_2
e_1_2_6_3_1
e_1_2_6_1_2
e_1_2_6_2_1
References_xml – reference: c) M. a. C. Gutiérrez, F. Rubio, F. del Monte, Chem. Mater. 2010, 22, 2711;
– reference: a) A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366;
– reference: c) S. A. Al-Muhtaseb, J. A. Ritter, Adv. Mater. 2003, 15, 101.
– reference: b) B. N. Nguyen, M. A. B. Meador, M. E. Tousley, B. Shonkwiler, L. McCorkle, D. A. Scheiman, A. Palczer, ACS App. Mater. Interfaces 2009, 1, 621;
– reference: b) X. Wang, L. L. Lu, Z. L. Yu, X. W. Xu, Y. R. Zheng, S. H. Yu, Angew. Chem. 2015, 127, 2427;
– reference: b) J. Biener, M. Stadermann, M. Suss, M. A. Worsley, M. M. Biener, K. A. Rose, T. F. Baumann, Energy Environ. Sci. 2011, 4, 656;
– reference: d) A. H. Lu, G. P. Hao, Q. Sun, Angew. Chem. Int. Ed. 2013, 52, 7930;
– reference: Y. Qian, I. M. Ismail, A. Stein, Carbon 2014, 68, 221.
– reference: L. Jiang, Z. Fan, Nanoscale 2014, 6, 1922.
– reference: e) X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666;
– reference: c) D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 2006, 5, 987.
– reference: c) M. A. Aegerter, N. Leventis, M. M. Koebel, Aerogels Handbook, Springer Science & Business Media, New York, NY, USA, 2011.
– reference: a) E. Wilson, M. F. Islam, ACS App. Mater. Interfaces 2015, 7, 5612;
– reference: N. Leventis, C. Sotiriou-Leventis, N. Chandrasekaran, S. Mulik, Z. J. Larimore, H. Lu, G. Churu, J. T. Mang, Chem. Mater. 2010, 22, 6692.
– reference: e) H. W. Liang, Q. F. Guan, L. F. Chen, Z. Zhu, W. J. Zhang, S. H. Yu, Angew. Chem. Int. Ed. 2012, 51, 5101;
– reference: a) N. Leventis, C. Sotiriou-Leventis, G. Zhang, A.-M. M. Rawashdeh, Nano Lett. 2002, 2, 957;
– reference: a) M. A. B. Meador, S. L. Vivod, L. McCorkle, D. Quade, R. M. Sullivan, L. J. Ghosn, N. Clark, L. A. Capadona, J. Mater. Chem. 2008, 18, 1843;
– reference: Z. Yin, Q. Zheng, Adv. Energy Mater. 2012, 2, 179.
– reference: a) X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Adv. Mater. 2010, 22, 617;
– reference: Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao, L. Qu, Adv. Mater. 2013, 25, 591.
– reference: b) P. Li, Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, J. Wei, K. Wang, H. Zhu, Q. Yuan, ACS App. Mater. Interfaces 2014, 6, 5228;
– reference: c) P. Li, C. Kong, Y. Shang, E. Shi, Y. Yu, W. Qian, F. Wei, J. Wei, K. Wang, H. Zhu, Nanoscale 2013, 5, 8472;
– reference: c) M. A. B. Meador, C. M. Scherzer, S. L. Vivod, D. Quade, B. N. Nguyen, ACS App. Mater. Interfaces 2010, 2, 2162.
– reference: R. L. D. Whitby, ACS Nano 2014, 8, 9733.
– reference: a) R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 2015, 14, 271;
– reference: f) T. Bordjiba, M. Mohamedi, L. H. Dao, Adv. Mater. 2008, 20, 815.
– reference: a) N. Leventis, Acc. Chem. Res. 2007, 40, 874;
– reference: b) J. W. Long, B. Dunn, D. R. Rolison, H. S. White, Chem. Rev. 2004, 104, 4463;
– reference: c) J. F. M. Oudenhoven, L. Baggetto, P. H. L. Notten, Adv. Energy Mater. 2011, 1, 10;
– reference: b) A. Feaver, G. Cao, Carbon 2006, 44, 590;
– reference: d) M. Yu, Y. Huang, C. Li, Y. Zeng, W. Wang, Y. Li, P. Fang, X. Lu, Y. Tong, Adv. Funct. Mater. 2015, 25, 324.
– reference: a) D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, A. M. Lubers, Chem. Soc. Rev. 2009, 38, 226;
– reference: a) T. Tsuchiya, T. Mori, S. Iwamura, I. Ogino, S. R. Mukai, Carbon 2014, 76, 240;
– reference: d) X. Xu, J. Zhou, D. H. Nagaraju, L. Jiang, V. R. Marinov, G. Lubineau, H. N. Alshareef, M. Oh, Adv. Funct. Mater. 2015, 25, 3193.
– reference: c) T. Lin, F. Liu, F. Xu, H. Bi, Y. Du, Y. Tang, F. Huang, ACS App. Mater. Interfaces 2015, 7, 25306;
– reference: f) Z. Y. Wu, C. Li, H. W. Liang, J. F. Chen, S. H. Yu, Angew. Chem. Int. Ed. 2013, 52, 2925.
– reference: b) S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutiérrez, F. del Monte, Chem. Soc. Rev. 2013, 42, 794;
– reference: b) X.-L. Wu, T. Wen, H.-L. Guo, S. Yang, X. Wang, A.-W. Xu, ACS Nano 2013, 7, 3589;
– reference: a) M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher Jr., T. F. Baumann, J. Am. Chem. Soc. 2010, 132, 14067;
– reference: b) S. Barg, F. M. Perez, N. Ni, P. do Vale Pereira, R. C. Maher, E. Garcia-Tuñon, S. Eslava, S. Agnoli, C. Mattevi, E. Saiz, Nat. Commun. 2014, 5.
– reference: c) C. Lin, J. A. Ritter, Carbon 2000, 38, 849.
– reference: L. Qiu, J. Z. Liu, S. L. Y. Chang, Y. Wu, D. Li, Nat. Commun. 2012, 3, 1241.
– reference: W. S. Hummers Jr., R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
– reference: b) B. N. Nguyen, M. A. B. Meador, A. Medoro, V. Arendt, J. Randall, L. McCorkle, B. Shonkwiler, ACS App. Mater. Interfaces 2010, 2, 1430.
– reference: a) A. M. ElKhatat, S. A. Al-Muhtaseb, Adv. Mater. 2011, 23, 2887;
– reference: d) J. Y. Hong, B. M. Bak, J. J. Wie, J. Kong, H. S. Park, Adv. Funct. Mater. 2015, 25, 1053;
– reference: b) S. Mulik, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 2008, 20, 6985;
– volume: 40 20
  start-page: 874 6985
  year: 2007 2008 2011
  publication-title: Acc. Chem. Res. Chem. Mater.
– volume: 22
  start-page: 6692
  year: 2010
  publication-title: Chem. Mater.
– volume: 80
  start-page: 1339
  year: 1958
  publication-title: J. Am. Chem. Soc.
– volume: 4 5
  start-page: 366
  year: 2005 2014
  publication-title: Nat. Mater. Nat. Commun.
– volume: 23 4 15
  start-page: 2887 656 101
  year: 2011 2011 2003
  publication-title: Adv. Mater. Energy Environ. Sci. Adv. Mater.
– volume: 68
  start-page: 221
  year: 2014
  publication-title: Carbon
– volume: 2
  start-page: 179
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 18 1 2
  start-page: 1843 621 2162
  year: 2008 2009 2010
  publication-title: J. Mater. Chem. ACS App. Mater. Interfaces ACS App. Mater. Interfaces
– volume: 6
  start-page: 1922
  year: 2014
  publication-title: Nanoscale
– volume: 3
  start-page: 1241
  year: 2012
  publication-title: Nat. Commun.
– volume: 7 6 7 25
  start-page: 5612 5228 25306 324
  year: 2015 2014 2015 2015
  publication-title: ACS App. Mater. Interfaces ACS App. Mater. Interfaces ACS App. Mater. Interfaces Adv. Funct. Mater.
– volume: 25
  start-page: 591
  year: 2013
  publication-title: Adv. Mater.
– volume: 22 42 5 25 41 20
  start-page: 617 794 8472 1053 666 815
  year: 2010 2013 2013 2015 2012 2008
  publication-title: Adv. Mater. Chem. Soc. Rev. Nanoscale Adv. Funct. Mater. Chem. Soc. Rev. Adv. Mater.
– volume: 38 104 1 52 51 52
  start-page: 226 4463 10 7930 5101 2925
  year: 2009 2004 2011 2013 2012 2013
  publication-title: Chem. Soc. Rev. Chem. Rev. Adv. Energy Mater. Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. Angew. Chem. Int. Ed.
– volume: 76 44 38
  start-page: 240 590 849
  year: 2014 2006 2000
  publication-title: Carbon Carbon Carbon
– volume: 14 7 5
  start-page: 271 3589 987
  year: 2015 2013 2006
  publication-title: Nat. Mater. ACS Nano Nat. Mater.
– volume: 132 127 22 25
  start-page: 14067 2427 2711 3193
  year: 2010 2015 2010 2015
  publication-title: J. Am. Chem. Soc. Angew. Chem. Chem. Mater. Adv. Funct. Mater.
– volume: 8
  start-page: 9733
  year: 2014
  publication-title: ACS Nano
– volume: 2 2
  start-page: 957 1430
  year: 2002 2010
  publication-title: Nano Lett. ACS App. Mater. Interfaces
– ident: e_1_2_6_2_4
  doi: 10.1002/adfm.201403273
– ident: e_1_2_6_12_1
  doi: 10.1039/b800602d
– ident: e_1_2_6_4_1
  doi: 10.1021/nn504544h
– ident: e_1_2_6_1_6
  doi: 10.1002/anie.201209676
– ident: e_1_2_6_7_4
  doi: 10.1002/adfm.201500538
– ident: e_1_2_6_8_1
  doi: 10.1038/nmat1368
– ident: e_1_2_6_9_1
  doi: 10.1016/j.carbon.2014.04.074
– ident: e_1_2_6_2_6
  doi: 10.1002/adma.200701498
– ident: e_1_2_6_6_1
  doi: 10.1002/adma.201100283
– ident: e_1_2_6_12_3
  doi: 10.1021/am100422x
– ident: e_1_2_6_7_1
  doi: 10.1021/ja1072299
– ident: e_1_2_6_12_2
  doi: 10.1021/am8001617
– ident: e_1_2_6_10_1
  doi: 10.1021/ar600033s
– ident: e_1_2_6_1_5
  doi: 10.1002/anie.201200710
– ident: e_1_2_6_6_3
  doi: 10.1002/adma.200390020
– ident: e_1_2_6_18_4
  doi: 10.1002/adfm.201402964
– ident: e_1_2_6_6_2
  doi: 10.1039/c0ee00627k
– ident: e_1_2_6_13_1
  doi: 10.1021/cm102891d
– ident: e_1_2_6_5_3
  doi: 10.1038/nmat1782
– ident: e_1_2_6_11_2
  doi: 10.1021/am100081a
– ident: e_1_2_6_18_3
  doi: 10.1021/acsami.5b07368
– ident: e_1_2_6_5_1
  doi: 10.1038/nmat4170
– ident: e_1_2_6_14_1
  doi: 10.1002/aenm.201100560
– ident: e_1_2_6_2_5
  doi: 10.1039/C1CS15078B
– ident: e_1_2_6_10_3
  doi: 10.1007/978-1-4419-7589-8
– ident: e_1_2_6_1_4
  doi: 10.1002/anie.201302369
– ident: e_1_2_6_1_2
  doi: 10.1021/cr020740l
– ident: e_1_2_6_16_1
  doi: 10.1002/adma.201203578
– ident: e_1_2_6_2_2
  doi: 10.1039/C2CS35353A
– ident: e_1_2_6_15_1
  doi: 10.1016/j.carbon.2013.10.082
– ident: e_1_2_6_5_2
  doi: 10.1021/nn400566d
– ident: e_1_2_6_17_1
  doi: 10.1038/ncomms2251
– ident: e_1_2_6_7_2
  doi: 10.1002/ange.201410668
– ident: e_1_2_6_7_3
  doi: 10.1021/cm9023502
– ident: e_1_2_6_2_1
  doi: 10.1002/adma.200902986
– ident: e_1_2_6_3_1
  doi: 10.1039/C3NR04555B
– ident: e_1_2_6_9_3
  doi: 10.1016/S0008-6223(99)00189-X
– ident: e_1_2_6_19_1
  doi: 10.1021/ja01539a017
– ident: e_1_2_6_1_1
  doi: 10.1039/B801151F
– ident: e_1_2_6_9_2
  doi: 10.1016/j.carbon.2005.10.004
– ident: e_1_2_6_8_2
  doi: 10.1038/ncomms5328
– ident: e_1_2_6_18_1
  doi: 10.1021/acsami.5b01384
– ident: e_1_2_6_18_2
  doi: 10.1021/am500579c
– ident: e_1_2_6_10_2
  doi: 10.1021/cm801428p
– ident: e_1_2_6_2_3
  doi: 10.1039/c3nr01932b
– ident: e_1_2_6_1_3
  doi: 10.1002/aenm.201000002
– ident: e_1_2_6_11_1
  doi: 10.1021/nl025690e
SSID ssj0017734
Score 2.4967582
Snippet Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis,...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4976
SubjectTerms 3D structures
Aerogels
Carbon
carbon aerogels
Compressibility
Crosslinking
Electronics
Graphene
machinable
Recovery
Supercapacitors
x-aerogels
Title Strong, Machinable Carbon Aerogels for High Performance Supercapacitors
URI https://api.istex.fr/ark:/67375/WNG-VM5C0BGM-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201601010
https://www.proquest.com/docview/1835612684
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-NAFD6IfXEfvO5ivZQRFn0xmmRyfazVVhYjYle3b8NcRZRUYgvir3dO0sZ2QQR9S-AMSeZkzmXmO98B-C11bEKXUydVInECgyAAKhMHWap9EQiuBNYOZ5fR-U3wZxAOZqr4K36IesMNV0Zpr3GBc_F8_E4aypXBSnIPM4qyxgoBWxgVXdf8UV4cV8fKkYcAL28wZW10_eP54XNeqYET_DIXcs4GrqXn6a4An75zBTh5OBqPxJF8_Y_O8TsftQrLk7CUtKv_aA0WdL4OP2bICjeg18dd87tDkpX4Syy5Ih1eiGFO2roY3lknS2wETBA5Qq7e6xFIf_ykC2mdsrzH1j4_4aZ79rdz7kzaMDgS6esdm8bKAFlalOTUJlTamgjPRLFIRRIHkhpprNMXwvWVSawUd7Xmxk-NtAaBU0N_wWI-zPUmEJW6SkY8EiEVgUttcCQVVdSTYUAxk2uCM1UDkxOOcmyV8cgqdmWf4QSxeoKacFDLP1XsHB9K7pdarcV48YCYtjhk_y577DYLO-5JL2NXTdibqp3ZlYbHJzzXw_Ezs8YPW4lGSdAEv1TiJ89k7dNuVt9tfWXQNizhNW4me-kOLI6Ksd61UdBItKDRPs0u-q3yj38Dry_-Gw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB616QPtA1dBhHOROF5wa3t9PvAQEpKU1lFFD_K27FlVQU7lJuL4V_wVfhE7duw2SKgSUh94tDU-Z2b3m92ZbwBeSB2b0OXUSZVInMBgEgCViYMs1b4IBFcCa4ezUTQ8Cj6Mw_EK_KxrYSp-iGbBDT2jHK_RwXFBevuCNZQrg6XkHoYUnrvIq9zV37_aqO387U7Pqvil7_ffH3aHzqKxgCORkN2xgZkMkHdESU5tiKCt0XsmikUqkjiQ1EhjpzEhXF-ZxEpxV2tu_NRIa-KcGmrvuwpr2EYc6fp7HxvGKi-Oq43syMOUMm9c80S6_vby-y7Ng2uo0m9LIPcyVC7nuv4t-FX_pSrFZbI1n4kt-eMPAsn_6jfehpsL5E06lavcgRWd34WNS3yMmzA4wI2BkzckK1NMsaqMdHkhpjnp6GJ6YnEEsSCfYHIM2b8ouSAH8zNdSIs75Cl2L7oHR9fyJfehlU9z_QCISl0lIx6JkIrApRb_SUUV9WQYUAxW2-DUemdyQcOO3UC-sIpA2meoENYopA2vG_mzioDkr5KvSjNqxHgxwbS9OGSfRgN2nIVd990gY_tteF7bGbODCe4Q8VxP5-fMju_YLTVKgjb4pdVc8UzW6fWz5ujhv1z0DG4MD7M9trcz2n0E63ge18699DG0ZsVcP7Ggbyaelm5G4PN1G-RvbZNarg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VVkL0gRsRzkXieMHt2uvzgYeQkLQURxGlJW_LnlVV5ERuIo5fxV_hH7Fjx26DhJCQ-sCjrfE5M7vf7M58A_BUmcRGVDAv0zL1QotJAEylHrJUBzKUQkusHc5H8c5B-HYSTdbgR1MLU_NDtAtu6BnVeI0OPtN2-4w0VGiLleQ-RhQ-XaZV7plvX1zQdvpqt-80_CwIBm8-9Ha8ZV8BTyEfu-fiMhUi7YhWgrkIwTib922cyEymSaiYVdbNYlLSQNvUSQlqjLBBZpWzcMEsc_e9BBthTDNsFtF_3xJW-UlS72PHPmaU-ZOGJpIG26vvuzINbqBGv65g3PNIuZrqBtfgZ_OT6gyXk63FXG6p77_xR_5Pf_E6XF3ibtKtHeUGrJniJmyeY2O8BcN93BY4eknyKsEUa8pIT5RyWpCuKadHDkUQB_EJpsaQ8VnBBdlfzEypHOpQx9i76DYcXMiX3IH1YlqYu0B0RrWKRSwjJkPKHPpTmmnmqyhkGKp2wGvUztWShB17gXzmNX10wFEhvFVIB1608rOafuSPks8rK2rFRHmCSXtJxD-Ohvwwj3r09TDn4w48acyMu6EE94dEYaaLU-5Gd-yVGqdhB4LKaP7yTN7tD_L26N6_XPQYLo_7A_5ud7R3H67gaVw497MHsD4vF-ahQ3xz-ahyMgKfLtoefwHcYlld
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong%2C+Machinable+Carbon+Aerogels+for+High+Performance+Supercapacitors&rft.jtitle=Advanced+functional+materials&rft.au=Kim%2C+Christine+H.+J.&rft.au=Zhao%2C+Dandan&rft.au=Lee%2C+Gyeonghee&rft.au=Liu%2C+Jie&rft.date=2016-07-19&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=27&rft.spage=4976&rft.epage=4983&rft_id=info:doi/10.1002%2Fadfm.201601010&rft.externalDBID=10.1002%252Fadfm.201601010&rft.externalDocID=ADFM201601010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon