Strong, Machinable Carbon Aerogels for High Performance Supercapacitors
Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis, etc. This study reports a novel approach to fabricate polyaniline‐coated 3D carbon x‐aerogels, a special type of aerogels with mechanically...
Saved in:
Published in | Advanced functional materials Vol. 26; no. 27; pp. 4976 - 4983 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
19.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis, etc. This study reports a novel approach to fabricate polyaniline‐coated 3D carbon x‐aerogels, a special type of aerogels with mechanically strong, highly cross‐linked structure that allows the originally brittle aerogels machinable. This approach is accomplished by introducing a small amount of graphene into the sol–gel process of resorcinol and formaldehyde, followed by physical activation and subsequent cross‐linking with polyaniline via electropolymerization. The resulting x‐aerogels are not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The strong combination of these properties makes the x‐aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics. Such multi‐functionality leads to a significant increase in electrochemical performance, in particular high volumetric capacitance, which results from the more densely packed electroactive structure in three dimensions. More importantly, monoliths of carbon x‐aerogels are machinable into thin slices without losing their properties, thus enabling effective integration into devices with different sizes and shapes.
Strong, machinable carbon aerogels are reported, developed to be not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The synergistic combination of these properties makes the aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics. |
---|---|
AbstractList | Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis, etc. This study reports a novel approach to fabricate polyaniline-coated 3D carbon x-aerogels, a special type of aerogels with mechanically strong, highly cross-linked structure that allows the originally brittle aerogels machinable. This approach is accomplished by introducing a small amount of graphene into the sol-gel process of resorcinol and formaldehyde, followed by physical activation and subsequent cross-linking with polyaniline via electropolymerization. The resulting x-aerogels are not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The strong combination of these properties makes the x-aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics. Such multi-functionality leads to a significant increase in electrochemical performance, in particular high volumetric capacitance, which results from the more densely packed electroactive structure in three dimensions. More importantly, monoliths of carbon x-aerogels are machinable into thin slices without losing their properties, thus enabling effective integration into devices with different sizes and shapes. Strong, machinable carbon aerogels are reported, developed to be not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The synergistic combination of these properties makes the aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics. Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis, etc. This study reports a novel approach to fabricate polyaniline‐coated 3D carbon x‐aerogels, a special type of aerogels with mechanically strong, highly cross‐linked structure that allows the originally brittle aerogels machinable. This approach is accomplished by introducing a small amount of graphene into the sol–gel process of resorcinol and formaldehyde, followed by physical activation and subsequent cross‐linking with polyaniline via electropolymerization. The resulting x‐aerogels are not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The strong combination of these properties makes the x‐aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics. Such multi‐functionality leads to a significant increase in electrochemical performance, in particular high volumetric capacitance, which results from the more densely packed electroactive structure in three dimensions. More importantly, monoliths of carbon x‐aerogels are machinable into thin slices without losing their properties, thus enabling effective integration into devices with different sizes and shapes. Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis, etc. This study reports a novel approach to fabricate polyaniline‐coated 3D carbon x‐aerogels, a special type of aerogels with mechanically strong, highly cross‐linked structure that allows the originally brittle aerogels machinable. This approach is accomplished by introducing a small amount of graphene into the sol–gel process of resorcinol and formaldehyde, followed by physical activation and subsequent cross‐linking with polyaniline via electropolymerization. The resulting x‐aerogels are not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The strong combination of these properties makes the x‐aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics. Such multi‐functionality leads to a significant increase in electrochemical performance, in particular high volumetric capacitance, which results from the more densely packed electroactive structure in three dimensions. More importantly, monoliths of carbon x‐aerogels are machinable into thin slices without losing their properties, thus enabling effective integration into devices with different sizes and shapes. Strong, machinable carbon aerogels are reported, developed to be not only porous and conductive, but also mechanically robust with high compressibility and fast recovery. The synergistic combination of these properties makes the aerogels promising for high performance supercapacitors that are designed to provide additional functionality for wearable and portable electronics. |
Author | Lee, Gyeonghee Liu, Jie Kim, Christine H. J. Zhao, Dandan |
Author_xml | – sequence: 1 givenname: Christine H. J. surname: Kim fullname: Kim, Christine H. J. organization: Department of Chemistry, Duke University, NC, 27708, Durham, USA – sequence: 2 givenname: Dandan surname: Zhao fullname: Zhao, Dandan organization: Department of Chemistry, Duke University, 27708, Durham, NC, USA – sequence: 3 givenname: Gyeonghee surname: Lee fullname: Lee, Gyeonghee organization: Department of Chemistry, Duke University, NC, 27708, Durham, USA – sequence: 4 givenname: Jie surname: Liu fullname: Liu, Jie email: j.liu@duke.edu organization: Department of Chemistry, Duke University, NC, 27708, Durham, USA |
BookMark | eNqFkE1PwkAQhjcGExG9eu7Rg8Xdbr84IgqYUCXBr9tmuszCaunibony7y2pIcbEmDnMHJ7nzeQ9Jq3SlEjIGaNdRmlwCXO16gaUxZTVc0DaLGaxz2mQtvY3ezkix869UsqShIdtMppV1pSLCy8DudQl5AV6A7C5Kb0-WrPAwnnKWG-sF0tvira-V1BK9GabNVoJa5C6MtadkEMFhcPT790hj8Obh8HYn9yPbgf9iS_DIKZ-wrgMYxbwuQTOwh5yGjEVJ3kvT5NQciUVS6M8p8FcpTUFFBFU0FOShgFwxTvkvMldW_O-QVeJlXYSiwJKNBsnWMqjOj9OwxoNG1Ra45xFJepXodKmrCzoQjAqdr2JXW9i31utdX9pa6tXYLd_C71G-NAFbv-hRf96mP10_cbVrsLPvQv2TcQJTyLxfDcST1k0oFejTEz5F0k2kV8 |
CitedBy_id | crossref_primary_10_1007_s10853_017_0832_0 crossref_primary_10_1021_acsami_7b01210 crossref_primary_10_1016_j_diamond_2020_108180 crossref_primary_10_1016_j_ijhydene_2024_07_287 crossref_primary_10_1002_ente_202100305 crossref_primary_10_1016_j_micromeso_2018_12_007 crossref_primary_10_1039_C7NR08494C crossref_primary_10_1016_j_jiec_2023_12_038 crossref_primary_10_1016_j_jallcom_2021_159931 crossref_primary_10_1039_D0SM01261K crossref_primary_10_1007_s10853_023_08221_z crossref_primary_10_1016_j_electacta_2017_02_030 crossref_primary_10_1021_acs_jpcc_9b04046 crossref_primary_10_1016_j_carbon_2017_07_050 crossref_primary_10_1016_j_mtsust_2023_100375 crossref_primary_10_1016_j_jallcom_2022_165868 crossref_primary_10_1016_j_jpowsour_2017_10_045 crossref_primary_10_1016_j_electacta_2019_135398 crossref_primary_10_1021_acssuschemeng_8b04607 crossref_primary_10_1111_jace_15301 crossref_primary_10_34133_2020_7304767 crossref_primary_10_1016_j_carbon_2019_09_005 crossref_primary_10_1016_j_ceramint_2020_01_139 crossref_primary_10_1039_C9TA13282A crossref_primary_10_1021_acsnano_7b07117 crossref_primary_10_3390_molecules27030924 crossref_primary_10_1002_ente_202000918 crossref_primary_10_1007_s10853_024_09531_6 crossref_primary_10_1016_j_jssc_2023_124492 crossref_primary_10_1039_C7NR03058D crossref_primary_10_3390_gels10010004 crossref_primary_10_1016_j_jallcom_2018_12_244 crossref_primary_10_1016_j_carbon_2018_10_034 crossref_primary_10_1016_j_energy_2024_132471 crossref_primary_10_1039_D0QM00960A crossref_primary_10_1007_s42114_017_0021_2 crossref_primary_10_1016_j_jelechem_2018_11_013 crossref_primary_10_1016_j_cej_2017_05_121 crossref_primary_10_1016_j_est_2022_105445 crossref_primary_10_1002_celc_202200972 crossref_primary_10_1016_j_cej_2023_146697 crossref_primary_10_1002_adfm_202401473 crossref_primary_10_1016_j_carbon_2017_10_083 crossref_primary_10_1002_adfm_202102184 crossref_primary_10_1016_j_chemosphere_2020_129319 crossref_primary_10_1039_D4GC02640C crossref_primary_10_1039_C8DT00484F crossref_primary_10_1016_j_cap_2018_10_010 crossref_primary_10_1016_j_apsusc_2024_161323 crossref_primary_10_1088_1361_6528_ab043a crossref_primary_10_1039_C8NJ05128C crossref_primary_10_1016_j_apsusc_2024_160874 crossref_primary_10_3390_molecules28145534 crossref_primary_10_1039_C7RA02288C crossref_primary_10_1002_adma_201706705 crossref_primary_10_1016_j_indcrop_2021_113472 crossref_primary_10_1021_acsapm_9b00408 crossref_primary_10_1149_2_0111916jes crossref_primary_10_1016_S1872_5805_24_60842_5 crossref_primary_10_1002_celc_201701286 crossref_primary_10_1002_adfm_201705879 crossref_primary_10_1007_s10971_020_05436_3 crossref_primary_10_1002_eem2_12637 crossref_primary_10_1016_j_vacuum_2020_109731 crossref_primary_10_1021_acsami_7b07746 crossref_primary_10_1039_D0QM00234H crossref_primary_10_1016_j_coco_2024_101889 crossref_primary_10_1039_C8TA00860D crossref_primary_10_1016_j_carbon_2018_02_076 crossref_primary_10_1016_j_est_2021_103058 crossref_primary_10_1021_acsanm_2c04880 crossref_primary_10_1557_jmr_2018_104 crossref_primary_10_1007_s11831_021_09669_5 crossref_primary_10_1016_j_electacta_2023_143514 crossref_primary_10_1039_C7TA03639F crossref_primary_10_1002_celc_201901951 crossref_primary_10_1016_j_est_2024_112788 crossref_primary_10_1007_s10853_020_05351_6 crossref_primary_10_1021_acsami_9b12918 crossref_primary_10_1002_celc_201700880 crossref_primary_10_1002_cey2_427 |
Cites_doi | 10.1002/adfm.201403273 10.1039/b800602d 10.1021/nn504544h 10.1002/anie.201209676 10.1002/adfm.201500538 10.1038/nmat1368 10.1016/j.carbon.2014.04.074 10.1002/adma.200701498 10.1002/adma.201100283 10.1021/am100422x 10.1021/ja1072299 10.1021/am8001617 10.1021/ar600033s 10.1002/anie.201200710 10.1002/adma.200390020 10.1002/adfm.201402964 10.1039/c0ee00627k 10.1021/cm102891d 10.1038/nmat1782 10.1021/am100081a 10.1021/acsami.5b07368 10.1038/nmat4170 10.1002/aenm.201100560 10.1039/C1CS15078B 10.1007/978-1-4419-7589-8 10.1002/anie.201302369 10.1021/cr020740l 10.1002/adma.201203578 10.1039/C2CS35353A 10.1016/j.carbon.2013.10.082 10.1021/nn400566d 10.1038/ncomms2251 10.1002/ange.201410668 10.1021/cm9023502 10.1002/adma.200902986 10.1039/C3NR04555B 10.1016/S0008-6223(99)00189-X 10.1021/ja01539a017 10.1039/B801151F 10.1016/j.carbon.2005.10.004 10.1038/ncomms5328 10.1021/acsami.5b01384 10.1021/am500579c 10.1021/cm801428p 10.1039/c3nr01932b 10.1002/aenm.201000002 10.1021/nl025690e |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201601010 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 4983 |
ExternalDocumentID | 10_1002_adfm_201601010 ADFM201601010 ark_67375_WNG_VM5C0BGM_P |
Genre | article |
GrantInformation_xml | – fundername: NSF funderid: EECS‐1344745 – fundername: Army Research Office funderid: W911NF‐04‐D‐0001 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AANHP AAYXX ACRPL ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4260-713c46123dca3149e3051f67b9b874c3fcf185bb02df823da0eeaf29fc042a3f3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 09:13:56 EDT 2025 Tue Jul 01 01:30:27 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 Wed Jan 22 16:35:18 EST 2025 Wed Oct 30 09:56:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4260-713c46123dca3149e3051f67b9b874c3fcf185bb02df823da0eeaf29fc042a3f3 |
Notes | NSF - No. EECS-1344745 istex:06FE4CCFC747310C603459547A5666E303A6A9F6 Army Research Office - No. W911NF-04-D-0001 ArticleID:ADFM201601010 ark:/67375/WNG-VM5C0BGM-P ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1835612684 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1835612684 crossref_citationtrail_10_1002_adfm_201601010 crossref_primary_10_1002_adfm_201601010 wiley_primary_10_1002_adfm_201601010_ADFM201601010 istex_primary_ark_67375_WNG_VM5C0BGM_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 19, 2016 |
PublicationDateYYYYMMDD | 2016-07-19 |
PublicationDate_xml | – month: 07 year: 2016 text: July 19, 2016 day: 19 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | d) X. Xu, J. Zhou, D. H. Nagaraju, L. Jiang, V. R. Marinov, G. Lubineau, H. N. Alshareef, M. Oh, Adv. Funct. Mater. 2015, 25, 3193. f) Z. Y. Wu, C. Li, H. W. Liang, J. F. Chen, S. H. Yu, Angew. Chem. Int. Ed. 2013, 52, 2925. W. S. Hummers Jr., R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339. c) D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 2006, 5, 987. L. Qiu, J. Z. Liu, S. L. Y. Chang, Y. Wu, D. Li, Nat. Commun. 2012, 3, 1241. b) J. W. Long, B. Dunn, D. R. Rolison, H. S. White, Chem. Rev. 2004, 104, 4463 b) B. N. Nguyen, M. A. B. Meador, A. Medoro, V. Arendt, J. Randall, L. McCorkle, B. Shonkwiler, ACS App. Mater. Interfaces 2010, 2, 1430. a) A. M. ElKhatat, S. A. Al-Muhtaseb, Adv. Mater. 2011, 23, 2887 b) S. Mulik, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 2008, 20, 6985 Z. Yin, Q. Zheng, Adv. Energy Mater. 2012, 2, 179. c) S. A. Al-Muhtaseb, J. A. Ritter, Adv. Mater. 2003, 15, 101. a) M. A. B. Meador, S. L. Vivod, L. McCorkle, D. Quade, R. M. Sullivan, L. J. Ghosn, N. Clark, L. A. Capadona, J. Mater. Chem. 2008, 18, 1843 L. Jiang, Z. Fan, Nanoscale 2014, 6, 1922. a) X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Adv. Mater. 2010, 22, 617 e) H. W. Liang, Q. F. Guan, L. F. Chen, Z. Zhu, W. J. Zhang, S. H. Yu, Angew. Chem. Int. Ed. 2012, 51, 5101 b) A. Feaver, G. Cao, Carbon 2006, 44, 590 b) S. Barg, F. M. Perez, N. Ni, P. do Vale Pereira, R. C. Maher, E. Garcia-Tuñon, S. Eslava, S. Agnoli, C. Mattevi, E. Saiz, Nat. Commun. 2014, 5. c) C. Lin, J. A. Ritter, Carbon 2000, 38, 849. f) T. Bordjiba, M. Mohamedi, L. H. Dao, Adv. Mater. 2008, 20, 815. a) T. Tsuchiya, T. Mori, S. Iwamura, I. Ogino, S. R. Mukai, Carbon 2014, 76, 240 a) N. Leventis, C. Sotiriou-Leventis, G. Zhang, A.-M. M. Rawashdeh, Nano Lett. 2002, 2, 957 Y. Qian, I. M. Ismail, A. Stein, Carbon 2014, 68, 221. b) X. Wang, L. L. Lu, Z. L. Yu, X. W. Xu, Y. R. Zheng, S. H. Yu, Angew. Chem. 2015, 127, 2427 b) P. Li, Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, J. Wei, K. Wang, H. Zhu, Q. Yuan, ACS App. Mater. Interfaces 2014, 6, 5228 e) X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666 Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao, L. Qu, Adv. Mater. 2013, 25, 591. a) E. Wilson, M. F. Islam, ACS App. Mater. Interfaces 2015, 7, 5612 c) M. A. B. Meador, C. M. Scherzer, S. L. Vivod, D. Quade, B. N. Nguyen, ACS App. Mater. Interfaces 2010, 2, 2162. c) M. a. C. Gutiérrez, F. Rubio, F. del Monte, Chem. Mater. 2010, 22, 2711 c) T. Lin, F. Liu, F. Xu, H. Bi, Y. Du, Y. Tang, F. Huang, ACS App. Mater. Interfaces 2015, 7, 25306 d) A. H. Lu, G. P. Hao, Q. Sun, Angew. Chem. Int. Ed. 2013, 52, 7930 a) N. Leventis, Acc. Chem. Res. 2007, 40, 874 a) D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, A. M. Lubers, Chem. Soc. Rev. 2009, 38, 226 N. Leventis, C. Sotiriou-Leventis, N. Chandrasekaran, S. Mulik, Z. J. Larimore, H. Lu, G. Churu, J. T. Mang, Chem. Mater. 2010, 22, 6692. b) X.-L. Wu, T. Wen, H.-L. Guo, S. Yang, X. Wang, A.-W. Xu, ACS Nano 2013, 7, 3589 a) A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366 b) J. Biener, M. Stadermann, M. Suss, M. A. Worsley, M. M. Biener, K. A. Rose, T. F. Baumann, Energy Environ. Sci. 2011, 4, 656 c) M. A. Aegerter, N. Leventis, M. M. Koebel, Aerogels Handbook, Springer Science & Business Media, New York, NY, USA, 2011. b) S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutiérrez, F. del Monte, Chem. Soc. Rev. 2013, 42, 794 d) M. Yu, Y. Huang, C. Li, Y. Zeng, W. Wang, Y. Li, P. Fang, X. Lu, Y. Tong, Adv. Funct. Mater. 2015, 25, 324. a) M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher Jr., T. F. Baumann, J. Am. Chem. Soc. 2010, 132, 14067 c) P. Li, C. Kong, Y. Shang, E. Shi, Y. Yu, W. Qian, F. Wei, J. Wei, K. Wang, H. Zhu, Nanoscale 2013, 5, 8472 a) R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 2015, 14, 271 b) B. N. Nguyen, M. A. B. Meador, M. E. Tousley, B. Shonkwiler, L. McCorkle, D. A. Scheiman, A. Palczer, ACS App. Mater. Interfaces 2009, 1, 621 c) J. F. M. Oudenhoven, L. Baggetto, P. H. L. Notten, Adv. Energy Mater. 2011, 1, 10 d) J. Y. Hong, B. M. Bak, J. J. Wie, J. Kong, H. S. Park, Adv. Funct. Mater. 2015, 25, 1053 R. L. D. Whitby, ACS Nano 2014, 8, 9733. 2010; 22 2015 2013 2006; 14 7 5 2012; 2 2013; 25 2012; 3 2009 2004 2011 2013 2012 2013; 38 104 1 52 51 52 2002 2010; 2 2 2005 2014; 4 5 2008 2009 2010; 18 1 2 2011 2011 2003; 23 4 15 2007 2008 2011; 40 20 2014; 68 2010 2013 2013 2015 2012 2008; 22 42 5 25 41 20 1958; 80 2014 2006 2000; 76 44 38 2014; 8 2014; 6 2015 2014 2015 2015; 7 6 7 25 2010 2015 2010 2015; 132 127 22 25 e_1_2_6_10_1 e_1_2_6_18_4 e_1_2_6_18_2 e_1_2_6_19_1 e_1_2_6_18_3 e_1_2_6_12_2 e_1_2_6_13_1 e_1_2_6_12_3 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_11_1 e_1_2_6_10_3 e_1_2_6_11_2 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_7_3 e_1_2_6_8_2 e_1_2_6_9_1 e_1_2_6_6_3 e_1_2_6_7_2 e_1_2_6_8_1 e_1_2_6_9_3 e_1_2_6_7_4 e_1_2_6_9_2 e_1_2_6_1_5 e_1_2_6_2_4 e_1_2_6_5_1 e_1_2_6_1_4 e_1_2_6_2_3 e_1_2_6_4_1 e_1_2_6_2_6 e_1_2_6_5_3 e_1_2_6_6_2 e_1_2_6_7_1 e_1_2_6_1_6 e_1_2_6_2_5 e_1_2_6_5_2 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_1_3 e_1_2_6_2_2 e_1_2_6_3_1 e_1_2_6_1_2 e_1_2_6_2_1 |
References_xml | – reference: c) M. a. C. Gutiérrez, F. Rubio, F. del Monte, Chem. Mater. 2010, 22, 2711; – reference: a) A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366; – reference: c) S. A. Al-Muhtaseb, J. A. Ritter, Adv. Mater. 2003, 15, 101. – reference: b) B. N. Nguyen, M. A. B. Meador, M. E. Tousley, B. Shonkwiler, L. McCorkle, D. A. Scheiman, A. Palczer, ACS App. Mater. Interfaces 2009, 1, 621; – reference: b) X. Wang, L. L. Lu, Z. L. Yu, X. W. Xu, Y. R. Zheng, S. H. Yu, Angew. Chem. 2015, 127, 2427; – reference: b) J. Biener, M. Stadermann, M. Suss, M. A. Worsley, M. M. Biener, K. A. Rose, T. F. Baumann, Energy Environ. Sci. 2011, 4, 656; – reference: d) A. H. Lu, G. P. Hao, Q. Sun, Angew. Chem. Int. Ed. 2013, 52, 7930; – reference: Y. Qian, I. M. Ismail, A. Stein, Carbon 2014, 68, 221. – reference: L. Jiang, Z. Fan, Nanoscale 2014, 6, 1922. – reference: e) X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 2012, 41, 666; – reference: c) D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 2006, 5, 987. – reference: c) M. A. Aegerter, N. Leventis, M. M. Koebel, Aerogels Handbook, Springer Science & Business Media, New York, NY, USA, 2011. – reference: a) E. Wilson, M. F. Islam, ACS App. Mater. Interfaces 2015, 7, 5612; – reference: N. Leventis, C. Sotiriou-Leventis, N. Chandrasekaran, S. Mulik, Z. J. Larimore, H. Lu, G. Churu, J. T. Mang, Chem. Mater. 2010, 22, 6692. – reference: e) H. W. Liang, Q. F. Guan, L. F. Chen, Z. Zhu, W. J. Zhang, S. H. Yu, Angew. Chem. Int. Ed. 2012, 51, 5101; – reference: a) N. Leventis, C. Sotiriou-Leventis, G. Zhang, A.-M. M. Rawashdeh, Nano Lett. 2002, 2, 957; – reference: a) M. A. B. Meador, S. L. Vivod, L. McCorkle, D. Quade, R. M. Sullivan, L. J. Ghosn, N. Clark, L. A. Capadona, J. Mater. Chem. 2008, 18, 1843; – reference: Z. Yin, Q. Zheng, Adv. Energy Mater. 2012, 2, 179. – reference: a) X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Adv. Mater. 2010, 22, 617; – reference: Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao, L. Qu, Adv. Mater. 2013, 25, 591. – reference: b) P. Li, Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, J. Wei, K. Wang, H. Zhu, Q. Yuan, ACS App. Mater. Interfaces 2014, 6, 5228; – reference: c) P. Li, C. Kong, Y. Shang, E. Shi, Y. Yu, W. Qian, F. Wei, J. Wei, K. Wang, H. Zhu, Nanoscale 2013, 5, 8472; – reference: c) M. A. B. Meador, C. M. Scherzer, S. L. Vivod, D. Quade, B. N. Nguyen, ACS App. Mater. Interfaces 2010, 2, 2162. – reference: R. L. D. Whitby, ACS Nano 2014, 8, 9733. – reference: a) R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 2015, 14, 271; – reference: f) T. Bordjiba, M. Mohamedi, L. H. Dao, Adv. Mater. 2008, 20, 815. – reference: a) N. Leventis, Acc. Chem. Res. 2007, 40, 874; – reference: b) J. W. Long, B. Dunn, D. R. Rolison, H. S. White, Chem. Rev. 2004, 104, 4463; – reference: c) J. F. M. Oudenhoven, L. Baggetto, P. H. L. Notten, Adv. Energy Mater. 2011, 1, 10; – reference: b) A. Feaver, G. Cao, Carbon 2006, 44, 590; – reference: d) M. Yu, Y. Huang, C. Li, Y. Zeng, W. Wang, Y. Li, P. Fang, X. Lu, Y. Tong, Adv. Funct. Mater. 2015, 25, 324. – reference: a) D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, A. M. Lubers, Chem. Soc. Rev. 2009, 38, 226; – reference: a) T. Tsuchiya, T. Mori, S. Iwamura, I. Ogino, S. R. Mukai, Carbon 2014, 76, 240; – reference: d) X. Xu, J. Zhou, D. H. Nagaraju, L. Jiang, V. R. Marinov, G. Lubineau, H. N. Alshareef, M. Oh, Adv. Funct. Mater. 2015, 25, 3193. – reference: c) T. Lin, F. Liu, F. Xu, H. Bi, Y. Du, Y. Tang, F. Huang, ACS App. Mater. Interfaces 2015, 7, 25306; – reference: f) Z. Y. Wu, C. Li, H. W. Liang, J. F. Chen, S. H. Yu, Angew. Chem. Int. Ed. 2013, 52, 2925. – reference: b) S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutiérrez, F. del Monte, Chem. Soc. Rev. 2013, 42, 794; – reference: b) X.-L. Wu, T. Wen, H.-L. Guo, S. Yang, X. Wang, A.-W. Xu, ACS Nano 2013, 7, 3589; – reference: a) M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher Jr., T. F. Baumann, J. Am. Chem. Soc. 2010, 132, 14067; – reference: b) S. Barg, F. M. Perez, N. Ni, P. do Vale Pereira, R. C. Maher, E. Garcia-Tuñon, S. Eslava, S. Agnoli, C. Mattevi, E. Saiz, Nat. Commun. 2014, 5. – reference: c) C. Lin, J. A. Ritter, Carbon 2000, 38, 849. – reference: L. Qiu, J. Z. Liu, S. L. Y. Chang, Y. Wu, D. Li, Nat. Commun. 2012, 3, 1241. – reference: W. S. Hummers Jr., R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339. – reference: b) B. N. Nguyen, M. A. B. Meador, A. Medoro, V. Arendt, J. Randall, L. McCorkle, B. Shonkwiler, ACS App. Mater. Interfaces 2010, 2, 1430. – reference: a) A. M. ElKhatat, S. A. Al-Muhtaseb, Adv. Mater. 2011, 23, 2887; – reference: d) J. Y. Hong, B. M. Bak, J. J. Wie, J. Kong, H. S. Park, Adv. Funct. Mater. 2015, 25, 1053; – reference: b) S. Mulik, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 2008, 20, 6985; – volume: 40 20 start-page: 874 6985 year: 2007 2008 2011 publication-title: Acc. Chem. Res. Chem. Mater. – volume: 22 start-page: 6692 year: 2010 publication-title: Chem. Mater. – volume: 80 start-page: 1339 year: 1958 publication-title: J. Am. Chem. Soc. – volume: 4 5 start-page: 366 year: 2005 2014 publication-title: Nat. Mater. Nat. Commun. – volume: 23 4 15 start-page: 2887 656 101 year: 2011 2011 2003 publication-title: Adv. Mater. Energy Environ. Sci. Adv. Mater. – volume: 68 start-page: 221 year: 2014 publication-title: Carbon – volume: 2 start-page: 179 year: 2012 publication-title: Adv. Energy Mater. – volume: 18 1 2 start-page: 1843 621 2162 year: 2008 2009 2010 publication-title: J. Mater. Chem. ACS App. Mater. Interfaces ACS App. Mater. Interfaces – volume: 6 start-page: 1922 year: 2014 publication-title: Nanoscale – volume: 3 start-page: 1241 year: 2012 publication-title: Nat. Commun. – volume: 7 6 7 25 start-page: 5612 5228 25306 324 year: 2015 2014 2015 2015 publication-title: ACS App. Mater. Interfaces ACS App. Mater. Interfaces ACS App. Mater. Interfaces Adv. Funct. Mater. – volume: 25 start-page: 591 year: 2013 publication-title: Adv. Mater. – volume: 22 42 5 25 41 20 start-page: 617 794 8472 1053 666 815 year: 2010 2013 2013 2015 2012 2008 publication-title: Adv. Mater. Chem. Soc. Rev. Nanoscale Adv. Funct. Mater. Chem. Soc. Rev. Adv. Mater. – volume: 38 104 1 52 51 52 start-page: 226 4463 10 7930 5101 2925 year: 2009 2004 2011 2013 2012 2013 publication-title: Chem. Soc. Rev. Chem. Rev. Adv. Energy Mater. Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. – volume: 76 44 38 start-page: 240 590 849 year: 2014 2006 2000 publication-title: Carbon Carbon Carbon – volume: 14 7 5 start-page: 271 3589 987 year: 2015 2013 2006 publication-title: Nat. Mater. ACS Nano Nat. Mater. – volume: 132 127 22 25 start-page: 14067 2427 2711 3193 year: 2010 2015 2010 2015 publication-title: J. Am. Chem. Soc. Angew. Chem. Chem. Mater. Adv. Funct. Mater. – volume: 8 start-page: 9733 year: 2014 publication-title: ACS Nano – volume: 2 2 start-page: 957 1430 year: 2002 2010 publication-title: Nano Lett. ACS App. Mater. Interfaces – ident: e_1_2_6_2_4 doi: 10.1002/adfm.201403273 – ident: e_1_2_6_12_1 doi: 10.1039/b800602d – ident: e_1_2_6_4_1 doi: 10.1021/nn504544h – ident: e_1_2_6_1_6 doi: 10.1002/anie.201209676 – ident: e_1_2_6_7_4 doi: 10.1002/adfm.201500538 – ident: e_1_2_6_8_1 doi: 10.1038/nmat1368 – ident: e_1_2_6_9_1 doi: 10.1016/j.carbon.2014.04.074 – ident: e_1_2_6_2_6 doi: 10.1002/adma.200701498 – ident: e_1_2_6_6_1 doi: 10.1002/adma.201100283 – ident: e_1_2_6_12_3 doi: 10.1021/am100422x – ident: e_1_2_6_7_1 doi: 10.1021/ja1072299 – ident: e_1_2_6_12_2 doi: 10.1021/am8001617 – ident: e_1_2_6_10_1 doi: 10.1021/ar600033s – ident: e_1_2_6_1_5 doi: 10.1002/anie.201200710 – ident: e_1_2_6_6_3 doi: 10.1002/adma.200390020 – ident: e_1_2_6_18_4 doi: 10.1002/adfm.201402964 – ident: e_1_2_6_6_2 doi: 10.1039/c0ee00627k – ident: e_1_2_6_13_1 doi: 10.1021/cm102891d – ident: e_1_2_6_5_3 doi: 10.1038/nmat1782 – ident: e_1_2_6_11_2 doi: 10.1021/am100081a – ident: e_1_2_6_18_3 doi: 10.1021/acsami.5b07368 – ident: e_1_2_6_5_1 doi: 10.1038/nmat4170 – ident: e_1_2_6_14_1 doi: 10.1002/aenm.201100560 – ident: e_1_2_6_2_5 doi: 10.1039/C1CS15078B – ident: e_1_2_6_10_3 doi: 10.1007/978-1-4419-7589-8 – ident: e_1_2_6_1_4 doi: 10.1002/anie.201302369 – ident: e_1_2_6_1_2 doi: 10.1021/cr020740l – ident: e_1_2_6_16_1 doi: 10.1002/adma.201203578 – ident: e_1_2_6_2_2 doi: 10.1039/C2CS35353A – ident: e_1_2_6_15_1 doi: 10.1016/j.carbon.2013.10.082 – ident: e_1_2_6_5_2 doi: 10.1021/nn400566d – ident: e_1_2_6_17_1 doi: 10.1038/ncomms2251 – ident: e_1_2_6_7_2 doi: 10.1002/ange.201410668 – ident: e_1_2_6_7_3 doi: 10.1021/cm9023502 – ident: e_1_2_6_2_1 doi: 10.1002/adma.200902986 – ident: e_1_2_6_3_1 doi: 10.1039/C3NR04555B – ident: e_1_2_6_9_3 doi: 10.1016/S0008-6223(99)00189-X – ident: e_1_2_6_19_1 doi: 10.1021/ja01539a017 – ident: e_1_2_6_1_1 doi: 10.1039/B801151F – ident: e_1_2_6_9_2 doi: 10.1016/j.carbon.2005.10.004 – ident: e_1_2_6_8_2 doi: 10.1038/ncomms5328 – ident: e_1_2_6_18_1 doi: 10.1021/acsami.5b01384 – ident: e_1_2_6_18_2 doi: 10.1021/am500579c – ident: e_1_2_6_10_2 doi: 10.1021/cm801428p – ident: e_1_2_6_2_3 doi: 10.1039/c3nr01932b – ident: e_1_2_6_1_3 doi: 10.1002/aenm.201000002 – ident: e_1_2_6_11_1 doi: 10.1021/nl025690e |
SSID | ssj0017734 |
Score | 2.4967582 |
Snippet | Designing macroscopic, 3D porous conductive materials with high mechanical strength is of great importance in many fields, including energy storage, catalysis,... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4976 |
SubjectTerms | 3D structures Aerogels Carbon carbon aerogels Compressibility Crosslinking Electronics Graphene machinable Recovery Supercapacitors x-aerogels |
Title | Strong, Machinable Carbon Aerogels for High Performance Supercapacitors |
URI | https://api.istex.fr/ark:/67375/WNG-VM5C0BGM-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201601010 https://www.proquest.com/docview/1835612684 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-NAFD6IfXEfvO5ivZQRFn0xmmRyfazVVhYjYle3b8NcRZRUYgvir3dO0sZ2QQR9S-AMSeZkzmXmO98B-C11bEKXUydVInECgyAAKhMHWap9EQiuBNYOZ5fR-U3wZxAOZqr4K36IesMNV0Zpr3GBc_F8_E4aypXBSnIPM4qyxgoBWxgVXdf8UV4cV8fKkYcAL28wZW10_eP54XNeqYET_DIXcs4GrqXn6a4An75zBTh5OBqPxJF8_Y_O8TsftQrLk7CUtKv_aA0WdL4OP2bICjeg18dd87tDkpX4Syy5Ih1eiGFO2roY3lknS2wETBA5Qq7e6xFIf_ykC2mdsrzH1j4_4aZ79rdz7kzaMDgS6esdm8bKAFlalOTUJlTamgjPRLFIRRIHkhpprNMXwvWVSawUd7Xmxk-NtAaBU0N_wWI-zPUmEJW6SkY8EiEVgUttcCQVVdSTYUAxk2uCM1UDkxOOcmyV8cgqdmWf4QSxeoKacFDLP1XsHB9K7pdarcV48YCYtjhk_y577DYLO-5JL2NXTdibqp3ZlYbHJzzXw_Ezs8YPW4lGSdAEv1TiJ89k7dNuVt9tfWXQNizhNW4me-kOLI6Ksd61UdBItKDRPs0u-q3yj38Dry_-Gw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB616QPtA1dBhHOROF5wa3t9PvAQEpKU1lFFD_K27FlVQU7lJuL4V_wVfhE7duw2SKgSUh94tDU-Z2b3m92ZbwBeSB2b0OXUSZVInMBgEgCViYMs1b4IBFcCa4ezUTQ8Cj6Mw_EK_KxrYSp-iGbBDT2jHK_RwXFBevuCNZQrg6XkHoYUnrvIq9zV37_aqO387U7Pqvil7_ffH3aHzqKxgCORkN2xgZkMkHdESU5tiKCt0XsmikUqkjiQ1EhjpzEhXF-ZxEpxV2tu_NRIa-KcGmrvuwpr2EYc6fp7HxvGKi-Oq43syMOUMm9c80S6_vby-y7Ng2uo0m9LIPcyVC7nuv4t-FX_pSrFZbI1n4kt-eMPAsn_6jfehpsL5E06lavcgRWd34WNS3yMmzA4wI2BkzckK1NMsaqMdHkhpjnp6GJ6YnEEsSCfYHIM2b8ouSAH8zNdSIs75Cl2L7oHR9fyJfehlU9z_QCISl0lIx6JkIrApRb_SUUV9WQYUAxW2-DUemdyQcOO3UC-sIpA2meoENYopA2vG_mzioDkr5KvSjNqxHgxwbS9OGSfRgN2nIVd990gY_tteF7bGbODCe4Q8VxP5-fMju_YLTVKgjb4pdVc8UzW6fWz5ujhv1z0DG4MD7M9trcz2n0E63ge18699DG0ZsVcP7Ggbyaelm5G4PN1G-RvbZNarg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VVkL0gRsRzkXieMHt2uvzgYeQkLQURxGlJW_LnlVV5ERuIo5fxV_hH7Fjx26DhJCQ-sCjrfE5M7vf7M58A_BUmcRGVDAv0zL1QotJAEylHrJUBzKUQkusHc5H8c5B-HYSTdbgR1MLU_NDtAtu6BnVeI0OPtN2-4w0VGiLleQ-RhQ-XaZV7plvX1zQdvpqt-80_CwIBm8-9Ha8ZV8BTyEfu-fiMhUi7YhWgrkIwTib922cyEymSaiYVdbNYlLSQNvUSQlqjLBBZpWzcMEsc_e9BBthTDNsFtF_3xJW-UlS72PHPmaU-ZOGJpIG26vvuzINbqBGv65g3PNIuZrqBtfgZ_OT6gyXk63FXG6p77_xR_5Pf_E6XF3ibtKtHeUGrJniJmyeY2O8BcN93BY4eknyKsEUa8pIT5RyWpCuKadHDkUQB_EJpsaQ8VnBBdlfzEypHOpQx9i76DYcXMiX3IH1YlqYu0B0RrWKRSwjJkPKHPpTmmnmqyhkGKp2wGvUztWShB17gXzmNX10wFEhvFVIB1608rOafuSPks8rK2rFRHmCSXtJxD-Ohvwwj3r09TDn4w48acyMu6EE94dEYaaLU-5Gd-yVGqdhB4LKaP7yTN7tD_L26N6_XPQYLo_7A_5ud7R3H67gaVw497MHsD4vF-ahQ3xz-ahyMgKfLtoefwHcYlld |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong%2C+Machinable+Carbon+Aerogels+for+High+Performance+Supercapacitors&rft.jtitle=Advanced+functional+materials&rft.au=Kim%2C+Christine+H.+J.&rft.au=Zhao%2C+Dandan&rft.au=Lee%2C+Gyeonghee&rft.au=Liu%2C+Jie&rft.date=2016-07-19&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=27&rft.spage=4976&rft.epage=4983&rft_id=info:doi/10.1002%2Fadfm.201601010&rft.externalDBID=10.1002%252Fadfm.201601010&rft.externalDocID=ADFM201601010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |