Chebyshev type inequalities via generalized fractional conformable integrals

Our aim in this present paper is to establish several Chebyshev type inequalities involving generalized fractional conformable integral operator recently introduced by T.U. Khan and M.A. Khan (J. Comput. Appl. Math. 346:378–389, 2019 ). Also, we present Chebyshev type inequalities involving Riemann–...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2019; no. 1; pp. 1 - 9
Main Authors Nisar, Kottakkaran Sooppy, Rahman, Gauhar, Mehrez, Khaled
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 11.09.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Our aim in this present paper is to establish several Chebyshev type inequalities involving generalized fractional conformable integral operator recently introduced by T.U. Khan and M.A. Khan (J. Comput. Appl. Math. 346:378–389, 2019 ). Also, we present Chebyshev type inequalities involving Riemann–Liouville type fractional conformable integral operators as a particular result of our main result.
AbstractList Our aim in this present paper is to establish several Chebyshev type inequalities involving generalized fractional conformable integral operator recently introduced by T.U. Khan and M.A. Khan (J. Comput. Appl. Math. 346:378–389, 2019 ). Also, we present Chebyshev type inequalities involving Riemann–Liouville type fractional conformable integral operators as a particular result of our main result.
Abstract Our aim in this present paper is to establish several Chebyshev type inequalities involving generalized fractional conformable integral operator recently introduced by T.U. Khan and M.A. Khan (J. Comput. Appl. Math. 346:378–389, 2019). Also, we present Chebyshev type inequalities involving Riemann–Liouville type fractional conformable integral operators as a particular result of our main result.
Our aim in this present paper is to establish several Chebyshev type inequalities involving generalized fractional conformable integral operator recently introduced by T.U. Khan and M.A. Khan (J. Comput. Appl. Math. 346:378–389, 2019). Also, we present Chebyshev type inequalities involving Riemann–Liouville type fractional conformable integral operators as a particular result of our main result.
ArticleNumber 245
Author Rahman, Gauhar
Nisar, Kottakkaran Sooppy
Mehrez, Khaled
Author_xml – sequence: 1
  givenname: Kottakkaran Sooppy
  surname: Nisar
  fullname: Nisar, Kottakkaran Sooppy
  email: n.sooppy@psau.edu.sa, ksnisar1@gmail.com
  organization: Department of Mathematics, College of Arts and Sciences, Prince Sattam Bin Abdulaziz University
– sequence: 2
  givenname: Gauhar
  surname: Rahman
  fullname: Rahman, Gauhar
  organization: Department of Mathematics, Shaheed Benazir Bhutto University
– sequence: 3
  givenname: Khaled
  surname: Mehrez
  fullname: Mehrez, Khaled
  organization: Department of Mathematics, Issat Kasserine, University of Kairouan
BookMark eNp9kU1r3DAQhkVJoUnaH9CboWe3-rIsH8vSj4WFXBLoTYyl0UaLY20kbWDz66utSxMCzWmk4X3eGem9IGdznJGQj4x-ZkyrL5kJpWhL2dByNvQte0POGeX1Jvmvs2fnd-Qi5x2lnAktz8lmdYvjMd_iQ1OOe2zCjPcHmEIJmJuHAM0WZ0y18Yiu8QlsCXGGqbFx9jHdwTidmILbqsnvyVtfC374Wy_Jzfdv16uf7ebqx3r1ddNaybvSYt9T4UfltBisl6h5NzKUXEiPogeqnHDMcfTCug5B6UGPGrQStlcMUIpLsl58XYSd2adwB-loIgTzpxHT1kAqwU5oQFmpZO8oVyAd9wN3ahgVlU5Bh52vXp8Wr32K9wfMxeziIdUnZsO51qobOKNVxRaVTTHnhP7fVEbNKQCzBGBqAOYUgGGV6V8wNhQ4_V9JEKZXSb6QuU6Zt5iedvo_9BsVpZzv
CitedBy_id crossref_primary_10_3390_math8020222
crossref_primary_10_1155_2022_2350193
crossref_primary_10_3934_dcdss_2021063
crossref_primary_10_1186_s13660_020_02420_x
crossref_primary_10_1186_s13662_020_03075_0
crossref_primary_10_3934_math_2021625
crossref_primary_10_3934_math_2021565
crossref_primary_10_3934_math_2021201
crossref_primary_10_3934_math_2022678
crossref_primary_10_1186_s13662_020_02830_7
crossref_primary_10_1186_s13662_020_03183_x
crossref_primary_10_3390_math8040504
crossref_primary_10_1155_2020_3051920
crossref_primary_10_1155_2023_4165363
crossref_primary_10_3390_math8040500
crossref_primary_10_3390_axioms11020082
crossref_primary_10_1142_S0218348X21400272
crossref_primary_10_1186_s13660_021_02604_z
crossref_primary_10_1155_2021_6667226
crossref_primary_10_3934_dcdss_2020444
crossref_primary_10_3934_math_2022763
crossref_primary_10_1186_s13662_019_2381_0
crossref_primary_10_1186_s13660_020_02351_7
crossref_primary_10_1515_dema_2022_0149
crossref_primary_10_3934_math_2022571
crossref_primary_10_3390_fractalfract4020010
Cites_doi 10.1186/s13660-019-2170-z
10.7153/jmi-10-38
10.1016/j.cam.2018.07.018
10.3390/math7040364
10.1186/s13660-018-1717-8
10.11121/ijocta.01.2018.00541
10.3390/sym10110614
10.1186/s13662-019-2229-7
10.5373/jarpm.392.032110
10.1063/1.5031954
10.3934/Math.2018.4.575
10.1186/s13660-018-1664-4
10.1007/s13370-014-0312-5
10.22363/2413-3639-2018-64-2-211-426
ContentType Journal Article
Copyright The Author(s) 2019
Journal of Inequalities and Applications is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of Inequalities and Applications is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1186/s13660-019-2197-1
DatabaseName Springer Nature OA/Free Journals
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1029-242X
EndPage 9
ExternalDocumentID oai_doaj_org_article_a6c4647d026a4d2f92d69b604d6a5e5f
10_1186_s13660_019_2197_1
GroupedDBID -A0
0R~
29K
2WC
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABFTD
ABJCF
ACACY
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
D-I
DU5
EBLON
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
OK1
P2P
P62
PIMPY
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
~8M
AASML
AAYXX
AMVHM
CITATION
OVT
PHGZM
PHGZT
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c425t-e7703fb6d839cf4e825b1e4234fe37a06d3d1d2ef3cd5ea6898b8a863c761ae43
IEDL.DBID C24
ISSN 1029-242X
1025-5834
IngestDate Wed Aug 27 01:29:31 EDT 2025
Sat Aug 23 12:22:11 EDT 2025
Tue Jul 01 04:06:19 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
Fri Feb 21 02:33:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 26D10
33B20
Fractional integral
Inequalities
26A33
90C23
Generalized fractional conformable integral
26D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-e7703fb6d839cf4e825b1e4234fe37a06d3d1d2ef3cd5ea6898b8a863c761ae43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1186/s13660-019-2197-1
PQID 2288659210
PQPubID 237789
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_a6c4647d026a4d2f92d69b604d6a5e5f
proquest_journals_2288659210
crossref_primary_10_1186_s13660_019_2197_1
crossref_citationtrail_10_1186_s13660_019_2197_1
springer_journals_10_1186_s13660_019_2197_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-11
PublicationDateYYYYMMDD 2019-09-11
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-11
  day: 11
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of inequalities and applications
PublicationTitleAbbrev J Inequal Appl
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Podlubny (CR3) 1999
Set, Tomar, Sarikaya (CR22) 2015; 269
Özdemir, Set, Akdemir, Sarkaya (CR27) 2015; 26
Set, Dahmani, Mumcu (CR28) 2018; 8
Dahmani (CR15) 2010; 9
Qi, Rahman, Hussain, Du, Nisar (CR26) 2018; 10
Ntouyas, Agarwal, Tariboon (CR18) 2016; 10
Nisar, Qi, Rahman, Mubeen, Arshad (CR19) 2018; 2018
Chebyshev (CR24) 1882; 2
Iqbal, Khan, Ullah, Kashuri, Chu (CR10) 2018; 8
Nisar, Tassaddiq, Rahman, Khan (CR13) 2019; 2019
Khan, Khurshid, Chu (CR9) 2019; 10
Samko, Kilbas, Marichev (CR4) 1993
Khurshid, Khan, Chu (CR8) 2019; 2019
Dahmani, Tabharit (CR14) 2010; 2
Katrakhov, Sitnik (CR17) 2018; 64
Srivastava, Choi (CR30) 2012
Khan, Begum, Khurshid, Chu (CR6) 2018; 2018
Khan, Khan (CR1) 2019; 346
Khan, Khurshid, Dragomir, Ullah (CR5) 2018; 50
Rahman, Nisar, Qi (CR25) 2018; 3
Nisar, Rahman, Choi, Mubeen, Arshad (CR20) 2018; 34
Khurshid, Adil Khan, Chu (CR7) 2019; 2019
Kiryakova (CR16) 1994
Kilbas, Srivastava, Truhillo (CR2) 2006
Rahman, Khan, Abdeljawad, Nisar (CR12) 2019; 2019
Rahman, Nisar, Mubeen, Choi (CR23) 2018; 103
Rahman, Ullah, Khan, Set, Nisar (CR11) 2019; 7
Sarikaya, Dahmani, Kiris, Ahmad (CR21) 2016; 45
Belarbi, Dahmani (CR29) 2009; 10
V. Kiryakova (2197_CR16) 1994
E. Set (2197_CR22) 2015; 269
E. Set (2197_CR28) 2018; 8
S. Belarbi (2197_CR29) 2009; 10
K.S. Nisar (2197_CR19) 2018; 2018
G. Rahman (2197_CR25) 2018; 3
I. Podlubny (2197_CR3) 1999
Z. Dahmani (2197_CR15) 2010; 9
H.M. Srivastava (2197_CR30) 2012
V.V. Katrakhov (2197_CR17) 2018; 64
M.A. Khan (2197_CR6) 2018; 2018
M.A. Khan (2197_CR9) 2019; 10
M.Z. Sarikaya (2197_CR21) 2016; 45
T.U. Khan (2197_CR1) 2019; 346
Z. Dahmani (2197_CR14) 2010; 2
A.A. Kilbas (2197_CR2) 2006
A. Iqbal (2197_CR10) 2018; 8
K.S. Nisar (2197_CR13) 2019; 2019
M.E. Özdemir (2197_CR27) 2015; 26
K.S. Ntouyas (2197_CR18) 2016; 10
G. Rahman (2197_CR11) 2019; 7
S.G. Samko (2197_CR4) 1993
Y. Khurshid (2197_CR7) 2019; 2019
Y. Khurshid (2197_CR8) 2019; 2019
K.S. Nisar (2197_CR20) 2018; 34
G. Rahman (2197_CR23) 2018; 103
G. Rahman (2197_CR12) 2019; 2019
F. Qi (2197_CR26) 2018; 10
M.A. Khan (2197_CR5) 2018; 50
P.L. Chebyshev (2197_CR24) 1882; 2
References_xml – year: 2012
  ident: CR30
  publication-title: Zeta and q-Zeta Functions and Associated Series and Integrals
– year: 1999
  ident: CR3
  publication-title: Fractional Differential Equations
– volume: 2019
  year: 2019
  ident: CR13
  article-title: Some inequalities via fractional conformable integral operators
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-2170-z
– volume: 2
  start-page: 93
  year: 1882
  end-page: 98
  ident: CR24
  article-title: Sur les expressions approximatives des integrales definies par les autres prises entre les mmes limites
  publication-title: Proc. Math. Soc. Charkov
– volume: 2019
  year: 2019
  ident: CR8
  article-title: Generalized inequalities via GG-convexity and GA-convexity
  publication-title: J. Funct. Spaces
– volume: 9
  start-page: 493
  issue: 4
  year: 2010
  end-page: 497
  ident: CR15
  article-title: New inequalities in fractional integrals
  publication-title: Int. J. Nonlinear Sci.
– volume: 2019
  year: 2019
  ident: CR7
  article-title: Hermite–Hadamard–Fejer inequalities for conformable fractional integrals via preinvex functions
  publication-title: J. Funct. Spaces
– volume: 10
  start-page: 85
  issue: 1
  year: 2019
  end-page: 97
  ident: CR9
  article-title: Hermite–Hadamard type inequalities via the Montgomery identity
  publication-title: Commun. Math. Appl.
– volume: 10
  start-page: 491
  issue: 2
  year: 2016
  end-page: 504
  ident: CR18
  article-title: On Polya–Szego and Chebyshev types inequalities involving the Riemann–Liouville fractional integral operators
  publication-title: J. Math. Inequal.
  doi: 10.7153/jmi-10-38
– year: 2006
  ident: CR2
  publication-title: Theory and Applications of Fractional Differential Equations
– volume: 346
  start-page: 378
  year: 2019
  end-page: 389
  ident: CR1
  article-title: Generalized conformable fractional integral operators
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.07.018
– volume: 64
  start-page: 211
  year: 2018
  end-page: 426
  ident: CR17
  article-title: The transmutation method and boundary-value problems for singular elliptic equations
  publication-title: Contemp. Math Fundam. Dir.
– volume: 7
  year: 2019
  ident: CR11
  article-title: Certain Chebyshev type inequalities involving fractional conformable integral operators
  publication-title: Mathematics
  doi: 10.3390/math7040364
– volume: 2018
  year: 2018
  ident: CR19
  article-title: Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1717-8
– volume: 8
  start-page: 137
  issue: 2
  year: 2018
  end-page: 144
  ident: CR28
  article-title: New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya–Szeg inequality
  publication-title: Int. J. Optim. Control Theor. Appl.
  doi: 10.11121/ijocta.01.2018.00541
– volume: 10
  year: 2018
  ident: CR26
  article-title: Some inequalities of Čebyšev type for conformable -fractional integral operators
  publication-title: Symmetry
  doi: 10.3390/sym10110614
– volume: 50
  start-page: 1
  issue: 3
  year: 2018
  end-page: 12
  ident: CR5
  article-title: Inequalities of the Hermite–Hadamard type with applications
  publication-title: Punjab Univ. J. Math.
– volume: 2019
  year: 2019
  ident: CR12
  article-title: The Minkowski inequalities via generalized proportional fractional integral operators
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2229-7
– volume: 34
  start-page: 249
  issue: 3
  year: 2018
  end-page: 263
  ident: CR20
  article-title: Certain Gronwall type inequalities associated with Riemann–Liouville k- and Hadamard k-fractional derivatives and their applications
  publication-title: East Asian Math. J.
– year: 1994
  ident: CR16
  publication-title: Generalized Fractional Calculus and Applications
– year: 1993
  ident: CR4
  publication-title: Fractional Integrals and Derivatives: Theory and Applications
– volume: 2
  start-page: 31
  year: 2010
  end-page: 38
  ident: CR14
  article-title: On weighted Gruss type inequalities via fractional integration
  publication-title: J. Adv. Res. Pure Math.
  doi: 10.5373/jarpm.392.032110
– volume: 8
  year: 2018
  ident: CR10
  article-title: Hermite–Hadamard type inequalities pertaining conformable fractional integrals and their applications
  publication-title: AIP Adv.
  doi: 10.1063/1.5031954
– volume: 103
  start-page: 1879
  issue: 11
  year: 2018
  end-page: 1888
  ident: CR23
  article-title: Certain inequalities involving the -fractional integral operator
  publication-title: Far East J. Math. Sci.: FJMS
– volume: 269
  start-page: 29
  year: 2015
  end-page: 34
  ident: CR22
  article-title: On generalized Grüss type inequalities for -fractional integrals
  publication-title: Appl. Math. Comput.
– volume: 3
  start-page: 575
  issue: 4
  year: 2018
  end-page: 583
  ident: CR25
  article-title: Some new inequalities of the Gruss type for conformable fractional integrals
  publication-title: AIMS Math.
  doi: 10.3934/Math.2018.4.575
– volume: 2018
  year: 2018
  ident: CR6
  article-title: Ostrowski type inequalities involving conformable fractional integrals
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1664-4
– volume: 45
  start-page: 77
  issue: 1
  year: 2016
  end-page: 89
  ident: CR21
  article-title: -Riemann–Liouville fractional integral and applications
  publication-title: Hacet. J. Math. Stat.
– volume: 26
  start-page: 1609
  year: 2015
  end-page: 1619
  ident: CR27
  article-title: Some new Chebyshev type inequalities for functions whose derivatives belong to spaces
  publication-title: Afr. Math.
  doi: 10.1007/s13370-014-0312-5
– volume: 10
  issue: 3
  year: 2009
  ident: CR29
  article-title: On some new fractional integral inequalities
  publication-title: J. Inequal. Pure Appl. Math.
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 2197_CR3
– volume: 45
  start-page: 77
  issue: 1
  year: 2016
  ident: 2197_CR21
  publication-title: Hacet. J. Math. Stat.
– volume: 2019
  year: 2019
  ident: 2197_CR12
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2229-7
– volume: 269
  start-page: 29
  year: 2015
  ident: 2197_CR22
  publication-title: Appl. Math. Comput.
– volume-title: Fractional Integrals and Derivatives: Theory and Applications
  year: 1993
  ident: 2197_CR4
– volume: 26
  start-page: 1609
  year: 2015
  ident: 2197_CR27
  publication-title: Afr. Math.
  doi: 10.1007/s13370-014-0312-5
– volume: 8
  start-page: 137
  issue: 2
  year: 2018
  ident: 2197_CR28
  publication-title: Int. J. Optim. Control Theor. Appl.
  doi: 10.11121/ijocta.01.2018.00541
– volume-title: Generalized Fractional Calculus and Applications
  year: 1994
  ident: 2197_CR16
– volume: 2018
  year: 2018
  ident: 2197_CR6
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1664-4
– volume: 7
  year: 2019
  ident: 2197_CR11
  publication-title: Mathematics
  doi: 10.3390/math7040364
– volume: 2
  start-page: 93
  year: 1882
  ident: 2197_CR24
  publication-title: Proc. Math. Soc. Charkov
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 2197_CR2
– volume: 50
  start-page: 1
  issue: 3
  year: 2018
  ident: 2197_CR5
  publication-title: Punjab Univ. J. Math.
– volume: 3
  start-page: 575
  issue: 4
  year: 2018
  ident: 2197_CR25
  publication-title: AIMS Math.
  doi: 10.3934/Math.2018.4.575
– volume: 2019
  year: 2019
  ident: 2197_CR7
  publication-title: J. Funct. Spaces
– volume: 103
  start-page: 1879
  issue: 11
  year: 2018
  ident: 2197_CR23
  publication-title: Far East J. Math. Sci.: FJMS
– volume: 10
  start-page: 491
  issue: 2
  year: 2016
  ident: 2197_CR18
  publication-title: J. Math. Inequal.
  doi: 10.7153/jmi-10-38
– volume: 9
  start-page: 493
  issue: 4
  year: 2010
  ident: 2197_CR15
  publication-title: Int. J. Nonlinear Sci.
– volume: 2019
  year: 2019
  ident: 2197_CR13
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-2170-z
– volume: 64
  start-page: 211
  year: 2018
  ident: 2197_CR17
  publication-title: Contemp. Math Fundam. Dir.
  doi: 10.22363/2413-3639-2018-64-2-211-426
– volume: 8
  year: 2018
  ident: 2197_CR10
  publication-title: AIP Adv.
  doi: 10.1063/1.5031954
– volume: 2
  start-page: 31
  year: 2010
  ident: 2197_CR14
  publication-title: J. Adv. Res. Pure Math.
  doi: 10.5373/jarpm.392.032110
– volume: 2019
  year: 2019
  ident: 2197_CR8
  publication-title: J. Funct. Spaces
– volume: 2018
  year: 2018
  ident: 2197_CR19
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-018-1717-8
– volume: 34
  start-page: 249
  issue: 3
  year: 2018
  ident: 2197_CR20
  publication-title: East Asian Math. J.
– volume-title: Zeta and q-Zeta Functions and Associated Series and Integrals
  year: 2012
  ident: 2197_CR30
– volume: 10
  start-page: 85
  issue: 1
  year: 2019
  ident: 2197_CR9
  publication-title: Commun. Math. Appl.
– volume: 346
  start-page: 378
  year: 2019
  ident: 2197_CR1
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.07.018
– volume: 10
  year: 2018
  ident: 2197_CR26
  publication-title: Symmetry
  doi: 10.3390/sym10110614
– volume: 10
  issue: 3
  year: 2009
  ident: 2197_CR29
  publication-title: J. Inequal. Pure Appl. Math.
SSID ssj0021384
ssib044744598
ssib008501289
Score 2.3491461
Snippet Our aim in this present paper is to establish several Chebyshev type inequalities involving generalized fractional conformable integral operator recently...
Abstract Our aim in this present paper is to establish several Chebyshev type inequalities involving generalized fractional conformable integral operator...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Applications of Mathematics
Chebyshev approximation
Fractional integral
Generalized fractional conformable integral
Inequalities
Integrals
Mathematics
Mathematics and Statistics
Operators (mathematics)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxbeiEBBGZhAUePYsZ0RKqoKAROVull-BSpVBTWlA1_PdeIUigQsrElsWfcRn-PHuQidZ2WBAYc7oCXKJTRzaSKE5YlWxKTWMK5r3YL7BzYc0dtxPv5S6sufCWvkgRvD9RQzlFFugSsoaqHrzLJCs5RapnKXl_7vC3NeS6YC1cJE0LCHiQXrVZgw5g9gFQlkKE_w2ixUi_WvIcxvm6L1XDPYQVsBJMZXzeB20Yab7aHtABjjkI7VPrrrPzu_vuyWsV9KjQExNpckgf7Gy4mKnxpR6ck7NCvnzR0G6Bg4cI1V9dS3qfUiptUBGg1uHvvDJJRHSAwk2iJxHLK11MwCxjEldcD1NHYAj2jpCFcps8Rim7mSGJs7xUQhtFCCEcO9Yyg5RJ3Zy8wdoVgXBCsDnWggfAIYG5A8IBoYOsLGOB6htDWXNEE73JewmMqaQwgmGwtLsLD0FpY4QherJq-NcMZvH197H6w-9JrX9QOIBBkiQf4VCRHqth6UIRErmWVC-J1jnEbosvXq5-sfR3T8HyM6QZuZjzlfcQJ3UWcxf3OngGEW-qwO1w_XbeyX
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4EDjwLqQkE5cAJZjWPHdk6IVq0qRCuEqNSb5VdKpdVu2Sw98OuZcbypikSviT2J7Jnx93nsGYD3Td9xxOEJaYlLTDapZsZEzbwToY5BaZ_zFpyeqZNz-eWivSgbbkM5VrnxidlRx2WgPfL9pjGGQoC8_nT9i1HVKIqulhIaD2EbXbBB8rV9cHT27fukUaYlBzwt2FJqKdtuijM0XOSaxJyKurZGyBL35EbtD1woRYe2OoZWrRm_s3LlBP93UOk_gdS8Ph0_gycFWFafR014Dg_SYgeeFpBZFRMeduDx6ZSodXgBXw9_JtqhTjcVbcZWiDnHa5ZIoKubK1ddjmmpr_6gkH413oLAzyCLzmjXz6lPzjgxH17C-fHRj8MTVgossICmumZJo733XkVESaGXCdmi5wkBluyT0K5WUUQem9SLENvklOmMN84oETRNrRSvYGuxXKRdqHwnuAsoxCNlNMj5kCYiVeEoiIeQ9AzqzeDZULKPUxGMuc0sxCg7jrfF8bY03pbP4MPU5XpMvXFf4wOakakhZc3OD5arS1uM0DoVpJI6Iu90MqKaNlF1XtUyKtemtp_B3mY-bTHlwd4q3gw-bub49vV__-j1_cLewKOGdIuqUfA92Fqvfqe3iG_W_l1R4r8_2_L4
  priority: 102
  providerName: ProQuest
Title Chebyshev type inequalities via generalized fractional conformable integrals
URI https://link.springer.com/article/10.1186/s13660-019-2197-1
https://www.proquest.com/docview/2288659210
https://doaj.org/article/a6c4647d026a4d2f92d69b604d6a5e5f
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4acBkHGGxoHazKYSdQtDh2HOdYKgqqACGgEjfLv8IqVQU1hQN__Z4dpxPThsTlRUpsJ3rPL_4-P_sZ4EdeVwRxuENaolzKcpelQtgy1YqazBpe6pC34OKSn03Y-K64i_u4m261exeSDH_q4NaC_2wI5dwvoqpS9LIyRcqzUSB199166Lc4RJZFqGAxfPnPaq8GoJCn_xW4_CseGoaZ0SfYivgwGbQG3YEPbr4L2xErJtETm13YvFjlW20-w_nwl_MTze458XOqCULHdrck8uDkeaqS-za79PQFG6kX7WYGfA2S4QBa9czXCYkjZs0XmIxObodnaTwnITXoccvUlei2teYWwY6pmUPSp4lDnMRqR0uVcUstsbmrqbGFU1xUQgslODWltxCje7A-f5i7r5DoihJlsBGNzE8gdUO2h4yDYEPEGFf2IOuUJ01MIu7PspjJQCYEl62-Jepben1L0oPDVZXHNoPGW4WPvUVWBX3y63DjYXEvoy9JxQ3jrLRoe8Us9rbc8krzjFmuClfUPTjo7CmjRzYyz4XwIWSS9eCos_Gfx__9om_vKr0PH3Pf1fwZE-QA1peLJ_cdUctS92GNZacoxQjlxmAwvhnj9fjk8uq6H3qwl3zYD7MCKCf54DczZOxz
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeeBQqFgrkABdQ1PgRxzlUqC0sW7rbUyv1ZvxKqbTabTdLEfwofmPHzqMqEr31msSTZDwef5_HngF4R6uSIA73SEu0Tzn1WSqlK1Kjmc2cFYWJeQsmh2J0zL-d5Ccr8Lc7CxO2VXY-MTpqN7dhjXyLUilDCJBkn84v0lA1KkRXuxIajVkc-N-_kLLV2_ufsX_fUzr8crQ3StuqAqlF-1ymvkAjr4xwCA1sxT1SJEM8ogpeeVboTDjmiKO-YtblXgtZSiO1FMwW4X84Q7n34D5nrAwjSg6_9vYr8-Due3jAecF5XvZRDUpYrIBMQgnZXDLeRlmJFFs1YUKELWJlij6kSMmNeTKWE7iBgf8J28bZcPgEHrUwNtlp7O4prPjZOjxuIW3SOox6HdYmfVrY-hmM9374sB7uL5Ow9Jsgwm0OdSJdTy7PdHLaJME--4NCqkVz5gJfg5w9YmszDW1ifotp_RyO70TxG7A6m8_8C0hMyYi2KMQgQZXIMJGUIjEiKIhY64sBZJ3ylG1znYeSG1MVOY8UqtG3Qn2roG9FBvChb3LeJPq47eHd0CP9gyFHd7wwX5yqdsgrLSwXvHDIcjV3OCioE6URGXdC5z6vBrDZ9adqHUetrs18AB-7Pr6-_d8venm7sLfwYHQ0Gavx_uHBK3hIg52FOhhkE1aXi5_-NSKrpXkTzTmB73c9fq4AZBcvLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgwKOA2FIgB7iAoo1jx3YOCNHHqqXtqkJU6s34lVJptdtuliL4afw6xomTqkj01msST5LxePx9HnsG4E1elQRxuEdaon3Kcp-lUjqRGk1t5iwXpslbcDjhu8fs80lxsgJ_urMwYVtl5xMbR-3mNqyRj_JcyhACJNmoitsijrbHH88v0lBBKkRau3IarYns-18_kb7VH_a2sa_f5vl45-vWbhorDKQWbXWZeoEGXxnuECbYinmkS4Z4RBis8lTojDvqiMt9Ra0rvOaylEZqyakV4d8YRbl3YFUgK8oGsLq5Mzn60luzLILz78ECY4KxouxjHDmhTT1kEgrKFpKyGHMlko9qQjkPG8bKFD2KSMm1WbMpLnANEf8TxG3mxvEjeBBBbfKptcLHsOJna_AwAtwkuo96De4f9kli6ydwsPXdh9Vxf5mEheAE8W57xBPJe3J5ppPTNiX22W8UUi3aExj4GmTwDdI209CmyXYxrZ_C8a2o_hkMZvOZfw6JKSnRFoUYpKsS-SZSVKRJBAURa70YQtYpT9mY-TwU4JiqhgFJrlp9K9S3CvpWZAjv-ibnbdqPmx7eDD3SPxgydjcX5otTFR2A0twyzoRDzquZwyGSO14anjHHdeGLaggbXX-q6EZqdWX0Q3jf9fHV7f9-0frNwl7DXRw76mBvsv8C7uXBzEJRDLIBg-Xih3-JMGtpXkV7TuDbbQ-hv-ZQNL8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chebyshev+type+inequalities+via+generalized+fractional+conformable+integrals&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Nisar%2C+Kottakkaran+Sooppy&rft.au=Rahman%2C+Gauhar&rft.au=Mehrez%2C+Khaled&rft.date=2019-09-11&rft.pub=Springer+International+Publishing&rft.eissn=1029-242X&rft.volume=2019&rft.issue=1&rft_id=info:doi/10.1186%2Fs13660-019-2197-1&rft.externalDocID=10_1186_s13660_019_2197_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon