Morphological characterization of the diblock copolymer problem with topological computation

Our subject is the diblock copolymer problem in a three-dimensional space. Using numerical simulations, the double gyroid and orthorhombic morphologies are obtained as energy minimizers. By investigating the geometric properties of these bicontinuous morphologies, we demonstrate the underlying mecha...

Full description

Saved in:
Bibliographic Details
Published inJapan journal of industrial and applied mathematics Vol. 27; no. 2; pp. 175 - 190
Main Authors Teramoto, Takashi, Nishiura, Yasumasa
Format Journal Article
LanguageEnglish
Published Japan Springer Japan 01.09.2010
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Our subject is the diblock copolymer problem in a three-dimensional space. Using numerical simulations, the double gyroid and orthorhombic morphologies are obtained as energy minimizers. By investigating the geometric properties of these bicontinuous morphologies, we demonstrate the underlying mechanism affecting the triply periodic energy minimizers in terms of a balanced scaling law. We also apply computational homology to their characterization during the dynamics of morphology transition. Our topological approaches detect the morphology of transient perforated layers as they transition from layers to cylinders, and the t −1 law of the Betti number in the phase ordering process.
AbstractList Our subject is the diblock copolymer problem in a three-dimensional space. Using numerical simulations, the double gyroid and orthorhombic morphologies are obtained as energy minimizers. By investigating the geometric properties of these bicontinuous morphologies, we demonstrate the underlying mechanism affecting the triply periodic energy minimizers in terms of a balanced scaling law. We also apply computational homology to their characterization during the dynamics of morphology transition. Our topological approaches detect the morphology of transient perforated layers as they transition from layers to cylinders, and the t −1 law of the Betti number in the phase ordering process.
Our subject is the diblock copolymer problem in a three-dimensional space. Using numerical simulations, the double gyroid and orthorhombic morphologies are obtained as energy minimizers. By investigating the geometric properties of these bicontinuous morphologies, we demonstrate the underlying mechanism affecting the triply periodic energy minimizers in terms of a balanced scaling law. We also apply computational homology to their characterization during the dynamics of morphology transition. Our topological approaches detect the morphology of transient perforated layers as they transition from layers to cylinders, and the t ^sup -1^ law of the Betti number in the phase ordering process.[PUBLICATION ABSTRACT]
Author Teramoto, Takashi
Nishiura, Yasumasa
Author_xml – sequence: 1
  givenname: Takashi
  surname: Teramoto
  fullname: Teramoto, Takashi
  email: teramoto@photon.chitose.ac.jp
  organization: Chitose Institute of Science and Technology
– sequence: 2
  givenname: Yasumasa
  surname: Nishiura
  fullname: Nishiura, Yasumasa
  organization: Research Institute of Electronic Science, Hokkaido University
BookMark eNp9kE9LxDAQxYMouLv6AbwF79VM2ibNURb_wYoXBQ9CyKbpNmu3qUkWWT-9rVUEQQ_DwDC_92beFO23rjUInQA5A0L4eYAUGEkI9EUgS8QemkDBikSk_GkfTYgAlnBC8kM0DWFNSMYKgAl6vnO-q13jVlarButaeaWj8fZdReta7Coca4NLu2ycfsHada7ZbYzHnXfLxmzwm401jsP4W8Jtum38pI_QQaWaYI6_-gw9Xl0-zG-Sxf317fxikeiM5jHRXHBecWJEZnRmQPM8rSpeGmUEcJoKSspMsVSzKstLQUtgRnFhaFnQJVOQztDpqNsf9bo1Icq12_q2t5QFB8EJpcMSjEvauxC8qWTn7Ub5nQQihwzlmKHsM5RDhlL0DP_FaDu-Fr2yzb8kHcnQu7Qr439O-hv6AB-zibk
CitedBy_id crossref_primary_10_1177_1045389X13508335
crossref_primary_10_1016_j_topol_2017_05_008
crossref_primary_10_1016_j_cmpb_2018_05_012
crossref_primary_10_1038_s41598_017_14392_y
crossref_primary_10_1021_acsomega_3c10302
crossref_primary_10_1016_j_cmpb_2020_105614
crossref_primary_10_1016_j_applthermaleng_2018_04_058
crossref_primary_10_1016_j_physd_2018_11_006
crossref_primary_10_1021_acsomega_9b00991
crossref_primary_10_1016_j_cnsns_2022_106789
crossref_primary_10_1088_1361_6544_aa60e8
crossref_primary_10_1103_PhysRevE_104_014505
crossref_primary_10_2478_caim_2021_0001
crossref_primary_10_1039_C6SM00429F
crossref_primary_10_1016_j_cap_2014_06_016
crossref_primary_10_1016_j_commatsci_2015_09_005
crossref_primary_10_1088_1361_6544_abc5d4
crossref_primary_10_1137_19M1293156
crossref_primary_10_1021_acsomega_7b01557
crossref_primary_10_1017_S0962492921000088
crossref_primary_10_1137_100784497
Cites_doi 10.1016/j.actamat.2004.10.022
10.1006/jcis.1996.4720
10.1103/PhysRevE.54.5012
10.1137/S0036141098348176
10.1023/A:1025722804873
10.1090/mmono/209
10.1038/334598a0
10.1016/j.physd.2008.12.009
10.1007/b97315
10.1093/acprof:oso/9780198507840.001.0001
10.1063/1.882522
10.1088/0953-8984/15/26/101
10.1007/s00205-007-0050-z
10.4171/IFB/148
10.1103/PhysRevE.77.056704
10.1021/ma00164a028
10.1021/ma011716x
10.1021/ma00093a006
10.1080/08927020601052914
10.1143/JPSJ.71.1611
10.1103/PhysRevA.41.6763
10.1016/0167-2789(95)00005-O
ContentType Journal Article
Copyright The JJIAM Publishing Committee and Springer 2010
Copyright_xml – notice: The JJIAM Publishing Committee and Springer 2010
DBID AAYXX
CITATION
DOI 10.1007/s13160-010-0014-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1868-937X
EndPage 190
ExternalDocumentID 2375830921
10_1007_s13160_010_0014_9
Genre Feature
GroupedDBID -EM
06D
0R~
0VY
1N0
2.D
203
2JN
2JY
2KG
2LR
2VQ
30V
4.4
406
408
40D
5GY
67Z
70C
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOJF
AARHV
AARKR
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACJDT
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEGL
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESBA
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFFOW
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGFPJ
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHIZY
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ANMIH
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BBWZM
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OK1
P19
P2P
P9R
PT4
PT5
PUASD
Q2X
R89
R9I
RBF
RHV
RNI
ROL
RPE
RSV
RZK
S1Z
S26
S27
S28
S3B
SCLPG
SDD
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
WS9
Z45
ZMTXR
ZWQNP
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
RBV
ABRTQ
ID FETCH-LOGICAL-c425t-c7977f70e94ec4e1c753ff7deae91723920d4a63c6f45d92d16ea79e2d82b6a13
IEDL.DBID U2A
ISSN 0916-7005
IngestDate Fri Jul 25 11:14:07 EDT 2025
Tue Jul 01 02:13:04 EDT 2025
Thu Apr 24 22:53:17 EDT 2025
Fri Feb 21 02:35:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Microphase separation
Double gyroid
The Betti number
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-c7977f70e94ec4e1c753ff7deae91723920d4a63c6f45d92d16ea79e2d82b6a13
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink http://hdl.handle.net/2115/44297
PQID 871970221
PQPubID 326301
PageCount 16
ParticipantIDs proquest_journals_871970221
crossref_primary_10_1007_s13160_010_0014_9
crossref_citationtrail_10_1007_s13160_010_0014_9
springer_journals_10_1007_s13160_010_0014_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100900
2010-9-00
20100901
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 9
  year: 2010
  text: 20100900
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Heidelberg
PublicationTitle Japan journal of industrial and applied mathematics
PublicationTitleAbbrev Japan J. Indust. Appl. Math
PublicationYear 2010
Publisher Springer Japan
Springer Nature B.V
Publisher_xml – name: Springer Japan
– name: Springer Nature B.V
References A Collection Papers of T. Hashimoto: ordered structures, order–disorder transition, and physical properties of block copolymers , Dept. of Polym. Chem., Kyoto University (1995)
TeramotoT.NishiuraY.Double gyroid morphology in a gradient system with nonlocal effectsJ. Phys. Soc. Jpn.2002711611161410.1143/JPSJ.71.1611
Ishimura, N., Ishiwata, T., Skajo, T., Sakurai, T., Nagayama, M., Nara, T., Hayami, K., Furihata, D., Matsuo, T.: Computational homology and its applications, Hokkaido University Technical Report Series in Mathematics, No. 124 (in Japanese) (2007)
ChenX.OshitaY.Applications of modular functions to interfacial dynamicsArch. Rat. Mech. Anal.20071861091321147.7402410.1007/s00205-007-0050-z2338353
HajdukD.A.HarperP.E.GrunerS.M.HonekerC.C.KimG.ThomasE.L.The gyroid: a new equilibrium morphology in weakly segregated diblock copolymersMacromolecules1994274063407510.1021/ma00093a006
GameiroM.MischaikowK.WannerT.Evolution of pattern complexity in the Cahn-Hilliard theory of phase separationActa Materialia20055369370410.1016/j.actamat.2004.10.022
ChoksiR.RenX.On the derivation of a density functional theory for microphase separation of diblock copolymersJ. Stat. Phys.20031131511761034.8203710.1023/A:10257228048732012976
BahianaM.OonoY.Cell dynamical system approach to block copolymersPhys. Rev. A1990416763677110.1103/PhysRevA.41.6763
KangX.RenX.Ring pattern solutions of a free boundary problem in diblock copolymer morphologyPhysica D20092386456651160.3738610.1016/j.physd.2008.12.0092590243
OhtaT.KawasakiT.Equilibrium morphology of block copolymer meltsMacromolecules1986192621263210.1021/ma00164a028
SpivakM.A Comprehensive Introduction to Differential Geometry1979BerkleyPublish or Perish
ThomasE.L.AndersonD.M.HenkeeC.S.HoffmanD.Periodic area-minimizing surfaces in block copolymersNature198833459860110.1038/334598a0
KaczynskiT.MischaikowK.MrozekM.Computational Homology2004New YorkSpringer1039.55001
Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation in computational and mathematical models of microstructual evolution. In: Bullard, J.W., Kalita, R., Stoneham, M., Chen, L.-Q. (eds.) (MRS, 1998)
Grosse-BrauckmannK.On gyroid interfacesJ. Colloid Interface Sci.199718741842810.1006/jcis.1996.4720
Goźd́źW.T.HołystR.Triply periodic surfaces and multiply continuous structures from the Landau model of microemulsionsPhys. Rev. E1996545012502710.1103/PhysRevE.54.5012
RenX.WeiJ.On the multiplicity of two nonlocal variational problemsSIAM J. Math. Anal.2000319099240973.4900710.1137/S00361410983481761752422
ChoksiR.SternbergP.Periodic phase separation: the periodic Cahn-Hilliard and isoperimetric problemInterfaces Free Boundaries200683713921109.3509210.4171/IFB/1482273234
BaileyT.S.HardyC.M.EppsT.H.IIIBatesF.S.A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymersMacromolecules2002357007701710.1021/ma011716x
Nishiura, Y.: Far-from-equilibrium dynamics, Translations of Mathematical Monographs Vol. 209, AMS (2002)
TeramotoT.Nosé thermostat for the pattern formation dynamicsMol. Sim.200733717510.1080/08927020601052914
BraidesA.Γ-Convergence for Beginners2002OxfordOxford University Press0186593910.1093/acprof:oso/9780198507840.001.0001
BatesF.S.FredricksonG.H.Block copolymers—designer soft materialsPhys Today1999522323810.1063/1.882522
NonomuraM.YamadaK.OhtaT.Formation and stability of double gyroid in microphase-separated diblock copolymersJ. Phys. Condens. Matter200315L423L43010.1088/0953-8984/15/26/101
AksimentievA.FiałkowskiM.HołystR.Morphology of surfaces in polymer, surfactant, electron and reaction-diffusion systems: methods, measurements and simulationsAdv. Chem. Phys2002121143239
HagitaK.TeramotoT.Topological validation of morphology modeling by extended reverse Monte Carlo analysisPhys. Rev. E20087705670410.1103/PhysRevE.77.056704
NishiuraY.OhnishiI.Some mathematical aspects of the micro-phase separation in diblock copolymersPhysica D19958431391194.8206910.1016/0167-2789(95)00005-O1334695
Langer, J.S.: An introduction to the kinetics of first-order phase transitions, solids far from equilibrium. In: Godreche, G. (ed.). Cambridge University Press, Cambridge (1992)
R. Choksi (14_CR9) 2006; 8
E.L. Thomas (14_CR28) 1988; 334
M. Bahiana (14_CR3) 1990; 41
K. Grosse-Brauckmann (14_CR13) 1997; 187
M. Gameiro (14_CR11) 2005; 53
M. Nonomura (14_CR22) 2003; 15
X. Kang (14_CR18) 2009; 238
14_CR10
T. Teramoto (14_CR26) 2007; 33
14_CR19
14_CR16
T. Teramoto (14_CR27) 2002; 71
W.T. Goźd́ź (14_CR12) 1996; 54
M. Spivak (14_CR25) 1979
14_CR1
R. Choksi (14_CR8) 2003; 113
K. Hagita (14_CR14) 2008; 77
T. Kaczynski (14_CR17) 2004
A. Braides (14_CR6) 2002
X. Ren (14_CR24) 2000; 31
D.A. Hajduk (14_CR15) 1994; 27
14_CR20
T. Ohta (14_CR23) 1986; 19
X. Chen (14_CR7) 2007; 186
A. Aksimentiev (14_CR2) 2002; 121
Y. Nishiura (14_CR21) 1995; 84
F.S. Bates (14_CR5) 1999; 52
T.S. Bailey (14_CR4) 2002; 35
References_xml – reference: Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation in computational and mathematical models of microstructual evolution. In: Bullard, J.W., Kalita, R., Stoneham, M., Chen, L.-Q. (eds.) (MRS, 1998)
– reference: KaczynskiT.MischaikowK.MrozekM.Computational Homology2004New YorkSpringer1039.55001
– reference: RenX.WeiJ.On the multiplicity of two nonlocal variational problemsSIAM J. Math. Anal.2000319099240973.4900710.1137/S00361410983481761752422
– reference: TeramotoT.NishiuraY.Double gyroid morphology in a gradient system with nonlocal effectsJ. Phys. Soc. Jpn.2002711611161410.1143/JPSJ.71.1611
– reference: Ishimura, N., Ishiwata, T., Skajo, T., Sakurai, T., Nagayama, M., Nara, T., Hayami, K., Furihata, D., Matsuo, T.: Computational homology and its applications, Hokkaido University Technical Report Series in Mathematics, No. 124 (in Japanese) (2007)
– reference: BraidesA.Γ-Convergence for Beginners2002OxfordOxford University Press0186593910.1093/acprof:oso/9780198507840.001.0001
– reference: NishiuraY.OhnishiI.Some mathematical aspects of the micro-phase separation in diblock copolymersPhysica D19958431391194.8206910.1016/0167-2789(95)00005-O1334695
– reference: ThomasE.L.AndersonD.M.HenkeeC.S.HoffmanD.Periodic area-minimizing surfaces in block copolymersNature198833459860110.1038/334598a0
– reference: BatesF.S.FredricksonG.H.Block copolymers—designer soft materialsPhys Today1999522323810.1063/1.882522
– reference: GameiroM.MischaikowK.WannerT.Evolution of pattern complexity in the Cahn-Hilliard theory of phase separationActa Materialia20055369370410.1016/j.actamat.2004.10.022
– reference: TeramotoT.Nosé thermostat for the pattern formation dynamicsMol. Sim.200733717510.1080/08927020601052914
– reference: AksimentievA.FiałkowskiM.HołystR.Morphology of surfaces in polymer, surfactant, electron and reaction-diffusion systems: methods, measurements and simulationsAdv. Chem. Phys2002121143239
– reference: A Collection Papers of T. Hashimoto: ordered structures, order–disorder transition, and physical properties of block copolymers , Dept. of Polym. Chem., Kyoto University (1995)
– reference: ChoksiR.SternbergP.Periodic phase separation: the periodic Cahn-Hilliard and isoperimetric problemInterfaces Free Boundaries200683713921109.3509210.4171/IFB/1482273234
– reference: HajdukD.A.HarperP.E.GrunerS.M.HonekerC.C.KimG.ThomasE.L.The gyroid: a new equilibrium morphology in weakly segregated diblock copolymersMacromolecules1994274063407510.1021/ma00093a006
– reference: BaileyT.S.HardyC.M.EppsT.H.IIIBatesF.S.A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymersMacromolecules2002357007701710.1021/ma011716x
– reference: Langer, J.S.: An introduction to the kinetics of first-order phase transitions, solids far from equilibrium. In: Godreche, G. (ed.). Cambridge University Press, Cambridge (1992)
– reference: Goźd́źW.T.HołystR.Triply periodic surfaces and multiply continuous structures from the Landau model of microemulsionsPhys. Rev. E1996545012502710.1103/PhysRevE.54.5012
– reference: Nishiura, Y.: Far-from-equilibrium dynamics, Translations of Mathematical Monographs Vol. 209, AMS (2002)
– reference: BahianaM.OonoY.Cell dynamical system approach to block copolymersPhys. Rev. A1990416763677110.1103/PhysRevA.41.6763
– reference: HagitaK.TeramotoT.Topological validation of morphology modeling by extended reverse Monte Carlo analysisPhys. Rev. E20087705670410.1103/PhysRevE.77.056704
– reference: ChoksiR.RenX.On the derivation of a density functional theory for microphase separation of diblock copolymersJ. Stat. Phys.20031131511761034.8203710.1023/A:10257228048732012976
– reference: SpivakM.A Comprehensive Introduction to Differential Geometry1979BerkleyPublish or Perish
– reference: Grosse-BrauckmannK.On gyroid interfacesJ. Colloid Interface Sci.199718741842810.1006/jcis.1996.4720
– reference: ChenX.OshitaY.Applications of modular functions to interfacial dynamicsArch. Rat. Mech. Anal.20071861091321147.7402410.1007/s00205-007-0050-z2338353
– reference: OhtaT.KawasakiT.Equilibrium morphology of block copolymer meltsMacromolecules1986192621263210.1021/ma00164a028
– reference: KangX.RenX.Ring pattern solutions of a free boundary problem in diblock copolymer morphologyPhysica D20092386456651160.3738610.1016/j.physd.2008.12.0092590243
– reference: NonomuraM.YamadaK.OhtaT.Formation and stability of double gyroid in microphase-separated diblock copolymersJ. Phys. Condens. Matter200315L423L43010.1088/0953-8984/15/26/101
– volume: 53
  start-page: 693
  year: 2005
  ident: 14_CR11
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2004.10.022
– volume: 187
  start-page: 418
  year: 1997
  ident: 14_CR13
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.4720
– ident: 14_CR19
– volume-title: A Comprehensive Introduction to Differential Geometry
  year: 1979
  ident: 14_CR25
– ident: 14_CR1
– volume: 121
  start-page: 143
  year: 2002
  ident: 14_CR2
  publication-title: Adv. Chem. Phys
– volume: 54
  start-page: 5012
  year: 1996
  ident: 14_CR12
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.54.5012
– volume: 31
  start-page: 909
  year: 2000
  ident: 14_CR24
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141098348176
– volume: 113
  start-page: 151
  year: 2003
  ident: 14_CR8
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1025722804873
– ident: 14_CR20
  doi: 10.1090/mmono/209
– volume: 334
  start-page: 598
  year: 1988
  ident: 14_CR28
  publication-title: Nature
  doi: 10.1038/334598a0
– volume: 238
  start-page: 645
  year: 2009
  ident: 14_CR18
  publication-title: Physica D
  doi: 10.1016/j.physd.2008.12.009
– volume-title: Computational Homology
  year: 2004
  ident: 14_CR17
  doi: 10.1007/b97315
– volume-title: Γ-Convergence for Beginners
  year: 2002
  ident: 14_CR6
  doi: 10.1093/acprof:oso/9780198507840.001.0001
– volume: 52
  start-page: 32
  issue: 2
  year: 1999
  ident: 14_CR5
  publication-title: Phys Today
  doi: 10.1063/1.882522
– volume: 15
  start-page: L423
  year: 2003
  ident: 14_CR22
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/15/26/101
– ident: 14_CR16
– volume: 186
  start-page: 109
  year: 2007
  ident: 14_CR7
  publication-title: Arch. Rat. Mech. Anal.
  doi: 10.1007/s00205-007-0050-z
– volume: 8
  start-page: 371
  year: 2006
  ident: 14_CR9
  publication-title: Interfaces Free Boundaries
  doi: 10.4171/IFB/148
– ident: 14_CR10
– volume: 77
  start-page: 056704
  year: 2008
  ident: 14_CR14
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.77.056704
– volume: 19
  start-page: 2621
  year: 1986
  ident: 14_CR23
  publication-title: Macromolecules
  doi: 10.1021/ma00164a028
– volume: 35
  start-page: 7007
  year: 2002
  ident: 14_CR4
  publication-title: Macromolecules
  doi: 10.1021/ma011716x
– volume: 27
  start-page: 4063
  year: 1994
  ident: 14_CR15
  publication-title: Macromolecules
  doi: 10.1021/ma00093a006
– volume: 33
  start-page: 71
  year: 2007
  ident: 14_CR26
  publication-title: Mol. Sim.
  doi: 10.1080/08927020601052914
– volume: 71
  start-page: 1611
  year: 2002
  ident: 14_CR27
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.71.1611
– volume: 41
  start-page: 6763
  year: 1990
  ident: 14_CR3
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.41.6763
– volume: 84
  start-page: 31
  year: 1995
  ident: 14_CR21
  publication-title: Physica D
  doi: 10.1016/0167-2789(95)00005-O
SSID ssj0046811
Score 1.9783585
Snippet Our subject is the diblock copolymer problem in a three-dimensional space. Using numerical simulations, the double gyroid and orthorhombic morphologies are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 175
SubjectTerms Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematics
Mathematics and Statistics
Original Paper
Title Morphological characterization of the diblock copolymer problem with topological computation
URI https://link.springer.com/article/10.1007/s13160-010-0014-9
https://www.proquest.com/docview/871970221
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6XfQgfuKcjhw8KYWlTZPmOGRzKPPkYIJQkvQVRN1kqwf_e1_aZkVRwXOSd3h5eR95Hz9Czg1IZqNYB1okKuAZD91Hk8GoNQkBLRxaINfgPLkT4ym_mcWzuo975avdfUqy1NRNs1vEhCuicp3QjAdqk7RjF7qjEE_DgVe_XCQl6C7aQRFIlDGfyvyJxFdj1HiY35Kipa0Z7ZKd2kmkg-pW98gGzPfJ9mQ9YXV1QB4nC-SQ11zUrucuV22VdJFT3E2zJ4PW6plah4Xw8QpLWiPIUPcBS4sKIqEiUeI7lKcPyXQ0vL8aBzVSQmDxzRWBlejG5bIPioPlwCwGIXkuM9CA4ViIPlA_41pEVuQ8zlSYMQFaKgizJDRCs-iItOaLORwTivSEyi3jTAKPDeplA0kOIcRGxlLrDul7lqW2HiPu0Cxe0mYAsuNyilx2BXM8VR1ysT7yVs3Q-Gtz199DWj-nVYpRnZLobbAOufRX06z-SuvkX7u7ZKsqDXAFZKekVSzf4Qw9jsL0SHtw_XA77JWS9glN0s8m
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpSHh6YQJHqxLHjsUJUBZpOrdQBKXKci4SAFrVh4N9zTuJGIEBitn3D2b77zr67j5DLFCQzQag9LSLl8Yz79qEpxag18gE9HHogW-Acj8Rgwu-n4bSu4166bHf3JVla6qbYLWDCJlHZSmjGPbVONhALRDaPa-L3nPnlIipJd9EPCk_iGXNfmT-J-OqMGoT57VO09DX9XbJTg0Taq3Z1j6zBbJ9sx6sOq8sD8hjPUUPOclGz6rtclVXSeU5xNs2eUvRWz9RYLoSPV1jQmkGG2gdYWlQUCZWIkt-hXH1IJv3b8c3Aq5kSPIN3rvCMRBiXyy4oDoYDMxiE5LnMQAOGYz5ioG7GtQiMyHmYKT9jArRU4GeRnwrNgiPSms1ncEwoyhMqN4wzCTxM0S6nEOXgQ5jKUGrdJl2nssTUbcQtm8VL0jRAtlpOUMs2YY4nqk2uVkveqh4af03uuH1I6uu0TDCqUxLRBmuTa7c1zeivsk7-NfuCbA7G8TAZ3o0eOmSrShOwyWSnpFUs3uEM0UeRnpen7RO0zdCF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcY45EDJ1DFkqZJe5yAaTw2cWDSDkhVk7oSArZpKwf-PU7brAIBEuc4PtiJH4ntj5BTDYoZP0i8RIaRJ1LB7UOTxqw15IAeDj2QbXDuD2RvKG5HwajCOZ27anf3JVn2NNgpTeP8YppmF3Xjm8-kLaiyXdFMeNEyWUFrzOyxHvKOM8VChgUAL_pE6Sk8b-5b8ycWXx1THW1--yAt_E53k2xUASPtlBreIksw3ibr_cW01fkOeepPUFrOilGzmMFctljSSUaRmqbPGj3XCzUWF-HjDWa0QpOh9jGW5iVcQsmiwHoodu-SYff68bLnVagJnsH7l3tGYUiXqTZEAowAZjAhyTKVQgKYmnGMh9qpSKRvZCaCNOIpk5CoCHgaci0T5u-Rxngyhn1CkZ-MMsMEUyACjTZaQ5gBh0CrQCVJk7SdyGJTjRS3yBavcT0M2Uo5Rinb4jkRR01yttgyLedp_EXccnqIq6s1jzHDixRGHqxJzp1q6tVfeR38i_qErD5cdeP7m8Fdi6yVFQO2ruyQNPLZOxxhIJLr4-KwfQLeidTB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphological+characterization+of+the+diblock+copolymer+problem+with+topological+computation&rft.jtitle=Japan+journal+of+industrial+and+applied+mathematics&rft.au=Teramoto%2C+Takashi&rft.au=Nishiura%2C+Yasumasa&rft.date=2010-09-01&rft.issn=0916-7005&rft.eissn=1868-937X&rft.volume=27&rft.issue=2&rft.spage=175&rft.epage=190&rft_id=info:doi/10.1007%2Fs13160-010-0014-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13160_010_0014_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7005&client=summon