Transformation metabolites of phthalate esters (PAEs) inhibited rice growth through jasmonic acid signaling pathway
[Display omitted] •Pest defense and growth indication were induced in rice by dibutyl phthalate (DBP).•DBP metabolites MBP activated the jasmonic acid (JA) signaling pathway as JA analogue.•MBP conjugated with isoleucine and then bound to the COI1/JAZ co-receptor complex.•Aliphatic chain length of P...
Saved in:
Published in | Environment international Vol. 201; p. 109553 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.07.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Pest defense and growth indication were induced in rice by dibutyl phthalate (DBP).•DBP metabolites MBP activated the jasmonic acid (JA) signaling pathway as JA analogue.•MBP conjugated with isoleucine and then bound to the COI1/JAZ co-receptor complex.•Aliphatic chain length of PAEs were negatively contributed to the JA-related outcomes.
Phthalate esters (PAEs) were ubiquitous in agricultural soils and could be metabolized after being absorbed by crops, posing significant implications for crop yield and quality. We hypothesize that monophthalates (mPAEs), the hydrolyzed products of PAEs, might mimic phytohormone jasmonic acid (JA) to activate the JA signaling pathway, therefore enhancing the defense towards pests and inhibiting the rice plant growth. Taking dibutyl phthalate (DBP) as a representative PAE, our study discovered that DBP exposure significantly induced JA-related outcomes including decreased larval weight (9.58–18.8%), and rice biomass (11.7–34.2%). Under the conditions where the JA content remained unchanged, monobutyl phthalate (MBP), the hydrolyzed product of DBP, triggered the JA signaling pathway, evidenced by significantly upregulated genes encoding coronatine insensitive 1 (COI1) (1.56–1.73 fold), jasmonate ZIM-domain (JAZ) (4.33–7.71 fold), MYC2 transcription factor (2.07–2.87 fold), and promoted phytoalexins production in downstream signaling. MBP conjugated with isoleucine, and the conjugate subsequently mimicked a JA bioactivator (JA-isoleucine conjugate) to occupy the binding site of COI1-JAZ co-receptor protein, thereby initiating the JA signaling pathway. These JA-related outcomes and mechanism were consistently evidenced in rice exposed to other four typical PAEs, and the aliphatic chain length of selected PAEs indicated a negative contribution to these observations. In this study, we discovered a unconventional mechanism through which the transformation metabolites of PAEs elicit pest defense while simultaneously inhibiting rice growth, providing insights into the risk assessment of PAEs on crop yields and quality. |
---|---|
AbstractList | Phthalate esters (PAEs) were ubiquitous in agricultural soils and could be metabolized after being absorbed by crops, posing significant implications for crop yield and quality. We hypothesize that monophthalates (mPAEs), the hydrolyzed products of PAEs, might mimic phytohormone jasmonic acid (JA) to activate the JA signaling pathway, therefore enhancing the defense towards pests and inhibiting the rice plant growth. Taking dibutyl phthalate (DBP) as a representative PAE, our study discovered that DBP exposure significantly induced JA-related outcomes including decreased larval weight (9.58-18.8%), and rice biomass (11.7-34.2%). Under the conditions where the JA content remained unchanged, monobutyl phthalate (MBP), the hydrolyzed product of DBP, triggered the JA signaling pathway, evidenced by significantly upregulated genes encoding coronatine insensitive 1 (COI1) (1.56-1.73 fold), jasmonate ZIM-domain (JAZ) (4.33-7.71 fold), MYC2 transcription factor (2.07-2.87 fold), and promoted phytoalexins production in downstream signaling. MBP conjugated with isoleucine, and the conjugate subsequently mimicked a JA bioactivator (JA-isoleucine conjugate) to occupy the binding site of COI1-JAZ co-receptor protein, thereby initiating the JA signaling pathway. These JA-related outcomes and mechanism were consistently evidenced in rice exposed to other four typical PAEs, and the aliphatic chain length of selected PAEs indicated a negative contribution to these observations. In this study, we discovered a unconventional mechanism through which the transformation metabolites of PAEs elicit pest defense while simultaneously inhibiting rice growth, providing insights into the risk assessment of PAEs on crop yields and quality.Phthalate esters (PAEs) were ubiquitous in agricultural soils and could be metabolized after being absorbed by crops, posing significant implications for crop yield and quality. We hypothesize that monophthalates (mPAEs), the hydrolyzed products of PAEs, might mimic phytohormone jasmonic acid (JA) to activate the JA signaling pathway, therefore enhancing the defense towards pests and inhibiting the rice plant growth. Taking dibutyl phthalate (DBP) as a representative PAE, our study discovered that DBP exposure significantly induced JA-related outcomes including decreased larval weight (9.58-18.8%), and rice biomass (11.7-34.2%). Under the conditions where the JA content remained unchanged, monobutyl phthalate (MBP), the hydrolyzed product of DBP, triggered the JA signaling pathway, evidenced by significantly upregulated genes encoding coronatine insensitive 1 (COI1) (1.56-1.73 fold), jasmonate ZIM-domain (JAZ) (4.33-7.71 fold), MYC2 transcription factor (2.07-2.87 fold), and promoted phytoalexins production in downstream signaling. MBP conjugated with isoleucine, and the conjugate subsequently mimicked a JA bioactivator (JA-isoleucine conjugate) to occupy the binding site of COI1-JAZ co-receptor protein, thereby initiating the JA signaling pathway. These JA-related outcomes and mechanism were consistently evidenced in rice exposed to other four typical PAEs, and the aliphatic chain length of selected PAEs indicated a negative contribution to these observations. In this study, we discovered a unconventional mechanism through which the transformation metabolites of PAEs elicit pest defense while simultaneously inhibiting rice growth, providing insights into the risk assessment of PAEs on crop yields and quality. [Display omitted] •Pest defense and growth indication were induced in rice by dibutyl phthalate (DBP).•DBP metabolites MBP activated the jasmonic acid (JA) signaling pathway as JA analogue.•MBP conjugated with isoleucine and then bound to the COI1/JAZ co-receptor complex.•Aliphatic chain length of PAEs were negatively contributed to the JA-related outcomes. Phthalate esters (PAEs) were ubiquitous in agricultural soils and could be metabolized after being absorbed by crops, posing significant implications for crop yield and quality. We hypothesize that monophthalates (mPAEs), the hydrolyzed products of PAEs, might mimic phytohormone jasmonic acid (JA) to activate the JA signaling pathway, therefore enhancing the defense towards pests and inhibiting the rice plant growth. Taking dibutyl phthalate (DBP) as a representative PAE, our study discovered that DBP exposure significantly induced JA-related outcomes including decreased larval weight (9.58–18.8%), and rice biomass (11.7–34.2%). Under the conditions where the JA content remained unchanged, monobutyl phthalate (MBP), the hydrolyzed product of DBP, triggered the JA signaling pathway, evidenced by significantly upregulated genes encoding coronatine insensitive 1 (COI1) (1.56–1.73 fold), jasmonate ZIM-domain (JAZ) (4.33–7.71 fold), MYC2 transcription factor (2.07–2.87 fold), and promoted phytoalexins production in downstream signaling. MBP conjugated with isoleucine, and the conjugate subsequently mimicked a JA bioactivator (JA-isoleucine conjugate) to occupy the binding site of COI1-JAZ co-receptor protein, thereby initiating the JA signaling pathway. These JA-related outcomes and mechanism were consistently evidenced in rice exposed to other four typical PAEs, and the aliphatic chain length of selected PAEs indicated a negative contribution to these observations. In this study, we discovered a unconventional mechanism through which the transformation metabolites of PAEs elicit pest defense while simultaneously inhibiting rice growth, providing insights into the risk assessment of PAEs on crop yields and quality. Phthalate esters (PAEs) were ubiquitous in agricultural soils and could be metabolized after being absorbed by crops, posing significant implications for crop yield and quality. We hypothesize that monophthalates (mPAEs), the hydrolyzed products of PAEs, might mimic phytohormone jasmonic acid (JA) to activate the JA signaling pathway, therefore enhancing the defense towards pests and inhibiting the rice plant growth. Taking dibutyl phthalate (DBP) as a representative PAE, our study discovered that DBP exposure significantly induced JA-related outcomes including decreased larval weight (9.58–18.8%), and rice biomass (11.7–34.2%). Under the conditions where the JA content remained unchanged, monobutyl phthalate (MBP), the hydrolyzed product of DBP, triggered the JA signaling pathway, evidenced by significantly upregulated genes encoding coronatine insensitive 1 (COI1) (1.56–1.73 fold), jasmonate ZIM-domain (JAZ) (4.33–7.71 fold), MYC2 transcription factor (2.07–2.87 fold), and promoted phytoalexins production in downstream signaling. MBP conjugated with isoleucine, and the conjugate subsequently mimicked a JA bioactivator (JA-isoleucine conjugate) to occupy the binding site of COI1-JAZ co-receptor protein, thereby initiating the JA signaling pathway. These JA-related outcomes and mechanism were consistently evidenced in rice exposed to other four typical PAEs, and the aliphatic chain length of selected PAEs indicated a negative contribution to these observations. In this study, we discovered a unconventional mechanism through which the transformation metabolites of PAEs elicit pest defense while simultaneously inhibiting rice growth, providing insights into the risk assessment of PAEs on crop yields and quality. |
ArticleNumber | 109553 |
Author | Wang, Wei Chen, Jie Zhu, Lizhong Sun, Yingying |
Author_xml | – sequence: 1 givenname: Yingying surname: Sun fullname: Sun, Yingying organization: College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China – sequence: 2 givenname: Jie surname: Chen fullname: Chen, Jie organization: College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China – sequence: 3 givenname: Wei surname: Wang fullname: Wang, Wei organization: College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China – sequence: 4 givenname: Lizhong surname: Zhu fullname: Zhu, Lizhong email: zlz@zju.edu.cn organization: College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40449063$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv3CAQhVGVqtmk_QdVxTE9eAsYsH2pFEVpGylSe0jPaAzYxrJhC2yi_PuQOs2xp9EM37wR752hEx-8RegjJXtKqPwy762_dz7vGWGijDoh6jdoR9umrmQjyAnaFYxUnDJyis5SmgkhjLfiHTrlhPOOyHqH0l0En4YQV8gueLzaDH1YXLYJhwEfpjzBAtlim7KNCV_8urxOn7Hzk-sLZHB02uIxhoc84TzFcBwnPENag3cag3YGJzd6WJwf8QHy9ACP79HbAZZkP7zUc_T72_Xd1Y_q9uf3m6vL20pzJnKlxdCbfmCDBNZp0gjaDNCVrm6aprO81wSgkQNrhOzLg9YdN7VpSUsF9FTW5-hm0zUBZnWIboX4qAI49XcQ4qggZqcXq2rTSeBGtHXb8ZYDaDlQCtAxkK3htGhdbFqHGP4cixlqdUnbZQFvwzGpmlFeMyE7XtBPL-ixX615PfzP9ALwDdAxpBTt8IpQop6zVbPaslXP2aot27L2dVuzxbN7Z6NK2lmvrXHR6lw-5f4v8ATIyq_K |
Cites_doi | 10.1021/acs.est.2c09737 10.1073/pnas.0802332105 10.1021/acs.est.1c00648 10.1021/acs.est.8b03965 10.1021/acs.est.1c04369 10.1021/acs.est.7b01758 10.1016/j.scitotenv.2019.03.047 10.1016/j.envpol.2020.114886 10.1016/j.chemosphere.2020.129428 10.1111/mpp.13294 10.1016/j.pbi.2022.102197 10.1021/acs.est.2c09182 10.1016/j.scitotenv.2014.11.081 10.1146/annurev-arplant-042817-040047 10.1021/acs.est.2c05108 10.1016/j.envint.2022.107629 10.1016/j.ecoenv.2013.03.029 10.1016/j.envint.2019.02.059 10.1038/s41477-020-0605-7 10.1016/j.envint.2011.05.013 10.1038/nature01003 10.1016/j.pbi.2018.02.009 10.1021/es505233b 10.1021/acs.est.1c04974 10.1038/nature05960 10.1021/acs.est.3c06839 10.1038/s41565-019-0439-5 10.1021/acs.est.0c07008 10.1016/j.chemosphere.2017.01.034 10.1038/s41467-019-09447-9 10.1021/acs.est.3c00823 10.1093/nar/gky427 10.1016/j.scitotenv.2021.147831 10.1021/acs.est.4c04196 10.1016/j.envint.2023.108399 10.1007/s11103-021-01208-x 10.1016/j.envint.2022.107550 10.1105/tpc.104.023549 10.1111/pce.14202 10.1002/rcm.8258 10.1021/acs.est.0c07232 10.1111/nph.12438 10.1038/nchembio.161 10.1039/D1SC01207J 10.3390/ijms23073945 10.1038/s41467-018-06135-y 10.1111/pce.13952 10.3390/agronomy7030056 10.1021/acs.est.5b01233 10.1038/nature09430 10.1093/mp/ssu049 10.1016/j.jhazmat.2024.134187 10.1016/j.envpol.2019.113517 10.1016/j.chemosphere.2016.08.068 10.1021/acsnano.2c04073 10.1016/j.envpol.2014.08.014 10.1016/j.scitotenv.2023.163645 10.1021/acs.est.0c01701 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.envint.2025.109553 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health Environmental Sciences |
EISSN | 1873-6750 |
ExternalDocumentID | oai_doaj_org_article_3d96a4d58389484aac6f11aa92a68d41 40449063 10_1016_j_envint_2025_109553 S0160412025003046 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEGFY AEIPS AEKER AENEX AEUPX AFJKZ AFPKN AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SEN SES SEW SSH SSJ SSZ T5K TN5 WUQ XPP ~02 ~G- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c425t-c5fbdbf2f6a29c07517fa9f6a37779e4bc0aa76f2756ba9fcc94d3d80815ab163 |
IEDL.DBID | DOA |
ISSN | 0160-4120 1873-6750 |
IngestDate | Wed Aug 27 01:24:07 EDT 2025 Wed Jul 02 02:49:26 EDT 2025 Mon Jul 21 06:06:20 EDT 2025 Thu Jul 03 08:31:48 EDT 2025 Sat Jul 19 17:11:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Transformation products Phthalate esters Growth inhibition Jasmonic acid signaling pathway Pest defense |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-c5fbdbf2f6a29c07517fa9f6a37779e4bc0aa76f2756ba9fcc94d3d80815ab163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/3d96a4d58389484aac6f11aa92a68d41 |
PMID | 40449063 |
PQID | 3214325694 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d96a4d58389484aac6f11aa92a68d41 proquest_miscellaneous_3214325694 pubmed_primary_40449063 crossref_primary_10_1016_j_envint_2025_109553 elsevier_sciencedirect_doi_10_1016_j_envint_2025_109553 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environment international |
PublicationTitleAlternate | Environ Int |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Takaoka, Iwahashi, Chini, Saito, Ishimaru, Egoshi, Kato, Tanaka, Bashir, Seki, Solano, Ueda (b0235) 2018; 9 Xing, Yu, Sun, Lu, Zhu, Liang, Jin, Zhu (b0290) 2023; 57 Zhang, Ji, Chai, Yang, Zhao, Liu, Schüürmann, Ji (b0315) 2018; 52 Guo, Zhang, Sun, Orem, Tatu, Radulović, Milovanović, Pavlović, Chan (b0080) 2021; 55 Cheng, Sun, Sidhu, Sy, Wang, Gan (b0030) 2021; 55 Ma, Zhou, Xia, Meng, Jin, Wang, Chen, Qiu, Wu, Ding, Han, Li (b0170) 2020; 54 Fonseca, Chini, Hamberg, Adie, Porzel, Kramell, Miersch, Wasternack, Solano (b0055) 2009; 5 Bertoft (b0005) 2017; 7 Weng, Zhu, Liao, Jiang (b0275) 2023; 57 Carter-Fenk, Liu, Pujal, Loipersberger, Tsanai, Vernon, Forman-Kay, Head-Gordon, Heidar-Zadeh, Head-Gordon (b0010) 2023; 145 Guo, Major, Howe (b0075) 2018; 44 Le, Nguyen, Nguyen, Nguyen, Vu, Yen, Hoang, Minh, Kannan, Tran (b0120) 2021; 788 Fu, Jin, Jiménez-Alemán, Wang, Song, Li, Lou, Li (b0060) 2021; 45 Wang, Deng, Elmer, Dimkpa, Sharma, Navarro, Wang, LaReau, Steven, Wang, Zhao, Li, Dhankher, Gardea-Torresdey, Xing, White (b0265) 2022; 16 Katsir, Schilmiller, Staswick, He, Howe (b0110) 2008; 105 Niu, Xu, Xu, Yun, Liu (b0200) 2014; 195 Wang, Xua, Li, Ruan, Bennion, Wang, Li, Qu (b0255) 2023; 120 Choi, Kim, Muniyappan, Kim, Kim, Lee, Lee, Kim, Ihee (b0040) 2021; 12 Sun, Li, Ma, Yu, Huang, Ding, Yu, Jiang, Zhang, Lv (b0225) 2023; 24 Lee, Lee, Choe, Kim, Lee, Kho, Choi, Zoh (b0125) 2019; 126 Henkel, Hüffer, Hofmann (b0085) 2022; 56 Montea, Caballerob, Zamarreñoc, Fernández-Barberoa, García-Minac, Solanoa (b0180) 2022; 119 Deng, Grassini, Yang, Huang, Cassman, Peng (b0045) 2019; 10 Li, Ma, Wu, Chai, Shi (b0135) 2016; 164 Li, Schuler, Berenbaum (b0145) 2002; 419 Sheard, Tan, Mao, Withers, Ben-Nissan, Hinds, Kobayashi, Hsu, Sharon, Browse, He, Rizo, Howe, Zheng (b0205) 2010; 468 Kratochvil, Hofmann, Rother, Schlichting, Moretti, Scharnweber, Hintze, Escher, Meiler, Kalkhof, Bergen (b0115) 2019; 33 Gao, Xu, Chang, Song (b0070) 2021; 270 Wu, Lai, Zhu, Yang, Ye, Zhang, Sun (b0280) 2023; 882 Nguyen, Diamond, Kalenge, Kirkham, Holness, Arrandale (b0190) 2022; 56 Wu, Hu, Wang, Chen, Yao, Tao, Zhou (b0285) 2015; 508 Jiang, Zhu, Luo, Song, Song (b0100) 2022; 170 Staswick, Tiryaki (b0220) 2004; 16 Machado, Ferrieri, Robert, Glauser, Kallenbach, Baldwin, Erb (b0175) 2013; 200 Thines, Katsir, Melotto, Niu, Mandaokar, Liu, Nomura, He, Howe, Browse (b0240) 2007; 448 Kah, Tufenkji, White (b0310) 2019; 14 Waterhouse, Bertoni, Bienert, Studer, Tauriello, Gumienny, Heer, de Beer, Rempfer, Bordoli, Lepore, Schwede (b0270) 2018; 46 Gao, Dong, Zhang, Song, Qi (b0065) 2017; 172 Chen, Wang, Chen, Zhu (b0015) 2023; 57 Wang, Kannan (b0250) 2023; 57 Shi, Zhang, Hu, Hao, Zhang, Liu, Wei, Wang, Giesy, Yu (b0210) 2012; 42 Zhuang, Wang, Llorca, Lu, Lou, Li (b0325) 2021; 109 Huot, Yao, Montgomery, He (b0095) 2014; 7 Liang, Ji, Feng, Su, Xu, Zhang, Ren, Li, Zhu, Qu, Liu (b0155) 2024; 470 Wang, Wang, Xiang, Gu, Redmile-Gordon, Sheng, Wang, Fu, Bian, Jiang (b0260) 2021; 55 Howe, Major, Koo (b0090) 2018; 69 Dueñas-Moreno, Mora, Cervantes-Avilés, Mahlknecht (b0050) 2022; 170 Shinohara, Oguri, Takagi, Ueyama, Isobe (b0215) 2024; 183 Jiao, Tao, Yang, Diogene, Yu, He, Han, Chen, Wu, Zhang (b0105) 2020; 257 Net, Sempéré, Delmont, Paluselli, Ouddane (b0185) 2015; 49 Li, Jin, Xu, Wang, Li, Lou, Baldwin (b0140) 2020; 44 Li, Xu, Cai, Han, Si, Chen (b0130) 2022; 23 Zander, Lewsey, Clark, Yin, Bartlett, Saldierna Guzmán, Hann, Langford, Jow, Wise, Nery, Chen, Bar-Joseph, Walley, Solano, Ecker (b0295) 2020; 6 Li, Zhang, Chen, Zhang, Feng, Cheng, Ma, Li, Wang, Jiang, Yu (b0150) 2024; 58 Liang, Zhang, Wang, Zhang, Dai, Zhang, Luo, Zhang, Hu, Liu, Bi, Cheng (b0160) 2022; 13 Chen, Jin, Liu, Wang, Lou, Baldwin, Li (b0020) 2024; 00 Nguyen, Goossens, Lacchini (b0195) 2022; 67 Sun, Wu, Gan (b0230) 2015; 49 Wan, Huang, Lv, Han, Zhang (b0245) 2017; 51 Zhu, Du, Zeng, Lu, Zhao, Li, Mo, Cai (b0320) 2019; 668 Cheng, Sun, Sidhu, Sy, Gan (b0025) 2020; 265 Zhang, Ma, Cai, Li, Ying (b0300) 2021; 55 Zhou, Wang, Meng, Cheng, Lin, Chen, Zheng, Yu (b0305) 2013; 93 Wang (10.1016/j.envint.2025.109553_b0255) 2023; 120 Xing (10.1016/j.envint.2025.109553_b0290) 2023; 57 Guo (10.1016/j.envint.2025.109553_b0080) 2021; 55 Bertoft (10.1016/j.envint.2025.109553_b0005) 2017; 7 Katsir (10.1016/j.envint.2025.109553_b0110) 2008; 105 Net (10.1016/j.envint.2025.109553_b0185) 2015; 49 Zander (10.1016/j.envint.2025.109553_b0295) 2020; 6 Carter-Fenk (10.1016/j.envint.2025.109553_b0010) 2023; 145 Zhang (10.1016/j.envint.2025.109553_b0300) 2021; 55 Shi (10.1016/j.envint.2025.109553_b0210) 2012; 42 Chen (10.1016/j.envint.2025.109553_b0015) 2023; 57 Liang (10.1016/j.envint.2025.109553_b0160) 2022; 13 Machado (10.1016/j.envint.2025.109553_b0175) 2013; 200 Huot (10.1016/j.envint.2025.109553_b0095) 2014; 7 Wan (10.1016/j.envint.2025.109553_b0245) 2017; 51 Zhuang (10.1016/j.envint.2025.109553_b0325) 2021; 109 Cheng (10.1016/j.envint.2025.109553_b0030) 2021; 55 Lee (10.1016/j.envint.2025.109553_b0125) 2019; 126 Wu (10.1016/j.envint.2025.109553_b0285) 2015; 508 Weng (10.1016/j.envint.2025.109553_b0275) 2023; 57 Montea (10.1016/j.envint.2025.109553_b0180) 2022; 119 Shinohara (10.1016/j.envint.2025.109553_b0215) 2024; 183 Howe (10.1016/j.envint.2025.109553_b0090) 2018; 69 Wang (10.1016/j.envint.2025.109553_b0250) 2023; 57 Waterhouse (10.1016/j.envint.2025.109553_b0270) 2018; 46 Sun (10.1016/j.envint.2025.109553_b0225) 2023; 24 Henkel (10.1016/j.envint.2025.109553_b0085) 2022; 56 Li (10.1016/j.envint.2025.109553_b0130) 2022; 23 Sun (10.1016/j.envint.2025.109553_b0230) 2015; 49 Staswick (10.1016/j.envint.2025.109553_b0220) 2004; 16 Le (10.1016/j.envint.2025.109553_b0120) 2021; 788 Zhou (10.1016/j.envint.2025.109553_b0305) 2013; 93 Fonseca (10.1016/j.envint.2025.109553_b0055) 2009; 5 Wu (10.1016/j.envint.2025.109553_b0280) 2023; 882 Kah (10.1016/j.envint.2025.109553_b0310) 2019; 14 Gao (10.1016/j.envint.2025.109553_b0065) 2017; 172 Thines (10.1016/j.envint.2025.109553_b0240) 2007; 448 Choi (10.1016/j.envint.2025.109553_b0040) 2021; 12 Guo (10.1016/j.envint.2025.109553_b0075) 2018; 44 Zhang (10.1016/j.envint.2025.109553_b0315) 2018; 52 Li (10.1016/j.envint.2025.109553_b0150) 2024; 58 Sheard (10.1016/j.envint.2025.109553_b0205) 2010; 468 Ma (10.1016/j.envint.2025.109553_b0170) 2020; 54 Li (10.1016/j.envint.2025.109553_b0145) 2002; 419 Li (10.1016/j.envint.2025.109553_b0135) 2016; 164 Deng (10.1016/j.envint.2025.109553_b0045) 2019; 10 Jiao (10.1016/j.envint.2025.109553_b0105) 2020; 257 Chen (10.1016/j.envint.2025.109553_b0020) 2024; 00 Liang (10.1016/j.envint.2025.109553_b0155) 2024; 470 Jiang (10.1016/j.envint.2025.109553_b0100) 2022; 170 Dueñas-Moreno (10.1016/j.envint.2025.109553_b0050) 2022; 170 Cheng (10.1016/j.envint.2025.109553_b0025) 2020; 265 Wang (10.1016/j.envint.2025.109553_b0260) 2021; 55 Zhu (10.1016/j.envint.2025.109553_b0320) 2019; 668 Nguyen (10.1016/j.envint.2025.109553_b0190) 2022; 56 Wang (10.1016/j.envint.2025.109553_b0265) 2022; 16 Nguyen (10.1016/j.envint.2025.109553_b0195) 2022; 67 Kratochvil (10.1016/j.envint.2025.109553_b0115) 2019; 33 Gao (10.1016/j.envint.2025.109553_b0070) 2021; 270 Takaoka (10.1016/j.envint.2025.109553_b0235) 2018; 9 Niu (10.1016/j.envint.2025.109553_b0200) 2014; 195 Fu (10.1016/j.envint.2025.109553_b0060) 2021; 45 Li (10.1016/j.envint.2025.109553_b0140) 2020; 44 |
References_xml | – volume: 56 start-page: 14507 year: 2022 end-page: 14516 ident: b0085 article-title: Polyvinyl chloride microplastics leach phthalates into the aquatic environment over decades publication-title: Environ. Sci. Technol – volume: 468 start-page: 400 year: 2010 end-page: 405 ident: b0205 article-title: Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor publication-title: Nature – volume: 57 start-page: 8189 year: 2023 end-page: 8212 ident: b0275 article-title: Cumulative exposure to phthalates and their alternatives and associated female reproductive health: body burdens, adverse outcomes, and underlying mechanisms publication-title: Environ. Sci. Technol. – volume: 257 year: 2020 ident: b0105 article-title: Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver publication-title: Environ. Pollut. – volume: 788 year: 2021 ident: b0120 article-title: Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam publication-title: Sci. Total Environ. – volume: 52 start-page: 14411 year: 2018 end-page: 14421 ident: b0315 article-title: Metabolic mechanism of aryl phosphorus flame retardants by cytochromes P450: a combined experimental and computational 5. Study on triphenyl phosphate publication-title: Environ. Sci. Technol. – volume: 183 year: 2024 ident: b0215 article-title: Evaluating the risk of phthalate and non-phthalate plasticizers in dust samples from 100 Japanese houses publication-title: Environ. Int. – volume: 170 year: 2022 ident: b0100 article-title: The synergistic toxicity effect of di(2-ethylhexyl)phthalate and plant growth disturbs the structure and function of soil microbes in the rhizosphere publication-title: Environ. Int. – volume: 55 start-page: 12459 year: 2021 end-page: 12470 ident: b0300 article-title: Agricultural plastic pollution in china: generation of plastic debris and emission of phthalic acid esters from agricultural films publication-title: Environ. Sci. Technol. – volume: 419 start-page: 712 year: 2002 end-page: 715 ident: b0145 article-title: Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes publication-title: Nature – volume: 145 start-page: 24836 year: 2023 end-page: 24851 ident: b0010 article-title: The energetic origins of pi–pi contacts in proteins publication-title: J. Am. Chem. Soc. – volume: 164 start-page: 314 year: 2016 end-page: 321 ident: b0135 article-title: Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China publication-title: Chemosphere – volume: 55 start-page: 3676 year: 2021 end-page: 3685 ident: b0260 article-title: Risk assessment of agricultural plastic films based on release kinetics of phthalate acid esters publication-title: Environ. Sci. Technol. – volume: 46 start-page: W296 year: 2018 end-page: W303 ident: b0270 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Res. – volume: 33 start-page: 75 year: 2019 end-page: 85 ident: b0115 article-title: Mono(2‐ethylhexyl) phthalate (MEHP) and mono(2‐ethyl‐5oxohexyl) phthalate (MEOHP) but not di(2‐ethylhexyl) phthalate (DEHP) bind productively to the peroxisome proliferatoractivated receptor γ publication-title: Rapid Commun. Mass Spectrom. – volume: 16 start-page: 11204 year: 2022 end-page: 11217 ident: b0265 article-title: Therapeutic delivery of nanoscale sulfur to suppress disease in tomatoes: publication-title: ACS Nano – volume: 5 start-page: 344 year: 2009 end-page: 350 ident: b0055 article-title: (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate publication-title: Nat. Chem. Biol. – volume: 9 start-page: 3654 year: 2018 ident: b0235 article-title: A rationally designed JAZ subtype-selective agonist of jasmonate perception publication-title: Nat. Commun. – volume: 93 start-page: 163 year: 2013 end-page: 170 ident: b0305 article-title: Distribution and sources of organochlorine pesticides in agricultural soils from central China publication-title: Ecotox. Environ. Safety – volume: 126 start-page: 635 year: 2019 end-page: 643 ident: b0125 article-title: Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea publication-title: Environ. Int. – volume: 120 year: 2023 ident: b0255 article-title: The OsBDR1-MPK3 module negatively regulates blast resistance by suppressing the jasmonate signaling and terpenoid biosynthesis pathway publication-title: Proc. Nat. Acad. Sci. – volume: 882 year: 2023 ident: b0280 article-title: Phthalate esters and their metabolites in paired soil-crop systems from farmland in major provinces of eastern China: Pollution characteristics and implications for human exposure publication-title: Sci. Total Environ. – volume: 668 start-page: 1117 year: 2019 end-page: 1127 ident: b0320 article-title: Variation in metabolism and degradation of di-n-butyl phthalate (DBP) by high- and low-DBP accumulating cultivars of rice ( publication-title: Sci. Total Environ. – volume: 13 year: 2022 ident: b0160 article-title: JMJD8 is an M2 macrophage biomarker, and it associates with DNA damage repair to facilitate stemness maintenance, chemoresistance, and immunosuppression in pan-cancer publication-title: Front. Immunol. – volume: 00 start-page: 1 year: 2024 end-page: 16 ident: b0020 article-title: Multiomic analyses reveal key sectors of jasmonate-mediated defense responses in rice publication-title: Plant Cell – volume: 270 year: 2021 ident: b0070 article-title: Fe-Mn oxide modified biochar decreases phthalate uptake and improves grain quality of wheat grown in phthalate-contaminated fluvo-aquic soil publication-title: Chemosphere – volume: 170 year: 2022 ident: b0050 article-title: Groundwater contamination pathways of phthalates and bisphenol A: origin, characteristics, transport, and fate – a review publication-title: Environ. Int. – volume: 56 start-page: 3193 year: 2022 end-page: 3203 ident: b0190 article-title: Occupational exposure of canadian nail salon workers to plasticizers including phthalates and organophosphate esters publication-title: Environ. Sci. Technol – volume: 58 start-page: 12542 year: 2024 end-page: 12553 ident: b0150 article-title: Rhizosphere Bacteria Help to Compensate for Pesticide-Induced Stress in Plants publication-title: Environ. Sci. Technol. – volume: 55 start-page: 2381 year: 2021 end-page: 2391 ident: b0030 article-title: Conjugation of di-n-butyl phthalate metabolites in arabidopsis thaliana and potential deconjugation in human microsomes publication-title: Environ. Sci. Technol. – volume: 24 start-page: 248 year: 2023 end-page: 261 ident: b0225 article-title: OsGLP3-7 positively regulates rice immune response by activating hydrogen peroxide, jasmonic acid, and phytoalexin metabolic pathways publication-title: Mol. Plant Pathol. – volume: 14 start-page: 532 year: 2019 end-page: 540 ident: b0310 article-title: Nano-enabled strategies to enhance crop nutrition and protection publication-title: Nat. Nanotechnol. – volume: 44 start-page: 72 year: 2018 end-page: 81 ident: b0075 article-title: Resolution of growth–defense conflict: mechanistic insights from jasmonate signaling publication-title: Curr. Opin. Plant Biol. – volume: 7 start-page: 56 year: 2017 ident: b0005 article-title: Understanding starch structure: recent progress publication-title: Agronomy – volume: 67 year: 2022 ident: b0195 article-title: Jasmonate: A hormone of primary importance for plant metabolism publication-title: Curr. Opin. Plant Biol. – volume: 57 start-page: 21405 year: 2023 end-page: 21415 ident: b0015 article-title: Benzotriazole ultraviolet stabilizers (BUVSs) as potential protein kinase antagonists in rice publication-title: Environ. Sci. Technol. – volume: 470 year: 2024 ident: b0155 article-title: Phthalate acid esters: A review of aquatic environmental occurrence and their interactions with plants publication-title: J. Hazard. Mater. – volume: 195 start-page: 16 year: 2014 end-page: 23 ident: b0200 article-title: Status of phthalate esters contamination in agricultural soils across China and associated health risks publication-title: Environ Pollut. – volume: 16 start-page: 2117 year: 2004 end-page: 2127 ident: b0220 article-title: The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in arabidopsis publication-title: Plant Cell – volume: 12 start-page: 8207 year: 2021 end-page: 8217 ident: b0040 article-title: Effect of the abolition of intersubunit salt bridges on allosteric protein structural dynamics publication-title: Chem. Sci. – volume: 10 start-page: 1725 year: 2019 ident: b0045 article-title: Closing yield gaps for rice self-sufficiency in China publication-title: Nat. Commun. – volume: 6 start-page: 290 year: 2020 end-page: 302 ident: b0295 article-title: Integrated multi-omics framework of the plant response to jasmonic acid publication-title: Nat. Plants – volume: 51 start-page: 13649 year: 2017 end-page: 13658 ident: b0245 article-title: Uptake, translocation, and biotransformation of organophosphorus esters in wheat ( publication-title: Environ. Sci. Technol. – volume: 44 start-page: 982 year: 2020 end-page: 994 ident: b0140 article-title: Long non‐coding RNAs associate with jasmonate‐mediated plant defence against herbivores publication-title: Plant Cell Environ. – volume: 49 start-page: 4019 year: 2015 end-page: 4035 ident: b0185 article-title: Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices publication-title: Environ. Sci. Technol – volume: 42 start-page: 117 year: 2012 end-page: 123 ident: b0210 article-title: Thyroid hormone disrupting activities associated with phthalate esters in water sources from Yangtze River Delta publication-title: Environ. Int. – volume: 57 start-page: 7675 year: 2023 end-page: 7683 ident: b0250 article-title: Leaching of phthalates from medical supplies and their implications for exposure publication-title: Environ. Sci. Technol. – volume: 57 start-page: 8870 year: 2023 end-page: 8882 ident: b0290 article-title: Interaction between phthalate ester and rice plants: novel transformation pathways and metabolic-network perturbations publication-title: Environ. Sci. Technol. – volume: 69 start-page: 387 year: 2018 end-page: 415 ident: b0090 article-title: Modularity in jasmonate signaling for multistress resilience publication-title: Annu. Rev. Plant Biol. – volume: 45 start-page: 262 year: 2021 end-page: 272 ident: b0060 article-title: The jasmonic acid‐amino acid conjugates JA‐Val and JA‐Leu are involved in rice resistance to herbivores publication-title: Plant Cell Environ. – volume: 54 start-page: 8245 year: 2020 end-page: 8258 ident: b0170 article-title: Maternal exposure to di-n-butyl phthalate promotes the formation of testicular tight junctions through downregulation of NF-κB/COX-2/PGE2/MMP-2 in mouse offspring publication-title: Environ. Sci. Technol. – volume: 508 start-page: 445 year: 2015 end-page: 451 ident: b0285 article-title: Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography publication-title: Sci. Total Environ. – volume: 265 year: 2020 ident: b0025 article-title: Metabolism of mono-(2-ethylhexyl) phthalate in Arabidopsis thaliana: Exploration of metabolic pathways by deuterium labeling publication-title: Environ. Pollut. – volume: 49 start-page: 8471 year: 2015 end-page: 8478 ident: b0230 article-title: Uptake and metabolism of phthalate esters by edible plants publication-title: Environ. Sci. Technol. – volume: 7 start-page: 1267 year: 2014 end-page: 1287 ident: b0095 article-title: Growth–defense tradeoffs in plants: a balancing act to optimize fitness publication-title: Mol. Plant – volume: 105 start-page: 7100 year: 2008 end-page: 7105 ident: b0110 article-title: COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine publication-title: Proc. Nat. Acad. Sci. – volume: 119 year: 2022 ident: b0180 article-title: JAZ is essential for ligand specificity of the COI1/JAZ co-receptor publication-title: Proc. Nat. Acad. Sci. – volume: 200 start-page: 1234 year: 2013 end-page: 1246 ident: b0175 article-title: Leaf‐herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling publication-title: New Phytol. – volume: 109 start-page: 627 year: 2021 end-page: 637 ident: b0325 article-title: Role of jasmonate signaling in rice resistance to the leaf folder publication-title: Plant Mol. Biol. – volume: 55 start-page: 9024 year: 2021 end-page: 9032 ident: b0080 article-title: Analysis of polycyclic aromatic hydrocarbons and phthalate esters in soil and food grains from the balkan peninsula: implication on DNA adduct formation by aristolochic acid i and balkan endemic nephropathy publication-title: Environ. Sci. Technol – volume: 23 start-page: 3945 year: 2022 ident: b0130 article-title: Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs publication-title: Int. J. Mol. Sci. – volume: 172 start-page: 418 year: 2017 end-page: 428 ident: b0065 article-title: Growth and antioxidant defense responses of wheat seedlings to di-n-butyl phthalate and di (2-ethylhexyl) phthalate stress publication-title: Chemosphere – volume: 448 start-page: 661 year: 2007 end-page: 665 ident: b0240 article-title: JAZ repressor proteins are targets of the SCF publication-title: Nature – volume: 57 start-page: 8870 year: 2023 ident: 10.1016/j.envint.2025.109553_b0290 article-title: Interaction between phthalate ester and rice plants: novel transformation pathways and metabolic-network perturbations publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c09737 – volume: 105 start-page: 7100 year: 2008 ident: 10.1016/j.envint.2025.109553_b0110 article-title: COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.0802332105 – volume: 55 start-page: 9024 year: 2021 ident: 10.1016/j.envint.2025.109553_b0080 article-title: Analysis of polycyclic aromatic hydrocarbons and phthalate esters in soil and food grains from the balkan peninsula: implication on DNA adduct formation by aristolochic acid i and balkan endemic nephropathy publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c00648 – volume: 52 start-page: 14411 year: 2018 ident: 10.1016/j.envint.2025.109553_b0315 article-title: Metabolic mechanism of aryl phosphorus flame retardants by cytochromes P450: a combined experimental and computational 5. Study on triphenyl phosphate publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03965 – volume: 55 start-page: 12459 year: 2021 ident: 10.1016/j.envint.2025.109553_b0300 article-title: Agricultural plastic pollution in china: generation of plastic debris and emission of phthalic acid esters from agricultural films publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04369 – volume: 51 start-page: 13649 year: 2017 ident: 10.1016/j.envint.2025.109553_b0245 article-title: Uptake, translocation, and biotransformation of organophosphorus esters in wheat (Triticum aestivum L.) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01758 – volume: 668 start-page: 1117 year: 2019 ident: 10.1016/j.envint.2025.109553_b0320 article-title: Variation in metabolism and degradation of di-n-butyl phthalate (DBP) by high- and low-DBP accumulating cultivars of rice (Oryza sativa L.) and crude enzyme extracts publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.047 – volume: 265 year: 2020 ident: 10.1016/j.envint.2025.109553_b0025 article-title: Metabolism of mono-(2-ethylhexyl) phthalate in Arabidopsis thaliana: Exploration of metabolic pathways by deuterium labeling publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114886 – volume: 270 year: 2021 ident: 10.1016/j.envint.2025.109553_b0070 article-title: Fe-Mn oxide modified biochar decreases phthalate uptake and improves grain quality of wheat grown in phthalate-contaminated fluvo-aquic soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129428 – volume: 00 start-page: 1 year: 2024 ident: 10.1016/j.envint.2025.109553_b0020 article-title: Multiomic analyses reveal key sectors of jasmonate-mediated defense responses in rice publication-title: Plant Cell – volume: 24 start-page: 248 year: 2023 ident: 10.1016/j.envint.2025.109553_b0225 article-title: OsGLP3-7 positively regulates rice immune response by activating hydrogen peroxide, jasmonic acid, and phytoalexin metabolic pathways publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.13294 – volume: 67 year: 2022 ident: 10.1016/j.envint.2025.109553_b0195 article-title: Jasmonate: A hormone of primary importance for plant metabolism publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2022.102197 – volume: 57 start-page: 7675 year: 2023 ident: 10.1016/j.envint.2025.109553_b0250 article-title: Leaching of phthalates from medical supplies and their implications for exposure publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c09182 – volume: 508 start-page: 445 year: 2015 ident: 10.1016/j.envint.2025.109553_b0285 article-title: Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.11.081 – volume: 69 start-page: 387 year: 2018 ident: 10.1016/j.envint.2025.109553_b0090 article-title: Modularity in jasmonate signaling for multistress resilience publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042817-040047 – volume: 56 start-page: 14507 year: 2022 ident: 10.1016/j.envint.2025.109553_b0085 article-title: Polyvinyl chloride microplastics leach phthalates into the aquatic environment over decades publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c05108 – volume: 170 year: 2022 ident: 10.1016/j.envint.2025.109553_b0100 article-title: The synergistic toxicity effect of di(2-ethylhexyl)phthalate and plant growth disturbs the structure and function of soil microbes in the rhizosphere publication-title: Environ. Int. doi: 10.1016/j.envint.2022.107629 – volume: 93 start-page: 163 year: 2013 ident: 10.1016/j.envint.2025.109553_b0305 article-title: Distribution and sources of organochlorine pesticides in agricultural soils from central China publication-title: Ecotox. Environ. Safety doi: 10.1016/j.ecoenv.2013.03.029 – volume: 126 start-page: 635 year: 2019 ident: 10.1016/j.envint.2025.109553_b0125 article-title: Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea publication-title: Environ. Int. doi: 10.1016/j.envint.2019.02.059 – volume: 6 start-page: 290 year: 2020 ident: 10.1016/j.envint.2025.109553_b0295 article-title: Integrated multi-omics framework of the plant response to jasmonic acid publication-title: Nat. Plants doi: 10.1038/s41477-020-0605-7 – volume: 42 start-page: 117 year: 2012 ident: 10.1016/j.envint.2025.109553_b0210 article-title: Thyroid hormone disrupting activities associated with phthalate esters in water sources from Yangtze River Delta publication-title: Environ. Int. doi: 10.1016/j.envint.2011.05.013 – volume: 419 start-page: 712 year: 2002 ident: 10.1016/j.envint.2025.109553_b0145 article-title: Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes publication-title: Nature doi: 10.1038/nature01003 – volume: 44 start-page: 72 year: 2018 ident: 10.1016/j.envint.2025.109553_b0075 article-title: Resolution of growth–defense conflict: mechanistic insights from jasmonate signaling publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2018.02.009 – volume: 49 start-page: 4019 year: 2015 ident: 10.1016/j.envint.2025.109553_b0185 article-title: Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices publication-title: Environ. Sci. Technol. doi: 10.1021/es505233b – volume: 56 start-page: 3193 year: 2022 ident: 10.1016/j.envint.2025.109553_b0190 article-title: Occupational exposure of canadian nail salon workers to plasticizers including phthalates and organophosphate esters publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04974 – volume: 448 start-page: 661 year: 2007 ident: 10.1016/j.envint.2025.109553_b0240 article-title: JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling publication-title: Nature doi: 10.1038/nature05960 – volume: 57 start-page: 21405 year: 2023 ident: 10.1016/j.envint.2025.109553_b0015 article-title: Benzotriazole ultraviolet stabilizers (BUVSs) as potential protein kinase antagonists in rice publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c06839 – volume: 14 start-page: 532 year: 2019 ident: 10.1016/j.envint.2025.109553_b0310 article-title: Nano-enabled strategies to enhance crop nutrition and protection publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0439-5 – volume: 55 start-page: 3676 year: 2021 ident: 10.1016/j.envint.2025.109553_b0260 article-title: Risk assessment of agricultural plastic films based on release kinetics of phthalate acid esters publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c07008 – volume: 172 start-page: 418 year: 2017 ident: 10.1016/j.envint.2025.109553_b0065 article-title: Growth and antioxidant defense responses of wheat seedlings to di-n-butyl phthalate and di (2-ethylhexyl) phthalate stress publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.034 – volume: 119 year: 2022 ident: 10.1016/j.envint.2025.109553_b0180 article-title: JAZ is essential for ligand specificity of the COI1/JAZ co-receptor publication-title: Proc. Nat. Acad. Sci. – volume: 10 start-page: 1725 year: 2019 ident: 10.1016/j.envint.2025.109553_b0045 article-title: Closing yield gaps for rice self-sufficiency in China publication-title: Nat. Commun. doi: 10.1038/s41467-019-09447-9 – volume: 57 start-page: 8189 year: 2023 ident: 10.1016/j.envint.2025.109553_b0275 article-title: Cumulative exposure to phthalates and their alternatives and associated female reproductive health: body burdens, adverse outcomes, and underlying mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c00823 – volume: 120 year: 2023 ident: 10.1016/j.envint.2025.109553_b0255 article-title: The OsBDR1-MPK3 module negatively regulates blast resistance by suppressing the jasmonate signaling and terpenoid biosynthesis pathway publication-title: Proc. Nat. Acad. Sci. – volume: 46 start-page: W296 year: 2018 ident: 10.1016/j.envint.2025.109553_b0270 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky427 – volume: 788 year: 2021 ident: 10.1016/j.envint.2025.109553_b0120 article-title: Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147831 – volume: 58 start-page: 12542 year: 2024 ident: 10.1016/j.envint.2025.109553_b0150 article-title: Rhizosphere Bacteria Help to Compensate for Pesticide-Induced Stress in Plants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.4c04196 – volume: 183 year: 2024 ident: 10.1016/j.envint.2025.109553_b0215 article-title: Evaluating the risk of phthalate and non-phthalate plasticizers in dust samples from 100 Japanese houses publication-title: Environ. Int. doi: 10.1016/j.envint.2023.108399 – volume: 109 start-page: 627 year: 2021 ident: 10.1016/j.envint.2025.109553_b0325 article-title: Role of jasmonate signaling in rice resistance to the leaf folder Cnaphalocrocis medinalis publication-title: Plant Mol. Biol. doi: 10.1007/s11103-021-01208-x – volume: 170 year: 2022 ident: 10.1016/j.envint.2025.109553_b0050 article-title: Groundwater contamination pathways of phthalates and bisphenol A: origin, characteristics, transport, and fate – a review publication-title: Environ. Int. doi: 10.1016/j.envint.2022.107550 – volume: 16 start-page: 2117 year: 2004 ident: 10.1016/j.envint.2025.109553_b0220 article-title: The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.104.023549 – volume: 45 start-page: 262 year: 2021 ident: 10.1016/j.envint.2025.109553_b0060 article-title: The jasmonic acid‐amino acid conjugates JA‐Val and JA‐Leu are involved in rice resistance to herbivores publication-title: Plant Cell Environ. doi: 10.1111/pce.14202 – volume: 33 start-page: 75 year: 2019 ident: 10.1016/j.envint.2025.109553_b0115 article-title: Mono(2‐ethylhexyl) phthalate (MEHP) and mono(2‐ethyl‐5oxohexyl) phthalate (MEOHP) but not di(2‐ethylhexyl) phthalate (DEHP) bind productively to the peroxisome proliferatoractivated receptor γ publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.8258 – volume: 55 start-page: 2381 year: 2021 ident: 10.1016/j.envint.2025.109553_b0030 article-title: Conjugation of di-n-butyl phthalate metabolites in arabidopsis thaliana and potential deconjugation in human microsomes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c07232 – volume: 200 start-page: 1234 year: 2013 ident: 10.1016/j.envint.2025.109553_b0175 article-title: Leaf‐herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling publication-title: New Phytol. doi: 10.1111/nph.12438 – volume: 5 start-page: 344 year: 2009 ident: 10.1016/j.envint.2025.109553_b0055 article-title: (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.161 – volume: 12 start-page: 8207 year: 2021 ident: 10.1016/j.envint.2025.109553_b0040 article-title: Effect of the abolition of intersubunit salt bridges on allosteric protein structural dynamics publication-title: Chem. Sci. doi: 10.1039/D1SC01207J – volume: 23 start-page: 3945 year: 2022 ident: 10.1016/j.envint.2025.109553_b0130 article-title: Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23073945 – volume: 9 start-page: 3654 year: 2018 ident: 10.1016/j.envint.2025.109553_b0235 article-title: A rationally designed JAZ subtype-selective agonist of jasmonate perception publication-title: Nat. Commun. doi: 10.1038/s41467-018-06135-y – volume: 13 year: 2022 ident: 10.1016/j.envint.2025.109553_b0160 article-title: JMJD8 is an M2 macrophage biomarker, and it associates with DNA damage repair to facilitate stemness maintenance, chemoresistance, and immunosuppression in pan-cancer publication-title: Front. Immunol. – volume: 44 start-page: 982 year: 2020 ident: 10.1016/j.envint.2025.109553_b0140 article-title: Long non‐coding RNAs associate with jasmonate‐mediated plant defence against herbivores publication-title: Plant Cell Environ. doi: 10.1111/pce.13952 – volume: 7 start-page: 56 year: 2017 ident: 10.1016/j.envint.2025.109553_b0005 article-title: Understanding starch structure: recent progress publication-title: Agronomy doi: 10.3390/agronomy7030056 – volume: 49 start-page: 8471 year: 2015 ident: 10.1016/j.envint.2025.109553_b0230 article-title: Uptake and metabolism of phthalate esters by edible plants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01233 – volume: 468 start-page: 400 year: 2010 ident: 10.1016/j.envint.2025.109553_b0205 article-title: Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor publication-title: Nature doi: 10.1038/nature09430 – volume: 7 start-page: 1267 year: 2014 ident: 10.1016/j.envint.2025.109553_b0095 article-title: Growth–defense tradeoffs in plants: a balancing act to optimize fitness publication-title: Mol. Plant doi: 10.1093/mp/ssu049 – volume: 470 year: 2024 ident: 10.1016/j.envint.2025.109553_b0155 article-title: Phthalate acid esters: A review of aquatic environmental occurrence and their interactions with plants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2024.134187 – volume: 257 year: 2020 ident: 10.1016/j.envint.2025.109553_b0105 article-title: Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113517 – volume: 145 start-page: 24836 year: 2023 ident: 10.1016/j.envint.2025.109553_b0010 article-title: The energetic origins of pi–pi contacts in proteins publication-title: J. Am. Chem. Soc. – volume: 164 start-page: 314 year: 2016 ident: 10.1016/j.envint.2025.109553_b0135 article-title: Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.08.068 – volume: 16 start-page: 11204 issue: 7 year: 2022 ident: 10.1016/j.envint.2025.109553_b0265 article-title: Therapeutic delivery of nanoscale sulfur to suppress disease in tomatoes: In vitro imaging and orthogonal mechanistic investigation publication-title: ACS Nano doi: 10.1021/acsnano.2c04073 – volume: 195 start-page: 16 year: 2014 ident: 10.1016/j.envint.2025.109553_b0200 article-title: Status of phthalate esters contamination in agricultural soils across China and associated health risks publication-title: Environ Pollut. doi: 10.1016/j.envpol.2014.08.014 – volume: 882 year: 2023 ident: 10.1016/j.envint.2025.109553_b0280 article-title: Phthalate esters and their metabolites in paired soil-crop systems from farmland in major provinces of eastern China: Pollution characteristics and implications for human exposure publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.163645 – volume: 54 start-page: 8245 year: 2020 ident: 10.1016/j.envint.2025.109553_b0170 article-title: Maternal exposure to di-n-butyl phthalate promotes the formation of testicular tight junctions through downregulation of NF-κB/COX-2/PGE2/MMP-2 in mouse offspring publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c01701 |
SSID | ssj0002485 |
Score | 2.466153 |
Snippet | [Display omitted]
•Pest defense and growth indication were induced in rice by dibutyl phthalate (DBP).•DBP metabolites MBP activated the jasmonic acid (JA)... Phthalate esters (PAEs) were ubiquitous in agricultural soils and could be metabolized after being absorbed by crops, posing significant implications for crop... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 109553 |
SubjectTerms | Cyclopentanes - metabolism Dibutyl Phthalate - toxicity Esters - metabolism Esters - toxicity Growth inhibition Jasmonic acid signaling pathway Oryza - drug effects Oryza - growth & development Oxylipins - metabolism Pest defense Phthalate esters Phthalic Acids - metabolism Phthalic Acids - toxicity Plant Growth Regulators - metabolism Signal Transduction - drug effects Soil Pollutants - toxicity Transformation products |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqnooQgoXCUloZiQMczG4SO1kf22qrCgmERCv1Zo2_uqlosmpSoV747XjspO0eEBLHOFYSZWY8L_G8N4R8kFyHvJMZpk3mGAchmdQLwaR3cyOstA6QO_z1W3l6zr9ciIstcjxyYbCsclj705oeV-thZDa8zdm6rmc_UBuNZzkm8bi_hwx2XqGXf_79UOaBkl1J33vOcPZIn4s1Xkgma7CiMheoqyREsZGeoor_Rpb6GwqN2ejkOXk2wEh6mJ70BdlyzYQ8eSQuOCG7ywcOW5g6BHE3IU_TrzqaGEgvSXf2CLy2Db12ffAM5CZ3tPV0vepX8DNAUhpFFTr68fvhsvtE62ZVawSsFHWJ6GX4nu9XdOj7Q6-gu0bVXQqmthSrRACJ7xQ7IP-Cu1fk_GR5dnzKhl4MzISo7pkRXlvtc19CLk3AGVnlQYajoqoq6bg2c4Cq9Kgmr8MJYyS3hcW-HgJ0AH27ZLtpG_eG0EWI-twW4CVIVNuSsdk9yiPpArirpoSNJlDrJLmhxlq0K5VMptBkKplsSo7QTvdzUTA7DrQ3l2rwGFVYWQK3uEks-YIDmNJnGYDMoVxYnk1JNVpZbfhfuFT9j9u_H51ChdDE_RZoXHvbKewBVQRIKfmUvE7ecv-QfM65DPDw7X_fd4_s4FEqHX5HtvubW7cfAFKvD2IE_AEdwg-2 priority: 102 providerName: Elsevier |
Title | Transformation metabolites of phthalate esters (PAEs) inhibited rice growth through jasmonic acid signaling pathway |
URI | https://dx.doi.org/10.1016/j.envint.2025.109553 https://www.ncbi.nlm.nih.gov/pubmed/40449063 https://www.proquest.com/docview/3214325694 https://doaj.org/article/3d96a4d58389484aac6f11aa92a68d41 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BuYAQgoXC8lgZiQMcDHnYyfq4oK0WEBWHVurNGr_YrWi2IqkQF347njgp2wPqhWMSK7EyM5nP8XzfALxSwsS8k1tubO65QKm4MnPJVfCZlU45j8Qd_nJYrY7FpxN5stPqi2rCkjxwenHvSqcqFI5295SYC0RbhTxHVAVWc9dT1ouY88bF1PANJqGupOqdcZEX2Uia6yu7iELWUB1lIUlNScrySlLqtfuv5KZ_Yc8-Bx3ch3sDeGSLNOkHcMM3E7izIyk4gf3lX-ZaHDqEbjuBu-kHHUu8o4fQHu1A1m3DznwX_YEYyS3bBna-7tb4PQJR1ksptOz118WyfcM2zXpjCKYyUiNi3-IqvluzodsPO8X2jLR2GdqNY1QbgkR3Z9T3-Cf-egTHB8ujDys-dGDgNsZyx60MxplQhAoLZSO6yOuAKh6VdV0rL4zNEOsqkIa8iResVcKVjrp5SDQR6u3DXrNt_BNg8xjrhSsxKFSksaX6FvckimRKFL6eAh9NoM-T0IYeK9BOdTKZJpPpZLIpvCc7XY4lmez-RHQePTiPvs55plCPVtYD4khIIt5qc83jX45OoWNA0i4LNn570Wrq_FRGIKnEFB4nb7mcpMiEUBEUPv0fk38Gt2lCqXb4Oex1Py78i4iQOjODm29_5zO4tfj4eXU460PjD7diEPg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gEQQlAYlE8j8QAPUZvESerHMnXq2FYh0Ul7s84fWTOxpFoyIf57fHFS1geExGNsJ7Zyd75f4rvfAXwUXDm_E-pA6dAGHBMRCDVNApHbiU6MMBYpd_hsmS7O-deL5GIPDvtcGAqr7PZ-v6e3u3XXMu7e5nhTFOPvxI3Gw4iceHu-dw_2iZ0qGcD-7PhksdxuyMTa5Sm-JwHd0GfQtWFelE9WUlBllBC1UpLEOx6qJfLfcVR_A6KtQzp6Ao87JMlmfrFPYc-WQ3h4h19wCAfzP2lsbmhnx_UQHvm_dcwnIT2DenUHv1Ylu7aNUw5KT65ZlbPNulnjD4dKWcurULNP32bz-jMrynWhCLMyoiZil-6TvlmzrvQPu8L6moh3GerCMAoUQcp9Z1QE-Sf-eg7nR_PV4SLoyjEE2hl2E-gkV0blUZ5iJLSDGmGWo3BXcZZlwnKlJ4hZmhOhvHIdWgtuYkOlPRJUDvcdwKCsSvsS2NQZfmRizAUKItwSbb17YkhSMXKbjSDoRSA3nnVD9uFoV9KLTJLIpBfZCL6QnLZjiTO7bahuLmWnNDI2IkVu6JxY8ClH1GkehogiwnRqeDiCrJey3FFB96jiH9N_6JVCOuukIxcsbXVbSyoDFTtUKfgIXnht2S6STzgXDiG--u9538P9xersVJ4eL09ewwPq8ZHEb2DQ3Nzatw4vNepdZw-_Ae5-E_U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation+metabolites+of+phthalate+esters+%28PAEs%29+inhibited+rice+growth+through+jasmonic+acid+signaling+pathway&rft.jtitle=Environment+international&rft.au=Sun%2C+Yingying&rft.au=Chen%2C+Jie&rft.au=Wang%2C+Wei&rft.au=Zhu%2C+Lizhong&rft.date=2025-07-01&rft.issn=1873-6750&rft.eissn=1873-6750&rft.volume=201&rft.spage=109553&rft_id=info:doi/10.1016%2Fj.envint.2025.109553&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon |