Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization
Heart disease is a significant global health issue, contributing to high morbidity and mortality rates. Early and accurate heart disease prediction is crucial for effectively preventing and managing the condition. However, this remains a challenging task to achieve. This study proposes a machine lea...
Saved in:
Published in | Algorithms Vol. 16; no. 6; p. 308 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heart disease is a significant global health issue, contributing to high morbidity and mortality rates. Early and accurate heart disease prediction is crucial for effectively preventing and managing the condition. However, this remains a challenging task to achieve. This study proposes a machine learning model that leverages various preprocessing steps, hyperparameter optimization techniques, and ensemble learning algorithms to predict heart disease. To evaluate the performance of our model, we merged three datasets from Kaggle that have similar features, creating a comprehensive dataset for analysis. By employing the extra tree classifier, normalizing the data, utilizing grid search cross-validation (CV) for hyperparameter optimization, and splitting the dataset with an 80:20 ratio for training and testing, our proposed approach achieved an impressive accuracy of 98.15%. These findings demonstrated the potential of our model for accurately predicting the presence or absence of heart disease. Such accurate predictions could significantly aid in early prevention, detection, and treatment, ultimately reducing the mortality and morbidity associated with heart disease. |
---|---|
AbstractList | Heart disease is a significant global health issue, contributing to high morbidity and mortality rates. Early and accurate heart disease prediction is crucial for effectively preventing and managing the condition. However, this remains a challenging task to achieve. This study proposes a machine learning model that leverages various preprocessing steps, hyperparameter optimization techniques, and ensemble learning algorithms to predict heart disease. To evaluate the performance of our model, we merged three datasets from Kaggle that have similar features, creating a comprehensive dataset for analysis. By employing the extra tree classifier, normalizing the data, utilizing grid search cross-validation (CV) for hyperparameter optimization, and splitting the dataset with an 80:20 ratio for training and testing, our proposed approach achieved an impressive accuracy of 98.15%. These findings demonstrated the potential of our model for accurately predicting the presence or absence of heart disease. Such accurate predictions could significantly aid in early prevention, detection, and treatment, ultimately reducing the mortality and morbidity associated with heart disease. |
Audience | Academic |
Author | Asif, Daniyal Bibi, Mairaj Mukheimer, Aiman Arif, Muhammad Shoaib |
Author_xml | – sequence: 1 givenname: Daniyal orcidid: 0009-0006-1535-7944 surname: Asif fullname: Asif, Daniyal – sequence: 2 givenname: Mairaj orcidid: 0000-0001-9208-7091 surname: Bibi fullname: Bibi, Mairaj – sequence: 3 givenname: Muhammad Shoaib orcidid: 0000-0002-6009-5609 surname: Arif fullname: Arif, Muhammad Shoaib – sequence: 4 givenname: Aiman orcidid: 0000-0001-8798-3297 surname: Mukheimer fullname: Mukheimer, Aiman |
BookMark | eNptkV9rHCEUxYeSQJM0D_0GQp_6sIkzOjo-hnTbDSykD8mz3HGuOy47OlWXkn76utk2_Yugcjm_g8dzXp344LGq3tb0ijFFr6EWVFBGu1fVWa2UWvBOsZPf7q-r85S2lIpWifqsGpd-BG-c35AVQszkg0sICcnniIMz2QVP8hjDfjOSpU849Tsk66L0B-QBzejdlz0m8tXlkayeZowzRJgwYyT3c3aT-wYHlzfVqYVdwssf50X1-HH5cLtarO8_3d3erBeGN20uO6oeJWc4YMdZg30nGRrD-4Eq20oAAQpwYBRUX5seW9lxtGBpRynIhl1Ud0ffIcBWz9FNEJ90AKefByFudInpzA61tawbBJoCIpcD6wfRyJ4rZhllArri9e7oNcdwCJn1NuyjL8_XTdcooTit1S_VBoqp8zbkCGZyyegb2XIlGRW8qK7-oyprwMmZUqJ1Zf4HcH0ETAwpRbTauPz8lQV0O11TfWhcvzReiPd_ET_j_6v9Dm6ZrX8 |
CitedBy_id | crossref_primary_10_60084_mp_v2i2_226 crossref_primary_10_1007_s00521_024_09602_4 crossref_primary_10_1007_s00521_023_09391_2 crossref_primary_10_3390_en17225787 crossref_primary_10_1016_j_compbiomed_2025_109835 crossref_primary_10_1007_s00521_025_11038_3 crossref_primary_10_1109_ACCESS_2024_3440502 crossref_primary_10_1016_j_rineng_2025_104629 crossref_primary_10_1002_eng2_13034 crossref_primary_10_3390_a17100443 crossref_primary_10_1108_IJICC_11_2023_0336 crossref_primary_10_1515_phys_2023_0181 crossref_primary_10_3390_computers13060126 crossref_primary_10_1007_s00521_024_10181_7 crossref_primary_10_1109_ACCESS_2024_3459429 crossref_primary_10_1007_s00521_024_09619_9 crossref_primary_10_1007_s00521_023_09385_0 crossref_primary_10_1080_23311916_2024_2384657 crossref_primary_10_3390_bdcc7030144 crossref_primary_10_1155_acis_1989813 crossref_primary_10_1515_jisys_2023_0261 crossref_primary_10_1007_s00521_024_10390_0 crossref_primary_10_1007_s42979_024_03484_y crossref_primary_10_3390_sci6040081 crossref_primary_10_1016_j_ijbiomac_2025_140955 crossref_primary_10_1080_23311916_2024_2386381 crossref_primary_10_1007_s11760_024_03479_5 crossref_primary_10_3390_computation12010015 crossref_primary_10_2147_PGPM_S488143 crossref_primary_10_7717_peerj_cs_2498 crossref_primary_10_1007_s00521_024_09623_z crossref_primary_10_3390_a17110527 crossref_primary_10_1186_s44147_023_00280_y crossref_primary_10_3390_a17050178 crossref_primary_10_3389_fdgth_2023_1279644 crossref_primary_10_3390_app15063393 |
Cites_doi | 10.1016/j.patrec.2005.10.010 10.1016/j.imu.2021.100655 10.3390/life12111933 10.1080/00031305.1998.10480559 10.1186/s12859-020-03626-y 10.1016/j.amjcard.2009.10.007 10.1145/2939672.2939785 10.1016/j.procs.2015.12.145 10.54097/hset.v39i.6771 10.1016/j.eswa.2012.07.032 10.1007/s11334-022-00524-9 10.3390/life12020230 10.14419/ijet.v7i2.8.10557 10.1016/j.amjmed.2014.04.015 10.22452/mjcs.sp2022no1.10 10.3390/a16020088 10.1371/journal.pone.0118432 10.1109/INMIC.2011.6151471 10.1007/978-1-4842-6579-6 10.1007/s11704-019-8208-z 10.1007/978-1-4842-3564-5 10.1038/s41598-023-27547-x 10.1007/s42979-020-00365-y 10.1186/s40537-020-00369-8 10.1088/1757-899X/1022/1/012046 10.1023/A:1010933404324 10.1007/s10994-006-6226-1 10.1038/nrcardio.2010.165 10.1007/s11749-016-0481-7 10.1155/2023/1406060 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/a16060308 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Public Health |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_ff38d6ec00ae47d3bd627b493f3036a8 A754973064 10_3390_a16060308 |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TR2 TUS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c425t-c4e9be743ede8432eb873ecc4bd09f57aa6a9aed30a9b1cbe5784efaf0800a723 |
IEDL.DBID | BENPR |
ISSN | 1999-4893 |
IngestDate | Wed Aug 27 01:31:23 EDT 2025 Fri Jul 25 10:33:49 EDT 2025 Tue Jun 17 21:34:19 EDT 2025 Tue Jun 10 20:27:50 EDT 2025 Tue Jul 01 03:23:15 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-c4e9be743ede8432eb873ecc4bd09f57aa6a9aed30a9b1cbe5784efaf0800a723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0006-1535-7944 0000-0001-8798-3297 0000-0002-6009-5609 0000-0001-9208-7091 |
OpenAccessLink | https://www.proquest.com/docview/2829694019?pq-origsite=%requestingapplication% |
PQID | 2829694019 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ff38d6ec00ae47d3bd627b493f3036a8 proquest_journals_2829694019 gale_infotracmisc_A754973064 gale_infotracacademiconefile_A754973064 crossref_citationtrail_10_3390_a16060308 crossref_primary_10_3390_a16060308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Biau (ref_32) 2020; 25 Haseena (ref_16) 2022; 1 Ogundepo (ref_19) 2023; 19 ref_36 ref_35 ref_12 Kenchaiah (ref_9) 2004; 88 ref_11 ref_33 (ref_10) 2010; 105 Bizimana (ref_22) 2023; 52 ref_18 Almustafa (ref_23) 2020; 21 ref_15 ref_37 Anderson (ref_5) 2005; 53 Nahar (ref_7) 2013; 40 Ramalingam (ref_17) 2018; 7 Prokhorenkova (ref_38) 2018; 31 Hintze (ref_48) 1998; 52 Hancock (ref_39) 2020; 7 Jothi (ref_13) 2015; 72 ref_47 ref_24 Khan (ref_21) 2023; 2023 ref_45 Waigi (ref_14) 2020; 7 ref_43 Shorewala (ref_26) 2021; 26 ref_42 ref_41 Breiman (ref_31) 2001; 45 ref_40 ref_1 Garg (ref_25) 2021; 1022 Zeng (ref_20) 2023; 39 ref_2 ref_29 ref_28 ref_27 Dong (ref_30) 2020; 14 Gaidai (ref_3) 2023; 13 Bui (ref_6) 2011; 8 Dalen (ref_8) 2014; 127 Bergstra (ref_44) 2012; 13 Fawcett (ref_46) 2006; 27 ref_4 Geurts (ref_34) 2006; 63 |
References_xml | – volume: 1 start-page: 9178302 year: 2022 ident: ref_16 article-title: Moth-Flame Optimization for Early Prediction of Heart Diseases publication-title: Comput. Math. Methods Med. – ident: ref_28 – volume: 27 start-page: 861 year: 2006 ident: ref_46 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 26 start-page: 100655 year: 2021 ident: ref_26 article-title: Early detection of coronary heart disease using ensemble techniques publication-title: Informatics Med. Unlocked doi: 10.1016/j.imu.2021.100655 – ident: ref_12 doi: 10.3390/life12111933 – volume: 52 start-page: 181 year: 1998 ident: ref_48 article-title: Violin plots: A box plot-density trace synergism publication-title: Am. Stat. doi: 10.1080/00031305.1998.10480559 – volume: 52 start-page: 181 year: 2023 ident: ref_22 article-title: An Effective Machine Learning-Based Model for an Early Heart Disease Prediction publication-title: BioMed Res. Int. – volume: 21 start-page: 278 year: 2020 ident: ref_23 article-title: Prediction of heart disease and classifiers’ sensitivity analysis publication-title: BMC Bioinform. doi: 10.1186/s12859-020-03626-y – volume: 105 start-page: 3A year: 2010 ident: ref_10 article-title: Cardiovascular disease risk factors: Epidemiology and risk assessment publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2009.10.007 – ident: ref_35 doi: 10.1145/2939672.2939785 – volume: 72 start-page: 306 year: 2015 ident: ref_13 article-title: Data mining in healthcare—A review publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.12.145 – ident: ref_40 – volume: 39 start-page: 1377 year: 2023 ident: ref_20 article-title: The Prediction of Heart Failure based on Four Machine Learning Algorithms publication-title: Highlights Sci. Eng. Technol. doi: 10.54097/hset.v39i.6771 – volume: 13 start-page: 281 year: 2012 ident: ref_44 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 40 start-page: 96 year: 2013 ident: ref_7 article-title: Computational intelligence for heart disease diagnosis: A medical knowledge driven approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.07.032 – ident: ref_37 – volume: 19 start-page: 129 year: 2023 ident: ref_19 article-title: Performance analysis of supervised classification models on heart disease prediction publication-title: Innov. Syst. Softw. Eng. doi: 10.1007/s11334-022-00524-9 – ident: ref_11 doi: 10.3390/life12020230 – ident: ref_1 – volume: 7 start-page: 684 year: 2018 ident: ref_17 article-title: Heart disease prediction using machine learning techniques: A survey publication-title: Int. J. Eng. Technol. doi: 10.14419/ijet.v7i2.8.10557 – volume: 127 start-page: 807 year: 2014 ident: ref_8 article-title: The epidemic of the 20th century: Coronary heart disease publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2014.04.015 – ident: ref_15 doi: 10.22452/mjcs.sp2022no1.10 – ident: ref_18 doi: 10.3390/a16020088 – ident: ref_47 doi: 10.1371/journal.pone.0118432 – ident: ref_4 doi: 10.1109/INMIC.2011.6151471 – volume: 88 start-page: 1145 year: 2004 ident: ref_9 article-title: Risk factors for heart failure publication-title: Med. Clin. – ident: ref_29 – ident: ref_42 doi: 10.1007/978-1-4842-6579-6 – ident: ref_27 – ident: ref_2 – volume: 14 start-page: 241 year: 2020 ident: ref_30 article-title: A survey on ensemble learning publication-title: Front. Comput. Sci. doi: 10.1007/s11704-019-8208-z – volume: 7 start-page: 1638 year: 2020 ident: ref_14 article-title: Predicting the risk of heart disease using advanced machine learning approach publication-title: Eur. J. Mol. Clin. Med. – ident: ref_33 doi: 10.1007/978-1-4842-3564-5 – volume: 13 start-page: 303 year: 2023 ident: ref_3 article-title: Future world cancer death rate prediction publication-title: Sci. Rep. doi: 10.1038/s41598-023-27547-x – ident: ref_24 doi: 10.1007/s42979-020-00365-y – volume: 31 start-page: 1 year: 2018 ident: ref_38 article-title: CatBoost: Unbiased boosting with categorical features publication-title: Adv. Neural Inf. Process. Syst. – volume: 7 start-page: 1 year: 2020 ident: ref_39 article-title: CatBoost for big data: An interdisciplinary review publication-title: J. Big Data doi: 10.1186/s40537-020-00369-8 – volume: 53 start-page: 1 year: 2005 ident: ref_5 article-title: Deaths: Leading causes for 2002 publication-title: Natl. Vital Stat. Rep. – volume: 1022 start-page: 012046 year: 2021 ident: ref_25 article-title: Heart disease prediction using machine learning techniques publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/1022/1/012046 – ident: ref_41 – volume: 45 start-page: 5 year: 2001 ident: ref_31 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 63 start-page: 3 year: 2006 ident: ref_34 article-title: Extremely randomized trees publication-title: Mach. Learn. doi: 10.1007/s10994-006-6226-1 – volume: 8 start-page: 30 year: 2011 ident: ref_6 article-title: Epidemiology and risk profile of heart failure publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2010.165 – ident: ref_36 – ident: ref_45 – volume: 25 start-page: 197 year: 2020 ident: ref_32 article-title: A random forest guided tour publication-title: Test doi: 10.1007/s11749-016-0481-7 – ident: ref_43 – volume: 2023 start-page: 1406060 year: 2023 ident: ref_21 article-title: A Novel Study on Machine Learning Algorithm-Based Cardiovascular Disease Prediction publication-title: Health Soc. Care Community doi: 10.1155/2023/1406060 |
SSID | ssj0065961 |
Score | 2.4387424 |
Snippet | Heart disease is a significant global health issue, contributing to high morbidity and mortality rates. Early and accurate heart disease prediction is crucial... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 308 |
SubjectTerms | Accuracy Algorithms Cardiovascular disease Data mining Data search Datasets Decision trees Disease prevention Ensemble learning extra tree Health aspects Heart heart disease Heart diseases hyperparameter optimization Machine learning Mathematical optimization Medical research Medicine, Experimental Methods Mortality Neural networks Optimization Optimization techniques Predictions Prognosis Public health Regression analysis Support vector machines Taiwan XGBoost |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T-wwELYQFQ08Lr19HLIQEjQRSex14pJj0YoCKECis3yMoWAD2l3-PzOJs2Klh2hotshO4Yzn-uLxN4wdo--JvI5FBjqoTCobMgfSZ4DZVmKC80VoG2Rv1fhR3jwNn76M-qKesI4euFPcWYyiDgp8nluQVRAuqLJyUotIwde213wx5_VgqovBaqhV0fEICQT1Z7bAOp2YWZayT0vS_10obvPL9R-2ngpDft4taJOtQLPFNvqhCzz54DZ7GTUvxJHRPPMxWumcX3VHLPx-SmcupGeehu_wUTODiXsFnlhUn_lDT9k64_QFlo8Rhk6J_ntCbTH8DgPIJN3M3GGP16OHy3GWxiVkHh1vjr-gHWBFAAFqKUpwdSVwh6QLuY7DylpFVNxB5Fa7wjtAZ5UQbaSi0Val2GWrzVsDfxl3OmLmD6CHpZe1UrouYxGViDraHCHhgJ32ajQ-cYnTSItXg5iCNG4WGh-wo4Xoe0eg8T-hC9qLhQBxXrcP0BJMsgTzkyUM2AntpCHPxMV4my4Y4CsRx5U5rxALV4S4Bmx_SRI9yi__3duCSR49M3TirDSiUf3vNxa7x9ZocH3XdLbPVufTDzjA8mbuDltL_gSG1PnC priority: 102 providerName: Directory of Open Access Journals |
Title | Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization |
URI | https://www.proquest.com/docview/2829694019 https://doaj.org/article/ff38d6ec00ae47d3bd627b493f3036a8 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLf2cUFCwAaIjlFZExJcojWx68SnaYOWaocxoU3azfLHc3dY05GW_3_vJU6nSsAlB-cpcvz8Pv38e4x9RtkToyrmGeigMqlsyBxInwFaW4kGzuehLZC9UrNbeXk3vksJt1Uqq-x1Yquow9JTjvyUTvyUxmhAnz3-zqhrFJ2uphYau2wfVXCFwdf-xeTq-levi9VYq7zDExIY3J_aHP11QmjZskItWP-_VHJrZ6Zv2KvkIPLzjqMHbAfqQ_a6b77Akywespddwo1394jesvtJfU_YGfWchpo1_94dvfDrhs5iaP15asrDJ_UKFu4BeEJXnfObHsp1xSkzy2cYnjYEC76gchn-ExXLIt3YfMdup5Obb7MstVHIPArkGp-gHaCnAAEqKQpwVSmQc9KFkY7j0lpFEN1BjKx2uXeAQiwh2kjOpC0L8Z7t1csaPjDudESPIIAeF15WSumqiHlUIupoRxgqDtjXflmNTxjj1OriwWCsQRwwGw4M2MmG9LED1vgb0QXxZkNAWNjtwLKZmyRaJkZRBQUeJwuyDMIFVZROahHJPFv8yBfirCGJxcl4my4e4C8R9pU5LzFGLikSG7DjLUqUNL_9ut8bJkn6yjzvy6P_v_7IXlCr-q7M7JjtrZs_8AkdmrUbst1q-mOY9u6wTQs8Ad6h-Q0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemcQAJ8TFAFAZYCASXaEnsOvEBocFaOjYGh07azcT2c3dY05EWIf4p_kbeS5yiSsBtlxzsp8j2-_bH7zH2AnVPpGXIEtBeJVJVPrEgXQLobSU6OJf59oLsiZqcyo9nw7Mt9qt_C0PXKnub2Bpqv3C0R75HJ35KYzag315-S6hqFJ2u9iU0OrE4gp8_MGVbvjk8QP6-zPPxaPp-ksSqAolD-VzhF7QFdJzgoZQiB1sWAicirU91GBZVpQix2ou00jZzFlCmJYQqUGxVFQR0gCb_mhRCk0aV4w-95VdDrbIOvQg7070qw-yA8GA2fF5bGuBfDqD1auM77FYMR_l-Jz932RbUO-x2X-qBR83fYTe77T3evVq6x85H9TkhddQzampW_KA76OFfGjr5IW7zWAKIj-olzO0F8IjlOuPTHjh2yWkfmE8wGW4IhHxOl3P4ZzRj8_g-9D47vZLlfcC260UNDxm3OmD84UEPcydLpXSZhywoEXSoUkxMB-x1v6zGRURzKqxxYTCzIQ6YNQcG7Pma9LKD8fgb0TvizZqAkLfbhkUzM1GRTQii9AocDhZk4YX1Ki-s1CJQMFDhT14RZw3ZBxyMq-IzB5wSIW2Z_QIz8oLyvgHb3aBEvXab3b1smGhXluaPFjz6f_czdn0y_XRsjg9Pjh6zGzmGZt0Ft122vWq-wxMMpVb2aSu_nH29aoX5DV8wNSM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTkJIiMsArWyAhUDwEjWJXSd-QGijrTqGSoU2aW_G1-5hTbe2CPHX-HWckzhFlYC3veQhsaLE5_rZx98h5DXYHkvLkCVeOpFwoV1iPLeJh2jLIcDZzNUFshMxPuefLvoXO-RXexYGyypbn1g7arewuEbewx0_IQENyF6IZRHTwejD9U2CHaRwp7Vtp9GoyKn_-QPg2-r9yQBk_SbPR8Ozj-MkdhhILOjqGq5eGg9B1DtfcpZ7UxYMfoobl8rQL7QWyF7tWKqlyazxoN_cBx0wz9IFkh6A-98tABWlHbJ7PJxMv7ZxQPSlyBouI8Zk2tMZYAVkh9mKgHWjgH-FgzrGjR6S-zE5pUeNNj0iO77aIw_axg80-oE9cq9Z7KPNGabH5HJYXSJvRzXDW8s1HTTbPnS6xH0glD2NDYHosFr5ubnyNDK7zuhZSyO7orgqTMcAjZdIST7HUh36BZzaPJ4WfULOb2WCn5JOtaj8PqFGBshGnJf93PJSCFnmIQuCBRl0CjC1S96106ps5DfHNhtXCnAOSkBtJNAlrzZDrxtSj78NOkbZbAYgD3d9Y7GcqWjWKgRWOuEtfKznhWPGibwwXLKAqYGGl7xFySr0FvAxVsdDD_BLyLuljgrA5wWiwC453BoJVm63H7e6oaKXWak_NvHs_49fkjtgLOrzyeT0gNzNIU9rqt0OSWe9_O6fQ161Ni-iAlPy7bZt5jeX8jq1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Heart+Disease+Prediction+through+Ensemble+Learning+Techniques+with+Hyperparameter+Optimization&rft.jtitle=Algorithms&rft.au=Daniyal+Asif&rft.au=Bibi%2C+Mairaj&rft.au=Muhammad+Shoaib+Arif&rft.au=Mukheimer%2C+Aiman&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=16&rft.issue=6&rft.spage=308&rft_id=info:doi/10.3390%2Fa16060308&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |