Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization

Heart disease is a significant global health issue, contributing to high morbidity and mortality rates. Early and accurate heart disease prediction is crucial for effectively preventing and managing the condition. However, this remains a challenging task to achieve. This study proposes a machine lea...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 16; no. 6; p. 308
Main Authors Asif, Daniyal, Bibi, Mairaj, Arif, Muhammad Shoaib, Mukheimer, Aiman
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heart disease is a significant global health issue, contributing to high morbidity and mortality rates. Early and accurate heart disease prediction is crucial for effectively preventing and managing the condition. However, this remains a challenging task to achieve. This study proposes a machine learning model that leverages various preprocessing steps, hyperparameter optimization techniques, and ensemble learning algorithms to predict heart disease. To evaluate the performance of our model, we merged three datasets from Kaggle that have similar features, creating a comprehensive dataset for analysis. By employing the extra tree classifier, normalizing the data, utilizing grid search cross-validation (CV) for hyperparameter optimization, and splitting the dataset with an 80:20 ratio for training and testing, our proposed approach achieved an impressive accuracy of 98.15%. These findings demonstrated the potential of our model for accurately predicting the presence or absence of heart disease. Such accurate predictions could significantly aid in early prevention, detection, and treatment, ultimately reducing the mortality and morbidity associated with heart disease.
AbstractList Heart disease is a significant global health issue, contributing to high morbidity and mortality rates. Early and accurate heart disease prediction is crucial for effectively preventing and managing the condition. However, this remains a challenging task to achieve. This study proposes a machine learning model that leverages various preprocessing steps, hyperparameter optimization techniques, and ensemble learning algorithms to predict heart disease. To evaluate the performance of our model, we merged three datasets from Kaggle that have similar features, creating a comprehensive dataset for analysis. By employing the extra tree classifier, normalizing the data, utilizing grid search cross-validation (CV) for hyperparameter optimization, and splitting the dataset with an 80:20 ratio for training and testing, our proposed approach achieved an impressive accuracy of 98.15%. These findings demonstrated the potential of our model for accurately predicting the presence or absence of heart disease. Such accurate predictions could significantly aid in early prevention, detection, and treatment, ultimately reducing the mortality and morbidity associated with heart disease.
Audience Academic
Author Asif, Daniyal
Bibi, Mairaj
Mukheimer, Aiman
Arif, Muhammad Shoaib
Author_xml – sequence: 1
  givenname: Daniyal
  orcidid: 0009-0006-1535-7944
  surname: Asif
  fullname: Asif, Daniyal
– sequence: 2
  givenname: Mairaj
  orcidid: 0000-0001-9208-7091
  surname: Bibi
  fullname: Bibi, Mairaj
– sequence: 3
  givenname: Muhammad Shoaib
  orcidid: 0000-0002-6009-5609
  surname: Arif
  fullname: Arif, Muhammad Shoaib
– sequence: 4
  givenname: Aiman
  orcidid: 0000-0001-8798-3297
  surname: Mukheimer
  fullname: Mukheimer, Aiman
BookMark eNptkV9rHCEUxYeSQJM0D_0GQp_6sIkzOjo-hnTbDSykD8mz3HGuOy47OlWXkn76utk2_Yugcjm_g8dzXp344LGq3tb0ijFFr6EWVFBGu1fVWa2UWvBOsZPf7q-r85S2lIpWifqsGpd-BG-c35AVQszkg0sICcnniIMz2QVP8hjDfjOSpU849Tsk66L0B-QBzejdlz0m8tXlkayeZowzRJgwYyT3c3aT-wYHlzfVqYVdwssf50X1-HH5cLtarO8_3d3erBeGN20uO6oeJWc4YMdZg30nGRrD-4Eq20oAAQpwYBRUX5seW9lxtGBpRynIhl1Ud0ffIcBWz9FNEJ90AKefByFudInpzA61tawbBJoCIpcD6wfRyJ4rZhllArri9e7oNcdwCJn1NuyjL8_XTdcooTit1S_VBoqp8zbkCGZyyegb2XIlGRW8qK7-oyprwMmZUqJ1Zf4HcH0ETAwpRbTauPz8lQV0O11TfWhcvzReiPd_ET_j_6v9Dm6ZrX8
CitedBy_id crossref_primary_10_60084_mp_v2i2_226
crossref_primary_10_1007_s00521_024_09602_4
crossref_primary_10_1007_s00521_023_09391_2
crossref_primary_10_3390_en17225787
crossref_primary_10_1016_j_compbiomed_2025_109835
crossref_primary_10_1007_s00521_025_11038_3
crossref_primary_10_1109_ACCESS_2024_3440502
crossref_primary_10_1016_j_rineng_2025_104629
crossref_primary_10_1002_eng2_13034
crossref_primary_10_3390_a17100443
crossref_primary_10_1108_IJICC_11_2023_0336
crossref_primary_10_1515_phys_2023_0181
crossref_primary_10_3390_computers13060126
crossref_primary_10_1007_s00521_024_10181_7
crossref_primary_10_1109_ACCESS_2024_3459429
crossref_primary_10_1007_s00521_024_09619_9
crossref_primary_10_1007_s00521_023_09385_0
crossref_primary_10_1080_23311916_2024_2384657
crossref_primary_10_3390_bdcc7030144
crossref_primary_10_1155_acis_1989813
crossref_primary_10_1515_jisys_2023_0261
crossref_primary_10_1007_s00521_024_10390_0
crossref_primary_10_1007_s42979_024_03484_y
crossref_primary_10_3390_sci6040081
crossref_primary_10_1016_j_ijbiomac_2025_140955
crossref_primary_10_1080_23311916_2024_2386381
crossref_primary_10_1007_s11760_024_03479_5
crossref_primary_10_3390_computation12010015
crossref_primary_10_2147_PGPM_S488143
crossref_primary_10_7717_peerj_cs_2498
crossref_primary_10_1007_s00521_024_09623_z
crossref_primary_10_3390_a17110527
crossref_primary_10_1186_s44147_023_00280_y
crossref_primary_10_3390_a17050178
crossref_primary_10_3389_fdgth_2023_1279644
crossref_primary_10_3390_app15063393
Cites_doi 10.1016/j.patrec.2005.10.010
10.1016/j.imu.2021.100655
10.3390/life12111933
10.1080/00031305.1998.10480559
10.1186/s12859-020-03626-y
10.1016/j.amjcard.2009.10.007
10.1145/2939672.2939785
10.1016/j.procs.2015.12.145
10.54097/hset.v39i.6771
10.1016/j.eswa.2012.07.032
10.1007/s11334-022-00524-9
10.3390/life12020230
10.14419/ijet.v7i2.8.10557
10.1016/j.amjmed.2014.04.015
10.22452/mjcs.sp2022no1.10
10.3390/a16020088
10.1371/journal.pone.0118432
10.1109/INMIC.2011.6151471
10.1007/978-1-4842-6579-6
10.1007/s11704-019-8208-z
10.1007/978-1-4842-3564-5
10.1038/s41598-023-27547-x
10.1007/s42979-020-00365-y
10.1186/s40537-020-00369-8
10.1088/1757-899X/1022/1/012046
10.1023/A:1010933404324
10.1007/s10994-006-6226-1
10.1038/nrcardio.2010.165
10.1007/s11749-016-0481-7
10.1155/2023/1406060
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a16060308
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Public Health
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_ff38d6ec00ae47d3bd627b493f3036a8
A754973064
10_3390_a16060308
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
TR2
TUS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c425t-c4e9be743ede8432eb873ecc4bd09f57aa6a9aed30a9b1cbe5784efaf0800a723
IEDL.DBID BENPR
ISSN 1999-4893
IngestDate Wed Aug 27 01:31:23 EDT 2025
Fri Jul 25 10:33:49 EDT 2025
Tue Jun 17 21:34:19 EDT 2025
Tue Jun 10 20:27:50 EDT 2025
Tue Jul 01 03:23:15 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-c4e9be743ede8432eb873ecc4bd09f57aa6a9aed30a9b1cbe5784efaf0800a723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-1535-7944
0000-0001-8798-3297
0000-0002-6009-5609
0000-0001-9208-7091
OpenAccessLink https://www.proquest.com/docview/2829694019?pq-origsite=%requestingapplication%
PQID 2829694019
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_ff38d6ec00ae47d3bd627b493f3036a8
proquest_journals_2829694019
gale_infotracmisc_A754973064
gale_infotracacademiconefile_A754973064
crossref_citationtrail_10_3390_a16060308
crossref_primary_10_3390_a16060308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Biau (ref_32) 2020; 25
Haseena (ref_16) 2022; 1
Ogundepo (ref_19) 2023; 19
ref_36
ref_35
ref_12
Kenchaiah (ref_9) 2004; 88
ref_11
ref_33
(ref_10) 2010; 105
Bizimana (ref_22) 2023; 52
ref_18
Almustafa (ref_23) 2020; 21
ref_15
ref_37
Anderson (ref_5) 2005; 53
Nahar (ref_7) 2013; 40
Ramalingam (ref_17) 2018; 7
Prokhorenkova (ref_38) 2018; 31
Hintze (ref_48) 1998; 52
Hancock (ref_39) 2020; 7
Jothi (ref_13) 2015; 72
ref_47
ref_24
Khan (ref_21) 2023; 2023
ref_45
Waigi (ref_14) 2020; 7
ref_43
Shorewala (ref_26) 2021; 26
ref_42
ref_41
Breiman (ref_31) 2001; 45
ref_40
ref_1
Garg (ref_25) 2021; 1022
Zeng (ref_20) 2023; 39
ref_2
ref_29
ref_28
ref_27
Dong (ref_30) 2020; 14
Gaidai (ref_3) 2023; 13
Bui (ref_6) 2011; 8
Dalen (ref_8) 2014; 127
Bergstra (ref_44) 2012; 13
Fawcett (ref_46) 2006; 27
ref_4
Geurts (ref_34) 2006; 63
References_xml – volume: 1
  start-page: 9178302
  year: 2022
  ident: ref_16
  article-title: Moth-Flame Optimization for Early Prediction of Heart Diseases
  publication-title: Comput. Math. Methods Med.
– ident: ref_28
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_46
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 26
  start-page: 100655
  year: 2021
  ident: ref_26
  article-title: Early detection of coronary heart disease using ensemble techniques
  publication-title: Informatics Med. Unlocked
  doi: 10.1016/j.imu.2021.100655
– ident: ref_12
  doi: 10.3390/life12111933
– volume: 52
  start-page: 181
  year: 1998
  ident: ref_48
  article-title: Violin plots: A box plot-density trace synergism
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1998.10480559
– volume: 52
  start-page: 181
  year: 2023
  ident: ref_22
  article-title: An Effective Machine Learning-Based Model for an Early Heart Disease Prediction
  publication-title: BioMed Res. Int.
– volume: 21
  start-page: 278
  year: 2020
  ident: ref_23
  article-title: Prediction of heart disease and classifiers’ sensitivity analysis
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-020-03626-y
– volume: 105
  start-page: 3A
  year: 2010
  ident: ref_10
  article-title: Cardiovascular disease risk factors: Epidemiology and risk assessment
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2009.10.007
– ident: ref_35
  doi: 10.1145/2939672.2939785
– volume: 72
  start-page: 306
  year: 2015
  ident: ref_13
  article-title: Data mining in healthcare—A review
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.12.145
– ident: ref_40
– volume: 39
  start-page: 1377
  year: 2023
  ident: ref_20
  article-title: The Prediction of Heart Failure based on Four Machine Learning Algorithms
  publication-title: Highlights Sci. Eng. Technol.
  doi: 10.54097/hset.v39i.6771
– volume: 13
  start-page: 281
  year: 2012
  ident: ref_44
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 40
  start-page: 96
  year: 2013
  ident: ref_7
  article-title: Computational intelligence for heart disease diagnosis: A medical knowledge driven approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.032
– ident: ref_37
– volume: 19
  start-page: 129
  year: 2023
  ident: ref_19
  article-title: Performance analysis of supervised classification models on heart disease prediction
  publication-title: Innov. Syst. Softw. Eng.
  doi: 10.1007/s11334-022-00524-9
– ident: ref_11
  doi: 10.3390/life12020230
– ident: ref_1
– volume: 7
  start-page: 684
  year: 2018
  ident: ref_17
  article-title: Heart disease prediction using machine learning techniques: A survey
  publication-title: Int. J. Eng. Technol.
  doi: 10.14419/ijet.v7i2.8.10557
– volume: 127
  start-page: 807
  year: 2014
  ident: ref_8
  article-title: The epidemic of the 20th century: Coronary heart disease
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2014.04.015
– ident: ref_15
  doi: 10.22452/mjcs.sp2022no1.10
– ident: ref_18
  doi: 10.3390/a16020088
– ident: ref_47
  doi: 10.1371/journal.pone.0118432
– ident: ref_4
  doi: 10.1109/INMIC.2011.6151471
– volume: 88
  start-page: 1145
  year: 2004
  ident: ref_9
  article-title: Risk factors for heart failure
  publication-title: Med. Clin.
– ident: ref_29
– ident: ref_42
  doi: 10.1007/978-1-4842-6579-6
– ident: ref_27
– ident: ref_2
– volume: 14
  start-page: 241
  year: 2020
  ident: ref_30
  article-title: A survey on ensemble learning
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-019-8208-z
– volume: 7
  start-page: 1638
  year: 2020
  ident: ref_14
  article-title: Predicting the risk of heart disease using advanced machine learning approach
  publication-title: Eur. J. Mol. Clin. Med.
– ident: ref_33
  doi: 10.1007/978-1-4842-3564-5
– volume: 13
  start-page: 303
  year: 2023
  ident: ref_3
  article-title: Future world cancer death rate prediction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-27547-x
– ident: ref_24
  doi: 10.1007/s42979-020-00365-y
– volume: 31
  start-page: 1
  year: 2018
  ident: ref_38
  article-title: CatBoost: Unbiased boosting with categorical features
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_39
  article-title: CatBoost for big data: An interdisciplinary review
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00369-8
– volume: 53
  start-page: 1
  year: 2005
  ident: ref_5
  article-title: Deaths: Leading causes for 2002
  publication-title: Natl. Vital Stat. Rep.
– volume: 1022
  start-page: 012046
  year: 2021
  ident: ref_25
  article-title: Heart disease prediction using machine learning techniques
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/1022/1/012046
– ident: ref_41
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_31
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 63
  start-page: 3
  year: 2006
  ident: ref_34
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 8
  start-page: 30
  year: 2011
  ident: ref_6
  article-title: Epidemiology and risk profile of heart failure
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2010.165
– ident: ref_36
– ident: ref_45
– volume: 25
  start-page: 197
  year: 2020
  ident: ref_32
  article-title: A random forest guided tour
  publication-title: Test
  doi: 10.1007/s11749-016-0481-7
– ident: ref_43
– volume: 2023
  start-page: 1406060
  year: 2023
  ident: ref_21
  article-title: A Novel Study on Machine Learning Algorithm-Based Cardiovascular Disease Prediction
  publication-title: Health Soc. Care Community
  doi: 10.1155/2023/1406060
SSID ssj0065961
Score 2.4387424
Snippet Heart disease is a significant global health issue, contributing to high morbidity and mortality rates. Early and accurate heart disease prediction is crucial...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 308
SubjectTerms Accuracy
Algorithms
Cardiovascular disease
Data mining
Data search
Datasets
Decision trees
Disease prevention
Ensemble learning
extra tree
Health aspects
Heart
heart disease
Heart diseases
hyperparameter optimization
Machine learning
Mathematical optimization
Medical research
Medicine, Experimental
Methods
Mortality
Neural networks
Optimization
Optimization techniques
Predictions
Prognosis
Public health
Regression analysis
Support vector machines
Taiwan
XGBoost
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T-wwELYQFQ08Lr19HLIQEjQRSex14pJj0YoCKECis3yMoWAD2l3-PzOJs2Klh2hotshO4Yzn-uLxN4wdo--JvI5FBjqoTCobMgfSZ4DZVmKC80VoG2Rv1fhR3jwNn76M-qKesI4euFPcWYyiDgp8nluQVRAuqLJyUotIwde213wx5_VgqovBaqhV0fEICQT1Z7bAOp2YWZayT0vS_10obvPL9R-2ngpDft4taJOtQLPFNvqhCzz54DZ7GTUvxJHRPPMxWumcX3VHLPx-SmcupGeehu_wUTODiXsFnlhUn_lDT9k64_QFlo8Rhk6J_ntCbTH8DgPIJN3M3GGP16OHy3GWxiVkHh1vjr-gHWBFAAFqKUpwdSVwh6QLuY7DylpFVNxB5Fa7wjtAZ5UQbaSi0Val2GWrzVsDfxl3OmLmD6CHpZe1UrouYxGViDraHCHhgJ32ajQ-cYnTSItXg5iCNG4WGh-wo4Xoe0eg8T-hC9qLhQBxXrcP0BJMsgTzkyUM2AntpCHPxMV4my4Y4CsRx5U5rxALV4S4Bmx_SRI9yi__3duCSR49M3TirDSiUf3vNxa7x9ZocH3XdLbPVufTDzjA8mbuDltL_gSG1PnC
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization
URI https://www.proquest.com/docview/2829694019
https://doaj.org/article/ff38d6ec00ae47d3bd627b493f3036a8
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLf2cUFCwAaIjlFZExJcojWx68SnaYOWaocxoU3azfLHc3dY05GW_3_vJU6nSsAlB-cpcvz8Pv38e4x9RtkToyrmGeigMqlsyBxInwFaW4kGzuehLZC9UrNbeXk3vksJt1Uqq-x1Yquow9JTjvyUTvyUxmhAnz3-zqhrFJ2uphYau2wfVXCFwdf-xeTq-levi9VYq7zDExIY3J_aHP11QmjZskItWP-_VHJrZ6Zv2KvkIPLzjqMHbAfqQ_a6b77Akywespddwo1394jesvtJfU_YGfWchpo1_94dvfDrhs5iaP15asrDJ_UKFu4BeEJXnfObHsp1xSkzy2cYnjYEC76gchn-ExXLIt3YfMdup5Obb7MstVHIPArkGp-gHaCnAAEqKQpwVSmQc9KFkY7j0lpFEN1BjKx2uXeAQiwh2kjOpC0L8Z7t1csaPjDudESPIIAeF15WSumqiHlUIupoRxgqDtjXflmNTxjj1OriwWCsQRwwGw4M2MmG9LED1vgb0QXxZkNAWNjtwLKZmyRaJkZRBQUeJwuyDMIFVZROahHJPFv8yBfirCGJxcl4my4e4C8R9pU5LzFGLikSG7DjLUqUNL_9ut8bJkn6yjzvy6P_v_7IXlCr-q7M7JjtrZs_8AkdmrUbst1q-mOY9u6wTQs8Ad6h-Q0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemcQAJ8TFAFAZYCASXaEnsOvEBocFaOjYGh07azcT2c3dY05EWIf4p_kbeS5yiSsBtlxzsp8j2-_bH7zH2AnVPpGXIEtBeJVJVPrEgXQLobSU6OJf59oLsiZqcyo9nw7Mt9qt_C0PXKnub2Bpqv3C0R75HJ35KYzag315-S6hqFJ2u9iU0OrE4gp8_MGVbvjk8QP6-zPPxaPp-ksSqAolD-VzhF7QFdJzgoZQiB1sWAicirU91GBZVpQix2ou00jZzFlCmJYQqUGxVFQR0gCb_mhRCk0aV4w-95VdDrbIOvQg7070qw-yA8GA2fF5bGuBfDqD1auM77FYMR_l-Jz932RbUO-x2X-qBR83fYTe77T3evVq6x85H9TkhddQzampW_KA76OFfGjr5IW7zWAKIj-olzO0F8IjlOuPTHjh2yWkfmE8wGW4IhHxOl3P4ZzRj8_g-9D47vZLlfcC260UNDxm3OmD84UEPcydLpXSZhywoEXSoUkxMB-x1v6zGRURzKqxxYTCzIQ6YNQcG7Pma9LKD8fgb0TvizZqAkLfbhkUzM1GRTQii9AocDhZk4YX1Ki-s1CJQMFDhT14RZw3ZBxyMq-IzB5wSIW2Z_QIz8oLyvgHb3aBEvXab3b1smGhXluaPFjz6f_czdn0y_XRsjg9Pjh6zGzmGZt0Ft122vWq-wxMMpVb2aSu_nH29aoX5DV8wNSM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTkJIiMsArWyAhUDwEjWJXSd-QGijrTqGSoU2aW_G1-5hTbe2CPHX-HWckzhFlYC3veQhsaLE5_rZx98h5DXYHkvLkCVeOpFwoV1iPLeJh2jLIcDZzNUFshMxPuefLvoXO-RXexYGyypbn1g7arewuEbewx0_IQENyF6IZRHTwejD9U2CHaRwp7Vtp9GoyKn_-QPg2-r9yQBk_SbPR8Ozj-MkdhhILOjqGq5eGg9B1DtfcpZ7UxYMfoobl8rQL7QWyF7tWKqlyazxoN_cBx0wz9IFkh6A-98tABWlHbJ7PJxMv7ZxQPSlyBouI8Zk2tMZYAVkh9mKgHWjgH-FgzrGjR6S-zE5pUeNNj0iO77aIw_axg80-oE9cq9Z7KPNGabH5HJYXSJvRzXDW8s1HTTbPnS6xH0glD2NDYHosFr5ubnyNDK7zuhZSyO7orgqTMcAjZdIST7HUh36BZzaPJ4WfULOb2WCn5JOtaj8PqFGBshGnJf93PJSCFnmIQuCBRl0CjC1S96106ps5DfHNhtXCnAOSkBtJNAlrzZDrxtSj78NOkbZbAYgD3d9Y7GcqWjWKgRWOuEtfKznhWPGibwwXLKAqYGGl7xFySr0FvAxVsdDD_BLyLuljgrA5wWiwC453BoJVm63H7e6oaKXWak_NvHs_49fkjtgLOrzyeT0gNzNIU9rqt0OSWe9_O6fQ161Ni-iAlPy7bZt5jeX8jq1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Heart+Disease+Prediction+through+Ensemble+Learning+Techniques+with+Hyperparameter+Optimization&rft.jtitle=Algorithms&rft.au=Daniyal+Asif&rft.au=Bibi%2C+Mairaj&rft.au=Muhammad+Shoaib+Arif&rft.au=Mukheimer%2C+Aiman&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=16&rft.issue=6&rft.spage=308&rft_id=info:doi/10.3390%2Fa16060308&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon