Adaptive Backstepping Terminal Sliding Mode Control Method Based on Recurrent Neural Networks for Autonomous Underwater Vehicle

The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking a...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of mechanical engineering Vol. 31; no. 1; pp. 1 - 16
Main Authors Yang, Chao, Yao, Feng, Zhang, Ming-Jun
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.12.2018
Springer Nature B.V
SpringerOpen
EditionEnglish ed.
Subjects
Online AccessGet full text
ISSN1000-9345
2192-8258
DOI10.1186/s10033-018-0307-5

Cover

Loading…
Abstract The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks (RNN) is proposed. Firstly, considering the inaccurate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty (SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering-reduction method is proposed based on sigmoid function. In chattering-reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapunov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can effectively achieve high-precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and effectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool-experiments of AUV.
AbstractList Abstract The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks (RNN) is proposed. Firstly, considering the inaccurate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty (SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering-reduction method is proposed based on sigmoid function. In chattering-reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapunov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can effectively achieve high-precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and effectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool-experiments of AUV.
The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks (RNN) is proposed. Firstly, considering the inaccurate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty (SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering-reduction method is proposed based on sigmoid function. In chattering-reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapunov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can effectively achieve high-precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and effectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool-experiments of AUV.
ArticleNumber 110
Author Zhang, Ming-Jun
Yang, Chao
Yao, Feng
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0001-7146-3545
  surname: Yang
  fullname: Yang, Chao
  email: yangchao@hrbeu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Harbin Engineering University
– sequence: 2
  givenname: Feng
  surname: Yao
  fullname: Yao, Feng
  organization: College of Mechanical and Electrical Engineering, Harbin Engineering University
– sequence: 3
  givenname: Ming-Jun
  surname: Zhang
  fullname: Zhang, Ming-Jun
  organization: College of Mechanical and Electrical Engineering, Harbin Engineering University
BookMark eNp9kU9v1DAQxSNUJLaFD8DNEueA7cSJc1xW_KnUFglartbYnmy9zcbBdqh66lfHIQgkJDhZnpnfm9F7p8XJ6EcsipeMvmZMNm8io7SqSspkSSvaluJJseGs46XkQp4Um9ymZVfV4llxGuMh_5rMbYrHrYUpue9I3oK5iwmnyY17co3h6EYYyJfB2aVw6S2SnR9T8AO5xHTrbSYiWuJH8hnNHAKOiVzhHDJ1heneh7tIeh_Idk5-9Ec_R3IzWgz3kDCQr3jrzIDPi6c9DBFf_HrPipv37653H8uLTx_Od9uL0tRcpFLrWjcGQNbSYFdjhQwor3RnK-S2b2rsW8Y1cMpNhRpkiwhWNyigobbvqrPifNW1Hg5qCu4I4UF5cOpnwYe9gpCWi5TWNjtojRS1qEFQSW0roJXCQq9Z02StV6vWFPy3GWNSBz-H7FZUXDDWUN5SmafYOmWCjzFg_3sro2rJTK2ZqZyZWjJTIjPtX4xxCZJbfAc3_JfkKxnzlnGP4c9N_4Z-AL_vr4c
CitedBy_id crossref_primary_10_1088_1742_6596_2718_1_012056
crossref_primary_10_1038_s41598_024_63419_8
crossref_primary_10_1016_j_oceaneng_2022_111310
crossref_primary_10_1016_j_oceaneng_2024_119688
crossref_primary_10_1007_s10846_022_01644_x
crossref_primary_10_3390_jmse9101131
crossref_primary_10_3390_app10051728
crossref_primary_10_1142_S0218126624500075
crossref_primary_10_1007_s42835_020_00432_7
crossref_primary_10_3901_JME_2020_19_053
Cites_doi 10.1016/j.ast.2013.05.005
10.1016/j.oceaneng.2015.09.035
10.1016/S0005-1098(02)00147-4
10.1016/j.oceaneng.2016.09.038
10.1016/j.neucom.2016.09.089
10.1007/s11771-016-3352-1
10.3901/JME.2014.19.050
10.1016/j.mechatronics.2006.02.003
10.1016/j.robot.2007.11.004
10.1007/s00521-015-1839-6
10.1016/j.oceaneng.2012.10.007
10.1002/9781119994138
10.1016/j.oceaneng.2016.09.034
10.1017/S0373463316000448
10.1016/j.jfranklin.2012.01.003
10.1016/j.asoc.2009.10.008
10.1002/asjc.1013
10.1016/j.automatica.2005.07.001
10.1016/S0005-1098(97)00174-X
10.1016/j.oceaneng.2008.07.013
10.1016/j.conengprac.2004.01.004
10.1016/j.fss.2011.05.009
10.1016/j.jfranklin.2015.08.009
10.1016/j.oceaneng.2012.02.004
10.1016/j.neucom.2008.06.008
10.1016/j.neucom.2016.11.037
ContentType Journal Article
Copyright The Author(s) 2018
The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1186/s10033-018-0307-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature : Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-8258
Edition English ed.
EndPage 16
ExternalDocumentID oai_doaj_org_article_bbd307dc85454a5080d75a785dafb166
10_1186_s10033_018_0307_5
GrantInformation_xml – fundername: Basic Research Program of Ministry of Industry and Information Technology of China
  grantid: B2420133003
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: GK2070260120
GroupedDBID -03
-0C
-SC
-S~
06D
0R~
0VY
29B
29~
2B.
2C0
30V
4.4
5VR
8FE
8FG
92H
92I
92M
96X
9D9
9DC
AAIAL
AAJKR
AAKKN
AARHV
AARTL
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAZMS
ABEEZ
ABFTD
ABJCF
ABJOX
ABTHY
ABTMW
ACACY
ACCUX
ACGFS
ACKNC
ACULB
ADBBV
ADHIR
ADINQ
ADMLS
AEBTG
AEGNC
AEJHL
AENEX
AEOHA
AEPYU
AETCA
AFBBN
AFGXO
AFKRA
AFLOW
AFUIB
AFWTZ
AFZKB
AGAYW
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIIXL
AJBLW
AJRNO
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ANMIH
AUKKA
BAPOH
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CAJEC
CCEZO
CCPQU
CEKLB
CHBEP
CS3
CW9
DU5
EBS
EJD
ESBYG
FA0
FRRFC
FYJPI
GGRSB
GQ7
GROUPED_DOAJ
HCIFZ
HF~
HMJXF
HRMNR
HZ~
I0C
JBSCW
JUIAU
KOV
L6V
M4Y
M7S
NU0
O9-
OK1
PIMPY
PROAC
PTHSS
Q--
Q-2
R-C
RLLFE
RSV
RT3
SCL
SDH
SEG
SHX
SNX
SOJ
T8S
TCJ
TGT
U1F
U1G
U2A
U5C
U5M
UG4
VC2
W48
~A9
~M1
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c425t-bb4b6caa848ce94e3e1a023b9d3e2df64ef712ba202c3eba87eeadb6e5a60df93
IEDL.DBID BENPR
ISSN 1000-9345
IngestDate Wed Aug 27 01:14:57 EDT 2025
Fri Jul 25 11:00:27 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Tue Jul 01 01:54:24 EDT 2025
Fri Feb 21 02:29:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Autonomous underwater vehicle (AUV)
Terminal sliding mode
Trajectory tracking
Neural networks
Adaptive control
Backstepping method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-bb4b6caa848ce94e3e1a023b9d3e2df64ef712ba202c3eba87eeadb6e5a60df93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7146-3545
OpenAccessLink https://www.proquest.com/docview/2511602708?pq-origsite=%requestingapplication%
PQID 2511602708
PQPubID 4406321
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_bbd307dc85454a5080d75a785dafb166
proquest_journals_2511602708
crossref_primary_10_1186_s10033_018_0307_5
crossref_citationtrail_10_1186_s10033_018_0307_5
springer_journals_10_1186_s10033_018_0307_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Chinese journal of mechanical engineering
PublicationTitleAbbrev Chin. J. Mech. Eng
PublicationYear 2018
Publisher Springer Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Nekoukar, Erfanian (CR26) 2011; 179
Xu, Pandian, Sakagami (CR5) 2012; 349
Xu, Li (CR1) 2011; 33
Chu, Zhu, Yang (CR17) 2017; 70
Wang, Zhang, Wilson (CR8) 2015; 110
Zhang, Chu (CR14) 2012; 45
Tran, Kang (CR20) 2017; 228
Londhe, Santhakumar, Patre (CR4) 2017; 42
Yu, Li, Zhang (CR6) 2008; 25
Bagheri, Karimi, Amanifard (CR12) 2010; 10
Hassanein, Anavatti, Shim, Ray (CR3) 2016; 127
Bessa, Dutra, Kreuzer (CR28) 2008; 56
Bagheri, Moghaddam (CR7) 2009; 72
Yu, Yu, Shirinzadeh (CR22) 2005; 41
Tang (CR25) 1998; 34
Yu, Chen, Jiang (CR27) 2014; 31
Pan, Lai, Yang (CR2) 2015; 26
Avila, Donha, Adamowski (CR10) 2013; 60
Chu, Zhu, Jan (CR15) 2016; 127
Wang, Gu, Gao (CR18) 2016; 18
Cong, Liu, Chen (CR23) 2013; 30
Ridao, Tiano, El-Fakdi (CR11) 2004; 12
Chatchanayuenyong, Parnichkun (CR21) 2006; 16
CR24
Liu, Wang, Liu (CR32) 2016; 23
Khan, Akmeliawati (CR16) 2017; 226
Feng, Yu, Man (CR19) 2002; 38
Zhang, Chu (CR9) 2014; 50
Soylu, Buckham, Podhorodeski (CR29) 2008; 35
Steinke (CR30) 2006
Zhang, Liu, Yin (CR13) 2015; 352
Fossen (CR31) 2011
A Bagheri (307_CR7) 2009; 72
MD Tran (307_CR20) 2017; 228
ZZ Chu (307_CR15) 2016; 127
S Yu (307_CR22) 2005; 41
PS Londhe (307_CR4) 2017; 42
A Bagheri (307_CR12) 2010; 10
Y Feng (307_CR19) 2002; 38
Q Khan (307_CR16) 2017; 226
Y Tang (307_CR25) 1998; 34
D Steinke (307_CR30) 2006
WX Liu (307_CR32) 2016; 23
WM Bessa (307_CR28) 2008; 56
MJ Zhang (307_CR14) 2012; 45
Y Wang (307_CR18) 2016; 18
CZ Pan (307_CR2) 2015; 26
MJ Zhang (307_CR9) 2014; 50
JC Yu (307_CR6) 2008; 25
JPJ Avila (307_CR10) 2013; 60
B Cong (307_CR23) 2013; 30
MJ Zhang (307_CR13) 2015; 352
ZZ Chu (307_CR17) 2017; 70
P Ridao (307_CR11) 2004; 12
S Soylu (307_CR29) 2008; 35
V Nekoukar (307_CR26) 2011; 179
O Hassanein (307_CR3) 2016; 127
307_CR24
YR Xu (307_CR1) 2011; 33
YJ Wang (307_CR8) 2015; 110
J Yu (307_CR27) 2014; 31
TI Fossen (307_CR31) 2011
T Chatchanayuenyong (307_CR21) 2006; 16
B Xu (307_CR5) 2012; 349
References_xml – volume: 30
  start-page: 1
  issue: 1
  year: 2013
  end-page: 7
  ident: CR23
  article-title: Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers
  publication-title: Aerospace Science & Technology
  doi: 10.1016/j.ast.2013.05.005
– volume: 110
  start-page: 15
  year: 2015
  end-page: 24
  ident: CR8
  article-title: Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2015.09.035
– volume: 38
  start-page: 2159
  issue: 12
  year: 2002
  end-page: 2167
  ident: CR19
  article-title: Non-singular terminal sliding mode control of rigid manipulators
  publication-title: Automatica
  doi: 10.1016/S0005-1098(02)00147-4
– volume: 127
  start-page: 82
  year: 2016
  end-page: 89
  ident: CR15
  article-title: Observer-based adaptive neural network control for a class of remotely operated vehicles
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2016.09.038
– volume: 42
  start-page: 13
  issue: 1
  year: 2017
  end-page: 28
  ident: CR4
  article-title: Task space control of an autonomous underwater vehicle manipulator system by robust single-input fuzzy logic control scheme
  publication-title: IEEE Journal of Oceanic Engineering
– volume: 228
  start-page: 231
  year: 2017
  end-page: 240
  ident: CR20
  article-title: Adaptive terminal sliding mode control of uncertain robotic manipulators based on local approximation of a dynamic system
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.089
– volume: 23
  start-page: 2883
  issue: 11
  year: 2016
  end-page: 2895
  ident: CR32
  article-title: Weak thruster fault detection for AUV based on stochastic resonance and wavelet reconstruction
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-016-3352-1
– volume: 50
  start-page: 50
  issue: 19
  year: 2014
  end-page: 57
  ident: CR9
  article-title: Adaptive region tracking control for autonomous underwater vehicle
  publication-title: Journal of Mechanical Engineering
  doi: 10.3901/JME.2014.19.050
– volume: 16
  start-page: 471
  issue: 8
  year: 2006
  end-page: 478
  ident: CR21
  article-title: Neural network based-time optimal sliding mode control for an autonomous underwater robot
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2006.02.003
– volume: 56
  start-page: 670
  issue: 8
  year: 2008
  end-page: 677
  ident: CR28
  article-title: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller
  publication-title: Robotics & Autonomous Systems
  doi: 10.1016/j.robot.2007.11.004
– volume: 26
  start-page: 1929
  issue: 8
  year: 2015
  end-page: 1938
  ident: CR2
  article-title: A bioinspired neural dynamics-based approach to tracking control of autonomous surface vehicles subject to unknown ocean currents
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-015-1839-6
– year: 2006
  ident: CR30
  publication-title: Design and simulation of a Kalman filter for ROV navigation
– volume: 60
  start-page: 81
  issue: 2
  year: 2013
  end-page: 94
  ident: CR10
  article-title: Experimental model identification of open-frame underwater vehicles
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2012.10.007
– year: 2011
  ident: CR31
  publication-title: Handbook of Marine Craft Hydrodynamics and Motion Control
  doi: 10.1002/9781119994138
– volume: 33
  start-page: 125
  issue: 3
  year: 2011
  end-page: 131
  ident: CR1
  article-title: The development trend of underwater vehicle
  publication-title: Chinese Journal of Nature
– volume: 127
  start-page: 58
  year: 2016
  end-page: 69
  ident: CR3
  article-title: Model-based adaptive control system for autonomous underwater vehicles
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2016.09.034
– volume: 70
  start-page: 149
  year: 2017
  end-page: 164
  ident: CR17
  article-title: Adaptive sliding mode control for depth trajectory tracking of remotely operated vehicle with thruster nonlinearity
  publication-title: Journal of Navigation
  doi: 10.1017/S0373463316000448
– volume: 349
  start-page: 1125
  issue: 3
  year: 2012
  end-page: 1138
  ident: CR5
  article-title: Neuro-fuzzy control of underwater vehicle-manipulator systems
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2012.01.003
– volume: 10
  start-page: 908
  issue: 3
  year: 2010
  end-page: 918
  ident: CR12
  article-title: Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.10.008
– volume: 18
  start-page: 247
  issue: 1
  year: 2016
  end-page: 265
  ident: CR18
  article-title: Multivariable output feedback adaptive terminal sliding mode control for underwater vehicles
  publication-title: Asian Journal of Control
  doi: 10.1002/asjc.1013
– volume: 41
  start-page: 1957
  issue: 11
  year: 2005
  end-page: 1964
  ident: CR22
  article-title: Continuous finite-time control for robotic manipulators with terminal sliding mode
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.07.001
– volume: 31
  start-page: 993
  issue: 8
  year: 2014
  end-page: 999
  ident: CR27
  article-title: Adaptive sliding mode control for nonlinear uncertain systems based on disturbance observer
  publication-title: Control Theory & Applications
– volume: 34
  start-page: 51
  issue: 1
  year: 1998
  end-page: 56
  ident: CR25
  article-title: Terminal sliding mode control for rigid robots
  publication-title: Automatica
  doi: 10.1016/S0005-1098(97)00174-X
– volume: 35
  start-page: 1647
  issue: 16
  year: 2008
  end-page: 1659
  ident: CR29
  article-title: A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2008.07.013
– volume: 25
  start-page: 9
  issue: 1
  year: 2008
  end-page: 13
  ident: CR6
  article-title: Neural network adaptive control for underwater vehicles
  publication-title: Control Theory & Applications
– volume: 12
  start-page: 1483
  issue: 12
  year: 2004
  end-page: 1499
  ident: CR11
  article-title: On the identification of nonlinear models of unmanned underwater vehicles
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2004.01.004
– volume: 179
  start-page: 34
  issue: 1
  year: 2011
  end-page: 49
  ident: CR26
  article-title: Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems
  publication-title: Fuzzy Sets & Systems
  doi: 10.1016/j.fss.2011.05.009
– volume: 352
  start-page: 4935
  issue: 11
  year: 2015
  end-page: 4961
  ident: CR13
  article-title: Adaptive terminal sliding mode based thruster fault tolerant control for underwater vehicle in time-varying ocean currents
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2015.08.009
– volume: 45
  start-page: 56
  issue: 2
  year: 2012
  end-page: 62
  ident: CR14
  article-title: Adaptive sliding mode control based on local recurrent neural networks for underwater robot
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2012.02.004
– ident: CR24
– volume: 72
  start-page: 1934
  issue: 7–9
  year: 2009
  end-page: 1950
  ident: CR7
  article-title: Simulation and tracking control based on neural-network strategy and sliding-mode control for underwater remotely operated vehicle
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.06.008
– volume: 226
  start-page: 126
  year: 2017
  end-page: 134
  ident: CR16
  article-title: Neuro-adaptive dynamic integral sliding mode control design with output differentiation observer for uncertain higher order MIMO nonlinear systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.037
– volume: 110
  start-page: 15
  year: 2015
  ident: 307_CR8
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2015.09.035
– volume: 41
  start-page: 1957
  issue: 11
  year: 2005
  ident: 307_CR22
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.07.001
– volume: 352
  start-page: 4935
  issue: 11
  year: 2015
  ident: 307_CR13
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2015.08.009
– volume: 226
  start-page: 126
  year: 2017
  ident: 307_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.037
– volume: 31
  start-page: 993
  issue: 8
  year: 2014
  ident: 307_CR27
  publication-title: Control Theory & Applications
– volume: 16
  start-page: 471
  issue: 8
  year: 2006
  ident: 307_CR21
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2006.02.003
– volume-title: Handbook of Marine Craft Hydrodynamics and Motion Control
  year: 2011
  ident: 307_CR31
  doi: 10.1002/9781119994138
– volume: 10
  start-page: 908
  issue: 3
  year: 2010
  ident: 307_CR12
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.10.008
– volume: 56
  start-page: 670
  issue: 8
  year: 2008
  ident: 307_CR28
  publication-title: Robotics & Autonomous Systems
  doi: 10.1016/j.robot.2007.11.004
– volume: 127
  start-page: 58
  year: 2016
  ident: 307_CR3
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2016.09.034
– volume: 33
  start-page: 125
  issue: 3
  year: 2011
  ident: 307_CR1
  publication-title: Chinese Journal of Nature
– volume: 25
  start-page: 9
  issue: 1
  year: 2008
  ident: 307_CR6
  publication-title: Control Theory & Applications
– volume: 23
  start-page: 2883
  issue: 11
  year: 2016
  ident: 307_CR32
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-016-3352-1
– volume: 18
  start-page: 247
  issue: 1
  year: 2016
  ident: 307_CR18
  publication-title: Asian Journal of Control
  doi: 10.1002/asjc.1013
– volume: 42
  start-page: 13
  issue: 1
  year: 2017
  ident: 307_CR4
  publication-title: IEEE Journal of Oceanic Engineering
– volume: 349
  start-page: 1125
  issue: 3
  year: 2012
  ident: 307_CR5
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2012.01.003
– volume: 45
  start-page: 56
  issue: 2
  year: 2012
  ident: 307_CR14
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2012.02.004
– volume: 35
  start-page: 1647
  issue: 16
  year: 2008
  ident: 307_CR29
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2008.07.013
– volume: 70
  start-page: 149
  year: 2017
  ident: 307_CR17
  publication-title: Journal of Navigation
  doi: 10.1017/S0373463316000448
– volume: 179
  start-page: 34
  issue: 1
  year: 2011
  ident: 307_CR26
  publication-title: Fuzzy Sets & Systems
  doi: 10.1016/j.fss.2011.05.009
– volume: 228
  start-page: 231
  year: 2017
  ident: 307_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.089
– volume: 34
  start-page: 51
  issue: 1
  year: 1998
  ident: 307_CR25
  publication-title: Automatica
  doi: 10.1016/S0005-1098(97)00174-X
– volume: 72
  start-page: 1934
  issue: 7–9
  year: 2009
  ident: 307_CR7
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.06.008
– volume: 38
  start-page: 2159
  issue: 12
  year: 2002
  ident: 307_CR19
  publication-title: Automatica
  doi: 10.1016/S0005-1098(02)00147-4
– volume-title: Design and simulation of a Kalman filter for ROV navigation
  year: 2006
  ident: 307_CR30
– volume: 26
  start-page: 1929
  issue: 8
  year: 2015
  ident: 307_CR2
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-015-1839-6
– volume: 50
  start-page: 50
  issue: 19
  year: 2014
  ident: 307_CR9
  publication-title: Journal of Mechanical Engineering
  doi: 10.3901/JME.2014.19.050
– volume: 30
  start-page: 1
  issue: 1
  year: 2013
  ident: 307_CR23
  publication-title: Aerospace Science & Technology
  doi: 10.1016/j.ast.2013.05.005
– volume: 60
  start-page: 81
  issue: 2
  year: 2013
  ident: 307_CR10
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2012.10.007
– volume: 127
  start-page: 82
  year: 2016
  ident: 307_CR15
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2016.09.038
– ident: 307_CR24
– volume: 12
  start-page: 1483
  issue: 12
  year: 2004
  ident: 307_CR11
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2004.01.004
SSID ssj0006118
Score 2.275133
Snippet The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of the...
Abstract The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive control
Autonomous underwater vehicle (AUV)
Autonomous underwater vehicles
Backstepping method
Control methods
Dynamic models
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Instrumentation
Machines
Manufacturing
Marine environment
Mechanical Engineering
Neural networks
Ocean currents
Ocean Engineering Equipment
Ocean models
Original Article
Polynomials
Power Electronics
Processes
Recurrent neural networks
Reduction
Sliding mode control
Switching
Terminal sliding mode
Theoretical and Applied Mechanics
Tracking control
Tracking errors
Trajectory control
Trajectory tracking
Uncertainty
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAQEEsFORDT1QRjuOvHLcVVYXUHmiLerM89gSQVrtVNyuO_HU8dra0SMCFaxJLlufZ8yaeecPYfooyJJuwsf0QG6XBNCBkaHrnDHYpap0oUDw9MyeX6uOVvrrT6otywqo8cF249wApwzBFl129CplOiGR1sE6nMEBrith29nnbYGo6g03b1iI4IZq-U3q6z2ydoaI56l8mWiotE7bR9zxSEe6_xzZ_uyAtfuf4CXs8EUY-rxN9yh7g8hl7dEdGcJf9mKdwTccWP6SK-RFJc-ELv6h5Lgt-vvhGHopT3zN-VHPT-WlpHZ1HrDHx1ZJ_oh_vJNXESa8jjzqrCeJrnmktn29Gqn5Ybda8dEr6ninqDf-MX2lSz9nl8YeLo5NmaqzQxLxFxwZAgYkhOOUi9go7bEP23dCnDmUajMLBthKCFDJ2CMFZzIADgzoYkYa-e8F2lqslvmQ8qQECKISopQLAYPuUWYAdNPQy05MZE9vF9XFSHafmFwtfog9nfLWHz_bwZA-vZ-zd7ZDrKrnxt48PyWK3H5JadnmQMeQnDPl_YWjG9rb29tMWXnuKvUwO2oWbsYMtBn69_uOMXv2PGb1mDyUhtOTN7LGd8WaDbzL7GeFtAfpP87wA3w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgXOBQUT7EQql84ASy5CS24xy3K6qqUnsoLerN8tiTgrTarTZZ9chfr8dJCkWAxDWxI8sz43kTz7xh7EMMpY91RFE3bRBKgxEgSy8aaw1WMWgdKVA8PTPHl-rkSl-NddzdlO0-XUnmkzqbtTVU7EZ9x2RBJWGyFvoxe6JT6E5qvaASh_H4NUUx1L9JKZpK6fEq84-feOCMMmf_A6D5291odjlHz9nuiBX5fBDuHnuEqxfs2S8Mgi_Zj3n0N3Ri8UMqlu-R6Bau-cWQ4rLkX5bfyTlxannGF0NaOj_NXaPTjA4jX6_4Of1zJ5YmTlQdadbZkBve8YRo-XzbU-HDetvx3CTpNqHTDf-K32hRr9jl0eeLxbEYeyqIkKyzFwAKTPDeKhuwUVhh4ZPbhiZWWMbWKGzrogSfNjZUCN7WmHQNDGpvZGyb6jXbWa1X-IbxqFrwoBCCLhUA-rqJCQDUrYamTMhkxuS0uS6MhOPU92LpcuBhjRvk4ZI8HMnD6Rn7eD_lZmDb-NfgQ5LY_UAiys4P1ptrN9qdA4hpcAw2IUXlExqVsda-tjr6FgpjZmx_krcbrbdzFHaZFK9LO2OfJh34-fqvK3r7X6PfsaclqWLOjdlnO_1mi-8TwunhIGv0HdVU9Hk
  priority: 102
  providerName: Springer Nature
Title Adaptive Backstepping Terminal Sliding Mode Control Method Based on Recurrent Neural Networks for Autonomous Underwater Vehicle
URI https://link.springer.com/article/10.1186/s10033-018-0307-5
https://www.proquest.com/docview/2511602708
https://doaj.org/article/bbd307dc85454a5080d75a785dafb166
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY7QUOiKcoLJUPnEAWjmM7zgmlVbsr0FZo2aLlZPmVBalqSpuKI38dT-J2WST24oNjR1FmPPPNeB4IvfGOGV_4QIqydoQLK4mlzJBSKRly74TwYCiez-XZgn-8ElfJ4bZNYZV7mdgJat848JG_Bygsow1F1Yf1TwJdo-B2NbXQOEKDKIJVNL4G4-n888VBFsss65PhKCVlzkW618yUhOQ56GNGM0gxowURtzRTV8D_Fur856K00z-zR-hhAo646in9GN0LqyfowV_lBJ-i35U3axBfeAyZ822A2gvX-LKPd1niL8sfoKkw9D_Dkz5GHZ93LaTjjm3wuFnhC3DAQ8kmDHU74q55Hyi-xRHe4mrXQhZEs9virmPSrwhVN_hr-A4f9QwtZtPLyRlJDRaIi0e1JdZyK50xiisXSh7ykJmow23p88B8LXmoi4xZwyhzebBGFSEynpVBGEl9XebP0fGqWYUXCHteW2N5sE4wbm0wRekjGihqYUsWYcoQ0f3P1S5VH4cmGEvdWSFK6p4eOtJDAz20GKK3hy3rvvTGXYvHQLHDQqia3U00m2udDqG21sfF3qkIG7mJ0JT6QphCCW9qm0k5RCd7eut0lLf6hvGG6N2eB24e__eLXt79slfoPgPe6yJjTtBxu9mF1xHftHaEjtTsdIQG1em3T9NRYuk4O2EcRjkZdZ6DOC5Y9QcTGf-M
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYKMUHuIAsHMd2nANC28Kypd09wBb1ZvxKQVptlk1WFSf-Eb-xnjy2FIneek3syPKMZ76JZ-ZD6IV3zPjMB5LlhSNcWEksZYbkSsmQeieEh0BxMpXjY_7pRJxsoT99LQykVfY2sTHUvnTwj_wNQGEZYyiq3i1_EmCNgtvVnkKjVYvD8OsshmzV24P3Ub4vGRt9mO2PSccqQFzUz5pYy610xiiuXMh5SENiouOyuU8D84XkocgSZg2jzKXBGpWFuNtWBmEk9QU0X4om_wZP0xxOlBp93Fh-mSRt6R2lJE-56G5REyWhVA9Y02gCBW00I-KSH2zoAi5h3H-uZRtvN7qL7nQwFQ9bvbqHtsLiPrr9V_PCB-j30JslGEu8B3X6dYBOD6d41mbXzPGX-Q_wixjY1vB-mxGPJw1hdZxRBY_LBf4Mv_uhQRSGLiFx1rRNS69wBNN4uK6h5qJcV7jhZzqLwHiFv4bvsKiH6PhaNv4R2l6Ui_AYYc8LaywP1gnGrQ0my33EHlkhbM4iKBog2m-udl2vc6DcmOsm5lFSt_LQUR4a5KHFAL3aTFm2jT6uGrwHEtsMhB7dzYNydaq7I6-t9XGwdyqCVG4iEKY-EyZTwpvCJlIO0E4vb90ZjkpfqPkAve514OL1f1f05OqPPUc3x7PJkT46mB4-RbcY6GGTk7ODtuvVOjyLyKq2u406Y_Ttus_POenfOBw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgKyE48EYsFPCBEyjFcfzKcVu6FEpXCFpUTsavtBWr3dUmKyQu_HU8cbLQCpAQ12QcOc54_Dme-T6EnnpHjZc-ZLKsXMa4FZkl1GSlUiIU3nHuYaN4MBF7R-zNMT_udE7rPtu9P5JMNQ3A0jRrXix8laa4ElD4BhpkJIfyMCIzfhltMKC2G6CN0atP-7vrYCzyPFXDEZKVBePdweZvH3JuaWoZ_M_Bzgsnpe0CNL6BPvddT3knX7ZWjd1y3y6wOv7Hu91E1ztwikfJm26hS2F2G137hbLwDvo-8mYBIRJvQ3V-E4Df4QQfppyaKf4wPYPVEIPGGt5JefD4oJWpji3q4PF8ht_DT36ghcLADRJbTVIyeo0jhMajVQOVFvNVjVtVpq8RDi_xx3AKnbqLjsa7hzt7WSfikLkYDprMWmaFM0Yx5ULJQhFyE3GCLX0RqK8EC5XMqTWUUFcEa5QM0bmtCNwI4quyuIcGs_ks3EfYs8oay4J1nDJrg5Glj4hDVtyWNEKhISL999OuYzgHoY2pbnc6Sug0tjqOrYax1XyInq2bLBK9x9-Mt8Ep1obAzN1emC9PdDfRtbU-GnunIjRlJsJf4iU3UnFvKpsLMUSbvUvpLlzUGvZ5glBJ1BA97z3k5-0_9ujBP1k_QVfevRzrt68n-w_RVQoe1ublbKJBs1yFRxFdNfZxN4N-AESjHVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Backstepping+Terminal+Sliding+Mode+Control+Method+Based+on+Recurrent+Neural+Networks+for+Autonomous+Underwater+Vehicle&rft.jtitle=Chinese+journal+of+mechanical+engineering&rft.au=Yang%2C+Chao&rft.au=Yao%2C+Feng&rft.au=Ming-Jun%2C+Zhang&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1000-9345&rft.eissn=2192-8258&rft.volume=31&rft.issue=1&rft_id=info:doi/10.1186%2Fs10033-018-0307-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-9345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-9345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-9345&client=summon