Adaptive Backstepping Terminal Sliding Mode Control Method Based on Recurrent Neural Networks for Autonomous Underwater Vehicle
The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking a...
Saved in:
Published in | Chinese journal of mechanical engineering Vol. 31; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.12.2018
Springer Nature B.V SpringerOpen |
Edition | English ed. |
Subjects | |
Online Access | Get full text |
ISSN | 1000-9345 2192-8258 |
DOI | 10.1186/s10033-018-0307-5 |
Cover
Loading…
Abstract | The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks (RNN) is proposed. Firstly, considering the inaccurate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty (SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering-reduction method is proposed based on sigmoid function. In chattering-reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapunov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can effectively achieve high-precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and effectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool-experiments of AUV. |
---|---|
AbstractList | Abstract The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks (RNN) is proposed. Firstly, considering the inaccurate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty (SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering-reduction method is proposed based on sigmoid function. In chattering-reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapunov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can effectively achieve high-precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and effectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool-experiments of AUV. The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks (RNN) is proposed. Firstly, considering the inaccurate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty (SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering-reduction method is proposed based on sigmoid function. In chattering-reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapunov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can effectively achieve high-precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and effectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool-experiments of AUV. |
ArticleNumber | 110 |
Author | Zhang, Ming-Jun Yang, Chao Yao, Feng |
Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0001-7146-3545 surname: Yang fullname: Yang, Chao email: yangchao@hrbeu.edu.cn organization: College of Mechanical and Electrical Engineering, Harbin Engineering University – sequence: 2 givenname: Feng surname: Yao fullname: Yao, Feng organization: College of Mechanical and Electrical Engineering, Harbin Engineering University – sequence: 3 givenname: Ming-Jun surname: Zhang fullname: Zhang, Ming-Jun organization: College of Mechanical and Electrical Engineering, Harbin Engineering University |
BookMark | eNp9kU9v1DAQxSNUJLaFD8DNEueA7cSJc1xW_KnUFglartbYnmy9zcbBdqh66lfHIQgkJDhZnpnfm9F7p8XJ6EcsipeMvmZMNm8io7SqSspkSSvaluJJseGs46XkQp4Um9ymZVfV4llxGuMh_5rMbYrHrYUpue9I3oK5iwmnyY17co3h6EYYyJfB2aVw6S2SnR9T8AO5xHTrbSYiWuJH8hnNHAKOiVzhHDJ1heneh7tIeh_Idk5-9Ec_R3IzWgz3kDCQr3jrzIDPi6c9DBFf_HrPipv37653H8uLTx_Od9uL0tRcpFLrWjcGQNbSYFdjhQwor3RnK-S2b2rsW8Y1cMpNhRpkiwhWNyigobbvqrPifNW1Hg5qCu4I4UF5cOpnwYe9gpCWi5TWNjtojRS1qEFQSW0roJXCQq9Z02StV6vWFPy3GWNSBz-H7FZUXDDWUN5SmafYOmWCjzFg_3sro2rJTK2ZqZyZWjJTIjPtX4xxCZJbfAc3_JfkKxnzlnGP4c9N_4Z-AL_vr4c |
CitedBy_id | crossref_primary_10_1088_1742_6596_2718_1_012056 crossref_primary_10_1038_s41598_024_63419_8 crossref_primary_10_1016_j_oceaneng_2022_111310 crossref_primary_10_1016_j_oceaneng_2024_119688 crossref_primary_10_1007_s10846_022_01644_x crossref_primary_10_3390_jmse9101131 crossref_primary_10_3390_app10051728 crossref_primary_10_1142_S0218126624500075 crossref_primary_10_1007_s42835_020_00432_7 crossref_primary_10_3901_JME_2020_19_053 |
Cites_doi | 10.1016/j.ast.2013.05.005 10.1016/j.oceaneng.2015.09.035 10.1016/S0005-1098(02)00147-4 10.1016/j.oceaneng.2016.09.038 10.1016/j.neucom.2016.09.089 10.1007/s11771-016-3352-1 10.3901/JME.2014.19.050 10.1016/j.mechatronics.2006.02.003 10.1016/j.robot.2007.11.004 10.1007/s00521-015-1839-6 10.1016/j.oceaneng.2012.10.007 10.1002/9781119994138 10.1016/j.oceaneng.2016.09.034 10.1017/S0373463316000448 10.1016/j.jfranklin.2012.01.003 10.1016/j.asoc.2009.10.008 10.1002/asjc.1013 10.1016/j.automatica.2005.07.001 10.1016/S0005-1098(97)00174-X 10.1016/j.oceaneng.2008.07.013 10.1016/j.conengprac.2004.01.004 10.1016/j.fss.2011.05.009 10.1016/j.jfranklin.2015.08.009 10.1016/j.oceaneng.2012.02.004 10.1016/j.neucom.2008.06.008 10.1016/j.neucom.2016.11.037 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1186/s10033-018-0307-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature : Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-8258 |
Edition | English ed. |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_bbd307dc85454a5080d75a785dafb166 10_1186_s10033_018_0307_5 |
GrantInformation_xml | – fundername: Basic Research Program of Ministry of Industry and Information Technology of China grantid: B2420133003 – fundername: Fundamental Research Funds for the Central Universities of China grantid: GK2070260120 |
GroupedDBID | -03 -0C -SC -S~ 06D 0R~ 0VY 29B 29~ 2B. 2C0 30V 4.4 5VR 8FE 8FG 92H 92I 92M 96X 9D9 9DC AAIAL AAJKR AAKKN AARHV AARTL AAWCG AAXDM AAYIU AAYQN AAYTO AAZMS ABEEZ ABFTD ABJCF ABJOX ABTHY ABTMW ACACY ACCUX ACGFS ACKNC ACULB ADBBV ADHIR ADINQ ADMLS AEBTG AEGNC AEJHL AENEX AEOHA AEPYU AETCA AFBBN AFGXO AFKRA AFLOW AFUIB AFWTZ AFZKB AGAYW AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIIXL AJBLW AJRNO AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP ANMIH AUKKA BAPOH BCNDV BENPR BGLVJ BGNMA C24 C6C CAJEC CCEZO CCPQU CEKLB CHBEP CS3 CW9 DU5 EBS EJD ESBYG FA0 FRRFC FYJPI GGRSB GQ7 GROUPED_DOAJ HCIFZ HF~ HMJXF HRMNR HZ~ I0C JBSCW JUIAU KOV L6V M4Y M7S NU0 O9- OK1 PIMPY PROAC PTHSS Q-- Q-2 R-C RLLFE RSV RT3 SCL SDH SEG SHX SNX SOJ T8S TCJ TGT U1F U1G U2A U5C U5M UG4 VC2 W48 ~A9 ~M1 AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c425t-bb4b6caa848ce94e3e1a023b9d3e2df64ef712ba202c3eba87eeadb6e5a60df93 |
IEDL.DBID | BENPR |
ISSN | 1000-9345 |
IngestDate | Wed Aug 27 01:14:57 EDT 2025 Fri Jul 25 11:00:27 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Tue Jul 01 01:54:24 EDT 2025 Fri Feb 21 02:29:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Autonomous underwater vehicle (AUV) Terminal sliding mode Trajectory tracking Neural networks Adaptive control Backstepping method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-bb4b6caa848ce94e3e1a023b9d3e2df64ef712ba202c3eba87eeadb6e5a60df93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7146-3545 |
OpenAccessLink | https://www.proquest.com/docview/2511602708?pq-origsite=%requestingapplication% |
PQID | 2511602708 |
PQPubID | 4406321 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bbd307dc85454a5080d75a785dafb166 proquest_journals_2511602708 crossref_primary_10_1186_s10033_018_0307_5 crossref_citationtrail_10_1186_s10033_018_0307_5 springer_journals_10_1186_s10033_018_0307_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Chinese journal of mechanical engineering |
PublicationTitleAbbrev | Chin. J. Mech. Eng |
PublicationYear | 2018 |
Publisher | Springer Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Nekoukar, Erfanian (CR26) 2011; 179 Xu, Pandian, Sakagami (CR5) 2012; 349 Xu, Li (CR1) 2011; 33 Chu, Zhu, Yang (CR17) 2017; 70 Wang, Zhang, Wilson (CR8) 2015; 110 Zhang, Chu (CR14) 2012; 45 Tran, Kang (CR20) 2017; 228 Londhe, Santhakumar, Patre (CR4) 2017; 42 Yu, Li, Zhang (CR6) 2008; 25 Bagheri, Karimi, Amanifard (CR12) 2010; 10 Hassanein, Anavatti, Shim, Ray (CR3) 2016; 127 Bessa, Dutra, Kreuzer (CR28) 2008; 56 Bagheri, Moghaddam (CR7) 2009; 72 Yu, Yu, Shirinzadeh (CR22) 2005; 41 Tang (CR25) 1998; 34 Yu, Chen, Jiang (CR27) 2014; 31 Pan, Lai, Yang (CR2) 2015; 26 Avila, Donha, Adamowski (CR10) 2013; 60 Chu, Zhu, Jan (CR15) 2016; 127 Wang, Gu, Gao (CR18) 2016; 18 Cong, Liu, Chen (CR23) 2013; 30 Ridao, Tiano, El-Fakdi (CR11) 2004; 12 Chatchanayuenyong, Parnichkun (CR21) 2006; 16 CR24 Liu, Wang, Liu (CR32) 2016; 23 Khan, Akmeliawati (CR16) 2017; 226 Feng, Yu, Man (CR19) 2002; 38 Zhang, Chu (CR9) 2014; 50 Soylu, Buckham, Podhorodeski (CR29) 2008; 35 Steinke (CR30) 2006 Zhang, Liu, Yin (CR13) 2015; 352 Fossen (CR31) 2011 A Bagheri (307_CR7) 2009; 72 MD Tran (307_CR20) 2017; 228 ZZ Chu (307_CR15) 2016; 127 S Yu (307_CR22) 2005; 41 PS Londhe (307_CR4) 2017; 42 A Bagheri (307_CR12) 2010; 10 Y Feng (307_CR19) 2002; 38 Q Khan (307_CR16) 2017; 226 Y Tang (307_CR25) 1998; 34 D Steinke (307_CR30) 2006 WX Liu (307_CR32) 2016; 23 WM Bessa (307_CR28) 2008; 56 MJ Zhang (307_CR14) 2012; 45 Y Wang (307_CR18) 2016; 18 CZ Pan (307_CR2) 2015; 26 MJ Zhang (307_CR9) 2014; 50 JC Yu (307_CR6) 2008; 25 JPJ Avila (307_CR10) 2013; 60 B Cong (307_CR23) 2013; 30 MJ Zhang (307_CR13) 2015; 352 ZZ Chu (307_CR17) 2017; 70 P Ridao (307_CR11) 2004; 12 S Soylu (307_CR29) 2008; 35 V Nekoukar (307_CR26) 2011; 179 O Hassanein (307_CR3) 2016; 127 307_CR24 YR Xu (307_CR1) 2011; 33 YJ Wang (307_CR8) 2015; 110 J Yu (307_CR27) 2014; 31 TI Fossen (307_CR31) 2011 T Chatchanayuenyong (307_CR21) 2006; 16 B Xu (307_CR5) 2012; 349 |
References_xml | – volume: 30 start-page: 1 issue: 1 year: 2013 end-page: 7 ident: CR23 article-title: Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers publication-title: Aerospace Science & Technology doi: 10.1016/j.ast.2013.05.005 – volume: 110 start-page: 15 year: 2015 end-page: 24 ident: CR8 article-title: Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2015.09.035 – volume: 38 start-page: 2159 issue: 12 year: 2002 end-page: 2167 ident: CR19 article-title: Non-singular terminal sliding mode control of rigid manipulators publication-title: Automatica doi: 10.1016/S0005-1098(02)00147-4 – volume: 127 start-page: 82 year: 2016 end-page: 89 ident: CR15 article-title: Observer-based adaptive neural network control for a class of remotely operated vehicles publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2016.09.038 – volume: 42 start-page: 13 issue: 1 year: 2017 end-page: 28 ident: CR4 article-title: Task space control of an autonomous underwater vehicle manipulator system by robust single-input fuzzy logic control scheme publication-title: IEEE Journal of Oceanic Engineering – volume: 228 start-page: 231 year: 2017 end-page: 240 ident: CR20 article-title: Adaptive terminal sliding mode control of uncertain robotic manipulators based on local approximation of a dynamic system publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.089 – volume: 23 start-page: 2883 issue: 11 year: 2016 end-page: 2895 ident: CR32 article-title: Weak thruster fault detection for AUV based on stochastic resonance and wavelet reconstruction publication-title: Journal of Central South University doi: 10.1007/s11771-016-3352-1 – volume: 50 start-page: 50 issue: 19 year: 2014 end-page: 57 ident: CR9 article-title: Adaptive region tracking control for autonomous underwater vehicle publication-title: Journal of Mechanical Engineering doi: 10.3901/JME.2014.19.050 – volume: 16 start-page: 471 issue: 8 year: 2006 end-page: 478 ident: CR21 article-title: Neural network based-time optimal sliding mode control for an autonomous underwater robot publication-title: Mechatronics doi: 10.1016/j.mechatronics.2006.02.003 – volume: 56 start-page: 670 issue: 8 year: 2008 end-page: 677 ident: CR28 article-title: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller publication-title: Robotics & Autonomous Systems doi: 10.1016/j.robot.2007.11.004 – volume: 26 start-page: 1929 issue: 8 year: 2015 end-page: 1938 ident: CR2 article-title: A bioinspired neural dynamics-based approach to tracking control of autonomous surface vehicles subject to unknown ocean currents publication-title: Neural Computing & Applications doi: 10.1007/s00521-015-1839-6 – year: 2006 ident: CR30 publication-title: Design and simulation of a Kalman filter for ROV navigation – volume: 60 start-page: 81 issue: 2 year: 2013 end-page: 94 ident: CR10 article-title: Experimental model identification of open-frame underwater vehicles publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2012.10.007 – year: 2011 ident: CR31 publication-title: Handbook of Marine Craft Hydrodynamics and Motion Control doi: 10.1002/9781119994138 – volume: 33 start-page: 125 issue: 3 year: 2011 end-page: 131 ident: CR1 article-title: The development trend of underwater vehicle publication-title: Chinese Journal of Nature – volume: 127 start-page: 58 year: 2016 end-page: 69 ident: CR3 article-title: Model-based adaptive control system for autonomous underwater vehicles publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2016.09.034 – volume: 70 start-page: 149 year: 2017 end-page: 164 ident: CR17 article-title: Adaptive sliding mode control for depth trajectory tracking of remotely operated vehicle with thruster nonlinearity publication-title: Journal of Navigation doi: 10.1017/S0373463316000448 – volume: 349 start-page: 1125 issue: 3 year: 2012 end-page: 1138 ident: CR5 article-title: Neuro-fuzzy control of underwater vehicle-manipulator systems publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2012.01.003 – volume: 10 start-page: 908 issue: 3 year: 2010 end-page: 918 ident: CR12 article-title: Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.10.008 – volume: 18 start-page: 247 issue: 1 year: 2016 end-page: 265 ident: CR18 article-title: Multivariable output feedback adaptive terminal sliding mode control for underwater vehicles publication-title: Asian Journal of Control doi: 10.1002/asjc.1013 – volume: 41 start-page: 1957 issue: 11 year: 2005 end-page: 1964 ident: CR22 article-title: Continuous finite-time control for robotic manipulators with terminal sliding mode publication-title: Automatica doi: 10.1016/j.automatica.2005.07.001 – volume: 31 start-page: 993 issue: 8 year: 2014 end-page: 999 ident: CR27 article-title: Adaptive sliding mode control for nonlinear uncertain systems based on disturbance observer publication-title: Control Theory & Applications – volume: 34 start-page: 51 issue: 1 year: 1998 end-page: 56 ident: CR25 article-title: Terminal sliding mode control for rigid robots publication-title: Automatica doi: 10.1016/S0005-1098(97)00174-X – volume: 35 start-page: 1647 issue: 16 year: 2008 end-page: 1659 ident: CR29 article-title: A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2008.07.013 – volume: 25 start-page: 9 issue: 1 year: 2008 end-page: 13 ident: CR6 article-title: Neural network adaptive control for underwater vehicles publication-title: Control Theory & Applications – volume: 12 start-page: 1483 issue: 12 year: 2004 end-page: 1499 ident: CR11 article-title: On the identification of nonlinear models of unmanned underwater vehicles publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2004.01.004 – volume: 179 start-page: 34 issue: 1 year: 2011 end-page: 49 ident: CR26 article-title: Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems publication-title: Fuzzy Sets & Systems doi: 10.1016/j.fss.2011.05.009 – volume: 352 start-page: 4935 issue: 11 year: 2015 end-page: 4961 ident: CR13 article-title: Adaptive terminal sliding mode based thruster fault tolerant control for underwater vehicle in time-varying ocean currents publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2015.08.009 – volume: 45 start-page: 56 issue: 2 year: 2012 end-page: 62 ident: CR14 article-title: Adaptive sliding mode control based on local recurrent neural networks for underwater robot publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2012.02.004 – ident: CR24 – volume: 72 start-page: 1934 issue: 7–9 year: 2009 end-page: 1950 ident: CR7 article-title: Simulation and tracking control based on neural-network strategy and sliding-mode control for underwater remotely operated vehicle publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.06.008 – volume: 226 start-page: 126 year: 2017 end-page: 134 ident: CR16 article-title: Neuro-adaptive dynamic integral sliding mode control design with output differentiation observer for uncertain higher order MIMO nonlinear systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.037 – volume: 110 start-page: 15 year: 2015 ident: 307_CR8 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2015.09.035 – volume: 41 start-page: 1957 issue: 11 year: 2005 ident: 307_CR22 publication-title: Automatica doi: 10.1016/j.automatica.2005.07.001 – volume: 352 start-page: 4935 issue: 11 year: 2015 ident: 307_CR13 publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2015.08.009 – volume: 226 start-page: 126 year: 2017 ident: 307_CR16 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.037 – volume: 31 start-page: 993 issue: 8 year: 2014 ident: 307_CR27 publication-title: Control Theory & Applications – volume: 16 start-page: 471 issue: 8 year: 2006 ident: 307_CR21 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2006.02.003 – volume-title: Handbook of Marine Craft Hydrodynamics and Motion Control year: 2011 ident: 307_CR31 doi: 10.1002/9781119994138 – volume: 10 start-page: 908 issue: 3 year: 2010 ident: 307_CR12 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.10.008 – volume: 56 start-page: 670 issue: 8 year: 2008 ident: 307_CR28 publication-title: Robotics & Autonomous Systems doi: 10.1016/j.robot.2007.11.004 – volume: 127 start-page: 58 year: 2016 ident: 307_CR3 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2016.09.034 – volume: 33 start-page: 125 issue: 3 year: 2011 ident: 307_CR1 publication-title: Chinese Journal of Nature – volume: 25 start-page: 9 issue: 1 year: 2008 ident: 307_CR6 publication-title: Control Theory & Applications – volume: 23 start-page: 2883 issue: 11 year: 2016 ident: 307_CR32 publication-title: Journal of Central South University doi: 10.1007/s11771-016-3352-1 – volume: 18 start-page: 247 issue: 1 year: 2016 ident: 307_CR18 publication-title: Asian Journal of Control doi: 10.1002/asjc.1013 – volume: 42 start-page: 13 issue: 1 year: 2017 ident: 307_CR4 publication-title: IEEE Journal of Oceanic Engineering – volume: 349 start-page: 1125 issue: 3 year: 2012 ident: 307_CR5 publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2012.01.003 – volume: 45 start-page: 56 issue: 2 year: 2012 ident: 307_CR14 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2012.02.004 – volume: 35 start-page: 1647 issue: 16 year: 2008 ident: 307_CR29 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2008.07.013 – volume: 70 start-page: 149 year: 2017 ident: 307_CR17 publication-title: Journal of Navigation doi: 10.1017/S0373463316000448 – volume: 179 start-page: 34 issue: 1 year: 2011 ident: 307_CR26 publication-title: Fuzzy Sets & Systems doi: 10.1016/j.fss.2011.05.009 – volume: 228 start-page: 231 year: 2017 ident: 307_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.089 – volume: 34 start-page: 51 issue: 1 year: 1998 ident: 307_CR25 publication-title: Automatica doi: 10.1016/S0005-1098(97)00174-X – volume: 72 start-page: 1934 issue: 7–9 year: 2009 ident: 307_CR7 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.06.008 – volume: 38 start-page: 2159 issue: 12 year: 2002 ident: 307_CR19 publication-title: Automatica doi: 10.1016/S0005-1098(02)00147-4 – volume-title: Design and simulation of a Kalman filter for ROV navigation year: 2006 ident: 307_CR30 – volume: 26 start-page: 1929 issue: 8 year: 2015 ident: 307_CR2 publication-title: Neural Computing & Applications doi: 10.1007/s00521-015-1839-6 – volume: 50 start-page: 50 issue: 19 year: 2014 ident: 307_CR9 publication-title: Journal of Mechanical Engineering doi: 10.3901/JME.2014.19.050 – volume: 30 start-page: 1 issue: 1 year: 2013 ident: 307_CR23 publication-title: Aerospace Science & Technology doi: 10.1016/j.ast.2013.05.005 – volume: 60 start-page: 81 issue: 2 year: 2013 ident: 307_CR10 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2012.10.007 – volume: 127 start-page: 82 year: 2016 ident: 307_CR15 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2016.09.038 – ident: 307_CR24 – volume: 12 start-page: 1483 issue: 12 year: 2004 ident: 307_CR11 publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2004.01.004 |
SSID | ssj0006118 |
Score | 2.275133 |
Snippet | The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of the... Abstract The trajectory tracking control problem is addressed for autonomous underwater vehicle (AUV) in marine environment, with presence of the influence of... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptive control Autonomous underwater vehicle (AUV) Autonomous underwater vehicles Backstepping method Control methods Dynamic models Electrical Machines and Networks Electronics and Microelectronics Engineering Engineering Thermodynamics Heat and Mass Transfer Instrumentation Machines Manufacturing Marine environment Mechanical Engineering Neural networks Ocean currents Ocean Engineering Equipment Ocean models Original Article Polynomials Power Electronics Processes Recurrent neural networks Reduction Sliding mode control Switching Terminal sliding mode Theoretical and Applied Mechanics Tracking control Tracking errors Trajectory control Trajectory tracking Uncertainty |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAQEEsFORDT1QRjuOvHLcVVYXUHmiLerM89gSQVrtVNyuO_HU8dra0SMCFaxJLlufZ8yaeecPYfooyJJuwsf0QG6XBNCBkaHrnDHYpap0oUDw9MyeX6uOVvrrT6otywqo8cF249wApwzBFl129CplOiGR1sE6nMEBrith29nnbYGo6g03b1iI4IZq-U3q6z2ydoaI56l8mWiotE7bR9zxSEe6_xzZ_uyAtfuf4CXs8EUY-rxN9yh7g8hl7dEdGcJf9mKdwTccWP6SK-RFJc-ELv6h5Lgt-vvhGHopT3zN-VHPT-WlpHZ1HrDHx1ZJ_oh_vJNXESa8jjzqrCeJrnmktn29Gqn5Ybda8dEr6ninqDf-MX2lSz9nl8YeLo5NmaqzQxLxFxwZAgYkhOOUi9go7bEP23dCnDmUajMLBthKCFDJ2CMFZzIADgzoYkYa-e8F2lqslvmQ8qQECKISopQLAYPuUWYAdNPQy05MZE9vF9XFSHafmFwtfog9nfLWHz_bwZA-vZ-zd7ZDrKrnxt48PyWK3H5JadnmQMeQnDPl_YWjG9rb29tMWXnuKvUwO2oWbsYMtBn69_uOMXv2PGb1mDyUhtOTN7LGd8WaDbzL7GeFtAfpP87wA3w priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgXOBQUT7EQql84ASy5CS24xy3K6qqUnsoLerN8tiTgrTarTZZ9chfr8dJCkWAxDWxI8sz43kTz7xh7EMMpY91RFE3bRBKgxEgSy8aaw1WMWgdKVA8PTPHl-rkSl-NddzdlO0-XUnmkzqbtTVU7EZ9x2RBJWGyFvoxe6JT6E5qvaASh_H4NUUx1L9JKZpK6fEq84-feOCMMmf_A6D5291odjlHz9nuiBX5fBDuHnuEqxfs2S8Mgi_Zj3n0N3Ri8UMqlu-R6Bau-cWQ4rLkX5bfyTlxannGF0NaOj_NXaPTjA4jX6_4Of1zJ5YmTlQdadbZkBve8YRo-XzbU-HDetvx3CTpNqHTDf-K32hRr9jl0eeLxbEYeyqIkKyzFwAKTPDeKhuwUVhh4ZPbhiZWWMbWKGzrogSfNjZUCN7WmHQNDGpvZGyb6jXbWa1X-IbxqFrwoBCCLhUA-rqJCQDUrYamTMhkxuS0uS6MhOPU92LpcuBhjRvk4ZI8HMnD6Rn7eD_lZmDb-NfgQ5LY_UAiys4P1ptrN9qdA4hpcAw2IUXlExqVsda-tjr6FgpjZmx_krcbrbdzFHaZFK9LO2OfJh34-fqvK3r7X6PfsaclqWLOjdlnO_1mi-8TwunhIGv0HdVU9Hk priority: 102 providerName: Springer Nature |
Title | Adaptive Backstepping Terminal Sliding Mode Control Method Based on Recurrent Neural Networks for Autonomous Underwater Vehicle |
URI | https://link.springer.com/article/10.1186/s10033-018-0307-5 https://www.proquest.com/docview/2511602708 https://doaj.org/article/bbd307dc85454a5080d75a785dafb166 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY7QUOiKcoLJUPnEAWjmM7zgmlVbsr0FZo2aLlZPmVBalqSpuKI38dT-J2WST24oNjR1FmPPPNeB4IvfGOGV_4QIqydoQLK4mlzJBSKRly74TwYCiez-XZgn-8ElfJ4bZNYZV7mdgJat848JG_Bygsow1F1Yf1TwJdo-B2NbXQOEKDKIJVNL4G4-n888VBFsss65PhKCVlzkW618yUhOQ56GNGM0gxowURtzRTV8D_Fur856K00z-zR-hhAo646in9GN0LqyfowV_lBJ-i35U3axBfeAyZ822A2gvX-LKPd1niL8sfoKkw9D_Dkz5GHZ93LaTjjm3wuFnhC3DAQ8kmDHU74q55Hyi-xRHe4mrXQhZEs9virmPSrwhVN_hr-A4f9QwtZtPLyRlJDRaIi0e1JdZyK50xiisXSh7ykJmow23p88B8LXmoi4xZwyhzebBGFSEynpVBGEl9XebP0fGqWYUXCHteW2N5sE4wbm0wRekjGihqYUsWYcoQ0f3P1S5VH4cmGEvdWSFK6p4eOtJDAz20GKK3hy3rvvTGXYvHQLHDQqia3U00m2udDqG21sfF3qkIG7mJ0JT6QphCCW9qm0k5RCd7eut0lLf6hvGG6N2eB24e__eLXt79slfoPgPe6yJjTtBxu9mF1xHftHaEjtTsdIQG1em3T9NRYuk4O2EcRjkZdZ6DOC5Y9QcTGf-M |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYKMUHuIAsHMd2nANC28Kypd09wBb1ZvxKQVptlk1WFSf-Eb-xnjy2FIneek3syPKMZ76JZ-ZD6IV3zPjMB5LlhSNcWEksZYbkSsmQeieEh0BxMpXjY_7pRJxsoT99LQykVfY2sTHUvnTwj_wNQGEZYyiq3i1_EmCNgtvVnkKjVYvD8OsshmzV24P3Ub4vGRt9mO2PSccqQFzUz5pYy610xiiuXMh5SENiouOyuU8D84XkocgSZg2jzKXBGpWFuNtWBmEk9QU0X4om_wZP0xxOlBp93Fh-mSRt6R2lJE-56G5REyWhVA9Y02gCBW00I-KSH2zoAi5h3H-uZRtvN7qL7nQwFQ9bvbqHtsLiPrr9V_PCB-j30JslGEu8B3X6dYBOD6d41mbXzPGX-Q_wixjY1vB-mxGPJw1hdZxRBY_LBf4Mv_uhQRSGLiFx1rRNS69wBNN4uK6h5qJcV7jhZzqLwHiFv4bvsKiH6PhaNv4R2l6Ui_AYYc8LaywP1gnGrQ0my33EHlkhbM4iKBog2m-udl2vc6DcmOsm5lFSt_LQUR4a5KHFAL3aTFm2jT6uGrwHEtsMhB7dzYNydaq7I6-t9XGwdyqCVG4iEKY-EyZTwpvCJlIO0E4vb90ZjkpfqPkAve514OL1f1f05OqPPUc3x7PJkT46mB4-RbcY6GGTk7ODtuvVOjyLyKq2u406Y_Ttus_POenfOBw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgKyE48EYsFPCBEyjFcfzKcVu6FEpXCFpUTsavtBWr3dUmKyQu_HU8cbLQCpAQ12QcOc54_Dme-T6EnnpHjZc-ZLKsXMa4FZkl1GSlUiIU3nHuYaN4MBF7R-zNMT_udE7rPtu9P5JMNQ3A0jRrXix8laa4ElD4BhpkJIfyMCIzfhltMKC2G6CN0atP-7vrYCzyPFXDEZKVBePdweZvH3JuaWoZ_M_Bzgsnpe0CNL6BPvddT3knX7ZWjd1y3y6wOv7Hu91E1ztwikfJm26hS2F2G137hbLwDvo-8mYBIRJvQ3V-E4Df4QQfppyaKf4wPYPVEIPGGt5JefD4oJWpji3q4PF8ht_DT36ghcLADRJbTVIyeo0jhMajVQOVFvNVjVtVpq8RDi_xx3AKnbqLjsa7hzt7WSfikLkYDprMWmaFM0Yx5ULJQhFyE3GCLX0RqK8EC5XMqTWUUFcEa5QM0bmtCNwI4quyuIcGs_ks3EfYs8oay4J1nDJrg5Glj4hDVtyWNEKhISL999OuYzgHoY2pbnc6Sug0tjqOrYax1XyInq2bLBK9x9-Mt8Ep1obAzN1emC9PdDfRtbU-GnunIjRlJsJf4iU3UnFvKpsLMUSbvUvpLlzUGvZ5glBJ1BA97z3k5-0_9ujBP1k_QVfevRzrt68n-w_RVQoe1ublbKJBs1yFRxFdNfZxN4N-AESjHVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Backstepping+Terminal+Sliding+Mode+Control+Method+Based+on+Recurrent+Neural+Networks+for+Autonomous+Underwater+Vehicle&rft.jtitle=Chinese+journal+of+mechanical+engineering&rft.au=Yang%2C+Chao&rft.au=Yao%2C+Feng&rft.au=Ming-Jun%2C+Zhang&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1000-9345&rft.eissn=2192-8258&rft.volume=31&rft.issue=1&rft_id=info:doi/10.1186%2Fs10033-018-0307-5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-9345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-9345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-9345&client=summon |