Broadening the Scope of Biocatalysis Engineering by Tailoring Enzyme Microenvironment: A Review

The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literatu...

Full description

Saved in:
Bibliographic Details
Published inCatalysis letters Vol. 153; no. 5; pp. 1227 - 1239
Main Authors Li, Wenqian, Bilal, Muhammad, Singh, Anil Kumar, Sher, Farooq, Ashraf, S. Salman, Franco, Marcelo, Américo-Pinheiro, Juliana Heloisa Pinê, Iqbal, Hafiz M. N.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics ( K M and k cat ), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses. Graphical abstract
AbstractList The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics (KM and kcat), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses.
The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics (K.sub.M and k.sub.cat), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses. Graphical abstract
The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics (K.sub.M and k.sub.cat), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses.
The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics ( K M and k cat ), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses. Graphical abstract
The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics (KM and kcₐₜ), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses.
Audience Academic
Author Franco, Marcelo
Singh, Anil Kumar
Iqbal, Hafiz M. N.
Américo-Pinheiro, Juliana Heloisa Pinê
Li, Wenqian
Bilal, Muhammad
Ashraf, S. Salman
Sher, Farooq
Author_xml – sequence: 1
  givenname: Wenqian
  surname: Li
  fullname: Li, Wenqian
  organization: School of Life Science and Food Engineering, Huaiyin Institute of Technology
– sequence: 2
  givenname: Muhammad
  surname: Bilal
  fullname: Bilal, Muhammad
  email: bilaluaf@hotmail.com
  organization: School of Life Science and Food Engineering, Huaiyin Institute of Technology
– sequence: 3
  givenname: Anil Kumar
  surname: Singh
  fullname: Singh, Anil Kumar
  organization: Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Academy of Scientific and Innovative Research (AcSIR)
– sequence: 4
  givenname: Farooq
  orcidid: 0000-0003-2890-5912
  surname: Sher
  fullname: Sher, Farooq
  organization: Department of Engineering, School of Science and Technology, Nottingham Trent University
– sequence: 5
  givenname: S. Salman
  orcidid: 0000-0003-4961-5527
  surname: Ashraf
  fullname: Ashraf, S. Salman
  organization: Department of Biology, College of Arts and Sciences, Khalifa University, Center for Biotechnology (BTC), Khalifa University, Center for Catalysis and Separation (CeCas), Khalifa University
– sequence: 6
  givenname: Marcelo
  orcidid: 0000-0001-9306-0739
  surname: Franco
  fullname: Franco, Marcelo
  organization: Department of Exact and Technological Sciences, State University of Santa Cruz
– sequence: 7
  givenname: Juliana Heloisa Pinê
  orcidid: 0000-0001-6252-828X
  surname: Américo-Pinheiro
  fullname: Américo-Pinheiro, Juliana Heloisa Pinê
  organization: Brazil University
– sequence: 8
  givenname: Hafiz M. N.
  orcidid: 0000-0003-4855-2720
  surname: Iqbal
  fullname: Iqbal, Hafiz M. N.
  email: hafiz.iqbal@tec.mx
  organization: Tecnologico de Monterrey, School of Engineering and Sciences
BookMark eNp9kU9rHCEYh6Wk0GTbL9DTQC_tYVJ1Rh1724RtE0gpJCnkJo7zujXM6FbdpNtPHzdTKMkhiH95HtH3d4QOfPCA0HuCjwnG4nMimHFaY1p6izmr2St0SJigdSfkzUFZY0LqRtCbN-gopVuMsRREHiJ1EoMewDu_rvIvqK5M2EAVbHXigtFZj7vkUrXya-cB4p7qd9W1dmN43Kz8390E1XdnYgB_52LwE_j8pVpWl3Dn4P4tem31mODdv3mBfn5dXZ-e1Rc_vp2fLi9q01KW657bfiCMmsFKLgZrmO2J7C0xwLFpbQ-EU6mtIdZyTDgMfaO7gfYN0VTjoVmgj_O9mxh-byFlNblkYBy1h7BNqillaWQjy7hAH56ht2EbfXmdokIK2bWs5YU6nqm1HkE5b0OO2pQ2wORMqb515Xwp2raTkktRhE9PhMJk-JPXepuSOr-6fMp2M1vKllIEq4zLOruixFJbRbDax6rmWFWJVT3GqlhR6TN1E92k4-5lqZmltNnHBvH_l1-wHgBIwLd4
CitedBy_id crossref_primary_10_1039_D4RA01007H
crossref_primary_10_1016_j_cscee_2024_100749
crossref_primary_10_1016_j_ijbiomac_2023_127358
crossref_primary_10_1007_s40726_024_00310_0
crossref_primary_10_1039_D4ME00017J
crossref_primary_10_1002_app_56062
crossref_primary_10_1016_j_ijbiomac_2024_135211
crossref_primary_10_1186_s13036_024_00440_5
crossref_primary_10_1039_D3EY00239J
crossref_primary_10_1016_j_colsurfa_2024_134444
crossref_primary_10_1002_app_55755
crossref_primary_10_1016_j_psep_2025_106938
crossref_primary_10_1016_j_colsurfa_2024_133319
Cites_doi 10.1002/cbic.201402665
10.1021/bm900205r
10.1073/pnas.97.6.2515
10.1529/biophysj.104.041269
10.1093/protein/15.7.595
10.1098/rsif.2016.0087
10.1529/biophysj.104.058677
10.1126/science.aay8484
10.2174/0929866523999160722145740
10.1002/ange.201402087
10.1016/j.bbapap.2015.11.006
10.1016/j.jbiotec.2010.10.002
10.1002/anie.201708408
10.1016/j.scitotenv.2016.09.215
10.1039/C5CY00110B
10.3109/10242428709040135
10.1080/10242422.2018.1564744
10.1007/s10562-019-02821-8
10.1016/j.ijbiomac.2019.02.141
10.1021/ja011853+
10.1002/bit.25240
10.1039/C8CS00085A
10.1098/rstb.2004.1505
10.1186/1752-153X-6-110
10.1016/0005-2744(79)90176-1
10.1016/j.ijbiomac.2019.02.152
10.1016/S0021-9258(18)69054-4
10.1016/j.sbi.2014.06.006
10.1007/BF02798504
10.1021/ja064433z
10.1038/35051719
10.1007/s00253-005-0169-5
10.1021/acscatal.7b00348
10.1098/rstb.2004.1494
10.1073/pnas.96.17.9475
10.1021/acschembio.9b00943
10.1021/ja064126t
10.1021/ja3094795
10.1039/C3CS60075K
10.1016/j.ijbiomac.2020.10.195
10.1021/bm5008629
10.1007/978-3-030-54758-5_10
10.1128/AEM.01817-16
10.1080/10408398.2019.1627284
10.1007/s10562-016-1848-9
10.1016/j.tibtech.2021.01.002
10.1016/j.jbiotec.2009.12.021
10.1016/j.ijbiomac.2017.10.177
10.1007/s00253-012-4278-7
10.1039/c3cs35506c
10.1021/nl048413b
10.1016/j.bcab.2019.101205
10.1111/j.1742-4658.2007.05781.x
10.1016/j.jbiotec.2007.07.169
10.1002/anie.201000826
10.1002/bit.25697
10.1039/C9CP05271B
10.1021/jacs.6b12174
10.1021/ja0512881
10.1021/acscatal.6b03431
10.1016/j.ccr.2019.02.024
10.1021/bi00077a015
10.1073/pnas.82.10.3192
10.1194/jlr.M043950
10.1016/j.ijbiomac.2018.07.134
10.1007/s10562-020-03268-y
10.1016/j.cej.2012.06.135
10.1038/nature12576
10.3390/catal10070747
10.1016/j.ijbiomac.2017.07.042
10.1038/nature11117
10.1039/C8RA09244C
10.1021/cs401115s
10.1007/s12649-017-9991-0
10.1016/j.jenvman.2016.12.015
10.1007/978-1-4939-1053-3_21
10.3390/pr9020271
10.1007/BF00530712
10.1002/pro.227
10.1016/j.jenvman.2016.09.040
10.1016/S0006-3495(00)76557-X
10.1016/j.ijbiomac.2018.02.062
10.1038/s41467-018-07882-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2023 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
DOI 10.1007/s10562-022-04065-5
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Materials Science Collection



AGRICOLA
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1572-879X
EndPage 1239
ExternalDocumentID A744899697
10_1007_s10562_022_04065_5
GrantInformation_xml – fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: CVU: 735340
  funderid: http://dx.doi.org/10.13039/501100003141
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29B
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZMTXR
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c425t-b6fbd152cdf967dfc5fb19bf1ce60c4fbe1629afc1ff6016edb3a8d2b31a2a0d3
IEDL.DBID BENPR
ISSN 1011-372X
IngestDate Fri Jul 11 08:14:52 EDT 2025
Fri Jul 25 11:00:52 EDT 2025
Tue Jun 10 21:06:52 EDT 2025
Fri Jun 27 05:42:12 EDT 2025
Thu Apr 24 23:08:59 EDT 2025
Tue Jul 01 02:51:33 EDT 2025
Fri Feb 21 02:44:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Protein engineering
Yield enhancement strategies
Bio-catalysis
Microenvironment engineering
Computational modeling
Enzyme engineering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-b6fbd152cdf967dfc5fb19bf1ce60c4fbe1629afc1ff6016edb3a8d2b31a2a0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9306-0739
0000-0003-4855-2720
0000-0001-6252-828X
0000-0003-2890-5912
0000-0003-4961-5527
PQID 2797984546
PQPubID 2043868
PageCount 13
ParticipantIDs proquest_miscellaneous_3040393940
proquest_journals_2797984546
gale_infotracacademiconefile_A744899697
gale_incontextgauss_ISR_A744899697
crossref_citationtrail_10_1007_s10562_022_04065_5
crossref_primary_10_1007_s10562_022_04065_5
springer_journals_10_1007_s10562_022_04065_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230500
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 5
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Catalysis letters
PublicationTitleAbbrev Catal Lett
PublicationYear 2023
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Bilal, Asgher, Iqbal (CR54) 2016; 23
Bilal, Iqbal (CR41) 2019; 20
Bilal, Ashraf, Cui, Lou, Franco, Mulla (CR46) 2020; 166
Syrén, Hammer, Claasen, Hauer (CR76) 2014; 126
Bilal, Iqbal, Hu, Wang, Zhang (CR55) 2017; 188
Klibanov (CR16) 2001; 409
Dai, Klibanov (CR24) 1999; 96
Sauna, Ambudkar (CR42) 2000; 97
Asgher, Kamal, Iqbal (CR47) 2012; 6
Nobili, Tao, Pavlidis, van den Bergh, Joosten, Tan (CR63) 2015; 16
Li, Cirino (CR84) 2014; 111
Albayati, Masomian, Ishak, Mohamad Ali, Thean, Shariff (CR61) 2020; 10
Sarkar, Chattopadhyay, Singh, Devika, Pal, Parihar, Pal, Singh, Rakshit, Manoharachary, Singh, Varma (CR6) 2020
Lancaster, Abdallah, Banta, Wheeldon (CR40) 2018; 47
Barrios-Estrada, de Jesús Rostro-Alanis, Parra, Belleville, Sanchez-Marcano, Iqbal (CR49) 2018; 108
Bilal, Iqbal, Hu, Wang, Zhang (CR56) 2017; 575
Sheldon, van Pelt (CR7) 2013; 42
Micaeˆlo, Soares (CR22) 2007; 274
Zhang, Wang, Hess (CR15) 2017; 7
Bautista-Barrufet, López-Gallego, Rojas-Cervellera, Rovira, Pericàs, Guisán (CR72) 2014; 4
Sheldon (CR2) 2016; 13
Gordon, Stanley, Wolf, Toland, Wu, Hadidi (CR79) 2012; 134
Tarek, Tobias (CR19) 2000; 79
Khoury, Fazelinia, Chin, Pantazes, Cirino, Maranas (CR80) 2009; 18
Leskovac (CR8) 2003
Jan, Subileau, Deyrieux, Perrier, Dubreucq (CR67) 2016; 1864
Huber, Clinger, Liu, Xu, Miller, Phillips (CR73) 2020; 15
Joo, Pack, Kim, Yoo (CR81) 2011; 151
Badieyan, Wang, Zou, Li, Herron, Abbott (CR34) 2017; 139
Bilal, Iqbal, Shah, Hu, Wang, Zhang (CR53) 2016; 183
Cao, Li, Ge (CR77) 2021
Nagayama, Spieß, Büchs (CR32) 2012; 207
Zhao, Kumar, Sakai, Vetting, Wood, Brown (CR4) 2013; 502
Bruns, Tiller (CR25) 2005; 5
David, Irague, Jouanneau, Daligault, Czjzek, Sanejouand (CR74) 2017; 7
Qamar, Asgher, Bilal (CR60) 2020; 150
Trivedi, Spiess, Daussmann, Büchs (CR33) 2006; 71
Ge, Lu, Wang, Liu (CR27) 2009; 10
Xu, Fu, Chen, Wang, Jian, Zhang (CR35) 2019; 10
Yan, Wang, Sun, Zhu, Wu (CR75) 2016; 82
Dunn, Daniel (CR30) 2004; 359
Barzana, Klibanov, Karel (CR29) 1987; 15
Yan, Ge, Liu, Ouyang (CR26) 2006; 128
Zaks, Klibanov (CR18) 1985; 82
Bilal, Iqbal (CR44) 2019; 130
Nakamura, Haga, Yamane (CR9) 1993; 32
Reetz (CR64) 2011; 50
Fu, Xu, Chen, Wang, Lu, Wu (CR36) 2019; 21
Bilal, Iqbal (CR51) 2019; 149
Bilal, Iqbal (CR45) 2020; 60
Fersht (CR37) 1999
Zaugg, Gumulya, Gillam, Bodén, Gillam, Copp, Ackerley (CR62) 2014
Kimura, Suzuki, Inokuchi, Yagi (CR28) 1979; 567
Biro, Nemeth, Sisak, Gyenis, Szajani (CR12) 2007; 131
Li, Yue, Li, Pan, Yang (CR65) 2015; 5
Huffman, Fryszkowska, Alvizo, Borra-Garske, Campos, Devine (CR3) 2019; 366
Schmitt, Brocca, Schmid, Pleiss (CR68) 2002; 15
Yang, Dordick, Garde (CR21) 2004; 87
Yu, Zhu, Xiao, Xu (CR69) 2014; 55
You, De, Han, Rotello (CR70) 2005; 127
Bilal, Zhao, Noreen, Shah, Bharagava, Iqbal (CR50) 2019; 37
Yang, Fan, Cao, Deng, Pojman, Ji (CR14) 2019; 9
Arnold (CR5) 2018; 57
Bilal, Rasheed, Iqbal, Hu, Wang, Zhang (CR57) 2017; 105
Kurkal, Daniel, Finney, Tehei, Dunn, Smith (CR31) 2005; 89
Bilal, Asgher, Iqbal, Hu, Zhang (CR52) 2016; 146
Bilal, Cui, Iqbal (CR59) 2019; 130
Asgher, Wahab, Bilal, Iqbal (CR48) 2018; 9
Zaks, Klibanov (CR23) 1988; 263
Bilal, Iqbal (CR38) 2019; 388
Goldstein, Katchalski (CR11) 1968; 243
Damnjanović, Kuroiwa, Tanaka, Ishida, Nakano, Iwasaki (CR66) 2016; 113
Bornscheuer, Huisman, Kazlauskas, Lutz, Moore, Robins (CR83) 2012; 485
Bell, Yang, Dale, Zhou, Wong (CR85) 2013; 97
Dong (CR39) 2021; 9
Halling (CR20) 2004; 359
Korendovych, DeGrado (CR78) 2014; 27
You, Agasti, De, Knapp, Rotello (CR71) 2006; 128
Rodríguez-López, Lowe, Hernández-Ruiz, Hiner, García-Cánovas, Thorneley (CR10) 2001; 123
DiCosimo, McAuliffe, Poulose, Bohlmann (CR1) 2013; 42
Murata, Cummings, Koepsel, Russell (CR13) 2014; 15
Halling (CR17) 1987; 1
Bilal, Rasheed, Iqbal, Hu, Wang, Zhang (CR43) 2018; 113
Bilal, Rasheed, Zhao, Iqbal, Cui (CR58) 2018; 119
Joo, Pohkrel, Pack, Yoo (CR82) 2010; 146
X-W Yu (4065_CR69) 2014; 55
AM Klibanov (4065_CR16) 2001; 409
W Xu (4065_CR35) 2019; 10
Y Zhang (4065_CR15) 2017; 7
M Bilal (4065_CR50) 2019; 37
J Schmitt (4065_CR68) 2002; 15
X Yan (4065_CR75) 2016; 82
RV Dunn (4065_CR30) 2004; 359
RA Sheldon (4065_CR2) 2016; 13
M Bilal (4065_CR38) 2019; 388
NM Micaeˆlo (4065_CR22) 2007; 274
PJ Halling (4065_CR20) 2004; 359
E Biro (4065_CR12) 2007; 131
A Trivedi (4065_CR33) 2006; 71
C-C You (4065_CR71) 2006; 128
A Bautista-Barrufet (4065_CR72) 2014; 4
M Bilal (4065_CR54) 2016; 23
M Bilal (4065_CR59) 2019; 130
A Zaks (4065_CR18) 1985; 82
M Bilal (4065_CR53) 2016; 183
UT Bornscheuer (4065_CR83) 2012; 485
K Kimura (4065_CR28) 1979; 567
M Bilal (4065_CR43) 2018; 113
RA Sheldon (4065_CR7) 2013; 42
C-C You (4065_CR70) 2005; 127
P Halling (4065_CR17) 1987; 1
S Zhao (4065_CR4) 2013; 502
J Damnjanović (4065_CR66) 2016; 113
JN Rodríguez-López (4065_CR10) 2001; 123
J Ge (4065_CR27) 2009; 10
JC Joo (4065_CR82) 2010; 146
A Nakamura (4065_CR9) 1993; 32
D Sarkar (4065_CR6) 2020
E Barzana (4065_CR29) 1987; 15
M Bilal (4065_CR51) 2019; 149
M Bilal (4065_CR44) 2019; 130
C Barrios-Estrada (4065_CR49) 2018; 108
D Yang (4065_CR14) 2019; 9
MT Reetz (4065_CR64) 2011; 50
V Kurkal (4065_CR31) 2005; 89
Y Cao (4065_CR77) 2021
L Goldstein (4065_CR11) 1968; 243
A Zaks (4065_CR23) 1988; 263
J Zaugg (4065_CR62) 2014
M Asgher (4065_CR48) 2018; 9
GA Khoury (4065_CR80) 2009; 18
SH Albayati (4065_CR61) 2020; 10
FH Arnold (4065_CR5) 2018; 57
J Dong (4065_CR39) 2021; 9
M Bilal (4065_CR52) 2016; 146
JC Joo (4065_CR81) 2011; 151
ZE Sauna (4065_CR42) 2000; 97
M Bilal (4065_CR58) 2018; 119
A Fersht (4065_CR37) 1999
A-H Jan (4065_CR67) 2016; 1864
M Bilal (4065_CR56) 2017; 575
H Murata (4065_CR13) 2014; 15
SR Gordon (4065_CR79) 2012; 134
M Tarek (4065_CR19) 2000; 79
M Asgher (4065_CR47) 2012; 6
S Badieyan (4065_CR34) 2017; 139
L Yang (4065_CR21) 2004; 87
TD Huber (4065_CR73) 2020; 15
K Nagayama (4065_CR32) 2012; 207
M Bilal (4065_CR55) 2017; 188
J Li (4065_CR65) 2015; 5
MA Huffman (4065_CR3) 2019; 366
L Dai (4065_CR24) 1999; 96
Z Fu (4065_CR36) 2019; 21
A Nobili (4065_CR63) 2015; 16
M Bilal (4065_CR45) 2020; 60
V Leskovac (4065_CR8) 2003
SA Qamar (4065_CR60) 2020; 150
R DiCosimo (4065_CR1) 2013; 42
B David (4065_CR74) 2017; 7
PO Syrén (4065_CR76) 2014; 126
IV Korendovych (4065_CR78) 2014; 27
SG Bell (4065_CR85) 2013; 97
Y Li (4065_CR84) 2014; 111
M Yan (4065_CR26) 2006; 128
M Bilal (4065_CR41) 2019; 20
M Bilal (4065_CR46) 2020; 166
L Lancaster (4065_CR40) 2018; 47
N Bruns (4065_CR25) 2005; 5
M Bilal (4065_CR57) 2017; 105
References_xml – start-page: 631
  year: 1999
  ident: CR37
  publication-title: Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding
– volume: 16
  start-page: 805
  year: 2015
  end-page: 810
  ident: CR63
  article-title: Simultaneous use of in silico design and a correlated mutation network as a tool to efficiently guide enzyme engineering
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201402665
– volume: 10
  start-page: 1612
  year: 2009
  end-page: 1618
  ident: CR27
  article-title: Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide
  publication-title: Biomacromol
  doi: 10.1021/bm900205r
– volume: 97
  start-page: 2515
  year: 2000
  end-page: 2520
  ident: CR42
  article-title: Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.97.6.2515
– volume: 87
  start-page: 812
  year: 2004
  end-page: 821
  ident: CR21
  article-title: Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity
  publication-title: Biophys J
  doi: 10.1529/biophysj.104.041269
– volume: 15
  start-page: 595
  year: 2002
  end-page: 601
  ident: CR68
  article-title: Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity
  publication-title: Protein Eng
  doi: 10.1093/protein/15.7.595
– volume: 13
  start-page: 20160087
  year: 2016
  ident: CR2
  article-title: Engineering a more sustainable world through catalysis and green chemistry
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2016.0087
– volume: 89
  start-page: 1282
  year: 2005
  end-page: 1287
  ident: CR31
  article-title: Enzyme activity and flexibility at very low hydration
  publication-title: Biophys J
  doi: 10.1529/biophysj.104.058677
– volume: 366
  start-page: 1255
  year: 2019
  end-page: 1259
  ident: CR3
  article-title: Design of an in vitro biocatalytic cascade for the manufacture of islatravir
  publication-title: Science
  doi: 10.1126/science.aay8484
– volume: 23
  start-page: 812
  year: 2016
  end-page: 818
  ident: CR54
  article-title: Polyacrylamide gel-entrapped fungal manganese peroxidase from Ganoderma lucidum IBL-05 with enhanced catalytic, stability, and reusability characteristics
  publication-title: Protein Pept Lett
  doi: 10.2174/0929866523999160722145740
– volume: 126
  start-page: 4945
  year: 2014
  end-page: 4949
  ident: CR76
  article-title: Entropy is key to the formation of pentacyclic terpenoids by enzyme-catalyzed polycyclization
  publication-title: Angew Chem
  doi: 10.1002/ange.201402087
– volume: 1864
  start-page: 187
  year: 2016
  end-page: 194
  ident: CR67
  article-title: Elucidation of a key position for acyltransfer activity in Candida parapsilosis lipase/acyltransferase (CpLIP2) and in Pseudozyma antarctica lipase A (CAL-A) by rational design
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbapap.2015.11.006
– volume: 151
  start-page: 56
  year: 2011
  end-page: 65
  ident: CR81
  article-title: Thermostabilization of xylanase: computational optimization of unstable residues based on thermal fluctuation analysis
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2010.10.002
– volume: 57
  start-page: 4143
  year: 2018
  end-page: 4148
  ident: CR5
  article-title: Directed evolution: bringing new chemistry to life
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201708408
– volume: 575
  start-page: 1352
  year: 2017
  end-page: 1360
  ident: CR56
  article-title: Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.09.215
– volume: 5
  start-page: 2681
  year: 2015
  end-page: 2687
  ident: CR65
  article-title: Enantioselectivity and catalysis improvements of Pseudomonas cepacia lipase with Tyr and Asp modification
  publication-title: Catal Sci Technol
  doi: 10.1039/C5CY00110B
– volume: 1
  start-page: 109
  year: 1987
  end-page: 115
  ident: CR17
  article-title: Rates of enzymic reactions in predominantly organic, low water systems
  publication-title: Biocatalysis
  doi: 10.3109/10242428709040135
– volume: 37
  start-page: 159
  year: 2019
  end-page: 182
  ident: CR50
  article-title: Modifying bio-catalytic properties of enzymes for efficient biocatalysis: a review from immobilization strategies viewpoint
  publication-title: Biocatal Biotransform
  doi: 10.1080/10242422.2018.1564744
– volume: 149
  start-page: 2204
  year: 2019
  end-page: 2217
  ident: CR51
  article-title: Tailoring multipurpose biocatalysts via protein engineering approaches: a review
  publication-title: Catal Lett
  doi: 10.1007/s10562-019-02821-8
– volume: 130
  start-page: 186
  year: 2019
  end-page: 196
  ident: CR59
  article-title: Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.02.141
– volume: 123
  start-page: 11838
  year: 2001
  end-page: 11847
  ident: CR10
  article-title: Mechanism of reaction of hydrogen peroxide with horseradish peroxidase: identification of intermediates in the catalytic cycle
  publication-title: J Am Chem Soc
  doi: 10.1021/ja011853+
– volume: 111
  start-page: 1273
  year: 2014
  end-page: 1287
  ident: CR84
  article-title: Recent advances in engineering proteins for biocatalysis
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25240
– volume: 47
  start-page: 5177
  year: 2018
  end-page: 5186
  ident: CR40
  article-title: Engineering enzyme microenvironments for enhanced biocatalysis
  publication-title: Chem Soc Rev
  doi: 10.1039/C8CS00085A
– volume: 359
  start-page: 1287
  year: 2004
  end-page: 1297
  ident: CR20
  article-title: What can we learn by studying enzymes in non–aqueous media?
  publication-title: Philosophical Trans Royal Soc Lond Ser B
  doi: 10.1098/rstb.2004.1505
– volume: 6
  start-page: 1
  year: 2012
  end-page: 10
  ident: CR47
  article-title: Improvement of catalytic efficiency, thermo-stability and dye decolorization capability of Pleurotus ostreatus IBL-02 laccase by hydrophobic sol gel entrapment
  publication-title: Chem Cent J
  doi: 10.1186/1752-153X-6-110
– volume: 567
  start-page: 96
  year: 1979
  end-page: 105
  ident: CR28
  article-title: Hydrogenase activity in the dry state isotope exchange and reversible oxidoreduction of cytochrome C3
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2744(79)90176-1
– volume: 130
  start-page: 462
  year: 2019
  end-page: 482
  ident: CR44
  article-title: Naturally-derived biopolymers: potential platforms for enzyme immobilization
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.02.152
– volume: 263
  start-page: 3194
  year: 1988
  end-page: 3201
  ident: CR23
  article-title: Enzymatic catalysis in nonaqueous solvents
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)69054-4
– volume: 27
  start-page: 113
  year: 2014
  end-page: 121
  ident: CR78
  article-title: Catalytic efficiency of designed catalytic proteins
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2014.06.006
– volume: 15
  start-page: 25
  year: 1987
  end-page: 34
  ident: CR29
  article-title: Enzyme-catalyzed, gas-phase reactions
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/BF02798504
– volume: 128
  start-page: 14612
  year: 2006
  end-page: 14618
  ident: CR71
  article-title: Modulation of the catalytic behavior of α-chymotrypsin at monolayer-protected nanoparticle surfaces
  publication-title: J Am Chem Soc
  doi: 10.1021/ja064433z
– volume: 409
  start-page: 241
  year: 2001
  end-page: 246
  ident: CR16
  article-title: Improving enzymes by using them in organic solvents
  publication-title: Nature
  doi: 10.1038/35051719
– volume: 71
  start-page: 407
  year: 2006
  end-page: 414
  ident: CR33
  article-title: Effect of additives on gas-phase catalysis with immobilised Thermoanaerobacter species alcohol dehydrogenase (ADH T)
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-005-0169-5
– volume: 7
  start-page: 3357
  year: 2017
  end-page: 3367
  ident: CR74
  article-title: Internal water dynamics control the transglycosylation/hydrolysis balance in the agarase (AgaD) of Zobellia galactanivorans
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b00348
– volume: 359
  start-page: 1309
  year: 2004
  end-page: 1320
  ident: CR30
  article-title: The use of gas–phase substrates to study enzyme catalysis at low hydration
  publication-title: Philosophical Trans Royal Soc Lond Ser B
  doi: 10.1098/rstb.2004.1494
– volume: 96
  start-page: 9475
  year: 1999
  end-page: 9478
  ident: CR24
  article-title: Striking activation of oxidative enzymes suspended in nonaqueous media
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.96.17.9475
– volume: 15
  start-page: 695
  year: 2020
  end-page: 705
  ident: CR73
  article-title: Methionine adenosyltransferase engineering to enable bioorthogonal platforms for AdoMet-utilizing enzymes
  publication-title: ACS Chem Biol
  doi: 10.1021/acschembio.9b00943
– volume: 128
  start-page: 11008
  year: 2006
  end-page: 11009
  ident: CR26
  article-title: Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability
  publication-title: J Am Chem Soc
  doi: 10.1021/ja064126t
– volume: 134
  start-page: 20513
  year: 2012
  end-page: 20520
  ident: CR79
  article-title: Computational design of an α-gliadin peptidase
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3094795
– volume: 42
  start-page: 6223
  year: 2013
  end-page: 6235
  ident: CR7
  article-title: Enzyme immobilisation in biocatalysis: why, what and how
  publication-title: Chem Soc Rev
  doi: 10.1039/C3CS60075K
– volume: 166
  start-page: 352
  year: 2020
  end-page: 373
  ident: CR46
  article-title: Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases—a review
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2020.10.195
– volume: 15
  start-page: 2817
  year: 2014
  end-page: 2823
  ident: CR13
  article-title: Rational tailoring of substrate and inhibitor affinity via ATRP polymer-based protein engineering
  publication-title: Biomacromol
  doi: 10.1021/bm5008629
– start-page: 209
  year: 2020
  end-page: 218
  ident: CR6
  article-title: Modulation of microbiome through seed bio-priming
  publication-title: Trichoderma: agricultural applications and beyond, soil biology
  doi: 10.1007/978-3-030-54758-5_10
– volume: 82
  start-page: 6748
  year: 2016
  end-page: 6756
  ident: CR75
  article-title: Facilitating the evolution of esterase activity from a promiscuous enzyme (Mhg) with catalytic functions of amide hydrolysis and carboxylic acid perhydrolysis by engineering the substrate entrance tunnel
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01817-16
– volume: 60
  start-page: 2052
  year: 2020
  end-page: 2066
  ident: CR45
  article-title: State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector—current status and future trends
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2019.1627284
– volume: 146
  start-page: 2221
  year: 2016
  end-page: 2228
  ident: CR52
  article-title: Gelatin-immobilized manganese peroxidase with novel catalytic characteristics and its industrial exploitation for fruit juice clarification purposes
  publication-title: Catal Lett
  doi: 10.1007/s10562-016-1848-9
– year: 2021
  ident: CR77
  article-title: Enzyme catalyst engineering toward the integration of biocatalysis and chemocatalysis
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2021.01.002
– volume: 146
  start-page: 31
  year: 2010
  end-page: 39
  ident: CR82
  article-title: Thermostabilization of xylanase via computational design of a flexible surface cavity
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2009.12.021
– volume: 108
  start-page: 837
  year: 2018
  end-page: 844
  ident: CR49
  article-title: Potentialities of active membranes with immobilized laccase for Bisphenol A degradation
  publication-title: Int j biol macromol
  doi: 10.1016/j.ijbiomac.2017.10.177
– volume: 97
  start-page: 3979
  year: 2013
  end-page: 3990
  ident: CR85
  article-title: Improving the affinity and activity of CYP101D2 for hydrophobic substrates
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4278-7
– volume: 42
  start-page: 6437
  year: 2013
  end-page: 6474
  ident: CR1
  article-title: Industrial use of immobilized enzymes
  publication-title: Chem Soc Rev
  doi: 10.1039/c3cs35506c
– volume: 5
  start-page: 45
  year: 2005
  end-page: 48
  ident: CR25
  article-title: Amphiphilic network as nanoreactor for enzymes in organic solvents
  publication-title: Nano Lett
  doi: 10.1021/nl048413b
– volume: 20
  year: 2019
  ident: CR41
  article-title: Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system
  publication-title: Biocatal Agric Biotechnol
  doi: 10.1016/j.bcab.2019.101205
– volume: 274
  start-page: 2424
  year: 2007
  end-page: 2436
  ident: CR22
  article-title: Modeling hydration mechanisms of enzymes in nonpolar and polar organic solvents
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2007.05781.x
– volume: 131
  start-page: S98
  year: 2007
  ident: CR12
  article-title: Beta-galactosidase immobilization on chitosan microspheres
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2007.07.169
– volume: 50
  start-page: 138
  year: 2011
  end-page: 174
  ident: CR64
  article-title: Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201000826
– volume: 113
  start-page: 62
  year: 2016
  end-page: 71
  ident: CR66
  article-title: Directing positional specificity in enzymatic synthesis of bioactive 1-phosphatidylinositol by protein engineering of a phospholipase D
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25697
– volume: 21
  start-page: 25425
  year: 2019
  end-page: 25430
  ident: CR36
  article-title: Molecular dynamics simulations reveal how graphene oxide stabilizes and activates lipase in an anhydrous gas
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C9CP05271B
– volume: 139
  start-page: 2872
  year: 2017
  end-page: 2875
  ident: CR34
  article-title: Engineered surface-immobilized enzyme that retains high levels of catalytic activity in air
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b12174
– volume: 127
  start-page: 12873
  year: 2005
  end-page: 12881
  ident: CR70
  article-title: Tunable inhibition and denaturation of α-chymotrypsin with amino acid-functionalized gold nanoparticles
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0512881
– volume: 7
  start-page: 2047
  year: 2017
  end-page: 2051
  ident: CR15
  article-title: Increasing enzyme cascade throughput by pH-engineering the microenvironment of individual enzymes
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b03431
– volume: 388
  start-page: 1
  year: 2019
  end-page: 23
  ident: CR38
  article-title: Chemical, physical, and biological coordination: an interplay between materials and enzymes as potential platforms for immobilization
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2019.02.024
– volume: 32
  start-page: 6624
  year: 1993
  end-page: 6631
  ident: CR9
  article-title: Three histidine residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: effects of the replacement on pH dependence and transition-state stabilization
  publication-title: Biochemistry
  doi: 10.1021/bi00077a015
– volume: 82
  start-page: 3192
  year: 1985
  end-page: 3196
  ident: CR18
  article-title: Enzyme-catalyzed processes in organic solvents
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.82.10.3192
– volume: 55
  start-page: 1044
  year: 2014
  end-page: 1051
  ident: CR69
  article-title: Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M043950
– volume: 119
  start-page: 278
  year: 2018
  end-page: 290
  ident: CR58
  article-title: “Smart” chemistry and its application in peroxidase immobilization using different support materials
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2018.07.134
– volume: 150
  start-page: 3572
  year: 2020
  end-page: 3583
  ident: CR60
  article-title: Immobilization of alkaline protease from Bacillus brevis using Ca-alginate entrapment strategy for improved catalytic stability, silver recovery, and dehairing potentialities
  publication-title: Catal Lett
  doi: 10.1007/s10562-020-03268-y
– volume: 207
  start-page: 342
  year: 2012
  end-page: 348
  ident: CR32
  article-title: Enhanced catalytic performance of immobilized Parvibaculum lavamentivorans alcohol dehydrogenase in a gas phase bioreactor using glycerol as an additive
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2012.06.135
– volume: 502
  start-page: 698
  year: 2013
  end-page: 702
  ident: CR4
  article-title: Discovery of new enzymes and metabolic pathways by using structure and genome context
  publication-title: Nature
  doi: 10.1038/nature12576
– volume: 10
  start-page: 747
  year: 2020
  ident: CR61
  article-title: Main structural targets for engineering lipase substrate specificity
  publication-title: Catalysts
  doi: 10.3390/catal10070747
– volume: 105
  start-page: 328
  year: 2017
  end-page: 335
  ident: CR57
  article-title: Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2017.07.042
– volume: 485
  start-page: 185
  year: 2012
  end-page: 194
  ident: CR83
  article-title: Engineering the third wave of biocatalysis
  publication-title: Nature
  doi: 10.1038/nature11117
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR35
  article-title: Graphene oxide enabled long-term enzymatic transesterification in an anhydrous gas flux
  publication-title: Nat Commun
– volume: 9
  start-page: 3514
  year: 2019
  end-page: 3519
  ident: CR14
  article-title: Immobilization adjusted clock reaction in the urea–urease–H+ reaction system
  publication-title: RSC Adv
  doi: 10.1039/C8RA09244C
– volume: 4
  start-page: 1004
  year: 2014
  end-page: 1009
  ident: CR72
  article-title: Optical control of enzyme enantioselectivity in solid phase
  publication-title: ACS Catal
  doi: 10.1021/cs401115s
– volume: 9
  start-page: 2071
  year: 2018
  end-page: 2079
  ident: CR48
  article-title: Delignification of lignocellulose biomasses by alginate–chitosan immobilized laccase produced from Trametes versicolor IBL-04
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-017-9991-0
– volume: 188
  start-page: 137
  year: 2017
  end-page: 143
  ident: CR55
  article-title: Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2016.12.015
– start-page: 315
  year: 2014
  end-page: 333
  ident: CR62
  article-title: Computational tools for directed evolution a comparison of prospective and retrospective strategies
  publication-title: Directed Evolution Library Creation
  doi: 10.1007/978-1-4939-1053-3_21
– volume: 9
  start-page: 271
  year: 2021
  ident: CR39
  article-title: On catalytic kinetics of enzymes
  publication-title: Processes
  doi: 10.3390/pr9020271
– volume: 243
  start-page: 375
  year: 1968
  end-page: 396
  ident: CR11
  article-title: Use of water-insoluble enzyme derivatives in biochemical analysis and separation
  publication-title: Fresenius’ Zeitschrift für analytische Chemie
  doi: 10.1007/BF00530712
– volume: 18
  start-page: 2125
  year: 2009
  end-page: 2138
  ident: CR80
  article-title: Computational design of xylose reductase for altered cofactor specificity
  publication-title: Protein Sci
  doi: 10.1002/pro.227
– year: 2003
  ident: CR8
  publication-title: Comprehensive enzyme kinetics
– volume: 183
  start-page: 836
  year: 2016
  end-page: 842
  ident: CR53
  article-title: Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2016.09.040
– volume: 79
  start-page: 3244
  year: 2000
  end-page: 3257
  ident: CR19
  article-title: The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(00)76557-X
– volume: 113
  start-page: 983
  year: 2018
  end-page: 990
  ident: CR43
  article-title: Horseradish peroxidase immobilization by copolymerization into cross-linked polyacrylamide gel and its dye degradation and detoxification potential
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2018.02.062
– volume: 97
  start-page: 2515
  year: 2000
  ident: 4065_CR42
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.97.6.2515
– volume: 188
  start-page: 137
  year: 2017
  ident: 4065_CR55
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2016.12.015
– volume: 388
  start-page: 1
  year: 2019
  ident: 4065_CR38
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2019.02.024
– volume: 37
  start-page: 159
  year: 2019
  ident: 4065_CR50
  publication-title: Biocatal Biotransform
  doi: 10.1080/10242422.2018.1564744
– volume: 131
  start-page: S98
  year: 2007
  ident: 4065_CR12
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2007.07.169
– volume: 146
  start-page: 2221
  year: 2016
  ident: 4065_CR52
  publication-title: Catal Lett
  doi: 10.1007/s10562-016-1848-9
– volume: 16
  start-page: 805
  year: 2015
  ident: 4065_CR63
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201402665
– volume: 149
  start-page: 2204
  year: 2019
  ident: 4065_CR51
  publication-title: Catal Lett
  doi: 10.1007/s10562-019-02821-8
– year: 2021
  ident: 4065_CR77
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2021.01.002
– volume: 15
  start-page: 2817
  year: 2014
  ident: 4065_CR13
  publication-title: Biomacromol
  doi: 10.1021/bm5008629
– volume: 166
  start-page: 352
  year: 2020
  ident: 4065_CR46
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2020.10.195
– volume: 20
  year: 2019
  ident: 4065_CR41
  publication-title: Biocatal Agric Biotechnol
  doi: 10.1016/j.bcab.2019.101205
– volume: 4
  start-page: 1004
  year: 2014
  ident: 4065_CR72
  publication-title: ACS Catal
  doi: 10.1021/cs401115s
– volume: 5
  start-page: 45
  year: 2005
  ident: 4065_CR25
  publication-title: Nano Lett
  doi: 10.1021/nl048413b
– volume: 60
  start-page: 2052
  year: 2020
  ident: 4065_CR45
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2019.1627284
– volume: 6
  start-page: 1
  year: 2012
  ident: 4065_CR47
  publication-title: Chem Cent J
  doi: 10.1186/1752-153X-6-110
– volume: 359
  start-page: 1287
  year: 2004
  ident: 4065_CR20
  publication-title: Philosophical Trans Royal Soc Lond Ser B
  doi: 10.1098/rstb.2004.1505
– volume: 130
  start-page: 462
  year: 2019
  ident: 4065_CR44
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.02.152
– start-page: 315
  volume-title: Directed Evolution Library Creation
  year: 2014
  ident: 4065_CR62
  doi: 10.1007/978-1-4939-1053-3_21
– volume: 111
  start-page: 1273
  year: 2014
  ident: 4065_CR84
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25240
– volume: 150
  start-page: 3572
  year: 2020
  ident: 4065_CR60
  publication-title: Catal Lett
  doi: 10.1007/s10562-020-03268-y
– volume: 575
  start-page: 1352
  year: 2017
  ident: 4065_CR56
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.09.215
– start-page: 209
  volume-title: Trichoderma: agricultural applications and beyond, soil biology
  year: 2020
  ident: 4065_CR6
  doi: 10.1007/978-3-030-54758-5_10
– volume: 128
  start-page: 14612
  year: 2006
  ident: 4065_CR71
  publication-title: J Am Chem Soc
  doi: 10.1021/ja064433z
– volume: 15
  start-page: 595
  year: 2002
  ident: 4065_CR68
  publication-title: Protein Eng
  doi: 10.1093/protein/15.7.595
– volume: 151
  start-page: 56
  year: 2011
  ident: 4065_CR81
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2010.10.002
– volume: 50
  start-page: 138
  year: 2011
  ident: 4065_CR64
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201000826
– volume: 502
  start-page: 698
  year: 2013
  ident: 4065_CR4
  publication-title: Nature
  doi: 10.1038/nature12576
– volume: 15
  start-page: 25
  year: 1987
  ident: 4065_CR29
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/BF02798504
– volume: 97
  start-page: 3979
  year: 2013
  ident: 4065_CR85
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4278-7
– volume: 128
  start-page: 11008
  year: 2006
  ident: 4065_CR26
  publication-title: J Am Chem Soc
  doi: 10.1021/ja064126t
– volume: 23
  start-page: 812
  year: 2016
  ident: 4065_CR54
  publication-title: Protein Pept Lett
  doi: 10.2174/0929866523999160722145740
– volume: 113
  start-page: 62
  year: 2016
  ident: 4065_CR66
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25697
– volume: 32
  start-page: 6624
  year: 1993
  ident: 4065_CR9
  publication-title: Biochemistry
  doi: 10.1021/bi00077a015
– volume: 21
  start-page: 25425
  year: 2019
  ident: 4065_CR36
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C9CP05271B
– volume: 146
  start-page: 31
  year: 2010
  ident: 4065_CR82
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2009.12.021
– volume: 130
  start-page: 186
  year: 2019
  ident: 4065_CR59
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.02.141
– volume: 126
  start-page: 4945
  year: 2014
  ident: 4065_CR76
  publication-title: Angew Chem
  doi: 10.1002/ange.201402087
– volume: 13
  start-page: 20160087
  year: 2016
  ident: 4065_CR2
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2016.0087
– volume: 79
  start-page: 3244
  year: 2000
  ident: 4065_CR19
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(00)76557-X
– volume: 5
  start-page: 2681
  year: 2015
  ident: 4065_CR65
  publication-title: Catal Sci Technol
  doi: 10.1039/C5CY00110B
– volume: 82
  start-page: 3192
  year: 1985
  ident: 4065_CR18
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.82.10.3192
– volume: 127
  start-page: 12873
  year: 2005
  ident: 4065_CR70
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0512881
– volume: 134
  start-page: 20513
  year: 2012
  ident: 4065_CR79
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3094795
– volume: 139
  start-page: 2872
  year: 2017
  ident: 4065_CR34
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b12174
– volume: 71
  start-page: 407
  year: 2006
  ident: 4065_CR33
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-005-0169-5
– volume: 207
  start-page: 342
  year: 2012
  ident: 4065_CR32
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2012.06.135
– volume: 9
  start-page: 2071
  year: 2018
  ident: 4065_CR48
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-017-9991-0
– volume: 183
  start-page: 836
  year: 2016
  ident: 4065_CR53
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2016.09.040
– volume: 409
  start-page: 241
  year: 2001
  ident: 4065_CR16
  publication-title: Nature
  doi: 10.1038/35051719
– volume: 87
  start-page: 812
  year: 2004
  ident: 4065_CR21
  publication-title: Biophys J
  doi: 10.1529/biophysj.104.041269
– volume: 9
  start-page: 271
  year: 2021
  ident: 4065_CR39
  publication-title: Processes
  doi: 10.3390/pr9020271
– volume: 119
  start-page: 278
  year: 2018
  ident: 4065_CR58
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2018.07.134
– volume: 42
  start-page: 6223
  year: 2013
  ident: 4065_CR7
  publication-title: Chem Soc Rev
  doi: 10.1039/C3CS60075K
– volume: 359
  start-page: 1309
  year: 2004
  ident: 4065_CR30
  publication-title: Philosophical Trans Royal Soc Lond Ser B
  doi: 10.1098/rstb.2004.1494
– volume: 55
  start-page: 1044
  year: 2014
  ident: 4065_CR69
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M043950
– volume: 113
  start-page: 983
  year: 2018
  ident: 4065_CR43
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2018.02.062
– volume: 108
  start-page: 837
  year: 2018
  ident: 4065_CR49
  publication-title: Int j biol macromol
  doi: 10.1016/j.ijbiomac.2017.10.177
– volume: 123
  start-page: 11838
  year: 2001
  ident: 4065_CR10
  publication-title: J Am Chem Soc
  doi: 10.1021/ja011853+
– volume: 10
  start-page: 1612
  year: 2009
  ident: 4065_CR27
  publication-title: Biomacromol
  doi: 10.1021/bm900205r
– volume: 18
  start-page: 2125
  year: 2009
  ident: 4065_CR80
  publication-title: Protein Sci
  doi: 10.1002/pro.227
– volume: 7
  start-page: 3357
  year: 2017
  ident: 4065_CR74
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b00348
– volume: 57
  start-page: 4143
  year: 2018
  ident: 4065_CR5
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201708408
– volume: 82
  start-page: 6748
  year: 2016
  ident: 4065_CR75
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01817-16
– volume: 9
  start-page: 3514
  year: 2019
  ident: 4065_CR14
  publication-title: RSC Adv
  doi: 10.1039/C8RA09244C
– volume: 366
  start-page: 1255
  year: 2019
  ident: 4065_CR3
  publication-title: Science
  doi: 10.1126/science.aay8484
– volume: 7
  start-page: 2047
  year: 2017
  ident: 4065_CR15
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b03431
– volume: 1
  start-page: 109
  year: 1987
  ident: 4065_CR17
  publication-title: Biocatalysis
  doi: 10.3109/10242428709040135
– volume: 1864
  start-page: 187
  year: 2016
  ident: 4065_CR67
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbapap.2015.11.006
– volume: 105
  start-page: 328
  year: 2017
  ident: 4065_CR57
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2017.07.042
– volume-title: Comprehensive enzyme kinetics
  year: 2003
  ident: 4065_CR8
– volume: 243
  start-page: 375
  year: 1968
  ident: 4065_CR11
  publication-title: Fresenius’ Zeitschrift für analytische Chemie
  doi: 10.1007/BF00530712
– volume: 89
  start-page: 1282
  year: 2005
  ident: 4065_CR31
  publication-title: Biophys J
  doi: 10.1529/biophysj.104.058677
– volume: 47
  start-page: 5177
  year: 2018
  ident: 4065_CR40
  publication-title: Chem Soc Rev
  doi: 10.1039/C8CS00085A
– volume: 567
  start-page: 96
  year: 1979
  ident: 4065_CR28
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2744(79)90176-1
– volume: 27
  start-page: 113
  year: 2014
  ident: 4065_CR78
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2014.06.006
– volume: 274
  start-page: 2424
  year: 2007
  ident: 4065_CR22
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2007.05781.x
– volume: 263
  start-page: 3194
  year: 1988
  ident: 4065_CR23
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)69054-4
– start-page: 631
  volume-title: Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding
  year: 1999
  ident: 4065_CR37
– volume: 15
  start-page: 695
  year: 2020
  ident: 4065_CR73
  publication-title: ACS Chem Biol
  doi: 10.1021/acschembio.9b00943
– volume: 485
  start-page: 185
  year: 2012
  ident: 4065_CR83
  publication-title: Nature
  doi: 10.1038/nature11117
– volume: 96
  start-page: 9475
  year: 1999
  ident: 4065_CR24
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.96.17.9475
– volume: 42
  start-page: 6437
  year: 2013
  ident: 4065_CR1
  publication-title: Chem Soc Rev
  doi: 10.1039/c3cs35506c
– volume: 10
  start-page: 1
  year: 2019
  ident: 4065_CR35
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07882-8
– volume: 10
  start-page: 747
  year: 2020
  ident: 4065_CR61
  publication-title: Catalysts
  doi: 10.3390/catal10070747
SSID ssj0009719
Score 2.453461
Snippet The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1227
SubjectTerms biocatalysis
biocatalysts
Catalysis
Catalysts
Chemical reaction, Rate of
Chemistry
Chemistry and Materials Science
dissociation
Engineering
Enzymes
immobilized enzymes
Industrial Chemistry/Chemical Engineering
Organometallic Chemistry
Physical Chemistry
Proteins
Reaction kinetics
State-of-the-art reviews
substrate specificity
Substrates
Vapor phases
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPCAqIQIsMQuIAkeI4dhJu24qqIJUD7Up7s_ysKrUJanYP5dczk0d3y0viGHnixJ6xZ8ae-QbgbYZrRkZO-HYyT1FDZGntRZ5664pKBo6t5Cgef1VH8-LLQi7GpLBuinafriT7nXoj2Q11dUrR5yh4SqbyLtyT5LujFM_z2Rpqt-zLeXA6_BNlvhhTZf7cxy119Oum_NvtaK90Dh_Bw9FaZLOBvY_hTmh24P7BVKRtB7Y38ASfgEan2uBGgg8MDTt2QiknrI1s_7ztz2kIfoRtvMLsNTs150MUHjb8uL4M7Jhi9DYS4D6yGRuuEJ7C_PDT6cFROlZQSB2uxWVqVbQeNbTzsValj05Gy2sbuQsqc0W0gau8NtHxGAmXJXgrTOVzK7jJTebFM9hq2iY8B4b9RFdlHi0kUSiVVd5ShJszvsyMdSIBPk2kdiO8OFW5uNBrYGSafI2Tr_vJ1zKB9zfvfB_ANf5J_Yb4owm1oqGwmDOz6jr9-eSbnpXoZaLnVpcJvBuJYoufd2bMMsBBENDVLcrdic96XLedzsu6rKtCFiqB1zfNyFO6RjFNaFedFvg_oqaK8gl8mORj3cXfB_Di_8hfwgOqbT9EV-7C1vJqFfbQAlraV73A_wQkVPvh
  priority: 102
  providerName: Springer Nature
Title Broadening the Scope of Biocatalysis Engineering by Tailoring Enzyme Microenvironment: A Review
URI https://link.springer.com/article/10.1007/s10562-022-04065-5
https://www.proquest.com/docview/2797984546
https://www.proquest.com/docview/3040393940
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7gE4ICigBsrKICQOEBHnHS4oW3ZbQK1Q25WWk-VHjCpBUsjuofx6ZhKnuwXRUxT5kXhsz3g8M98AvAxwzySWE75dEvooIQK_MFHoG6XjPKk4lpKieHScHs7jT4tk4S7cWudWOfDEjlGbRtMd-dswK7Iij5M4fX_x06esUWRddSk0tmCELDhH5Ws0mR5_OVnD7mZdag9OF4FRFi5c2IwLnkPZ75M3Oy7kNPGTa6Lpbwb9j6W0E0Cz-3DPnRxZ2U_1A7hV1Ttwe39I2LYDdzewBR-CQAVbIlPBF4aHPHZK4SessWxy3nR3NgRFwjaaMHXJzuR575GHBb8vf1TsiPz1NoLh3rGS9eaERzCfTc_2D32XTcHXuC-XvkqtMiittbFFmhmrE6t4oSzXVRro2KqKp2EhrebWEkZLZVQkcxOqiMtQBiZ6DNt1U1e7wLAfq_PA4GkpitM0yI0ibzctTRZIpSMP-EBIoR3UOGW8-C7WIMlEfIHEFx3xReLB66s2Fz3Qxo21X9D8CEKwqMlF5ptcta34eHoiygw1TtTiisyDV66SbfDzWrqIAxwEgV5dq7k3zLNwe7gV6xXnwfOrYpxTMqnIumpWrYjwf6KCsst78GZYH-su_j-AJzd_8Sncobz2vWflHmwvf62qZ3j6WaoxbOWzgzGMysmHyYyeB18_T8du4WPpPCz_ACEuBXQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEBQQgQIGgThARGLniYTQUlh2abcHupX2ZvyIUSVICtkVWn4Uv5GZPLpbEL31GPkVj8eeGXvmG4AnAe6Z2IWEbxdzHyVE4OdWcN9qE2VxEWIpGYqTg2R0FH2cxbMN-N3HwpBbZX8mNge1rQzdkb_kaZ7mWRRHyZuT7z5ljaLX1T6FRssWe8XyJ5ps9evxO1zfp5wP3093R36XVcA3yJ9zXydOW5Raxro8Sa0zsdNhrl1oiiQwkdNFmPBcORM6R1glhdVCZZZrESquAiuw30twORIipx2VDT-sQH7TJpFISNeOIuWzLkinC9VDTcMn33ncNknsx2cE4d_i4J932UbcDa_DtU5PZYOWsW7ARlFuw9Zunx5uG66uIRneBInmvMIjDD8YqpTskIJdWOXY2-OquSEi4BO21oTpJZuq49b_Dwt-Lb8VbELegWuhd6_YgLWPF7fg6EKofBs2y6os7gDDfpzJAou6mYiSJMisJt86o2waKG2EB2FPSGk6YHPKr_FVriCZifgSiS8b4svYg-enbU5aWI9zaz-m9ZGEl1GSQ84XtahrOT78JAcp2rdoM-apB8-6Sq7C4Y3q4htwEgSxdabmTr_Osjsxarnibw8enRbjmtIDjiqLalFLgf8jcspl78GLnj9WXfx_AnfPH_EhbI2mk325Pz7YuwdXOOpxrU_nDmzOfyyK-6h3zfWDhtkZfL7o3fUHZns_dw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkXgcEBQQgQIGIXGAqHGcOAm3pbBqgVaIdqW9WX6iSm1SsbuH8uuZyaOb8pI4RnaceGbsGXtmvgF4meCayQMnfLs8jVFDJHHlRBo7Y7My9xxb6aC4fyB3Z9nHeT4fZfG30e6DS7LLaSCUpnq5febC9ijxDfV2TJHoKIQyj_OrcA23Y05yPUsna9jdoi3twekiUBTpvE-b-fMYl1TTrxv0b57SVgFN78Dt3nJkk47Vd-GKrzfhxs5QsG0Tbo2wBe-BwgO2xk0FHxgaeeyQ0k9YE9i746a9syEoEjZ6hZlzdqSPu4g8bPhxfurZPsXrjZLh3rIJ69wJ92E2_XC0sxv31RRii-tyGRsZjENtbV2oZOGCzYPhlQncepnYLBjPZVrpYHkIhNHinRG6dKkRXKc6ceIBbNRN7R8Cw3GCLROH1pLIpExKZyjazWpXJNpYEQEfCKlsDzVOFS9O1BokmYivkPiqJb7KI3h98c5ZB7Txz94viD-KECxqCpH5pleLhdo7_KomBZ448RRXFRG86juFBj9vdZ9xgJMg0KtLPbcGPqt-DS9UWlRFVWZ5JiN4ftGMPCWXiq59s1oogf8jKqouH8GbQT7WQ_x9Ao_-r_szuP7l_VR93jv49BhuUsn7LuhyCzaW31f-CRpGS_O0lf2fxcADHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadening+the+Scope+of+Biocatalysis+Engineering+by+Tailoring+Enzyme+Microenvironment%3A+A+Review&rft.jtitle=Catalysis+letters&rft.au=Li%2C+Wenqian&rft.au=Bilal%2C+Muhammad&rft.au=Singh%2C+Anil+Kumar&rft.au=Sher%2C+Farooq&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1011-372X&rft.eissn=1572-879X&rft.volume=153&rft.issue=5&rft.spage=1227&rft.epage=1239&rft_id=info:doi/10.1007%2Fs10562-022-04065-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-372X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-372X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-372X&client=summon