Broadening the Scope of Biocatalysis Engineering by Tailoring Enzyme Microenvironment: A Review
The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literatu...
Saved in:
Published in | Catalysis letters Vol. 153; no. 5; pp. 1227 - 1239 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics (
K
M
and
k
cat
), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses.
Graphical abstract |
---|---|
AbstractList | The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics (KM and kcat), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses. The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics (K.sub.M and k.sub.cat), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses. Graphical abstract The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics (K.sub.M and k.sub.cat), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses. The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics ( K M and k cat ), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses. Graphical abstract The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from traditional to technologically advanced methods have been proposed and deployed to develop high efficacy enzymes. There is a plethora of literature on simple enzyme immobilization through different materials as support carriers, even at the micro- and nanoscale. Regardless of extensive strategic efforts, the existing literature lacks deep insight into tailoring the microenvironment surrounding the target enzyme molecules and can sophisticatedly integrate the bio-catalysis for multipurpose applications. The ongoing advancement in the industrial sector also demands catalysts with unique features. For instance, catalytic turnover, substrate affinity, stability, specificity, selectivity, resistivity against reaction impurities or inhibitors, prevention of subunit dissociation, ease in recovery, and reusability are highly requisite features. This review spotlight state-of-the-art protein engineering approaches that facilitate the redesigning of robust catalysts or fine-tuning the catalytic microenvironment of enzymes. The entire work critically focuses on protein engineering approaches, i.e., regulating pH microenvironment, creating a water-like microenvironment, activating enzyme catalysis in organic solvents and gas phase, tuning reaction kinetics (KM and kcₐₜ), engineering substrate specificity, reaction promiscuity, computational design, and structure-guided biocatalyst engineering. This study unveils the advanced insights of enzyme microenvironment engineering, which can also be considered catalytic yield enhancement strategies to green the future bio-catalysis research for industrial bioprocesses. |
Audience | Academic |
Author | Franco, Marcelo Singh, Anil Kumar Iqbal, Hafiz M. N. Américo-Pinheiro, Juliana Heloisa Pinê Li, Wenqian Bilal, Muhammad Ashraf, S. Salman Sher, Farooq |
Author_xml | – sequence: 1 givenname: Wenqian surname: Li fullname: Li, Wenqian organization: School of Life Science and Food Engineering, Huaiyin Institute of Technology – sequence: 2 givenname: Muhammad surname: Bilal fullname: Bilal, Muhammad email: bilaluaf@hotmail.com organization: School of Life Science and Food Engineering, Huaiyin Institute of Technology – sequence: 3 givenname: Anil Kumar surname: Singh fullname: Singh, Anil Kumar organization: Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Academy of Scientific and Innovative Research (AcSIR) – sequence: 4 givenname: Farooq orcidid: 0000-0003-2890-5912 surname: Sher fullname: Sher, Farooq organization: Department of Engineering, School of Science and Technology, Nottingham Trent University – sequence: 5 givenname: S. Salman orcidid: 0000-0003-4961-5527 surname: Ashraf fullname: Ashraf, S. Salman organization: Department of Biology, College of Arts and Sciences, Khalifa University, Center for Biotechnology (BTC), Khalifa University, Center for Catalysis and Separation (CeCas), Khalifa University – sequence: 6 givenname: Marcelo orcidid: 0000-0001-9306-0739 surname: Franco fullname: Franco, Marcelo organization: Department of Exact and Technological Sciences, State University of Santa Cruz – sequence: 7 givenname: Juliana Heloisa Pinê orcidid: 0000-0001-6252-828X surname: Américo-Pinheiro fullname: Américo-Pinheiro, Juliana Heloisa Pinê organization: Brazil University – sequence: 8 givenname: Hafiz M. N. orcidid: 0000-0003-4855-2720 surname: Iqbal fullname: Iqbal, Hafiz M. N. email: hafiz.iqbal@tec.mx organization: Tecnologico de Monterrey, School of Engineering and Sciences |
BookMark | eNp9kU9rHCEYh6Wk0GTbL9DTQC_tYVJ1Rh1724RtE0gpJCnkJo7zujXM6FbdpNtPHzdTKMkhiH95HtH3d4QOfPCA0HuCjwnG4nMimHFaY1p6izmr2St0SJigdSfkzUFZY0LqRtCbN-gopVuMsRREHiJ1EoMewDu_rvIvqK5M2EAVbHXigtFZj7vkUrXya-cB4p7qd9W1dmN43Kz8390E1XdnYgB_52LwE_j8pVpWl3Dn4P4tem31mODdv3mBfn5dXZ-e1Rc_vp2fLi9q01KW657bfiCMmsFKLgZrmO2J7C0xwLFpbQ-EU6mtIdZyTDgMfaO7gfYN0VTjoVmgj_O9mxh-byFlNblkYBy1h7BNqillaWQjy7hAH56ht2EbfXmdokIK2bWs5YU6nqm1HkE5b0OO2pQ2wORMqb515Xwp2raTkktRhE9PhMJk-JPXepuSOr-6fMp2M1vKllIEq4zLOruixFJbRbDax6rmWFWJVT3GqlhR6TN1E92k4-5lqZmltNnHBvH_l1-wHgBIwLd4 |
CitedBy_id | crossref_primary_10_1039_D4RA01007H crossref_primary_10_1016_j_cscee_2024_100749 crossref_primary_10_1016_j_ijbiomac_2023_127358 crossref_primary_10_1007_s40726_024_00310_0 crossref_primary_10_1039_D4ME00017J crossref_primary_10_1002_app_56062 crossref_primary_10_1016_j_ijbiomac_2024_135211 crossref_primary_10_1186_s13036_024_00440_5 crossref_primary_10_1039_D3EY00239J crossref_primary_10_1016_j_colsurfa_2024_134444 crossref_primary_10_1002_app_55755 crossref_primary_10_1016_j_psep_2025_106938 crossref_primary_10_1016_j_colsurfa_2024_133319 |
Cites_doi | 10.1002/cbic.201402665 10.1021/bm900205r 10.1073/pnas.97.6.2515 10.1529/biophysj.104.041269 10.1093/protein/15.7.595 10.1098/rsif.2016.0087 10.1529/biophysj.104.058677 10.1126/science.aay8484 10.2174/0929866523999160722145740 10.1002/ange.201402087 10.1016/j.bbapap.2015.11.006 10.1016/j.jbiotec.2010.10.002 10.1002/anie.201708408 10.1016/j.scitotenv.2016.09.215 10.1039/C5CY00110B 10.3109/10242428709040135 10.1080/10242422.2018.1564744 10.1007/s10562-019-02821-8 10.1016/j.ijbiomac.2019.02.141 10.1021/ja011853+ 10.1002/bit.25240 10.1039/C8CS00085A 10.1098/rstb.2004.1505 10.1186/1752-153X-6-110 10.1016/0005-2744(79)90176-1 10.1016/j.ijbiomac.2019.02.152 10.1016/S0021-9258(18)69054-4 10.1016/j.sbi.2014.06.006 10.1007/BF02798504 10.1021/ja064433z 10.1038/35051719 10.1007/s00253-005-0169-5 10.1021/acscatal.7b00348 10.1098/rstb.2004.1494 10.1073/pnas.96.17.9475 10.1021/acschembio.9b00943 10.1021/ja064126t 10.1021/ja3094795 10.1039/C3CS60075K 10.1016/j.ijbiomac.2020.10.195 10.1021/bm5008629 10.1007/978-3-030-54758-5_10 10.1128/AEM.01817-16 10.1080/10408398.2019.1627284 10.1007/s10562-016-1848-9 10.1016/j.tibtech.2021.01.002 10.1016/j.jbiotec.2009.12.021 10.1016/j.ijbiomac.2017.10.177 10.1007/s00253-012-4278-7 10.1039/c3cs35506c 10.1021/nl048413b 10.1016/j.bcab.2019.101205 10.1111/j.1742-4658.2007.05781.x 10.1016/j.jbiotec.2007.07.169 10.1002/anie.201000826 10.1002/bit.25697 10.1039/C9CP05271B 10.1021/jacs.6b12174 10.1021/ja0512881 10.1021/acscatal.6b03431 10.1016/j.ccr.2019.02.024 10.1021/bi00077a015 10.1073/pnas.82.10.3192 10.1194/jlr.M043950 10.1016/j.ijbiomac.2018.07.134 10.1007/s10562-020-03268-y 10.1016/j.cej.2012.06.135 10.1038/nature12576 10.3390/catal10070747 10.1016/j.ijbiomac.2017.07.042 10.1038/nature11117 10.1039/C8RA09244C 10.1021/cs401115s 10.1007/s12649-017-9991-0 10.1016/j.jenvman.2016.12.015 10.1007/978-1-4939-1053-3_21 10.3390/pr9020271 10.1007/BF00530712 10.1002/pro.227 10.1016/j.jenvman.2016.09.040 10.1016/S0006-3495(00)76557-X 10.1016/j.ijbiomac.2018.02.062 10.1038/s41467-018-07882-8 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2023 Springer The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2023 Springer – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
DOI | 10.1007/s10562-022-04065-5 |
DatabaseName | CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Materials Science Collection AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1572-879X |
EndPage | 1239 |
ExternalDocumentID | A744899697 10_1007_s10562_022_04065_5 |
GrantInformation_xml | – fundername: Consejo Nacional de Ciencia y Tecnología grantid: CVU: 735340 funderid: http://dx.doi.org/10.13039/501100003141 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZMTXR ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c425t-b6fbd152cdf967dfc5fb19bf1ce60c4fbe1629afc1ff6016edb3a8d2b31a2a0d3 |
IEDL.DBID | BENPR |
ISSN | 1011-372X |
IngestDate | Fri Jul 11 08:14:52 EDT 2025 Fri Jul 25 11:00:52 EDT 2025 Tue Jun 10 21:06:52 EDT 2025 Fri Jun 27 05:42:12 EDT 2025 Thu Apr 24 23:08:59 EDT 2025 Tue Jul 01 02:51:33 EDT 2025 Fri Feb 21 02:44:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Protein engineering Yield enhancement strategies Bio-catalysis Microenvironment engineering Computational modeling Enzyme engineering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-b6fbd152cdf967dfc5fb19bf1ce60c4fbe1629afc1ff6016edb3a8d2b31a2a0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9306-0739 0000-0003-4855-2720 0000-0001-6252-828X 0000-0003-2890-5912 0000-0003-4961-5527 |
PQID | 2797984546 |
PQPubID | 2043868 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3040393940 proquest_journals_2797984546 gale_infotracacademiconefile_A744899697 gale_incontextgauss_ISR_A744899697 crossref_citationtrail_10_1007_s10562_022_04065_5 crossref_primary_10_1007_s10562_022_04065_5 springer_journals_10_1007_s10562_022_04065_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230500 2023-05-00 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 5 year: 2023 text: 20230500 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Catalysis letters |
PublicationTitleAbbrev | Catal Lett |
PublicationYear | 2023 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Bilal, Asgher, Iqbal (CR54) 2016; 23 Bilal, Iqbal (CR41) 2019; 20 Bilal, Ashraf, Cui, Lou, Franco, Mulla (CR46) 2020; 166 Syrén, Hammer, Claasen, Hauer (CR76) 2014; 126 Bilal, Iqbal, Hu, Wang, Zhang (CR55) 2017; 188 Klibanov (CR16) 2001; 409 Dai, Klibanov (CR24) 1999; 96 Sauna, Ambudkar (CR42) 2000; 97 Asgher, Kamal, Iqbal (CR47) 2012; 6 Nobili, Tao, Pavlidis, van den Bergh, Joosten, Tan (CR63) 2015; 16 Li, Cirino (CR84) 2014; 111 Albayati, Masomian, Ishak, Mohamad Ali, Thean, Shariff (CR61) 2020; 10 Sarkar, Chattopadhyay, Singh, Devika, Pal, Parihar, Pal, Singh, Rakshit, Manoharachary, Singh, Varma (CR6) 2020 Lancaster, Abdallah, Banta, Wheeldon (CR40) 2018; 47 Barrios-Estrada, de Jesús Rostro-Alanis, Parra, Belleville, Sanchez-Marcano, Iqbal (CR49) 2018; 108 Bilal, Iqbal, Hu, Wang, Zhang (CR56) 2017; 575 Sheldon, van Pelt (CR7) 2013; 42 Micaeˆlo, Soares (CR22) 2007; 274 Zhang, Wang, Hess (CR15) 2017; 7 Bautista-Barrufet, López-Gallego, Rojas-Cervellera, Rovira, Pericàs, Guisán (CR72) 2014; 4 Sheldon (CR2) 2016; 13 Gordon, Stanley, Wolf, Toland, Wu, Hadidi (CR79) 2012; 134 Tarek, Tobias (CR19) 2000; 79 Khoury, Fazelinia, Chin, Pantazes, Cirino, Maranas (CR80) 2009; 18 Leskovac (CR8) 2003 Jan, Subileau, Deyrieux, Perrier, Dubreucq (CR67) 2016; 1864 Huber, Clinger, Liu, Xu, Miller, Phillips (CR73) 2020; 15 Joo, Pack, Kim, Yoo (CR81) 2011; 151 Badieyan, Wang, Zou, Li, Herron, Abbott (CR34) 2017; 139 Bilal, Iqbal, Shah, Hu, Wang, Zhang (CR53) 2016; 183 Cao, Li, Ge (CR77) 2021 Nagayama, Spieß, Büchs (CR32) 2012; 207 Zhao, Kumar, Sakai, Vetting, Wood, Brown (CR4) 2013; 502 Bruns, Tiller (CR25) 2005; 5 David, Irague, Jouanneau, Daligault, Czjzek, Sanejouand (CR74) 2017; 7 Qamar, Asgher, Bilal (CR60) 2020; 150 Trivedi, Spiess, Daussmann, Büchs (CR33) 2006; 71 Ge, Lu, Wang, Liu (CR27) 2009; 10 Xu, Fu, Chen, Wang, Jian, Zhang (CR35) 2019; 10 Yan, Wang, Sun, Zhu, Wu (CR75) 2016; 82 Dunn, Daniel (CR30) 2004; 359 Barzana, Klibanov, Karel (CR29) 1987; 15 Yan, Ge, Liu, Ouyang (CR26) 2006; 128 Zaks, Klibanov (CR18) 1985; 82 Bilal, Iqbal (CR44) 2019; 130 Nakamura, Haga, Yamane (CR9) 1993; 32 Reetz (CR64) 2011; 50 Fu, Xu, Chen, Wang, Lu, Wu (CR36) 2019; 21 Bilal, Iqbal (CR51) 2019; 149 Bilal, Iqbal (CR45) 2020; 60 Fersht (CR37) 1999 Zaugg, Gumulya, Gillam, Bodén, Gillam, Copp, Ackerley (CR62) 2014 Kimura, Suzuki, Inokuchi, Yagi (CR28) 1979; 567 Biro, Nemeth, Sisak, Gyenis, Szajani (CR12) 2007; 131 Li, Yue, Li, Pan, Yang (CR65) 2015; 5 Huffman, Fryszkowska, Alvizo, Borra-Garske, Campos, Devine (CR3) 2019; 366 Schmitt, Brocca, Schmid, Pleiss (CR68) 2002; 15 Yang, Dordick, Garde (CR21) 2004; 87 Yu, Zhu, Xiao, Xu (CR69) 2014; 55 You, De, Han, Rotello (CR70) 2005; 127 Bilal, Zhao, Noreen, Shah, Bharagava, Iqbal (CR50) 2019; 37 Yang, Fan, Cao, Deng, Pojman, Ji (CR14) 2019; 9 Arnold (CR5) 2018; 57 Bilal, Rasheed, Iqbal, Hu, Wang, Zhang (CR57) 2017; 105 Kurkal, Daniel, Finney, Tehei, Dunn, Smith (CR31) 2005; 89 Bilal, Asgher, Iqbal, Hu, Zhang (CR52) 2016; 146 Bilal, Cui, Iqbal (CR59) 2019; 130 Asgher, Wahab, Bilal, Iqbal (CR48) 2018; 9 Zaks, Klibanov (CR23) 1988; 263 Bilal, Iqbal (CR38) 2019; 388 Goldstein, Katchalski (CR11) 1968; 243 Damnjanović, Kuroiwa, Tanaka, Ishida, Nakano, Iwasaki (CR66) 2016; 113 Bornscheuer, Huisman, Kazlauskas, Lutz, Moore, Robins (CR83) 2012; 485 Bell, Yang, Dale, Zhou, Wong (CR85) 2013; 97 Dong (CR39) 2021; 9 Halling (CR20) 2004; 359 Korendovych, DeGrado (CR78) 2014; 27 You, Agasti, De, Knapp, Rotello (CR71) 2006; 128 Rodríguez-López, Lowe, Hernández-Ruiz, Hiner, García-Cánovas, Thorneley (CR10) 2001; 123 DiCosimo, McAuliffe, Poulose, Bohlmann (CR1) 2013; 42 Murata, Cummings, Koepsel, Russell (CR13) 2014; 15 Halling (CR17) 1987; 1 Bilal, Rasheed, Iqbal, Hu, Wang, Zhang (CR43) 2018; 113 Bilal, Rasheed, Zhao, Iqbal, Cui (CR58) 2018; 119 Joo, Pohkrel, Pack, Yoo (CR82) 2010; 146 X-W Yu (4065_CR69) 2014; 55 AM Klibanov (4065_CR16) 2001; 409 W Xu (4065_CR35) 2019; 10 Y Zhang (4065_CR15) 2017; 7 M Bilal (4065_CR50) 2019; 37 J Schmitt (4065_CR68) 2002; 15 X Yan (4065_CR75) 2016; 82 RV Dunn (4065_CR30) 2004; 359 RA Sheldon (4065_CR2) 2016; 13 M Bilal (4065_CR38) 2019; 388 NM Micaeˆlo (4065_CR22) 2007; 274 PJ Halling (4065_CR20) 2004; 359 E Biro (4065_CR12) 2007; 131 A Trivedi (4065_CR33) 2006; 71 C-C You (4065_CR71) 2006; 128 A Bautista-Barrufet (4065_CR72) 2014; 4 M Bilal (4065_CR54) 2016; 23 M Bilal (4065_CR59) 2019; 130 A Zaks (4065_CR18) 1985; 82 M Bilal (4065_CR53) 2016; 183 UT Bornscheuer (4065_CR83) 2012; 485 K Kimura (4065_CR28) 1979; 567 M Bilal (4065_CR43) 2018; 113 RA Sheldon (4065_CR7) 2013; 42 C-C You (4065_CR70) 2005; 127 P Halling (4065_CR17) 1987; 1 S Zhao (4065_CR4) 2013; 502 J Damnjanović (4065_CR66) 2016; 113 JN Rodríguez-López (4065_CR10) 2001; 123 J Ge (4065_CR27) 2009; 10 JC Joo (4065_CR82) 2010; 146 A Nakamura (4065_CR9) 1993; 32 D Sarkar (4065_CR6) 2020 E Barzana (4065_CR29) 1987; 15 M Bilal (4065_CR51) 2019; 149 M Bilal (4065_CR44) 2019; 130 C Barrios-Estrada (4065_CR49) 2018; 108 D Yang (4065_CR14) 2019; 9 MT Reetz (4065_CR64) 2011; 50 V Kurkal (4065_CR31) 2005; 89 Y Cao (4065_CR77) 2021 L Goldstein (4065_CR11) 1968; 243 A Zaks (4065_CR23) 1988; 263 J Zaugg (4065_CR62) 2014 M Asgher (4065_CR48) 2018; 9 GA Khoury (4065_CR80) 2009; 18 SH Albayati (4065_CR61) 2020; 10 FH Arnold (4065_CR5) 2018; 57 J Dong (4065_CR39) 2021; 9 M Bilal (4065_CR52) 2016; 146 JC Joo (4065_CR81) 2011; 151 ZE Sauna (4065_CR42) 2000; 97 M Bilal (4065_CR58) 2018; 119 A Fersht (4065_CR37) 1999 A-H Jan (4065_CR67) 2016; 1864 M Bilal (4065_CR56) 2017; 575 H Murata (4065_CR13) 2014; 15 SR Gordon (4065_CR79) 2012; 134 M Tarek (4065_CR19) 2000; 79 M Asgher (4065_CR47) 2012; 6 S Badieyan (4065_CR34) 2017; 139 L Yang (4065_CR21) 2004; 87 TD Huber (4065_CR73) 2020; 15 K Nagayama (4065_CR32) 2012; 207 M Bilal (4065_CR55) 2017; 188 J Li (4065_CR65) 2015; 5 MA Huffman (4065_CR3) 2019; 366 L Dai (4065_CR24) 1999; 96 Z Fu (4065_CR36) 2019; 21 A Nobili (4065_CR63) 2015; 16 M Bilal (4065_CR45) 2020; 60 V Leskovac (4065_CR8) 2003 SA Qamar (4065_CR60) 2020; 150 R DiCosimo (4065_CR1) 2013; 42 B David (4065_CR74) 2017; 7 PO Syrén (4065_CR76) 2014; 126 IV Korendovych (4065_CR78) 2014; 27 SG Bell (4065_CR85) 2013; 97 Y Li (4065_CR84) 2014; 111 M Yan (4065_CR26) 2006; 128 M Bilal (4065_CR41) 2019; 20 M Bilal (4065_CR46) 2020; 166 L Lancaster (4065_CR40) 2018; 47 N Bruns (4065_CR25) 2005; 5 M Bilal (4065_CR57) 2017; 105 |
References_xml | – start-page: 631 year: 1999 ident: CR37 publication-title: Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding – volume: 16 start-page: 805 year: 2015 end-page: 810 ident: CR63 article-title: Simultaneous use of in silico design and a correlated mutation network as a tool to efficiently guide enzyme engineering publication-title: ChemBioChem doi: 10.1002/cbic.201402665 – volume: 10 start-page: 1612 year: 2009 end-page: 1618 ident: CR27 article-title: Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide publication-title: Biomacromol doi: 10.1021/bm900205r – volume: 97 start-page: 2515 year: 2000 end-page: 2520 ident: CR42 article-title: Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.97.6.2515 – volume: 87 start-page: 812 year: 2004 end-page: 821 ident: CR21 article-title: Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity publication-title: Biophys J doi: 10.1529/biophysj.104.041269 – volume: 15 start-page: 595 year: 2002 end-page: 601 ident: CR68 article-title: Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity publication-title: Protein Eng doi: 10.1093/protein/15.7.595 – volume: 13 start-page: 20160087 year: 2016 ident: CR2 article-title: Engineering a more sustainable world through catalysis and green chemistry publication-title: J R Soc Interface doi: 10.1098/rsif.2016.0087 – volume: 89 start-page: 1282 year: 2005 end-page: 1287 ident: CR31 article-title: Enzyme activity and flexibility at very low hydration publication-title: Biophys J doi: 10.1529/biophysj.104.058677 – volume: 366 start-page: 1255 year: 2019 end-page: 1259 ident: CR3 article-title: Design of an in vitro biocatalytic cascade for the manufacture of islatravir publication-title: Science doi: 10.1126/science.aay8484 – volume: 23 start-page: 812 year: 2016 end-page: 818 ident: CR54 article-title: Polyacrylamide gel-entrapped fungal manganese peroxidase from Ganoderma lucidum IBL-05 with enhanced catalytic, stability, and reusability characteristics publication-title: Protein Pept Lett doi: 10.2174/0929866523999160722145740 – volume: 126 start-page: 4945 year: 2014 end-page: 4949 ident: CR76 article-title: Entropy is key to the formation of pentacyclic terpenoids by enzyme-catalyzed polycyclization publication-title: Angew Chem doi: 10.1002/ange.201402087 – volume: 1864 start-page: 187 year: 2016 end-page: 194 ident: CR67 article-title: Elucidation of a key position for acyltransfer activity in Candida parapsilosis lipase/acyltransferase (CpLIP2) and in Pseudozyma antarctica lipase A (CAL-A) by rational design publication-title: Biochim Biophys Acta doi: 10.1016/j.bbapap.2015.11.006 – volume: 151 start-page: 56 year: 2011 end-page: 65 ident: CR81 article-title: Thermostabilization of xylanase: computational optimization of unstable residues based on thermal fluctuation analysis publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2010.10.002 – volume: 57 start-page: 4143 year: 2018 end-page: 4148 ident: CR5 article-title: Directed evolution: bringing new chemistry to life publication-title: Angew Chem Int Ed doi: 10.1002/anie.201708408 – volume: 575 start-page: 1352 year: 2017 end-page: 1360 ident: CR56 article-title: Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.09.215 – volume: 5 start-page: 2681 year: 2015 end-page: 2687 ident: CR65 article-title: Enantioselectivity and catalysis improvements of Pseudomonas cepacia lipase with Tyr and Asp modification publication-title: Catal Sci Technol doi: 10.1039/C5CY00110B – volume: 1 start-page: 109 year: 1987 end-page: 115 ident: CR17 article-title: Rates of enzymic reactions in predominantly organic, low water systems publication-title: Biocatalysis doi: 10.3109/10242428709040135 – volume: 37 start-page: 159 year: 2019 end-page: 182 ident: CR50 article-title: Modifying bio-catalytic properties of enzymes for efficient biocatalysis: a review from immobilization strategies viewpoint publication-title: Biocatal Biotransform doi: 10.1080/10242422.2018.1564744 – volume: 149 start-page: 2204 year: 2019 end-page: 2217 ident: CR51 article-title: Tailoring multipurpose biocatalysts via protein engineering approaches: a review publication-title: Catal Lett doi: 10.1007/s10562-019-02821-8 – volume: 130 start-page: 186 year: 2019 end-page: 196 ident: CR59 article-title: Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.02.141 – volume: 123 start-page: 11838 year: 2001 end-page: 11847 ident: CR10 article-title: Mechanism of reaction of hydrogen peroxide with horseradish peroxidase: identification of intermediates in the catalytic cycle publication-title: J Am Chem Soc doi: 10.1021/ja011853+ – volume: 111 start-page: 1273 year: 2014 end-page: 1287 ident: CR84 article-title: Recent advances in engineering proteins for biocatalysis publication-title: Biotechnol Bioeng doi: 10.1002/bit.25240 – volume: 47 start-page: 5177 year: 2018 end-page: 5186 ident: CR40 article-title: Engineering enzyme microenvironments for enhanced biocatalysis publication-title: Chem Soc Rev doi: 10.1039/C8CS00085A – volume: 359 start-page: 1287 year: 2004 end-page: 1297 ident: CR20 article-title: What can we learn by studying enzymes in non–aqueous media? publication-title: Philosophical Trans Royal Soc Lond Ser B doi: 10.1098/rstb.2004.1505 – volume: 6 start-page: 1 year: 2012 end-page: 10 ident: CR47 article-title: Improvement of catalytic efficiency, thermo-stability and dye decolorization capability of Pleurotus ostreatus IBL-02 laccase by hydrophobic sol gel entrapment publication-title: Chem Cent J doi: 10.1186/1752-153X-6-110 – volume: 567 start-page: 96 year: 1979 end-page: 105 ident: CR28 article-title: Hydrogenase activity in the dry state isotope exchange and reversible oxidoreduction of cytochrome C3 publication-title: Biochim Biophys Acta doi: 10.1016/0005-2744(79)90176-1 – volume: 130 start-page: 462 year: 2019 end-page: 482 ident: CR44 article-title: Naturally-derived biopolymers: potential platforms for enzyme immobilization publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.02.152 – volume: 263 start-page: 3194 year: 1988 end-page: 3201 ident: CR23 article-title: Enzymatic catalysis in nonaqueous solvents publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)69054-4 – volume: 27 start-page: 113 year: 2014 end-page: 121 ident: CR78 article-title: Catalytic efficiency of designed catalytic proteins publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2014.06.006 – volume: 15 start-page: 25 year: 1987 end-page: 34 ident: CR29 article-title: Enzyme-catalyzed, gas-phase reactions publication-title: Appl Biochem Biotechnol doi: 10.1007/BF02798504 – volume: 128 start-page: 14612 year: 2006 end-page: 14618 ident: CR71 article-title: Modulation of the catalytic behavior of α-chymotrypsin at monolayer-protected nanoparticle surfaces publication-title: J Am Chem Soc doi: 10.1021/ja064433z – volume: 409 start-page: 241 year: 2001 end-page: 246 ident: CR16 article-title: Improving enzymes by using them in organic solvents publication-title: Nature doi: 10.1038/35051719 – volume: 71 start-page: 407 year: 2006 end-page: 414 ident: CR33 article-title: Effect of additives on gas-phase catalysis with immobilised Thermoanaerobacter species alcohol dehydrogenase (ADH T) publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-005-0169-5 – volume: 7 start-page: 3357 year: 2017 end-page: 3367 ident: CR74 article-title: Internal water dynamics control the transglycosylation/hydrolysis balance in the agarase (AgaD) of Zobellia galactanivorans publication-title: ACS Catal doi: 10.1021/acscatal.7b00348 – volume: 359 start-page: 1309 year: 2004 end-page: 1320 ident: CR30 article-title: The use of gas–phase substrates to study enzyme catalysis at low hydration publication-title: Philosophical Trans Royal Soc Lond Ser B doi: 10.1098/rstb.2004.1494 – volume: 96 start-page: 9475 year: 1999 end-page: 9478 ident: CR24 article-title: Striking activation of oxidative enzymes suspended in nonaqueous media publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.96.17.9475 – volume: 15 start-page: 695 year: 2020 end-page: 705 ident: CR73 article-title: Methionine adenosyltransferase engineering to enable bioorthogonal platforms for AdoMet-utilizing enzymes publication-title: ACS Chem Biol doi: 10.1021/acschembio.9b00943 – volume: 128 start-page: 11008 year: 2006 end-page: 11009 ident: CR26 article-title: Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability publication-title: J Am Chem Soc doi: 10.1021/ja064126t – volume: 134 start-page: 20513 year: 2012 end-page: 20520 ident: CR79 article-title: Computational design of an α-gliadin peptidase publication-title: J Am Chem Soc doi: 10.1021/ja3094795 – volume: 42 start-page: 6223 year: 2013 end-page: 6235 ident: CR7 article-title: Enzyme immobilisation in biocatalysis: why, what and how publication-title: Chem Soc Rev doi: 10.1039/C3CS60075K – volume: 166 start-page: 352 year: 2020 end-page: 373 ident: CR46 article-title: Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases—a review publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2020.10.195 – volume: 15 start-page: 2817 year: 2014 end-page: 2823 ident: CR13 article-title: Rational tailoring of substrate and inhibitor affinity via ATRP polymer-based protein engineering publication-title: Biomacromol doi: 10.1021/bm5008629 – start-page: 209 year: 2020 end-page: 218 ident: CR6 article-title: Modulation of microbiome through seed bio-priming publication-title: Trichoderma: agricultural applications and beyond, soil biology doi: 10.1007/978-3-030-54758-5_10 – volume: 82 start-page: 6748 year: 2016 end-page: 6756 ident: CR75 article-title: Facilitating the evolution of esterase activity from a promiscuous enzyme (Mhg) with catalytic functions of amide hydrolysis and carboxylic acid perhydrolysis by engineering the substrate entrance tunnel publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01817-16 – volume: 60 start-page: 2052 year: 2020 end-page: 2066 ident: CR45 article-title: State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector—current status and future trends publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2019.1627284 – volume: 146 start-page: 2221 year: 2016 end-page: 2228 ident: CR52 article-title: Gelatin-immobilized manganese peroxidase with novel catalytic characteristics and its industrial exploitation for fruit juice clarification purposes publication-title: Catal Lett doi: 10.1007/s10562-016-1848-9 – year: 2021 ident: CR77 article-title: Enzyme catalyst engineering toward the integration of biocatalysis and chemocatalysis publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2021.01.002 – volume: 146 start-page: 31 year: 2010 end-page: 39 ident: CR82 article-title: Thermostabilization of xylanase via computational design of a flexible surface cavity publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2009.12.021 – volume: 108 start-page: 837 year: 2018 end-page: 844 ident: CR49 article-title: Potentialities of active membranes with immobilized laccase for Bisphenol A degradation publication-title: Int j biol macromol doi: 10.1016/j.ijbiomac.2017.10.177 – volume: 97 start-page: 3979 year: 2013 end-page: 3990 ident: CR85 article-title: Improving the affinity and activity of CYP101D2 for hydrophobic substrates publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4278-7 – volume: 42 start-page: 6437 year: 2013 end-page: 6474 ident: CR1 article-title: Industrial use of immobilized enzymes publication-title: Chem Soc Rev doi: 10.1039/c3cs35506c – volume: 5 start-page: 45 year: 2005 end-page: 48 ident: CR25 article-title: Amphiphilic network as nanoreactor for enzymes in organic solvents publication-title: Nano Lett doi: 10.1021/nl048413b – volume: 20 year: 2019 ident: CR41 article-title: Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system publication-title: Biocatal Agric Biotechnol doi: 10.1016/j.bcab.2019.101205 – volume: 274 start-page: 2424 year: 2007 end-page: 2436 ident: CR22 article-title: Modeling hydration mechanisms of enzymes in nonpolar and polar organic solvents publication-title: FEBS J doi: 10.1111/j.1742-4658.2007.05781.x – volume: 131 start-page: S98 year: 2007 ident: CR12 article-title: Beta-galactosidase immobilization on chitosan microspheres publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2007.07.169 – volume: 50 start-page: 138 year: 2011 end-page: 174 ident: CR64 article-title: Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions publication-title: Angew Chem Int Ed doi: 10.1002/anie.201000826 – volume: 113 start-page: 62 year: 2016 end-page: 71 ident: CR66 article-title: Directing positional specificity in enzymatic synthesis of bioactive 1-phosphatidylinositol by protein engineering of a phospholipase D publication-title: Biotechnol Bioeng doi: 10.1002/bit.25697 – volume: 21 start-page: 25425 year: 2019 end-page: 25430 ident: CR36 article-title: Molecular dynamics simulations reveal how graphene oxide stabilizes and activates lipase in an anhydrous gas publication-title: Phys Chem Chem Phys doi: 10.1039/C9CP05271B – volume: 139 start-page: 2872 year: 2017 end-page: 2875 ident: CR34 article-title: Engineered surface-immobilized enzyme that retains high levels of catalytic activity in air publication-title: J Am Chem Soc doi: 10.1021/jacs.6b12174 – volume: 127 start-page: 12873 year: 2005 end-page: 12881 ident: CR70 article-title: Tunable inhibition and denaturation of α-chymotrypsin with amino acid-functionalized gold nanoparticles publication-title: J Am Chem Soc doi: 10.1021/ja0512881 – volume: 7 start-page: 2047 year: 2017 end-page: 2051 ident: CR15 article-title: Increasing enzyme cascade throughput by pH-engineering the microenvironment of individual enzymes publication-title: ACS Catal doi: 10.1021/acscatal.6b03431 – volume: 388 start-page: 1 year: 2019 end-page: 23 ident: CR38 article-title: Chemical, physical, and biological coordination: an interplay between materials and enzymes as potential platforms for immobilization publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2019.02.024 – volume: 32 start-page: 6624 year: 1993 end-page: 6631 ident: CR9 article-title: Three histidine residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: effects of the replacement on pH dependence and transition-state stabilization publication-title: Biochemistry doi: 10.1021/bi00077a015 – volume: 82 start-page: 3192 year: 1985 end-page: 3196 ident: CR18 article-title: Enzyme-catalyzed processes in organic solvents publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.82.10.3192 – volume: 55 start-page: 1044 year: 2014 end-page: 1051 ident: CR69 article-title: Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping publication-title: J Lipid Res doi: 10.1194/jlr.M043950 – volume: 119 start-page: 278 year: 2018 end-page: 290 ident: CR58 article-title: “Smart” chemistry and its application in peroxidase immobilization using different support materials publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2018.07.134 – volume: 150 start-page: 3572 year: 2020 end-page: 3583 ident: CR60 article-title: Immobilization of alkaline protease from Bacillus brevis using Ca-alginate entrapment strategy for improved catalytic stability, silver recovery, and dehairing potentialities publication-title: Catal Lett doi: 10.1007/s10562-020-03268-y – volume: 207 start-page: 342 year: 2012 end-page: 348 ident: CR32 article-title: Enhanced catalytic performance of immobilized Parvibaculum lavamentivorans alcohol dehydrogenase in a gas phase bioreactor using glycerol as an additive publication-title: Chem Eng J doi: 10.1016/j.cej.2012.06.135 – volume: 502 start-page: 698 year: 2013 end-page: 702 ident: CR4 article-title: Discovery of new enzymes and metabolic pathways by using structure and genome context publication-title: Nature doi: 10.1038/nature12576 – volume: 10 start-page: 747 year: 2020 ident: CR61 article-title: Main structural targets for engineering lipase substrate specificity publication-title: Catalysts doi: 10.3390/catal10070747 – volume: 105 start-page: 328 year: 2017 end-page: 335 ident: CR57 article-title: Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2017.07.042 – volume: 485 start-page: 185 year: 2012 end-page: 194 ident: CR83 article-title: Engineering the third wave of biocatalysis publication-title: Nature doi: 10.1038/nature11117 – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: CR35 article-title: Graphene oxide enabled long-term enzymatic transesterification in an anhydrous gas flux publication-title: Nat Commun – volume: 9 start-page: 3514 year: 2019 end-page: 3519 ident: CR14 article-title: Immobilization adjusted clock reaction in the urea–urease–H+ reaction system publication-title: RSC Adv doi: 10.1039/C8RA09244C – volume: 4 start-page: 1004 year: 2014 end-page: 1009 ident: CR72 article-title: Optical control of enzyme enantioselectivity in solid phase publication-title: ACS Catal doi: 10.1021/cs401115s – volume: 9 start-page: 2071 year: 2018 end-page: 2079 ident: CR48 article-title: Delignification of lignocellulose biomasses by alginate–chitosan immobilized laccase produced from Trametes versicolor IBL-04 publication-title: Waste Biomass Valorization doi: 10.1007/s12649-017-9991-0 – volume: 188 start-page: 137 year: 2017 end-page: 143 ident: CR55 article-title: Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes publication-title: J Environ Manage doi: 10.1016/j.jenvman.2016.12.015 – start-page: 315 year: 2014 end-page: 333 ident: CR62 article-title: Computational tools for directed evolution a comparison of prospective and retrospective strategies publication-title: Directed Evolution Library Creation doi: 10.1007/978-1-4939-1053-3_21 – volume: 9 start-page: 271 year: 2021 ident: CR39 article-title: On catalytic kinetics of enzymes publication-title: Processes doi: 10.3390/pr9020271 – volume: 243 start-page: 375 year: 1968 end-page: 396 ident: CR11 article-title: Use of water-insoluble enzyme derivatives in biochemical analysis and separation publication-title: Fresenius’ Zeitschrift für analytische Chemie doi: 10.1007/BF00530712 – volume: 18 start-page: 2125 year: 2009 end-page: 2138 ident: CR80 article-title: Computational design of xylose reductase for altered cofactor specificity publication-title: Protein Sci doi: 10.1002/pro.227 – year: 2003 ident: CR8 publication-title: Comprehensive enzyme kinetics – volume: 183 start-page: 836 year: 2016 end-page: 842 ident: CR53 article-title: Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor publication-title: J Environ Manage doi: 10.1016/j.jenvman.2016.09.040 – volume: 79 start-page: 3244 year: 2000 end-page: 3257 ident: CR19 article-title: The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments publication-title: Biophys J doi: 10.1016/S0006-3495(00)76557-X – volume: 113 start-page: 983 year: 2018 end-page: 990 ident: CR43 article-title: Horseradish peroxidase immobilization by copolymerization into cross-linked polyacrylamide gel and its dye degradation and detoxification potential publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2018.02.062 – volume: 97 start-page: 2515 year: 2000 ident: 4065_CR42 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.97.6.2515 – volume: 188 start-page: 137 year: 2017 ident: 4065_CR55 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2016.12.015 – volume: 388 start-page: 1 year: 2019 ident: 4065_CR38 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2019.02.024 – volume: 37 start-page: 159 year: 2019 ident: 4065_CR50 publication-title: Biocatal Biotransform doi: 10.1080/10242422.2018.1564744 – volume: 131 start-page: S98 year: 2007 ident: 4065_CR12 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2007.07.169 – volume: 146 start-page: 2221 year: 2016 ident: 4065_CR52 publication-title: Catal Lett doi: 10.1007/s10562-016-1848-9 – volume: 16 start-page: 805 year: 2015 ident: 4065_CR63 publication-title: ChemBioChem doi: 10.1002/cbic.201402665 – volume: 149 start-page: 2204 year: 2019 ident: 4065_CR51 publication-title: Catal Lett doi: 10.1007/s10562-019-02821-8 – year: 2021 ident: 4065_CR77 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2021.01.002 – volume: 15 start-page: 2817 year: 2014 ident: 4065_CR13 publication-title: Biomacromol doi: 10.1021/bm5008629 – volume: 166 start-page: 352 year: 2020 ident: 4065_CR46 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2020.10.195 – volume: 20 year: 2019 ident: 4065_CR41 publication-title: Biocatal Agric Biotechnol doi: 10.1016/j.bcab.2019.101205 – volume: 4 start-page: 1004 year: 2014 ident: 4065_CR72 publication-title: ACS Catal doi: 10.1021/cs401115s – volume: 5 start-page: 45 year: 2005 ident: 4065_CR25 publication-title: Nano Lett doi: 10.1021/nl048413b – volume: 60 start-page: 2052 year: 2020 ident: 4065_CR45 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2019.1627284 – volume: 6 start-page: 1 year: 2012 ident: 4065_CR47 publication-title: Chem Cent J doi: 10.1186/1752-153X-6-110 – volume: 359 start-page: 1287 year: 2004 ident: 4065_CR20 publication-title: Philosophical Trans Royal Soc Lond Ser B doi: 10.1098/rstb.2004.1505 – volume: 130 start-page: 462 year: 2019 ident: 4065_CR44 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.02.152 – start-page: 315 volume-title: Directed Evolution Library Creation year: 2014 ident: 4065_CR62 doi: 10.1007/978-1-4939-1053-3_21 – volume: 111 start-page: 1273 year: 2014 ident: 4065_CR84 publication-title: Biotechnol Bioeng doi: 10.1002/bit.25240 – volume: 150 start-page: 3572 year: 2020 ident: 4065_CR60 publication-title: Catal Lett doi: 10.1007/s10562-020-03268-y – volume: 575 start-page: 1352 year: 2017 ident: 4065_CR56 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.09.215 – start-page: 209 volume-title: Trichoderma: agricultural applications and beyond, soil biology year: 2020 ident: 4065_CR6 doi: 10.1007/978-3-030-54758-5_10 – volume: 128 start-page: 14612 year: 2006 ident: 4065_CR71 publication-title: J Am Chem Soc doi: 10.1021/ja064433z – volume: 15 start-page: 595 year: 2002 ident: 4065_CR68 publication-title: Protein Eng doi: 10.1093/protein/15.7.595 – volume: 151 start-page: 56 year: 2011 ident: 4065_CR81 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2010.10.002 – volume: 50 start-page: 138 year: 2011 ident: 4065_CR64 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201000826 – volume: 502 start-page: 698 year: 2013 ident: 4065_CR4 publication-title: Nature doi: 10.1038/nature12576 – volume: 15 start-page: 25 year: 1987 ident: 4065_CR29 publication-title: Appl Biochem Biotechnol doi: 10.1007/BF02798504 – volume: 97 start-page: 3979 year: 2013 ident: 4065_CR85 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4278-7 – volume: 128 start-page: 11008 year: 2006 ident: 4065_CR26 publication-title: J Am Chem Soc doi: 10.1021/ja064126t – volume: 23 start-page: 812 year: 2016 ident: 4065_CR54 publication-title: Protein Pept Lett doi: 10.2174/0929866523999160722145740 – volume: 113 start-page: 62 year: 2016 ident: 4065_CR66 publication-title: Biotechnol Bioeng doi: 10.1002/bit.25697 – volume: 32 start-page: 6624 year: 1993 ident: 4065_CR9 publication-title: Biochemistry doi: 10.1021/bi00077a015 – volume: 21 start-page: 25425 year: 2019 ident: 4065_CR36 publication-title: Phys Chem Chem Phys doi: 10.1039/C9CP05271B – volume: 146 start-page: 31 year: 2010 ident: 4065_CR82 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2009.12.021 – volume: 130 start-page: 186 year: 2019 ident: 4065_CR59 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.02.141 – volume: 126 start-page: 4945 year: 2014 ident: 4065_CR76 publication-title: Angew Chem doi: 10.1002/ange.201402087 – volume: 13 start-page: 20160087 year: 2016 ident: 4065_CR2 publication-title: J R Soc Interface doi: 10.1098/rsif.2016.0087 – volume: 79 start-page: 3244 year: 2000 ident: 4065_CR19 publication-title: Biophys J doi: 10.1016/S0006-3495(00)76557-X – volume: 5 start-page: 2681 year: 2015 ident: 4065_CR65 publication-title: Catal Sci Technol doi: 10.1039/C5CY00110B – volume: 82 start-page: 3192 year: 1985 ident: 4065_CR18 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.82.10.3192 – volume: 127 start-page: 12873 year: 2005 ident: 4065_CR70 publication-title: J Am Chem Soc doi: 10.1021/ja0512881 – volume: 134 start-page: 20513 year: 2012 ident: 4065_CR79 publication-title: J Am Chem Soc doi: 10.1021/ja3094795 – volume: 139 start-page: 2872 year: 2017 ident: 4065_CR34 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b12174 – volume: 71 start-page: 407 year: 2006 ident: 4065_CR33 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-005-0169-5 – volume: 207 start-page: 342 year: 2012 ident: 4065_CR32 publication-title: Chem Eng J doi: 10.1016/j.cej.2012.06.135 – volume: 9 start-page: 2071 year: 2018 ident: 4065_CR48 publication-title: Waste Biomass Valorization doi: 10.1007/s12649-017-9991-0 – volume: 183 start-page: 836 year: 2016 ident: 4065_CR53 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2016.09.040 – volume: 409 start-page: 241 year: 2001 ident: 4065_CR16 publication-title: Nature doi: 10.1038/35051719 – volume: 87 start-page: 812 year: 2004 ident: 4065_CR21 publication-title: Biophys J doi: 10.1529/biophysj.104.041269 – volume: 9 start-page: 271 year: 2021 ident: 4065_CR39 publication-title: Processes doi: 10.3390/pr9020271 – volume: 119 start-page: 278 year: 2018 ident: 4065_CR58 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2018.07.134 – volume: 42 start-page: 6223 year: 2013 ident: 4065_CR7 publication-title: Chem Soc Rev doi: 10.1039/C3CS60075K – volume: 359 start-page: 1309 year: 2004 ident: 4065_CR30 publication-title: Philosophical Trans Royal Soc Lond Ser B doi: 10.1098/rstb.2004.1494 – volume: 55 start-page: 1044 year: 2014 ident: 4065_CR69 publication-title: J Lipid Res doi: 10.1194/jlr.M043950 – volume: 113 start-page: 983 year: 2018 ident: 4065_CR43 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2018.02.062 – volume: 108 start-page: 837 year: 2018 ident: 4065_CR49 publication-title: Int j biol macromol doi: 10.1016/j.ijbiomac.2017.10.177 – volume: 123 start-page: 11838 year: 2001 ident: 4065_CR10 publication-title: J Am Chem Soc doi: 10.1021/ja011853+ – volume: 10 start-page: 1612 year: 2009 ident: 4065_CR27 publication-title: Biomacromol doi: 10.1021/bm900205r – volume: 18 start-page: 2125 year: 2009 ident: 4065_CR80 publication-title: Protein Sci doi: 10.1002/pro.227 – volume: 7 start-page: 3357 year: 2017 ident: 4065_CR74 publication-title: ACS Catal doi: 10.1021/acscatal.7b00348 – volume: 57 start-page: 4143 year: 2018 ident: 4065_CR5 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201708408 – volume: 82 start-page: 6748 year: 2016 ident: 4065_CR75 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01817-16 – volume: 9 start-page: 3514 year: 2019 ident: 4065_CR14 publication-title: RSC Adv doi: 10.1039/C8RA09244C – volume: 366 start-page: 1255 year: 2019 ident: 4065_CR3 publication-title: Science doi: 10.1126/science.aay8484 – volume: 7 start-page: 2047 year: 2017 ident: 4065_CR15 publication-title: ACS Catal doi: 10.1021/acscatal.6b03431 – volume: 1 start-page: 109 year: 1987 ident: 4065_CR17 publication-title: Biocatalysis doi: 10.3109/10242428709040135 – volume: 1864 start-page: 187 year: 2016 ident: 4065_CR67 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbapap.2015.11.006 – volume: 105 start-page: 328 year: 2017 ident: 4065_CR57 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2017.07.042 – volume-title: Comprehensive enzyme kinetics year: 2003 ident: 4065_CR8 – volume: 243 start-page: 375 year: 1968 ident: 4065_CR11 publication-title: Fresenius’ Zeitschrift für analytische Chemie doi: 10.1007/BF00530712 – volume: 89 start-page: 1282 year: 2005 ident: 4065_CR31 publication-title: Biophys J doi: 10.1529/biophysj.104.058677 – volume: 47 start-page: 5177 year: 2018 ident: 4065_CR40 publication-title: Chem Soc Rev doi: 10.1039/C8CS00085A – volume: 567 start-page: 96 year: 1979 ident: 4065_CR28 publication-title: Biochim Biophys Acta doi: 10.1016/0005-2744(79)90176-1 – volume: 27 start-page: 113 year: 2014 ident: 4065_CR78 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2014.06.006 – volume: 274 start-page: 2424 year: 2007 ident: 4065_CR22 publication-title: FEBS J doi: 10.1111/j.1742-4658.2007.05781.x – volume: 263 start-page: 3194 year: 1988 ident: 4065_CR23 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)69054-4 – start-page: 631 volume-title: Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding year: 1999 ident: 4065_CR37 – volume: 15 start-page: 695 year: 2020 ident: 4065_CR73 publication-title: ACS Chem Biol doi: 10.1021/acschembio.9b00943 – volume: 485 start-page: 185 year: 2012 ident: 4065_CR83 publication-title: Nature doi: 10.1038/nature11117 – volume: 96 start-page: 9475 year: 1999 ident: 4065_CR24 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.96.17.9475 – volume: 42 start-page: 6437 year: 2013 ident: 4065_CR1 publication-title: Chem Soc Rev doi: 10.1039/c3cs35506c – volume: 10 start-page: 1 year: 2019 ident: 4065_CR35 publication-title: Nat Commun doi: 10.1038/s41467-018-07882-8 – volume: 10 start-page: 747 year: 2020 ident: 4065_CR61 publication-title: Catalysts doi: 10.3390/catal10070747 |
SSID | ssj0009719 |
Score | 2.453461 |
Snippet | The rational design of catalysts that fine-tune/mimics the enzyme microenvironment remains the subject of supreme interest. Several strategies moving from... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1227 |
SubjectTerms | biocatalysis biocatalysts Catalysis Catalysts Chemical reaction, Rate of Chemistry Chemistry and Materials Science dissociation Engineering Enzymes immobilized enzymes Industrial Chemistry/Chemical Engineering Organometallic Chemistry Physical Chemistry Proteins Reaction kinetics State-of-the-art reviews substrate specificity Substrates Vapor phases |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPCAqIQIsMQuIAkeI4dhJu24qqIJUD7Up7s_ysKrUJanYP5dczk0d3y0viGHnixJ6xZ8ae-QbgbYZrRkZO-HYyT1FDZGntRZ5664pKBo6t5Cgef1VH8-LLQi7GpLBuinafriT7nXoj2Q11dUrR5yh4SqbyLtyT5LujFM_z2Rpqt-zLeXA6_BNlvhhTZf7cxy119Oum_NvtaK90Dh_Bw9FaZLOBvY_hTmh24P7BVKRtB7Y38ASfgEan2uBGgg8MDTt2QiknrI1s_7ztz2kIfoRtvMLsNTs150MUHjb8uL4M7Jhi9DYS4D6yGRuuEJ7C_PDT6cFROlZQSB2uxWVqVbQeNbTzsValj05Gy2sbuQsqc0W0gau8NtHxGAmXJXgrTOVzK7jJTebFM9hq2iY8B4b9RFdlHi0kUSiVVd5ShJszvsyMdSIBPk2kdiO8OFW5uNBrYGSafI2Tr_vJ1zKB9zfvfB_ANf5J_Yb4owm1oqGwmDOz6jr9-eSbnpXoZaLnVpcJvBuJYoufd2bMMsBBENDVLcrdic96XLedzsu6rKtCFiqB1zfNyFO6RjFNaFedFvg_oqaK8gl8mORj3cXfB_Di_8hfwgOqbT9EV-7C1vJqFfbQAlraV73A_wQkVPvh priority: 102 providerName: Springer Nature |
Title | Broadening the Scope of Biocatalysis Engineering by Tailoring Enzyme Microenvironment: A Review |
URI | https://link.springer.com/article/10.1007/s10562-022-04065-5 https://www.proquest.com/docview/2797984546 https://www.proquest.com/docview/3040393940 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7gE4ICigBsrKICQOEBHnHS4oW3ZbQK1Q25WWk-VHjCpBUsjuofx6ZhKnuwXRUxT5kXhsz3g8M98AvAxwzySWE75dEvooIQK_MFHoG6XjPKk4lpKieHScHs7jT4tk4S7cWudWOfDEjlGbRtMd-dswK7Iij5M4fX_x06esUWRddSk0tmCELDhH5Ws0mR5_OVnD7mZdag9OF4FRFi5c2IwLnkPZ75M3Oy7kNPGTa6Lpbwb9j6W0E0Cz-3DPnRxZ2U_1A7hV1Ttwe39I2LYDdzewBR-CQAVbIlPBF4aHPHZK4SessWxy3nR3NgRFwjaaMHXJzuR575GHBb8vf1TsiPz1NoLh3rGS9eaERzCfTc_2D32XTcHXuC-XvkqtMiittbFFmhmrE6t4oSzXVRro2KqKp2EhrebWEkZLZVQkcxOqiMtQBiZ6DNt1U1e7wLAfq_PA4GkpitM0yI0ibzctTRZIpSMP-EBIoR3UOGW8-C7WIMlEfIHEFx3xReLB66s2Fz3Qxo21X9D8CEKwqMlF5ptcta34eHoiygw1TtTiisyDV66SbfDzWrqIAxwEgV5dq7k3zLNwe7gV6xXnwfOrYpxTMqnIumpWrYjwf6KCsst78GZYH-su_j-AJzd_8Sncobz2vWflHmwvf62qZ3j6WaoxbOWzgzGMysmHyYyeB18_T8du4WPpPCz_ACEuBXQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEBQQgQIGgThARGLniYTQUlh2abcHupX2ZvyIUSVICtkVWn4Uv5GZPLpbEL31GPkVj8eeGXvmG4AnAe6Z2IWEbxdzHyVE4OdWcN9qE2VxEWIpGYqTg2R0FH2cxbMN-N3HwpBbZX8mNge1rQzdkb_kaZ7mWRRHyZuT7z5ljaLX1T6FRssWe8XyJ5ps9evxO1zfp5wP3093R36XVcA3yJ9zXydOW5Raxro8Sa0zsdNhrl1oiiQwkdNFmPBcORM6R1glhdVCZZZrESquAiuw30twORIipx2VDT-sQH7TJpFISNeOIuWzLkinC9VDTcMn33ncNknsx2cE4d_i4J932UbcDa_DtU5PZYOWsW7ARlFuw9Zunx5uG66uIRneBInmvMIjDD8YqpTskIJdWOXY2-OquSEi4BO21oTpJZuq49b_Dwt-Lb8VbELegWuhd6_YgLWPF7fg6EKofBs2y6os7gDDfpzJAou6mYiSJMisJt86o2waKG2EB2FPSGk6YHPKr_FVriCZifgSiS8b4svYg-enbU5aWI9zaz-m9ZGEl1GSQ84XtahrOT78JAcp2rdoM-apB8-6Sq7C4Y3q4htwEgSxdabmTr_Osjsxarnibw8enRbjmtIDjiqLalFLgf8jcspl78GLnj9WXfx_AnfPH_EhbI2mk325Pz7YuwdXOOpxrU_nDmzOfyyK-6h3zfWDhtkZfL7o3fUHZns_dw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkXgcEBQQgQIGIXGAqHGcOAm3pbBqgVaIdqW9WX6iSm1SsbuH8uuZyaOb8pI4RnaceGbsGXtmvgF4meCayQMnfLs8jVFDJHHlRBo7Y7My9xxb6aC4fyB3Z9nHeT4fZfG30e6DS7LLaSCUpnq5febC9ijxDfV2TJHoKIQyj_OrcA23Y05yPUsna9jdoi3twekiUBTpvE-b-fMYl1TTrxv0b57SVgFN78Dt3nJkk47Vd-GKrzfhxs5QsG0Tbo2wBe-BwgO2xk0FHxgaeeyQ0k9YE9i746a9syEoEjZ6hZlzdqSPu4g8bPhxfurZPsXrjZLh3rIJ69wJ92E2_XC0sxv31RRii-tyGRsZjENtbV2oZOGCzYPhlQncepnYLBjPZVrpYHkIhNHinRG6dKkRXKc6ceIBbNRN7R8Cw3GCLROH1pLIpExKZyjazWpXJNpYEQEfCKlsDzVOFS9O1BokmYivkPiqJb7KI3h98c5ZB7Txz94viD-KECxqCpH5pleLhdo7_KomBZ448RRXFRG86juFBj9vdZ9xgJMg0KtLPbcGPqt-DS9UWlRFVWZ5JiN4ftGMPCWXiq59s1oogf8jKqouH8GbQT7WQ_x9Ao_-r_szuP7l_VR93jv49BhuUsn7LuhyCzaW31f-CRpGS_O0lf2fxcADHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadening+the+Scope+of+Biocatalysis+Engineering+by+Tailoring+Enzyme+Microenvironment%3A+A+Review&rft.jtitle=Catalysis+letters&rft.au=Li%2C+Wenqian&rft.au=Bilal%2C+Muhammad&rft.au=Singh%2C+Anil+Kumar&rft.au=Sher%2C+Farooq&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1011-372X&rft.eissn=1572-879X&rft.volume=153&rft.issue=5&rft.spage=1227&rft.epage=1239&rft_id=info:doi/10.1007%2Fs10562-022-04065-5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-372X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-372X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-372X&client=summon |