Role of D-galactose-induced brain aging and its potential used for therapeutic interventions
Aging is a phenomenon that all living organisms inevitably face. Every year, 9.9million people, globally, suffer from dementia, an indicator of the aging brain. Brain aging is significantly associated with mitochondrial dysfunction. This is characterized by a decrease in the activity of respiratory...
Saved in:
Published in | Experimental gerontology Vol. 101; pp. 13 - 36 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aging is a phenomenon that all living organisms inevitably face. Every year, 9.9million people, globally, suffer from dementia, an indicator of the aging brain. Brain aging is significantly associated with mitochondrial dysfunction. This is characterized by a decrease in the activity of respiratory chain enzymes and ATP production, and increased free radical generation, mitochondrial deoxyribonucleic acid (DNA) mutations, and impaired mitochondrial structures. To get a better understanding of aging and to prevent its effects on many organs, chronic systemic administration of D-galactose was used to artificially create brain senescence in animal models and established to be beneficial for studies of anti-aging therapeutic interventions. Several studies have shown that D-galactose-induced brain aging which does so not only by causing mitochondrial dysfunction, but also by increasing oxidative stress, inflammation, and apoptosis, as well as lowering brain-derived neurotrophic factors. All of these defects finally lead to cognitive decline. Various therapeutic approaches which act on mitochondria and cognition were evaluated to assess their effectiveness in the battle to reverse brain aging. The aim of this article is to comprehensively summarize and discuss the underlying mechanisms involved in D-galactose-induced brain aging, particularly as regards alterations in brain mitochondria and cognitive function. In addition, the aim is to summarize the different therapeutic approaches which have been utilized to address D-galactose-induced brain aging.
•D-galactose is the artificial senescence drug to induce aging process.•D-galactose induces brain aging via mitochondrial dysfunction.•Various interventions could reverse D-galactose induced brain aging. |
---|---|
AbstractList | Aging is a phenomenon that all living organisms inevitably face. Every year, 9.9million people, globally, suffer from dementia, an indicator of the aging brain. Brain aging is significantly associated with mitochondrial dysfunction. This is characterized by a decrease in the activity of respiratory chain enzymes and ATP production, and increased free radical generation, mitochondrial deoxyribonucleic acid (DNA) mutations, and impaired mitochondrial structures. To get a better understanding of aging and to prevent its effects on many organs, chronic systemic administration of D-galactose was used to artificially create brain senescence in animal models and established to be beneficial for studies of anti-aging therapeutic interventions. Several studies have shown that D-galactose-induced brain aging which does so not only by causing mitochondrial dysfunction, but also by increasing oxidative stress, inflammation, and apoptosis, as well as lowering brain-derived neurotrophic factors. All of these defects finally lead to cognitive decline. Various therapeutic approaches which act on mitochondria and cognition were evaluated to assess their effectiveness in the battle to reverse brain aging. The aim of this article is to comprehensively summarize and discuss the underlying mechanisms involved in D-galactose-induced brain aging, particularly as regards alterations in brain mitochondria and cognitive function. In addition, the aim is to summarize the different therapeutic approaches which have been utilized to address D-galactose-induced brain aging.Aging is a phenomenon that all living organisms inevitably face. Every year, 9.9million people, globally, suffer from dementia, an indicator of the aging brain. Brain aging is significantly associated with mitochondrial dysfunction. This is characterized by a decrease in the activity of respiratory chain enzymes and ATP production, and increased free radical generation, mitochondrial deoxyribonucleic acid (DNA) mutations, and impaired mitochondrial structures. To get a better understanding of aging and to prevent its effects on many organs, chronic systemic administration of D-galactose was used to artificially create brain senescence in animal models and established to be beneficial for studies of anti-aging therapeutic interventions. Several studies have shown that D-galactose-induced brain aging which does so not only by causing mitochondrial dysfunction, but also by increasing oxidative stress, inflammation, and apoptosis, as well as lowering brain-derived neurotrophic factors. All of these defects finally lead to cognitive decline. Various therapeutic approaches which act on mitochondria and cognition were evaluated to assess their effectiveness in the battle to reverse brain aging. The aim of this article is to comprehensively summarize and discuss the underlying mechanisms involved in D-galactose-induced brain aging, particularly as regards alterations in brain mitochondria and cognitive function. In addition, the aim is to summarize the different therapeutic approaches which have been utilized to address D-galactose-induced brain aging. Aging is a phenomenon that all living organisms inevitably face. Every year, 9.9million people, globally, suffer from dementia, an indicator of the aging brain. Brain aging is significantly associated with mitochondrial dysfunction. This is characterized by a decrease in the activity of respiratory chain enzymes and ATP production, and increased free radical generation, mitochondrial deoxyribonucleic acid (DNA) mutations, and impaired mitochondrial structures. To get a better understanding of aging and to prevent its effects on many organs, chronic systemic administration of D-galactose was used to artificially create brain senescence in animal models and established to be beneficial for studies of anti-aging therapeutic interventions. Several studies have shown that D-galactose-induced brain aging which does so not only by causing mitochondrial dysfunction, but also by increasing oxidative stress, inflammation, and apoptosis, as well as lowering brain-derived neurotrophic factors. All of these defects finally lead to cognitive decline. Various therapeutic approaches which act on mitochondria and cognition were evaluated to assess their effectiveness in the battle to reverse brain aging. The aim of this article is to comprehensively summarize and discuss the underlying mechanisms involved in D-galactose-induced brain aging, particularly as regards alterations in brain mitochondria and cognitive function. In addition, the aim is to summarize the different therapeutic approaches which have been utilized to address D-galactose-induced brain aging. Aging is a phenomenon that all living organisms inevitably face. Every year, 9.9million people, globally, suffer from dementia, an indicator of the aging brain. Brain aging is significantly associated with mitochondrial dysfunction. This is characterized by a decrease in the activity of respiratory chain enzymes and ATP production, and increased free radical generation, mitochondrial deoxyribonucleic acid (DNA) mutations, and impaired mitochondrial structures. To get a better understanding of aging and to prevent its effects on many organs, chronic systemic administration of D-galactose was used to artificially create brain senescence in animal models and established to be beneficial for studies of anti-aging therapeutic interventions. Several studies have shown that D-galactose-induced brain aging which does so not only by causing mitochondrial dysfunction, but also by increasing oxidative stress, inflammation, and apoptosis, as well as lowering brain-derived neurotrophic factors. All of these defects finally lead to cognitive decline. Various therapeutic approaches which act on mitochondria and cognition were evaluated to assess their effectiveness in the battle to reverse brain aging. The aim of this article is to comprehensively summarize and discuss the underlying mechanisms involved in D-galactose-induced brain aging, particularly as regards alterations in brain mitochondria and cognitive function. In addition, the aim is to summarize the different therapeutic approaches which have been utilized to address D-galactose-induced brain aging. •D-galactose is the artificial senescence drug to induce aging process.•D-galactose induces brain aging via mitochondrial dysfunction.•Various interventions could reverse D-galactose induced brain aging. |
Author | Chattipakorn, Nipon Pratchayasakul, Wasana Chattipakorn, Siriporn C. Shwe, Thazin |
Author_xml | – sequence: 1 givenname: Thazin surname: Shwe fullname: Shwe, Thazin organization: Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand – sequence: 2 givenname: Wasana surname: Pratchayasakul fullname: Pratchayasakul, Wasana organization: Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand – sequence: 3 givenname: Nipon surname: Chattipakorn fullname: Chattipakorn, Nipon organization: Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand – sequence: 4 givenname: Siriporn C. surname: Chattipakorn fullname: Chattipakorn, Siriporn C. email: siriporn.c@cmu.ac.th organization: Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29129736$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PHDEQQC1EBMfHL4iEXKbZiz_WPrugiCAhkZAiIUoky-udvfi0Zx-2F5F_H2-OpKCAaqSZ96Z4J-gwxAAIfaRkSQmVnzdLeF5DWjJCV3WzJEwfoAVVK95IRcUhWhDBaSOEFMfoJOcNIUQyTo_QMdOU6RWXC_RwF0fAccDXzdqO1pWYofGhnxz0uEvWB2zXPqyxDT32JeNdLBCKtyOeckWGmHD5BcnuYCreYR8KpKeZiCGfoQ-DHTOcv8xTdP_t6_3V9-b2582Pqy-3jWuZKE0nrbDaUc40tB2j0LVKCEUc6xzrtbJUMjXQ1hLKRTcAIx0hzikNvWpbyU_Rp_3bXYqPE-Ritj47GEcbIE7ZUC15u6KKtBW9eEGnbgu92SW_tem3-RekAnwPuBRzTjD8Rygxc3azMX-zmzn7vKzZq6VfWc4XOzcoNeH4jnu5d6EWevL1mp2HUPv7BK6YPvo3_T94H59J |
CitedBy_id | crossref_primary_10_1134_S000629791906004X crossref_primary_10_18632_aging_203090 crossref_primary_10_1155_2021_8850112 crossref_primary_10_1002_jnr_25389 crossref_primary_10_1186_s13020_023_00755_3 crossref_primary_10_14710_jbtr_v8i2_14199 crossref_primary_10_1016_j_tox_2023_153553 crossref_primary_10_3389_fnins_2023_1093180 crossref_primary_10_3390_cells11091418 crossref_primary_10_1016_j_ejphar_2023_175832 crossref_primary_10_4162_nrp_2020_14_5_438 crossref_primary_10_1155_2018_7108604 crossref_primary_10_3390_nu11112737 crossref_primary_10_1007_s11064_024_04248_z crossref_primary_10_3389_fnmol_2020_00130 crossref_primary_10_1016_j_tice_2022_101758 crossref_primary_10_3389_fnbeh_2018_00138 crossref_primary_10_1186_s12974_020_01989_w crossref_primary_10_1093_gerona_gly031 crossref_primary_10_1155_2021_6695613 crossref_primary_10_1155_2023_6635370 crossref_primary_10_1016_j_yexcr_2018_06_034 crossref_primary_10_1016_j_jff_2018_11_044 crossref_primary_10_3390_molecules29020503 crossref_primary_10_1016_j_fct_2020_111441 crossref_primary_10_1016_j_exger_2024_112624 crossref_primary_10_1096_fba_2021_00131 crossref_primary_10_1016_j_exger_2021_111476 crossref_primary_10_1002_fft2_543 crossref_primary_10_1016_j_exger_2022_111770 crossref_primary_10_1017_S0007114521004487 crossref_primary_10_1002_brb3_70261 crossref_primary_10_1515_znc_2024_0181 crossref_primary_10_3389_fphar_2019_01334 crossref_primary_10_1016_j_phymed_2021_153576 crossref_primary_10_3390_ijms22031059 crossref_primary_10_1038_s41401_022_01009_y crossref_primary_10_1039_D4FO03484H crossref_primary_10_1371_journal_pone_0309542 crossref_primary_10_1155_2020_7145656 crossref_primary_10_1016_j_indcrop_2023_116903 crossref_primary_10_12997_jla_2022_11_1_20 crossref_primary_10_1007_s11064_024_04203_y crossref_primary_10_1016_j_foodchem_2021_129888 crossref_primary_10_3389_fnbeh_2018_00234 crossref_primary_10_1093_gerona_glae298 crossref_primary_10_1016_j_ijbiomac_2025_141573 crossref_primary_10_1016_j_neuint_2022_105365 crossref_primary_10_1016_j_carbpol_2020_115936 crossref_primary_10_1016_j_exger_2023_112308 crossref_primary_10_3389_fphys_2021_634283 crossref_primary_10_3390_ph18010017 crossref_primary_10_1002_fsn3_70010 crossref_primary_10_3390_foods11233783 crossref_primary_10_1016_j_ccmp_2022_100070 crossref_primary_10_1093_jbmrpl_ziae101 crossref_primary_10_1007_s10126_022_10192_2 crossref_primary_10_3390_nu15081968 crossref_primary_10_1016_j_ijbiomac_2022_03_065 crossref_primary_10_1039_D2FO01246D crossref_primary_10_1007_s10522_025_10215_0 crossref_primary_10_1016_j_jep_2023_116883 crossref_primary_10_3390_antiox11010037 crossref_primary_10_1080_07391102_2023_2291832 crossref_primary_10_3892_br_2024_1875 crossref_primary_10_1155_2021_6610864 crossref_primary_10_1016_j_jff_2020_104277 crossref_primary_10_1089_rej_2024_0030 crossref_primary_10_1016_j_joim_2020_01_004 crossref_primary_10_1093_jn_nxac128 crossref_primary_10_1016_j_jep_2023_117609 crossref_primary_10_1007_s12035_024_03976_1 crossref_primary_10_1016_j_ejphar_2025_177277 crossref_primary_10_1093_advances_nmab007 crossref_primary_10_1016_j_jff_2020_104142 crossref_primary_10_18632_aging_103279 crossref_primary_10_1016_j_tice_2023_102192 crossref_primary_10_3390_antiox10121916 crossref_primary_10_1016_j_mad_2021_111465 crossref_primary_10_3389_fncel_2019_00074 crossref_primary_10_1016_j_compbiolchem_2024_108267 crossref_primary_10_3390_foods12020424 crossref_primary_10_1039_D2FO00706A crossref_primary_10_1007_s11064_020_03220_x crossref_primary_10_1021_acs_jafc_8b06402 crossref_primary_10_3390_antiox13121488 crossref_primary_10_1038_s42003_023_04822_1 crossref_primary_10_1002_cbf_3723 crossref_primary_10_18632_aging_103186 crossref_primary_10_15212_AMM_2023_0001 crossref_primary_10_1007_s10522_024_10140_8 crossref_primary_10_1038_s41598_024_74895_3 crossref_primary_10_1016_j_heliyon_2022_e11108 crossref_primary_10_1142_S0192415X20500196 crossref_primary_10_3233_MNM_180234 crossref_primary_10_1016_j_cyto_2020_155314 crossref_primary_10_1016_j_neures_2022_08_005 crossref_primary_10_3390_nu16101512 crossref_primary_10_4103_1673_5374_272617 crossref_primary_10_1016_j_ejphar_2024_176660 crossref_primary_10_1007_s11011_024_01350_7 crossref_primary_10_1007_s00253_021_11568_5 crossref_primary_10_1016_j_jnutbio_2023_109361 crossref_primary_10_1002_jsfa_13096 crossref_primary_10_1016_j_micres_2023_127547 crossref_primary_10_3390_nu12041100 crossref_primary_10_1007_s12035_023_03505_6 crossref_primary_10_1007_s12272_024_01527_9 crossref_primary_10_1016_j_neuroscience_2019_09_037 crossref_primary_10_1007_s00221_025_07051_6 crossref_primary_10_1016_j_foodchem_2021_129435 crossref_primary_10_1016_j_lfs_2023_122248 crossref_primary_10_1016_j_fbio_2024_105635 crossref_primary_10_1016_j_neuropharm_2018_12_018 crossref_primary_10_1021_acsomega_3c07152 crossref_primary_10_3233_JAD_200870 crossref_primary_10_1002_mnfr_202100400 crossref_primary_10_1021_acs_jcim_0c00495 crossref_primary_10_3389_fphar_2021_735812 crossref_primary_10_1186_s13020_024_01008_7 crossref_primary_10_13005_bpj_2965 crossref_primary_10_1016_j_exger_2020_111001 crossref_primary_10_3390_foods12203725 crossref_primary_10_1016_j_foodres_2022_112029 crossref_primary_10_3892_mmr_2019_10677 crossref_primary_10_1007_s00253_022_12041_7 crossref_primary_10_3390_ijms22136839 crossref_primary_10_18632_aging_205677 crossref_primary_10_1016_j_jff_2020_103938 crossref_primary_10_1177_1470320318778898 crossref_primary_10_1016_j_jchemneu_2023_102232 crossref_primary_10_1016_j_bbr_2022_114072 crossref_primary_10_1002_ptr_7848 crossref_primary_10_1038_s41598_021_96800_y crossref_primary_10_1016_j_biomaterials_2024_122551 crossref_primary_10_1002_hipo_23491 crossref_primary_10_1007_s11064_021_03357_3 crossref_primary_10_18632_aging_102337 crossref_primary_10_1039_C8FO00074C crossref_primary_10_1016_j_biopha_2021_112266 crossref_primary_10_1016_j_jff_2022_105104 crossref_primary_10_3390_plants13152139 crossref_primary_10_1016_j_jchemneu_2022_102088 crossref_primary_10_1016_j_indcrop_2024_118404 crossref_primary_10_1002_jcp_31287 crossref_primary_10_1007_s10522_020_09891_x crossref_primary_10_1016_j_exger_2022_111953 crossref_primary_10_1007_s43538_024_00369_9 crossref_primary_10_3390_nu14102169 crossref_primary_10_1016_j_phymed_2024_156158 crossref_primary_10_3390_molecules24071247 crossref_primary_10_3390_molecules29010086 crossref_primary_10_1002_ptr_7142 crossref_primary_10_1016_j_jnutbio_2022_109144 crossref_primary_10_1016_j_jff_2024_106628 crossref_primary_10_3390_foods12244381 crossref_primary_10_1007_s00425_018_2943_5 crossref_primary_10_15171_jhp_2019_42 crossref_primary_10_1139_bcb_2018_0159 crossref_primary_10_1016_j_jep_2023_117212 crossref_primary_10_1080_13813455_2019_1662452 crossref_primary_10_1016_j_physbeh_2023_114302 crossref_primary_10_1039_D0FO01663B crossref_primary_10_1016_j_ijbiomac_2023_125517 crossref_primary_10_1002_bies_202300061 crossref_primary_10_1016_j_jep_2024_118021 crossref_primary_10_4162_nrp_2020_14_3_188 crossref_primary_10_1016_j_exger_2023_112139 crossref_primary_10_1002_biof_2024 crossref_primary_10_1007_s11356_023_28203_7 crossref_primary_10_1038_s41398_025_03293_8 crossref_primary_10_1016_j_fbio_2024_103804 crossref_primary_10_1007_s11356_022_18984_8 crossref_primary_10_1111_acel_14185 crossref_primary_10_1007_s12640_020_00307_9 crossref_primary_10_3390_nu15235004 crossref_primary_10_1007_s12035_024_04546_1 crossref_primary_10_1007_s11011_022_01007_3 crossref_primary_10_1590_1980_5764_dn_2021_0090 crossref_primary_10_3390_ijms22147324 crossref_primary_10_1089_ham_2020_0127 crossref_primary_10_1016_j_neuint_2021_104958 crossref_primary_10_1371_journal_pone_0266331 crossref_primary_10_1007_s12035_024_04610_w crossref_primary_10_1016_j_phymed_2021_153772 crossref_primary_10_1021_acschemneuro_3c00495 crossref_primary_10_30699_jambs_31_144_80 crossref_primary_10_1007_s11033_024_10165_9 crossref_primary_10_3390_nu17020325 crossref_primary_10_1039_D1FO00982F crossref_primary_10_3390_molecules23010204 crossref_primary_10_3390_molecules29061384 crossref_primary_10_1016_j_biopha_2021_111374 crossref_primary_10_1021_acs_jafc_2c01950 crossref_primary_10_1007_s10522_019_09837_y crossref_primary_10_1016_j_biopha_2018_10_024 crossref_primary_10_4236_jbm_2023_115021 crossref_primary_10_1007_s12035_021_02528_1 crossref_primary_10_5851_kosfa_2022_e45 crossref_primary_10_1134_S106235902360455X crossref_primary_10_3390_biom11030404 crossref_primary_10_3389_fpsyt_2021_712673 crossref_primary_10_1016_j_lfs_2019_116595 crossref_primary_10_1016_j_heliyon_2024_e25253 crossref_primary_10_1186_s12979_023_00339_7 crossref_primary_10_1039_D2FO03306B crossref_primary_10_1016_j_jff_2020_104089 crossref_primary_10_3390_molecules26164794 crossref_primary_10_1016_j_jchromb_2022_123233 crossref_primary_10_3389_fnut_2022_931734 crossref_primary_10_3390_cryst11040367 crossref_primary_10_1007_s10522_020_09900_z |
Cites_doi | 10.1111/jpi.12194 10.1016/j.physbeh.2015.11.016 10.2174/1874609810801010010 10.1016/S0896-6273(03)00568-3 10.1016/j.cellbi.2007.10.004 10.1016/j.bbr.2015.06.045 10.1016/j.ymgme.2014.06.002 10.1007/s11033-010-0476-5 10.1007/BF02143811 10.1196/annals.1297.073 10.1007/s11064-016-2022-x 10.3390/ijerph8041244 10.1016/j.fct.2008.12.026 10.1371/journal.pone.0065389 10.1007/s13361-014-1072-z 10.1212/01.wnl.0000266670.35219.0c 10.1007/s00210-009-0442-8 10.1007/s10522-007-9081-y 10.1016/j.bcp.2007.07.007 10.1016/j.fct.2014.08.020 10.1007/s11357-014-9728-y 10.1523/JNEUROSCI.22-05-01763.2002 10.1093/cercor/bhq002 10.1016/j.neuroscience.2013.12.048 10.1038/nrn1477 10.1074/jbc.R116.751164 10.1111/j.1471-4159.2008.05479.x 10.1093/ageing/afu189 10.1182/blood.V87.8.3170.bloodjournal8783170 10.1186/alzrt143 10.1038/sj.ejcn.1602495 10.1080/09637486.2016.1198890 10.1111/j.1742-7843.2008.00288.x 10.1046/j.1474-9728.2003.00034.x 10.1016/j.brainres.2010.04.082 10.1002/jnr.20845 10.1016/j.neurobiolaging.2017.06.025 10.1016/j.phymed.2014.07.008 10.1016/j.lfs.2015.01.016 10.1016/j.pbb.2015.03.020 10.1016/j.neuint.2015.07.001 10.1016/j.nlm.2009.09.006 10.1111/j.1742-7843.2011.00756.x 10.1111/1440-1681.12144 10.1038/ng1448 10.1007/s11596-012-0081-z 10.1126/science.1106653 10.1016/j.neuint.2014.06.011 10.1016/j.jphotobiol.2017.02.008 10.1002/cphy.c110024 10.1007/s12035-015-9604-5 10.1016/j.neuroscience.2014.11.061 10.1073/pnas.0400569101 10.1111/jnc.14037 10.1097/MCO.0000000000000189 10.1016/j.bbrc.2008.02.151 10.1007/s10522-011-9370-3 10.2741/s484 10.1016/j.neulet.2010.02.054 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.exger.2017.10.029 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Social Welfare & Social Work Anatomy & Physiology |
EISSN | 1873-6815 |
EndPage | 36 |
ExternalDocumentID | 29129736 10_1016_j_exger_2017_10_029 S0531556517306757 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M --Z -~X .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABPPZ ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFPKN AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HEA HLW HMK HMO HVGLF HZ~ H~9 IHE J1W KOM LCYCR LPU LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI UKR WUQ XOL ZA5 ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c425t-b6a5a9c1329e4b21eb485580c2bc2d98a1628f14a0135bfe20b00cc89ed84463 |
IEDL.DBID | .~1 |
ISSN | 0531-5565 1873-6815 |
IngestDate | Fri Jul 11 03:37:53 EDT 2025 Wed Feb 19 02:36:09 EST 2025 Thu Apr 24 23:01:17 EDT 2025 Tue Jul 01 02:52:11 EDT 2025 Fri Feb 23 02:27:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain aging Therapeutic Mitochondria D-galactose Cognitive function |
Language | English |
License | Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-b6a5a9c1329e4b21eb485580c2bc2d98a1628f14a0135bfe20b00cc89ed84463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 29129736 |
PQID | 1963471804 |
PQPubID | 23479 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_1963471804 pubmed_primary_29129736 crossref_primary_10_1016_j_exger_2017_10_029 crossref_citationtrail_10_1016_j_exger_2017_10_029 elsevier_sciencedirect_doi_10_1016_j_exger_2017_10_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Experimental gerontology |
PublicationTitleAlternate | Exp Gerontol |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Nagy, Pohl (bb0205) 2015; 26 Berry (bb0045) 1993 Du (bb0110) 2012; 32 Lei (bb0175) 2008; 369 Rogatsky, Stambler (bb0245) 2017; 9 Yang (bb0315) 2016; 67 Cebe (bb0065) 2014; 36 Zhang (bb0335) 2011; 63 Wortmann (bb0290) 2012; 4 Cura, Carruthers (bb0100) 2012; 2 Carayon, Portier, Dussossoy, Bord, Petitpretre, Canat, Le Fur, Casellas (bb5000) 1996; 87 Ullah (bb0285) 2015; 90 Zhang (bb0330) 2010; 473 Coelho, Berry, Rubio-Gozalbo (bb0090) 2015; 18 Salehpour (bb0255) 2017; 58 Chen (bb0080) 2011; 38 van Gelder (bb0125) 2007; 61 Rehman (bb0235) 2017; 54 Kumar, Dogra, Prakash (bb0165) 2009; 380 Yanar (bb0310) 2011; 109 Bjelakovic (bb0050) 2011 Panossian (bb0215) 2014; 21 Chen (bb0070) 2008; 103 Çakatay (bb0060) 2010 Sanz, Stefanatos (bb0265) 2008; 1 Benner (bb0040) 2004; 101 Haider (bb0145) 2015; 124 Aydin (bb0025) 2012; 13 Chen (bb0085) 2016; 41 Long (bb0180) 2007; 8 Acosta, Gross (bb0005) 1995; 154 Pak (bb0210) 2003; 2 Qu (bb0230) 2016; 154 Banji, Banji, Ch (bb0030) 2014; 74 Grimm, Eckert (bb0140) 2017 Zhu (bb0340) 2014; 9 Zeng (bb0325) 2014; 9 Benn, Woolf (bb0035) 2004; 5 Ames (bb0015) 2004; 1019 Lu (bb0185) 2007; 74 Qian (bb0225) 2008; 32 de la Torre (bb0280) 2017; 168 Inman (bb0160) 2013; 8 Gillum, Yorrick, Obisesan (bb0130) 2011; 8 Golubev, Hanson, Gladyshev (bb0135) 2017; 292 Xian (bb0305) 2014; 76 Takeda, Takahashi, Matsumoto (bb0275) 2014; 261 Morava (bb0200) 2014; 112 Schriner (bb0270) 2005; 308 Du (bb0115) 2015; 286 Chen (bb0075) 2010; 1344 Ritchie (bb0240) 2007; 69 Yu (bb0320) 2015; 133 Lu (bb0190) 2010; 93 Cui (bb0095) 2006; 83 Sander (bb0260) 2015; 44 Hsieh, Wu, Hu (bb0155) 2009; 47 Lu (bb0195) 2010; 20 Ronaldson, Bendayan (bb0250) 2008; 106 Wright (bb0295) 2004; 36 Gao (bb0120) 2015; 293 Wu (bb0300) 2002; 22 Dauer, Przedborski (bb0105) 2003; 39 Ali (bb0010) 2015; 58 Boespflug (bb0055) 2017 Prakash, Kumar (bb0220) 2013; 40 Ansari, Dash (bb0020) 2013; 4 Cebe (10.1016/j.exger.2017.10.029_bb0065) 2014; 36 Lu (10.1016/j.exger.2017.10.029_bb0190) 2010; 93 Zhang (10.1016/j.exger.2017.10.029_bb0335) 2011; 63 Zhu (10.1016/j.exger.2017.10.029_bb0340) 2014; 9 Qu (10.1016/j.exger.2017.10.029_bb0230) 2016; 154 Chen (10.1016/j.exger.2017.10.029_bb0085) 2016; 41 Prakash (10.1016/j.exger.2017.10.029_bb0220) 2013; 40 Ames (10.1016/j.exger.2017.10.029_bb0015) 2004; 1019 van Gelder (10.1016/j.exger.2017.10.029_bb0125) 2007; 61 Ronaldson (10.1016/j.exger.2017.10.029_bb0250) 2008; 106 Benner (10.1016/j.exger.2017.10.029_bb0040) 2004; 101 Dauer (10.1016/j.exger.2017.10.029_bb0105) 2003; 39 Haider (10.1016/j.exger.2017.10.029_bb0145) 2015; 124 Rehman (10.1016/j.exger.2017.10.029_bb0235) 2017; 54 Benn (10.1016/j.exger.2017.10.029_bb0035) 2004; 5 Lei (10.1016/j.exger.2017.10.029_bb0175) 2008; 369 Ali (10.1016/j.exger.2017.10.029_bb0010) 2015; 58 Salehpour (10.1016/j.exger.2017.10.029_bb0255) 2017; 58 Gao (10.1016/j.exger.2017.10.029_bb0120) 2015; 293 Kumar (10.1016/j.exger.2017.10.029_bb0165) 2009; 380 Coelho (10.1016/j.exger.2017.10.029_bb0090) 2015; 18 Bjelakovic (10.1016/j.exger.2017.10.029_bb0050) 2011 Cura (10.1016/j.exger.2017.10.029_bb0100) 2012; 2 Gillum (10.1016/j.exger.2017.10.029_bb0130) 2011; 8 Takeda (10.1016/j.exger.2017.10.029_bb0275) 2014; 261 Çakatay (10.1016/j.exger.2017.10.029_bb0060) 2010 de la Torre (10.1016/j.exger.2017.10.029_bb0280) 2017; 168 Acosta (10.1016/j.exger.2017.10.029_bb0005) 1995; 154 Chen (10.1016/j.exger.2017.10.029_bb0070) 2008; 103 Golubev (10.1016/j.exger.2017.10.029_bb0135) 2017; 292 Lu (10.1016/j.exger.2017.10.029_bb0195) 2010; 20 Ritchie (10.1016/j.exger.2017.10.029_bb0240) 2007; 69 Wortmann (10.1016/j.exger.2017.10.029_bb0290) 2012; 4 Ullah (10.1016/j.exger.2017.10.029_bb0285) 2015; 90 Xian (10.1016/j.exger.2017.10.029_bb0305) 2014; 76 Aydin (10.1016/j.exger.2017.10.029_bb0025) 2012; 13 Chen (10.1016/j.exger.2017.10.029_bb0075) 2010; 1344 Cui (10.1016/j.exger.2017.10.029_bb0095) 2006; 83 Qian (10.1016/j.exger.2017.10.029_bb0225) 2008; 32 Sanz (10.1016/j.exger.2017.10.029_bb0265) 2008; 1 Yang (10.1016/j.exger.2017.10.029_bb0315) 2016; 67 Inman (10.1016/j.exger.2017.10.029_bb0160) 2013; 8 Wright (10.1016/j.exger.2017.10.029_bb0295) 2004; 36 Schriner (10.1016/j.exger.2017.10.029_bb0270) 2005; 308 Zhang (10.1016/j.exger.2017.10.029_bb0330) 2010; 473 Banji (10.1016/j.exger.2017.10.029_bb0030) 2014; 74 Du (10.1016/j.exger.2017.10.029_bb0115) 2015; 286 Morava (10.1016/j.exger.2017.10.029_bb0200) 2014; 112 Zeng (10.1016/j.exger.2017.10.029_bb0325) 2014; 9 Yu (10.1016/j.exger.2017.10.029_bb0320) 2015; 133 Grimm (10.1016/j.exger.2017.10.029_bb0140) 2017 Panossian (10.1016/j.exger.2017.10.029_bb0215) 2014; 21 Pak (10.1016/j.exger.2017.10.029_bb0210) 2003; 2 Long (10.1016/j.exger.2017.10.029_bb0180) 2007; 8 Carayon (10.1016/j.exger.2017.10.029_bb5000) 1996; 87 Nagy (10.1016/j.exger.2017.10.029_bb0205) 2015; 26 Yanar (10.1016/j.exger.2017.10.029_bb0310) 2011; 109 Wu (10.1016/j.exger.2017.10.029_bb0300) 2002; 22 Hsieh (10.1016/j.exger.2017.10.029_bb0155) 2009; 47 Chen (10.1016/j.exger.2017.10.029_bb0080) 2011; 38 Rogatsky (10.1016/j.exger.2017.10.029_bb0245) 2017; 9 Lu (10.1016/j.exger.2017.10.029_bb0185) 2007; 74 Boespflug (10.1016/j.exger.2017.10.029_bb0055) 2017 Sander (10.1016/j.exger.2017.10.029_bb0260) 2015; 44 Ansari (10.1016/j.exger.2017.10.029_bb0020) 2013; 4 Berry (10.1016/j.exger.2017.10.029_bb0045) 1993 Du (10.1016/j.exger.2017.10.029_bb0110) 2012; 32 |
References_xml | – year: 2011 ident: bb0050 article-title: Hypoglycemia as a Pathological Result in Medical Praxis – volume: 58 start-page: 71 year: 2015 end-page: 85 ident: bb0010 article-title: Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model publication-title: J. Pineal Res. – volume: 4 start-page: 50 year: 2013 end-page: 56 ident: bb0020 article-title: Amadori glycated proteins: role in production of autoantibodies in diabetes mellitus and effect of inhibitors on non-enzymatic glycation publication-title: Aging Dis. – volume: 18 start-page: 422 year: 2015 end-page: 427 ident: bb0090 article-title: Galactose metabolism and health publication-title: Curr. Opin. Clin. Nutr. Metab. Care – volume: 83 start-page: 1584 year: 2006 end-page: 1590 ident: bb0095 article-title: Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid publication-title: J. Neurosci. Res. – volume: 32 start-page: 466 year: 2012 end-page: 472 ident: bb0110 article-title: NADPH oxidase-dependent oxidative stress and mitochondrial damage in hippocampus of D-galactose-induced aging rats publication-title: J. Huazhong Univ. Sci. Technolog. Med. Sci. – volume: 2 start-page: 863 year: 2012 end-page: 914 ident: bb0100 article-title: Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis publication-title: Compr. Physiol. – volume: 58 start-page: 140 year: 2017 end-page: 150 ident: bb0255 article-title: Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice publication-title: Neurobiol. Aging – volume: 124 start-page: 110 year: 2015 end-page: 119 ident: bb0145 article-title: A high dose of short term exogenous D-galactose administration in young male rats produces symptoms simulating the natural aging process publication-title: Life Sci. – volume: 106 start-page: 1298 year: 2008 end-page: 1313 ident: bb0250 article-title: HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells publication-title: J. Neurochem. – volume: 133 start-page: 122 year: 2015 end-page: 131 ident: bb0320 article-title: Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation publication-title: Pharmacol. Biochem. Behav. – volume: 261 start-page: 223 year: 2014 end-page: 231 ident: bb0275 article-title: Inflammation enhanced brain-derived neurotrophic factor-induced suppression of the voltage-gated potassium currents in small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone publication-title: Neuroscience – volume: 109 start-page: 423 year: 2011 end-page: 433 ident: bb0310 article-title: Protein and DNA oxidation in different anatomic regions of rat brain in a mimetic ageing model publication-title: Basic Clin. Pharmacol. Toxicol. – volume: 1344 start-page: 43 year: 2010 end-page: 53 ident: bb0075 article-title: Age-related changes in the central auditory system: comparison of D-galactose-induced aging rats and naturally aging rats publication-title: Brain Res. – volume: 292 start-page: 6029 year: 2017 end-page: 6038 ident: bb0135 article-title: Non-enzymatic molecular damage as a prototypic driver of aging publication-title: J. Biol. Chem. – year: 2017 ident: bb0140 article-title: Brain aging and neurodegeneration: from a mitochondrial point of view publication-title: J. Neurochem. – volume: 61 start-page: 226 year: 2007 end-page: 232 ident: bb0125 article-title: Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study publication-title: Eur. J. Clin. Nutr. – volume: 47 start-page: 625 year: 2009 end-page: 632 ident: bb0155 article-title: Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer's disease in C57BL/6J mice treated with D-galactose publication-title: Food Chem. Toxicol. – volume: 44 start-page: 185 year: 2015 end-page: 187 ident: bb0260 article-title: The challenges of human population ageing publication-title: Age Ageing – volume: 5 start-page: 686 year: 2004 end-page: 700 ident: bb0035 article-title: Adult neuron survival strategies--slamming on the brakes publication-title: Nat. Rev. Neurosci. – volume: 93 start-page: 157 year: 2010 end-page: 164 ident: bb0190 article-title: Chronic administration of troxerutin protects mouse brain against D-galactose-induced impairment of cholinergic system publication-title: Neurobiol. Learn. Mem. – volume: 26 start-page: 677 year: 2015 end-page: 685 ident: bb0205 article-title: Complete hexose isomer identification with mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. – volume: 168 start-page: 149 year: 2017 end-page: 155 ident: bb0280 article-title: Treating cognitive impairment with transcranial low level laser therapy publication-title: J. Photochem. Photobiol. B – volume: 20 start-page: 2540 year: 2010 end-page: 2548 ident: bb0195 article-title: Ursolic acid attenuates D-galactose-induced inflammatory response in mouse prefrontal cortex through inhibiting AGEs/RAGE/NF-kappaB pathway activation publication-title: Cereb. Cortex – volume: 112 start-page: 275 year: 2014 end-page: 279 ident: bb0200 article-title: Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG publication-title: Mol. Genet. Metab. – volume: 21 start-page: 1325 year: 2014 end-page: 1348 ident: bb0215 article-title: Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: an interactive pathway analysis of the downstream effects using RNA microarray data publication-title: Phytomedicine – volume: 40 start-page: 644 year: 2013 end-page: 651 ident: bb0220 article-title: Pioglitazone alleviates the mitochondrial apoptotic pathway and mito-oxidative damage in the d-galactose-induced mouse model publication-title: Clin. Exp. Pharmacol. Physiol. – volume: 87 start-page: 3170 year: 1996 end-page: 3178 ident: bb5000 article-title: Involvement of peripheral benzodiazepine receptors in the protection of hematopoietic cells against oxygen radical damage publication-title: Blood – volume: 67 start-page: 806 year: 2016 end-page: 817 ident: bb0315 article-title: Ferulic acid ameliorates memory impairment in d-galactose-induced aging mouse model publication-title: Int. J. Food Sci. Nutr. – volume: 36 start-page: 1153 year: 2004 end-page: 1158 ident: bb0295 article-title: Lifespan and mitochondrial control of neurodegeneration publication-title: Nat. Genet. – volume: 90 start-page: 114 year: 2015 end-page: 124 ident: bb0285 article-title: Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain publication-title: Neurochem. Int. – volume: 54 start-page: 255 year: 2017 end-page: 271 ident: bb0235 article-title: Anthocyanins reversed D-galactose-induced oxidative stress and Neuroinflammation mediated cognitive impairment in adult rats publication-title: Mol. Neurobiol. – volume: 63 start-page: 245 year: 2011 end-page: 255 ident: bb0335 article-title: Chronic administration of Liu Wei Dihuang protects rat's brain against D-galactose-induced impairment of cholinergic system publication-title: Sheng Li Xue Bao – volume: 8 year: 2013 ident: bb0160 article-title: Alpha-lipoic acid antioxidant treatment limits glaucoma-related retinal ganglion cell death and dysfunction publication-title: PLoS One – volume: 39 start-page: 889 year: 2003 end-page: 909 ident: bb0105 article-title: Parkinson's disease: mechanisms and models publication-title: Neuron – volume: 286 start-page: 281 year: 2015 end-page: 292 ident: bb0115 article-title: NADPH oxidase 2-dependent oxidative stress, mitochondrial damage and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging rats publication-title: Neuroscience – volume: 8 start-page: 373 year: 2007 end-page: 381 ident: bb0180 article-title: D-galactose toxicity in mice is associated with mitochondrial dysfunction: protecting effects of mitochondrial nutrient R-alpha-lipoic acid publication-title: Biogerontology – volume: 380 start-page: 431 year: 2009 end-page: 441 ident: bb0165 article-title: Effect of carvedilol on behavioral, mitochondrial dysfunction, and oxidative damage against D-galactose induced senescence in mice publication-title: Naunyn Schmiedeberg's Arch. Pharmacol. – volume: 154 start-page: 114 year: 2016 end-page: 125 ident: bb0230 article-title: Protective effect of tetrahydropalmatine against d-galactose induced memory impairment in rat publication-title: Physiol. Behav. – volume: 9 year: 2014 ident: bb0340 article-title: Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging publication-title: PLoS One – volume: 1019 start-page: 406 year: 2004 end-page: 411 ident: bb0015 article-title: Delaying the mitochondrial decay of aging publication-title: Ann. N. Y. Acad. Sci. – start-page: 1 year: 2017 end-page: 9 ident: bb0055 article-title: Enhanced neural activation with blueberry supplementation in mild cognitive impairment publication-title: Nutr. Neurosci. – volume: 9 start-page: 230 year: 2017 end-page: 243 ident: bb0245 article-title: Hyperbaric oxygenation for resuscitation and therapy of elderly patients with cerebral and cardio-respiratory dysfunction publication-title: Front. Biosci. (Schol. Ed.) – volume: 22 start-page: 1763 year: 2002 end-page: 1771 ident: bb0300 article-title: Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease publication-title: J. Neurosci. – volume: 154 start-page: S87 year: 1995 end-page: 92 ident: bb0005 article-title: Hidden sources of galactose in the environment publication-title: Eur. J. Pediatr. – start-page: 3 year: 2010 end-page: 25 ident: bb0060 article-title: Protein redox-regulation mechanisms in aging publication-title: Aging and age-related disorders – volume: 13 start-page: 251 year: 2012 end-page: 260 ident: bb0025 article-title: Comparison of oxidative stress biomarkers in renal tissues of D-galactose induced, naturally aged and young rats publication-title: Biogerontology – volume: 38 start-page: 3635 year: 2011 end-page: 3642 ident: bb0080 article-title: Increased mitochondrial DNA damage and decreased base excision repair in the auditory cortex of D-galactose-induced aging rats publication-title: Mol. Biol. Rep. – volume: 9 year: 2014 ident: bb0325 article-title: Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model publication-title: PLoS One – volume: 69 start-page: 536 year: 2007 end-page: 545 ident: bb0240 article-title: The neuroprotective effects of caffeine: a prospective population study (the Three City Study) publication-title: Neurology – volume: 1 start-page: 10 year: 2008 end-page: 21 ident: bb0265 article-title: The mitochondrial free radical theory of aging: a critical view publication-title: Curr. Aging Sci. – volume: 4 start-page: 40 year: 2012 ident: bb0290 article-title: Dementia: a global health priority - highlights from an ADI and World Health Organization report publication-title: Alzheimers Res. Ther. – volume: 36 start-page: 9728 year: 2014 ident: bb0065 article-title: A comprehensive study of myocardial redox homeostasis in naturally and mimetically aged rats publication-title: Age (Dordr.) – volume: 76 start-page: 42 year: 2014 end-page: 49 ident: bb0305 article-title: Isorhynchophylline improves learning and memory impairments induced by D-galactose in mice publication-title: Neurochem. Int. – volume: 103 start-page: 493 year: 2008 end-page: 501 ident: bb0070 article-title: Treatment with dehydroepiandrosterone increases peripheral benzodiazepine receptors of mitochondria from cerebral cortex in D-galactose-induced aged rats publication-title: Basic Clin. Pharmacol. Toxicol. – volume: 74 start-page: 1078 year: 2007 end-page: 1090 ident: bb0185 article-title: Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose publication-title: Biochem. Pharmacol. – volume: 308 start-page: 1909 year: 2005 end-page: 1911 ident: bb0270 article-title: Extension of murine life span by overexpression of catalase targeted to mitochondria publication-title: Science – volume: 369 start-page: 1082 year: 2008 end-page: 1087 ident: bb0175 article-title: Impairments of astrocytes are involved in the d-galactose-induced brain aging publication-title: Biochem. Biophys. Res. Commun. – volume: 74 start-page: 51 year: 2014 end-page: 59 ident: bb0030 article-title: Curcumin and hesperidin improve cognition by suppressing mitochondrial dysfunction and apoptosis induced by D-galactose in rat brain publication-title: Food Chem. Toxicol. – year: 1993 ident: bb0045 article-title: Classic galactosemia and clinical variant galactosemia publication-title: GeneReviews(R) – volume: 293 start-page: 27 year: 2015 end-page: 33 ident: bb0120 article-title: Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer's disease publication-title: Behav. Brain Res. – volume: 101 start-page: 9435 year: 2004 end-page: 9440 ident: bb0040 article-title: Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson's disease publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 2 start-page: 1 year: 2003 end-page: 7 ident: bb0210 article-title: Mitochondrial DNA mutations as a fundamental mechanism in physiological declines associated with aging publication-title: Aging Cell – volume: 41 start-page: 3032 year: 2016 end-page: 3041 ident: bb0085 article-title: Protective effect of hyperbaric oxygen on cognitive impairment induced by D-galactose in mice publication-title: Neurochem. Res. – volume: 8 start-page: 1244 year: 2011 end-page: 1257 ident: bb0130 article-title: Population surveillance of dementia mortality publication-title: Int. J. Environ. Res. Public Health – volume: 32 start-page: 304 year: 2008 end-page: 311 ident: bb0225 article-title: Aqueous extract of the Chinese medicine, Danggui-Shaoyao-San, inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade publication-title: Cell Biol. Int. – volume: 473 start-page: 224 year: 2010 end-page: 228 ident: bb0330 article-title: Systemic administration of catalpol prevents d-galactose induced mitochondrial dysfunction in mice publication-title: Neurosci. Lett. – volume: 58 start-page: 71 year: 2015 ident: 10.1016/j.exger.2017.10.029_bb0010 article-title: Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model publication-title: J. Pineal Res. doi: 10.1111/jpi.12194 – volume: 154 start-page: 114 year: 2016 ident: 10.1016/j.exger.2017.10.029_bb0230 article-title: Protective effect of tetrahydropalmatine against d-galactose induced memory impairment in rat publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2015.11.016 – volume: 1 start-page: 10 year: 2008 ident: 10.1016/j.exger.2017.10.029_bb0265 article-title: The mitochondrial free radical theory of aging: a critical view publication-title: Curr. Aging Sci. doi: 10.2174/1874609810801010010 – volume: 39 start-page: 889 year: 2003 ident: 10.1016/j.exger.2017.10.029_bb0105 article-title: Parkinson's disease: mechanisms and models publication-title: Neuron doi: 10.1016/S0896-6273(03)00568-3 – volume: 32 start-page: 304 year: 2008 ident: 10.1016/j.exger.2017.10.029_bb0225 article-title: Aqueous extract of the Chinese medicine, Danggui-Shaoyao-San, inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade publication-title: Cell Biol. Int. doi: 10.1016/j.cellbi.2007.10.004 – volume: 4 start-page: 50 year: 2013 ident: 10.1016/j.exger.2017.10.029_bb0020 article-title: Amadori glycated proteins: role in production of autoantibodies in diabetes mellitus and effect of inhibitors on non-enzymatic glycation publication-title: Aging Dis. – volume: 293 start-page: 27 year: 2015 ident: 10.1016/j.exger.2017.10.029_bb0120 article-title: Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer's disease publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2015.06.045 – volume: 112 start-page: 275 year: 2014 ident: 10.1016/j.exger.2017.10.029_bb0200 article-title: Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2014.06.002 – volume: 38 start-page: 3635 year: 2011 ident: 10.1016/j.exger.2017.10.029_bb0080 article-title: Increased mitochondrial DNA damage and decreased base excision repair in the auditory cortex of D-galactose-induced aging rats publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-010-0476-5 – volume: 154 start-page: S87 year: 1995 ident: 10.1016/j.exger.2017.10.029_bb0005 article-title: Hidden sources of galactose in the environment publication-title: Eur. J. Pediatr. doi: 10.1007/BF02143811 – volume: 1019 start-page: 406 year: 2004 ident: 10.1016/j.exger.2017.10.029_bb0015 article-title: Delaying the mitochondrial decay of aging publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1297.073 – volume: 41 start-page: 3032 year: 2016 ident: 10.1016/j.exger.2017.10.029_bb0085 article-title: Protective effect of hyperbaric oxygen on cognitive impairment induced by D-galactose in mice publication-title: Neurochem. Res. doi: 10.1007/s11064-016-2022-x – volume: 8 start-page: 1244 year: 2011 ident: 10.1016/j.exger.2017.10.029_bb0130 article-title: Population surveillance of dementia mortality publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph8041244 – volume: 47 start-page: 625 year: 2009 ident: 10.1016/j.exger.2017.10.029_bb0155 article-title: Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer's disease in C57BL/6J mice treated with D-galactose publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2008.12.026 – volume: 8 year: 2013 ident: 10.1016/j.exger.2017.10.029_bb0160 article-title: Alpha-lipoic acid antioxidant treatment limits glaucoma-related retinal ganglion cell death and dysfunction publication-title: PLoS One doi: 10.1371/journal.pone.0065389 – volume: 26 start-page: 677 year: 2015 ident: 10.1016/j.exger.2017.10.029_bb0205 article-title: Complete hexose isomer identification with mass spectrometry publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-014-1072-z – year: 1993 ident: 10.1016/j.exger.2017.10.029_bb0045 article-title: Classic galactosemia and clinical variant galactosemia – volume: 69 start-page: 536 year: 2007 ident: 10.1016/j.exger.2017.10.029_bb0240 article-title: The neuroprotective effects of caffeine: a prospective population study (the Three City Study) publication-title: Neurology doi: 10.1212/01.wnl.0000266670.35219.0c – volume: 380 start-page: 431 year: 2009 ident: 10.1016/j.exger.2017.10.029_bb0165 article-title: Effect of carvedilol on behavioral, mitochondrial dysfunction, and oxidative damage against D-galactose induced senescence in mice publication-title: Naunyn Schmiedeberg's Arch. Pharmacol. doi: 10.1007/s00210-009-0442-8 – volume: 8 start-page: 373 year: 2007 ident: 10.1016/j.exger.2017.10.029_bb0180 article-title: D-galactose toxicity in mice is associated with mitochondrial dysfunction: protecting effects of mitochondrial nutrient R-alpha-lipoic acid publication-title: Biogerontology doi: 10.1007/s10522-007-9081-y – volume: 74 start-page: 1078 year: 2007 ident: 10.1016/j.exger.2017.10.029_bb0185 article-title: Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2007.07.007 – volume: 74 start-page: 51 year: 2014 ident: 10.1016/j.exger.2017.10.029_bb0030 article-title: Curcumin and hesperidin improve cognition by suppressing mitochondrial dysfunction and apoptosis induced by D-galactose in rat brain publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2014.08.020 – volume: 36 start-page: 9728 year: 2014 ident: 10.1016/j.exger.2017.10.029_bb0065 article-title: A comprehensive study of myocardial redox homeostasis in naturally and mimetically aged rats publication-title: Age (Dordr.) doi: 10.1007/s11357-014-9728-y – volume: 22 start-page: 1763 year: 2002 ident: 10.1016/j.exger.2017.10.029_bb0300 article-title: Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-05-01763.2002 – volume: 20 start-page: 2540 year: 2010 ident: 10.1016/j.exger.2017.10.029_bb0195 article-title: Ursolic acid attenuates D-galactose-induced inflammatory response in mouse prefrontal cortex through inhibiting AGEs/RAGE/NF-kappaB pathway activation publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq002 – volume: 261 start-page: 223 year: 2014 ident: 10.1016/j.exger.2017.10.029_bb0275 article-title: Inflammation enhanced brain-derived neurotrophic factor-induced suppression of the voltage-gated potassium currents in small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.12.048 – volume: 5 start-page: 686 year: 2004 ident: 10.1016/j.exger.2017.10.029_bb0035 article-title: Adult neuron survival strategies--slamming on the brakes publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1477 – volume: 292 start-page: 6029 year: 2017 ident: 10.1016/j.exger.2017.10.029_bb0135 article-title: Non-enzymatic molecular damage as a prototypic driver of aging publication-title: J. Biol. Chem. doi: 10.1074/jbc.R116.751164 – year: 2011 ident: 10.1016/j.exger.2017.10.029_bb0050 – volume: 106 start-page: 1298 year: 2008 ident: 10.1016/j.exger.2017.10.029_bb0250 article-title: HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2008.05479.x – volume: 44 start-page: 185 year: 2015 ident: 10.1016/j.exger.2017.10.029_bb0260 article-title: The challenges of human population ageing publication-title: Age Ageing doi: 10.1093/ageing/afu189 – volume: 87 start-page: 3170 year: 1996 ident: 10.1016/j.exger.2017.10.029_bb5000 article-title: Involvement of peripheral benzodiazepine receptors in the protection of hematopoietic cells against oxygen radical damage publication-title: Blood doi: 10.1182/blood.V87.8.3170.bloodjournal8783170 – start-page: 3 year: 2010 ident: 10.1016/j.exger.2017.10.029_bb0060 article-title: Protein redox-regulation mechanisms in aging – volume: 4 start-page: 40 year: 2012 ident: 10.1016/j.exger.2017.10.029_bb0290 article-title: Dementia: a global health priority - highlights from an ADI and World Health Organization report publication-title: Alzheimers Res. Ther. doi: 10.1186/alzrt143 – volume: 61 start-page: 226 year: 2007 ident: 10.1016/j.exger.2017.10.029_bb0125 article-title: Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study publication-title: Eur. J. Clin. Nutr. doi: 10.1038/sj.ejcn.1602495 – volume: 67 start-page: 806 year: 2016 ident: 10.1016/j.exger.2017.10.029_bb0315 article-title: Ferulic acid ameliorates memory impairment in d-galactose-induced aging mouse model publication-title: Int. J. Food Sci. Nutr. doi: 10.1080/09637486.2016.1198890 – volume: 9 year: 2014 ident: 10.1016/j.exger.2017.10.029_bb0340 article-title: Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging publication-title: PLoS One – volume: 103 start-page: 493 year: 2008 ident: 10.1016/j.exger.2017.10.029_bb0070 article-title: Treatment with dehydroepiandrosterone increases peripheral benzodiazepine receptors of mitochondria from cerebral cortex in D-galactose-induced aged rats publication-title: Basic Clin. Pharmacol. Toxicol. doi: 10.1111/j.1742-7843.2008.00288.x – volume: 2 start-page: 1 year: 2003 ident: 10.1016/j.exger.2017.10.029_bb0210 article-title: Mitochondrial DNA mutations as a fundamental mechanism in physiological declines associated with aging publication-title: Aging Cell doi: 10.1046/j.1474-9728.2003.00034.x – start-page: 1 year: 2017 ident: 10.1016/j.exger.2017.10.029_bb0055 article-title: Enhanced neural activation with blueberry supplementation in mild cognitive impairment publication-title: Nutr. Neurosci. – volume: 1344 start-page: 43 year: 2010 ident: 10.1016/j.exger.2017.10.029_bb0075 article-title: Age-related changes in the central auditory system: comparison of D-galactose-induced aging rats and naturally aging rats publication-title: Brain Res. doi: 10.1016/j.brainres.2010.04.082 – volume: 83 start-page: 1584 year: 2006 ident: 10.1016/j.exger.2017.10.029_bb0095 article-title: Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid publication-title: J. Neurosci. Res. doi: 10.1002/jnr.20845 – volume: 58 start-page: 140 year: 2017 ident: 10.1016/j.exger.2017.10.029_bb0255 article-title: Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2017.06.025 – volume: 21 start-page: 1325 year: 2014 ident: 10.1016/j.exger.2017.10.029_bb0215 article-title: Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: an interactive pathway analysis of the downstream effects using RNA microarray data publication-title: Phytomedicine doi: 10.1016/j.phymed.2014.07.008 – volume: 124 start-page: 110 year: 2015 ident: 10.1016/j.exger.2017.10.029_bb0145 article-title: A high dose of short term exogenous D-galactose administration in young male rats produces symptoms simulating the natural aging process publication-title: Life Sci. doi: 10.1016/j.lfs.2015.01.016 – volume: 133 start-page: 122 year: 2015 ident: 10.1016/j.exger.2017.10.029_bb0320 article-title: Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation publication-title: Pharmacol. Biochem. Behav. doi: 10.1016/j.pbb.2015.03.020 – volume: 90 start-page: 114 year: 2015 ident: 10.1016/j.exger.2017.10.029_bb0285 article-title: Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2015.07.001 – volume: 9 year: 2014 ident: 10.1016/j.exger.2017.10.029_bb0325 article-title: Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model publication-title: PLoS One – volume: 93 start-page: 157 year: 2010 ident: 10.1016/j.exger.2017.10.029_bb0190 article-title: Chronic administration of troxerutin protects mouse brain against D-galactose-induced impairment of cholinergic system publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2009.09.006 – volume: 109 start-page: 423 year: 2011 ident: 10.1016/j.exger.2017.10.029_bb0310 article-title: Protein and DNA oxidation in different anatomic regions of rat brain in a mimetic ageing model publication-title: Basic Clin. Pharmacol. Toxicol. doi: 10.1111/j.1742-7843.2011.00756.x – volume: 40 start-page: 644 year: 2013 ident: 10.1016/j.exger.2017.10.029_bb0220 article-title: Pioglitazone alleviates the mitochondrial apoptotic pathway and mito-oxidative damage in the d-galactose-induced mouse model publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/1440-1681.12144 – volume: 36 start-page: 1153 year: 2004 ident: 10.1016/j.exger.2017.10.029_bb0295 article-title: Lifespan and mitochondrial control of neurodegeneration publication-title: Nat. Genet. doi: 10.1038/ng1448 – volume: 32 start-page: 466 year: 2012 ident: 10.1016/j.exger.2017.10.029_bb0110 article-title: NADPH oxidase-dependent oxidative stress and mitochondrial damage in hippocampus of D-galactose-induced aging rats publication-title: J. Huazhong Univ. Sci. Technolog. Med. Sci. doi: 10.1007/s11596-012-0081-z – volume: 63 start-page: 245 year: 2011 ident: 10.1016/j.exger.2017.10.029_bb0335 article-title: Chronic administration of Liu Wei Dihuang protects rat's brain against D-galactose-induced impairment of cholinergic system publication-title: Sheng Li Xue Bao – volume: 308 start-page: 1909 year: 2005 ident: 10.1016/j.exger.2017.10.029_bb0270 article-title: Extension of murine life span by overexpression of catalase targeted to mitochondria publication-title: Science doi: 10.1126/science.1106653 – volume: 76 start-page: 42 year: 2014 ident: 10.1016/j.exger.2017.10.029_bb0305 article-title: Isorhynchophylline improves learning and memory impairments induced by D-galactose in mice publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2014.06.011 – volume: 168 start-page: 149 year: 2017 ident: 10.1016/j.exger.2017.10.029_bb0280 article-title: Treating cognitive impairment with transcranial low level laser therapy publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2017.02.008 – volume: 2 start-page: 863 year: 2012 ident: 10.1016/j.exger.2017.10.029_bb0100 article-title: Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis publication-title: Compr. Physiol. doi: 10.1002/cphy.c110024 – volume: 54 start-page: 255 year: 2017 ident: 10.1016/j.exger.2017.10.029_bb0235 article-title: Anthocyanins reversed D-galactose-induced oxidative stress and Neuroinflammation mediated cognitive impairment in adult rats publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9604-5 – volume: 286 start-page: 281 year: 2015 ident: 10.1016/j.exger.2017.10.029_bb0115 article-title: NADPH oxidase 2-dependent oxidative stress, mitochondrial damage and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.11.061 – volume: 101 start-page: 9435 year: 2004 ident: 10.1016/j.exger.2017.10.029_bb0040 article-title: Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson's disease publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0400569101 – year: 2017 ident: 10.1016/j.exger.2017.10.029_bb0140 article-title: Brain aging and neurodegeneration: from a mitochondrial point of view publication-title: J. Neurochem. doi: 10.1111/jnc.14037 – volume: 18 start-page: 422 year: 2015 ident: 10.1016/j.exger.2017.10.029_bb0090 article-title: Galactose metabolism and health publication-title: Curr. Opin. Clin. Nutr. Metab. Care doi: 10.1097/MCO.0000000000000189 – volume: 369 start-page: 1082 year: 2008 ident: 10.1016/j.exger.2017.10.029_bb0175 article-title: Impairments of astrocytes are involved in the d-galactose-induced brain aging publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.02.151 – volume: 13 start-page: 251 year: 2012 ident: 10.1016/j.exger.2017.10.029_bb0025 article-title: Comparison of oxidative stress biomarkers in renal tissues of D-galactose induced, naturally aged and young rats publication-title: Biogerontology doi: 10.1007/s10522-011-9370-3 – volume: 9 start-page: 230 year: 2017 ident: 10.1016/j.exger.2017.10.029_bb0245 article-title: Hyperbaric oxygenation for resuscitation and therapy of elderly patients with cerebral and cardio-respiratory dysfunction publication-title: Front. Biosci. (Schol. Ed.) doi: 10.2741/s484 – volume: 473 start-page: 224 year: 2010 ident: 10.1016/j.exger.2017.10.029_bb0330 article-title: Systemic administration of catalpol prevents d-galactose induced mitochondrial dysfunction in mice publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.02.054 |
SSID | ssj0006231 |
Score | 2.6107144 |
SecondaryResourceType | review_article |
Snippet | Aging is a phenomenon that all living organisms inevitably face. Every year, 9.9million people, globally, suffer from dementia, an indicator of the aging... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13 |
SubjectTerms | Aging - metabolism Brain - metabolism Brain aging Cellular Senescence - drug effects Cellular Senescence - physiology Cognition - physiology Cognitive function D-galactose Dementia - metabolism Drug Discovery - methods Galactose - metabolism Humans Mitochondria Mitochondria - physiology Models, Animal Therapeutic |
Title | Role of D-galactose-induced brain aging and its potential used for therapeutic interventions |
URI | https://dx.doi.org/10.1016/j.exger.2017.10.029 https://www.ncbi.nlm.nih.gov/pubmed/29129736 https://www.proquest.com/docview/1963471804 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJcEGx5LC2VkRAn3N04TuIcV4VqAbUHKKIHpCh2JtK222S1yUrlwm9nxkn6kKAHjrHGSeQZz3xjzwPgbVlGOE2dkyoMyUEpVSoNwQ5JYD20CZLRTzjB-fgknn_Xn8-isy04HHJhOKyy1_2dTvfauh-Z9Ks5WS0Wk28sPhHhkSDxsJczyrVOWMoPft-EeZB5913ziFgy9VB5yMd44RXXZSQbmBxwiJfHmX-1Tv9Cn94KHT2Bxz18FLPuD5_CFlYj2JlV5Dpf_hLvhA_o9CflI3h43N-bj2Cvy8IVP3BZ5mskwmGgXl_swM-v9RJFXYoPkgwGd-BpUJKzTmwvhOUmEsI3MxJ5VYhF24hV3XKUEb1g0xAJAV9xK5FLLG4FUjbP4PTo4-nhXPZtF6SjDdxKG-dRnjruQI_aqgAtF5AxU6esU0Vq8iBWpgx0TugxsiWqKW1d50yKhSHnMnwO21Vd4UsQSRJiEcYRlgQUjHapigoVGRVqq10RFmNQw2pnri9Jzp0xltkQe3aeeRZlzCIeJBaN4f31pFVXkeN-8nhgY3ZHsDKyGfdPfDMwPaMtx_coeYX1pslYabFNn-oxvOik4fpPVBpwN7D41f9-dhce0ZPpTnn2YLtdb_A14Z7W7nvB3ocHs09f5id_AEEHAEk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIgEXBFsoCwWMhDjh7sb5co5VoVqg2wMsogckK3Ym0sKSrDZZCS78dmacpBQJeuDqjJPI45l5tsfzAJ6XZYzTzDmpwpAWKKXKpCbYIQmshzZFCvopX3CenyWzj9Hb8_h8B46HuzCcVtn7_s6ne2_dt0z60Zysl8vJB54-MeGRIPWwN70G1yMyX6YxOPz5O8-D4runzSNpyeJD6SGf5IXfuTAjBcH0kHO8PND8a3j6F_z0YejkDtzu8aM46n7xLuxgNYK9o4rWzt9-iBfCZ3T6rfIR3Jj3B-cjOOiu4YpPuCrzDZLg0FBvvu7B5_f1CkVdileSIgZT8DQoabVOei-EZRYJ4dmMRF4VYtk2Yl23nGZEL9g2JELIV1y6ySWWlzIpm3uwOHm9OJ7JnndBOrLgVtokj_PMMQU9RlYFaLmCjJ46ZZ0qMp0HidJlEOUEH2NbopqS7TqnMyw0rS7D-7Bb1RU-AJGmIRZhEmNJSEFHLlNxoWKtwshGrgiLMahhtI3ra5IzNcbKDMlnX4xXkWEVcSOpaAwvLzqtu5IcV4sngxrNHzPLUNC4uuOzQemGbI4PUvIK621j2GtxUJ9GY9jvZsPFn6gsYDqw5OH_fvYp3Jwt5qfm9M3Zu0dwi57obsvnAHbbzRYfEwhq7RM_yX8BDVAB1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+D-galactose-induced+brain+aging+and+its+potential+used+for+therapeutic+interventions&rft.jtitle=Experimental+gerontology&rft.au=Shwe%2C+Thazin&rft.au=Pratchayasakul%2C+Wasana&rft.au=Chattipakorn%2C+Nipon&rft.au=Chattipakorn%2C+Siriporn+C&rft.date=2018-01-01&rft.eissn=1873-6815&rft.volume=101&rft.spage=13&rft_id=info:doi/10.1016%2Fj.exger.2017.10.029&rft_id=info%3Apmid%2F29129736&rft.externalDocID=29129736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0531-5565&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0531-5565&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0531-5565&client=summon |