A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions
Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques...
Saved in:
Published in | Environments (Basel, Switzerland) Vol. 9; no. 7; p. 85 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hybrid approaches have generally been seen as a potential way of improving the accuracy of water quality modelling and forecasting compared with individual models. Consequently, recent studies have focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved oxygen is receiving more attention. From a review of relevant articles, it is clear that hybrid techniques are viable and precise methods for water quality prediction. Additionally, this paper presents future research directions to help researchers predict freshwater quality variables. |
---|---|
AbstractList | Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hybrid approaches have generally been seen as a potential way of improving the accuracy of water quality modelling and forecasting compared with individual models. Consequently, recent studies have focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved oxygen is receiving more attention. From a review of relevant articles, it is clear that hybrid techniques are viable and precise methods for water quality prediction. Additionally, this paper presents future research directions to help researchers predict freshwater quality variables. |
Author | Ortega-Martorell, Sandra Zubaidi, Salah L. Khudhair, Zahraa S. Ethaib, Saleem Hashim, Khalid Al-Ansari, Nadhir |
Author_xml | – sequence: 1 givenname: Zahraa S. surname: Khudhair fullname: Khudhair, Zahraa S. – sequence: 2 givenname: Salah L. orcidid: 0000-0003-4229-9314 surname: Zubaidi fullname: Zubaidi, Salah L. – sequence: 3 givenname: Sandra orcidid: 0000-0001-9927-3209 surname: Ortega-Martorell fullname: Ortega-Martorell, Sandra – sequence: 4 givenname: Nadhir orcidid: 0000-0002-6790-2653 surname: Al-Ansari fullname: Al-Ansari, Nadhir – sequence: 5 givenname: Saleem surname: Ethaib fullname: Ethaib, Saleem – sequence: 6 givenname: Khalid orcidid: 0000-0001-9623-4060 surname: Hashim fullname: Hashim, Khalid |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-92057$$DView record from Swedish Publication Index |
BookMark | eNptks1uEzEQx1eoSJTSJ-BiiSsBf-yubW5RQmilSg0QuFpe76R1lNhh7G2UG48Br8eT1EkQAonLzOivv37zoXlenYUYoKpeMvpGCE3fQnjwGMMGQk6aSkpV86Q651S2I8G1OvurflZdprSilLJGCSnEefVjTD7Bg4cdiUtyte_Q9-RzXGYyiZvtkH24Izb0ZGqzJXOE0Ryjg5QO-gLcffDfBkgkRzKLCM6mTGYI6X5nMyD5ONi1z_tf338mMrdoN1DU9I5MBsQyLVmU2Kdjg9mQBwQy9YWSfQzpRfV0adcJLn_ni-rL7P1icjW6uf1wPRnfjFzNmzyyrnbUKctl2zHlhOQdB-iVbp0SCmzfdpy5xgJnrag172um-1YLQVnXNZyLi-r6xO2jXZkt-o3FvYnWm6MQ8c5YzN6twbBGthRU62Sv6lrqTvJClkqVSknJCuv1iZV2sB26f2hT_3V8pK3zYDSnjSz2Vyf7FuPhjNms4oChbGt4GVHLWglRXOLkchhTQlj-wTJqDg9g_vMA4hHlqqtK |
CitedBy_id | crossref_primary_10_3390_environments9100123 crossref_primary_10_1038_s41598_023_48409_6 crossref_primary_10_3390_su151914222 crossref_primary_10_1021_acsomega_3c03294 crossref_primary_10_1007_s11600_023_01240_z crossref_primary_10_1007_s42107_023_00940_7 crossref_primary_10_7763_IJCTE_2023_V15_1333 crossref_primary_10_1111_gcb_16590 crossref_primary_10_3390_atmos14010077 crossref_primary_10_1016_j_asej_2024_102916 crossref_primary_10_1080_23311916_2022_2150121 crossref_primary_10_3390_su151914320 crossref_primary_10_1080_23311916_2022_2143051 |
Cites_doi | 10.2166/wcc.2019.236 10.1007/s00477-016-1213-y 10.1007/s00521-017-3112-7 10.1109/ICoICT.2017.8074670 10.1016/j.ijpe.2014.09.027 10.1007/s10462-022-10199-0 10.1016/j.jhydrol.2020.125197 10.1007/s12665-017-6845-9 10.1016/j.wse.2018.11.001 10.1007/s00477-018-1554-9 10.1109/CCDC.2019.8832885 10.1007/s11356-019-06049-2 10.1007/s00521-019-04560-8 10.3390/w12061628 10.1109/JSEN.2019.2940186 10.1109/ACCESS.2020.2964584 10.1016/j.knosys.2021.107379 10.3390/w12051476 10.1109/ICICT50816.2021.9358675 10.5004/dwt.2021.26813 10.1007/s11356-019-05116-y 10.1007/s11269-018-2061-y 10.3390/w12123399 10.1007/s40899-021-00584-y 10.1016/j.jenvman.2010.09.014 10.1016/j.jenvman.2021.113774 10.1007/s11269-020-02500-z 10.1016/j.jhydrol.2021.126879 10.1007/s11053-020-09702-7 10.1007/s13762-018-1896-3 10.1016/j.scitotenv.2020.139099 10.1016/j.jconhyd.2020.103641 10.3390/su13084576 10.3390/su13084259 10.1016/j.compag.2021.106216 10.1016/j.aej.2021.04.100 10.1155/2018/8241342 10.3390/w12071885 10.1007/s00521-020-05194-x 10.3390/w12071929 10.1016/j.procs.2017.11.212 10.1016/j.ins.2021.04.057 10.1007/s12205-021-1859-y 10.1016/j.scitotenv.2018.08.221 10.1016/j.ifacol.2018.08.091 10.3390/w10091148 10.3390/w13111547 10.1155/2020/6659314 10.1016/j.marpolbul.2021.112639 10.3390/w13070888 10.1016/j.chemosphere.2020.126169 10.1016/j.apenergy.2018.06.053 10.1007/s11269-019-02447-w 10.1016/j.asej.2021.11.004 10.3390/su14031183 10.1016/j.jhydrol.2018.03.047 10.1016/j.jhydrol.2021.126099 10.1016/j.proeng.2016.07.519 10.1109/ACCESS.2019.2942012 10.1016/j.envpol.2020.116332 10.1016/j.engappai.2019.08.018 10.1016/j.asej.2021.01.007 10.1109/ACCESS.2020.3017743 10.1007/s11356-020-09188-z 10.1080/02626667.2018.1469756 10.2166/nh.2016.264 10.1007/s11356-021-14560-8 10.1016/j.jhydrol.2021.126506 10.1007/s00521-013-1367-1 10.1007/s10661-021-09127-6 10.1007/s40808-020-01041-z 10.1016/j.ecoinf.2020.101157 10.1504/IJBIC.2010.032124 10.1016/j.chemolab.2020.103978 10.3390/su12135374 10.3390/w12102951 10.1007/s00477-020-01776-2 10.3390/w11112210 10.1080/10934529.2021.1933325 10.3390/w10101471 10.1016/j.gloenvcha.2012.11.002 10.3390/w13091273 10.1007/s11269-018-2147-6 10.1007/s00477-017-1394-z 10.2166/hydro.2021.023 10.1016/j.jhydrol.2020.124989 10.1016/j.ecohyd.2017.02.002 10.3390/w14071067 10.1007/s12665-017-6842-z 10.3390/app10175776 10.1007/s11356-014-3806-7 10.3390/w9060406 10.3390/w13131782 10.1007/s10973-021-10748-9 10.1109/ACCESS.2021.3100490 10.1007/s11069-019-03665-6 10.3390/atmos11060585 10.1016/j.psep.2021.05.026 10.3390/app9091863 10.1007/s12205-017-1703-6 10.3390/w12020585 10.32604/cmes.2021.015528 10.3390/w10060806 10.1007/s40808-021-01253-x 10.1016/j.jenvman.2021.112051 10.1016/j.jhydrol.2020.124670 10.21203/rs.3.rs-1100147/v1 10.1007/s11269-021-02913-4 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ PATMY PIMPY PQEST PQQKQ PQUKI PYCSY ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.3390/environments9070085 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) Environmental Science Database ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Environmental Science Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2076-3298 |
ExternalDocumentID | oai_doaj_org_article_15760e86c7d84479b72c5a7889b78771 oai_DiVA_org_ltu_92057 10_3390_environments9070085 |
GroupedDBID | 5VS 7XC 8FE 8FH AAHBH AAYXX ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION EDH GROUPED_DOAJ HCIFZ IAO ITC KQ8 MODMG M~E OK1 PATMY PIMPY PROAC PYCSY RIG ABUWG AZQEC DWQXO GNUQQ PQEST PQQKQ PQUKI ADTPV AOWAS D8T IPNFZ ZZAVC |
ID | FETCH-LOGICAL-c425t-ac4c0c8a276b18c372b2eed896c838ead6b21c5ae2163492d419d693301bb5223 |
IEDL.DBID | BENPR |
ISSN | 2076-3298 |
IngestDate | Tue Oct 22 15:16:01 EDT 2024 Tue Oct 01 22:32:01 EDT 2024 Tue Nov 05 12:40:34 EST 2024 Thu Sep 26 20:51:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-ac4c0c8a276b18c372b2eed896c838ead6b21c5ae2163492d419d693301bb5223 |
ORCID | 0000-0001-9927-3209 0000-0002-6790-2653 0000-0003-4229-9314 0000-0001-9623-4060 |
OpenAccessLink | https://www.proquest.com/docview/2693974833?pq-origsite=%requestingapplication% |
PQID | 2693974833 |
PQPubID | 2055416 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_15760e86c7d84479b72c5a7889b78771 swepub_primary_oai_DiVA_org_ltu_92057 proquest_journals_2693974833 crossref_primary_10_3390_environments9070085 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Environments (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 Azad (ref_68) 2019; 12 ref_92 Deng (ref_103) 2021; 284 Jiang (ref_105) 2021; 23 Rajaee (ref_14) 2020; 200 Tiyasha (ref_19) 2020; 585 ref_13 ref_12 ref_99 Yang (ref_76) 2010; 2 Solgi (ref_89) 2017; 17 ref_96 ref_95 Roomi (ref_90) 2021; 9 Banerjee (ref_1) 2020; 60 ref_18 Abba (ref_7) 2017; 120 Banadkooki (ref_16) 2020; 587 He (ref_88) 2018; 226 Li (ref_109) 2019; 26 Naghibi (ref_40) 2020; 589 Anshuka (ref_41) 2019; 97 Montaseri (ref_114) 2018; 32 ref_24 ref_23 ref_22 Sami (ref_27) 2021; 12 Barzegar (ref_116) 2017; 32 (ref_60) 2021; 596 ref_70 Giri (ref_20) 2021; 271 Apaydin (ref_55) 2021; 600 Aghel (ref_67) 2018; 16 Han (ref_15) 2021; 145 ref_74 Najah (ref_54) 2009; 28 Jamei (ref_98) 2021; 300 Li (ref_31) 2020; 731 Parmar (ref_110) 2019; 31 Nouraki (ref_33) 2021; 28 Zubaidi (ref_61) 2018; 32 ref_83 ref_82 Sattari (ref_36) 2016; 108 Ibrahim (ref_47) 2022; 61 Hajirahimi (ref_21) 2019; 86 ref_85 Lu (ref_38) 2020; 249 Zubaidi (ref_51) 2022; 34 Li (ref_77) 2017; 31 Fung (ref_42) 2020; 11 Jafari (ref_107) 2020; 29 Li (ref_32) 2017; 143 Shah (ref_69) 2021; 151 Azad (ref_73) 2017; 22 Li (ref_81) 2018; 51–17 Huang (ref_104) 2021; 186 Maroufpoor (ref_106) 2020; 27 Jeihouni (ref_39) 2019; 34 ref_50 Ighalo (ref_17) 2020; 7 ref_58 Bi (ref_91) 2021; 571 ref_53 Hassan (ref_72) 2021; 25 ref_59 Yang (ref_79) 2013; 24 Kadkhodazadeh (ref_86) 2021; 35 ref_65 ref_64 Tahraoui (ref_8) 2021; 217 Raheli (ref_78) 2017; 76 He (ref_26) 2011; 92 Kisi (ref_111) 2018; 33 Jawad (ref_63) 2020; 20 Zubaidi (ref_49) 2018; 561 Stamenkovic (ref_10) 2021; 56 Dehghani (ref_87) 2021; 8 Rasheed (ref_34) 2022; 13 ref_35 Zhang (ref_46) 2019; 7 Nabipour (ref_66) 2020; 8 Song (ref_102) 2021; 193 Huang (ref_115) 2018; 2018 ref_30 ref_113 Seo (ref_6) 2016; 154 Song (ref_97) 2021; 603 Ahmadianfar (ref_93) 2020; 232 Sundararajan (ref_25) 2021; 128 ref_108 Tiyasha (ref_28) 2021; 170 Barzegar (ref_29) 2016; 30 Jin (ref_75) 2019; 26 Aldhyani (ref_11) 2020; 2020 Zubaidi (ref_52) 2020; 34 Mohammadi (ref_44) 2021; 7 Barzegar (ref_57) 2020; 34 ref_100 Mohammadpour (ref_9) 2015; 22 Babbar (ref_37) 2017; 76 Fijani (ref_112) 2019; 648 Abba (ref_101) 2020; 8 Zhang (ref_45) 2016; 47 ref_2 Tripura (ref_71) 2020; 33 Adnan (ref_62) 2021; 230 Hashemi (ref_84) 2015; 159 ref_48 Zhang (ref_43) 2018; 63 ref_5 ref_4 Franssen (ref_3) 2013; 23 Chatterjee (ref_80) 2017; 6 Lola (ref_56) 2018; 13 |
References_xml | – volume: 11 start-page: 771 year: 2020 ident: ref_42 article-title: Drought forecasting: A review of modelling approaches 2007–2017 publication-title: J. Water Clim. Change doi: 10.2166/wcc.2019.236 contributor: fullname: Fung – volume: 30 start-page: 1797 year: 2016 ident: ref_29 article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: A case study in Aji-Chay River, Iran publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-016-1213-y contributor: fullname: Barzegar – volume: 31 start-page: 827 year: 2017 ident: ref_77 article-title: Hybrid soft computing approach for determining water quality indicator: Euphrates River publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3112-7 contributor: fullname: Li – volume: 34 start-page: 163 year: 2022 ident: ref_51 article-title: A novel methodology to predict monthly municipal water demand based on weather variables scenario publication-title: J. King Saud. Univ. Eng. Sci. contributor: fullname: Zubaidi – ident: ref_64 doi: 10.1109/ICoICT.2017.8074670 – volume: 159 start-page: 178 year: 2015 ident: ref_84 article-title: An integrated green supplier selection approach with analytic network process and improved Grey relational analysis publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2014.09.027 contributor: fullname: Hashemi – ident: ref_22 doi: 10.1007/s10462-022-10199-0 – volume: 589 start-page: 125197 year: 2020 ident: ref_40 article-title: Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125197 contributor: fullname: Naghibi – volume: 76 start-page: 504 year: 2017 ident: ref_37 article-title: Predicting river water quality index using data mining techniques publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6845-9 contributor: fullname: Babbar – volume: 12 start-page: 45 year: 2019 ident: ref_68 article-title: Modeling river water quality parameters using modified adaptive neuro fuzzy inference system publication-title: Water Sci. Eng. doi: 10.1016/j.wse.2018.11.001 contributor: fullname: Azad – volume: 32 start-page: 2253 year: 2018 ident: ref_114 article-title: Water quality variations in different climates of Iran: Toward modeling total dissolved solid using soft computing techniques publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-018-1554-9 contributor: fullname: Montaseri – ident: ref_108 doi: 10.1109/CCDC.2019.8832885 – volume: 26 start-page: 30374 year: 2019 ident: ref_75 article-title: A data-driven model for real-time water quality prediction and early warning by an integration method publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-019-06049-2 contributor: fullname: Jin – volume: 31 start-page: 8463 year: 2019 ident: ref_110 article-title: Neuro-fuzzy-wavelet hybrid approach to estimate the future trends of river water quality publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04560-8 contributor: fullname: Parmar – ident: ref_50 doi: 10.3390/w12061628 – volume: 20 start-page: 552 year: 2020 ident: ref_63 article-title: Accurate Empirical Path-Loss Model Based on Particle Swarm Optimization for Wireless Sensor Networks in Smart Agriculture publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2940186 contributor: fullname: Jawad – volume: 8 start-page: 15210 year: 2020 ident: ref_66 article-title: Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964584 contributor: fullname: Nabipour – volume: 230 start-page: 107379 year: 2021 ident: ref_62 article-title: Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.107379 contributor: fullname: Adnan – ident: ref_96 doi: 10.3390/w12051476 – ident: ref_53 – ident: ref_18 doi: 10.1109/ICICT50816.2021.9358675 – volume: 217 start-page: 181 year: 2021 ident: ref_8 article-title: Predicting the concentration of sulfate (SO42−) in drinking water using artificial neural networks: A case study: Médéa-Algeria publication-title: Desalination Water Treat. doi: 10.5004/dwt.2021.26813 contributor: fullname: Tahraoui – volume: 26 start-page: 19879 year: 2019 ident: ref_109 article-title: Water quality prediction based on recurrent neural network and improved evidence theory: A case study of Qiantang River, China publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-019-05116-y contributor: fullname: Li – volume: 32 start-page: 4527 year: 2018 ident: ref_61 article-title: Short-Term Urban Water Demand Prediction Considering Weather Factors publication-title: Water Resour. Manag. doi: 10.1007/s11269-018-2061-y contributor: fullname: Zubaidi – ident: ref_58 doi: 10.3390/w12123399 – volume: 7 start-page: 98 year: 2021 ident: ref_44 article-title: A review on the applications of machine learning for runoff modeling publication-title: Sustain. Water Resour. Manag. doi: 10.1007/s40899-021-00584-y contributor: fullname: Mohammadi – volume: 92 start-page: 172 year: 2011 ident: ref_26 article-title: Estimating monthly total nitrogen concentration in streams by using artificial neural network publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2010.09.014 contributor: fullname: He – volume: 300 start-page: 113774 year: 2021 ident: ref_98 article-title: The assessment of emerging data-intelligence technologies for modeling Mg+2 and SO4−2 surface water quality publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.113774 contributor: fullname: Jamei – volume: 34 start-page: 1265 year: 2020 ident: ref_52 article-title: A Method for Predicting Long-Term Municipal Water Demands Under Climate Change publication-title: Water Resour. Manag. doi: 10.1007/s11269-020-02500-z contributor: fullname: Zubaidi – volume: 603 start-page: 126879 year: 2021 ident: ref_97 article-title: A novel hybrid model for water quality prediction based on synchrosqueezed wavelet transform technique and improved long short-term memory publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126879 contributor: fullname: Song – volume: 29 start-page: 3819 year: 2020 ident: ref_107 article-title: Improved Water Quality Prediction with Hybrid Wavelet-Genetic Programming Model and Shannon Entropy publication-title: Nat. Resour. Res. doi: 10.1007/s11053-020-09702-7 contributor: fullname: Jafari – volume: 16 start-page: 4823 year: 2018 ident: ref_67 article-title: Modeling and prediction of water quality parameters using a hybrid particle swarm optimization–neural fuzzy approach publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-018-1896-3 contributor: fullname: Aghel – volume: 731 start-page: 139099 year: 2020 ident: ref_31 article-title: Concentration estimation of dissolved oxygen in Pearl River Basin using input variable selection and machine learning techniques publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139099 contributor: fullname: Li – volume: 232 start-page: 103641 year: 2020 ident: ref_93 article-title: A novel Hybrid Wavelet-Locally Weighted Linear Regression (W-LWLR) Model for Electrical Conductivity (EC) Prediction in Surface Water publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2020.103641 contributor: fullname: Ahmadianfar – ident: ref_30 doi: 10.3390/su13084576 – volume: 28 start-page: 422 year: 2009 ident: ref_54 article-title: Prediction of Johor River Water Quality Parameters Using Artificial Neural Networks publication-title: Eur. J. Sci. Res. contributor: fullname: Najah – ident: ref_12 doi: 10.3390/su13084259 – volume: 186 start-page: 106216 year: 2021 ident: ref_104 article-title: A hybrid model for short-term dissolved oxygen content prediction publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106216 contributor: fullname: Huang – volume: 61 start-page: 279 year: 2022 ident: ref_47 article-title: A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.04.100 contributor: fullname: Ibrahim – volume: 2018 start-page: 8241342 year: 2018 ident: ref_115 article-title: A Hybrid Fuzzy Wavelet Neural Network Model with Self-Adapted Fuzzy c-Means Clustering and Genetic Algorithm for Water Quality Prediction in Rivers publication-title: Complexity doi: 10.1155/2018/8241342 contributor: fullname: Huang – ident: ref_2 doi: 10.3390/w12071885 – volume: 33 start-page: 3221 year: 2020 ident: ref_71 article-title: Simultaneous streamflow forecasting based on hybridized neuro-fuzzy method for a river system publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05194-x contributor: fullname: Tripura – ident: ref_95 doi: 10.3390/w12071929 – volume: 120 start-page: 75 year: 2017 ident: ref_7 article-title: River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.11.212 contributor: fullname: Abba – volume: 571 start-page: 191 year: 2021 ident: ref_91 article-title: Large-scale water quality prediction with integrated deep neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.04.057 contributor: fullname: Bi – volume: 25 start-page: 3583 year: 2021 ident: ref_72 article-title: Improving Artificial Neural Network Based Streamflow Forecasting Models through Data Preprocessing publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-021-1859-y contributor: fullname: Hassan – volume: 648 start-page: 839 year: 2019 ident: ref_112 article-title: Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.221 contributor: fullname: Fijani – volume: 51–17 start-page: 831 year: 2018 ident: ref_81 article-title: Water Quality Prediction Model Combining Sparse Auto-encoder and LSTM Network publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2018.08.091 contributor: fullname: Li – ident: ref_85 doi: 10.3390/w10091148 – ident: ref_99 doi: 10.3390/w13111547 – volume: 2020 start-page: 6659314 year: 2020 ident: ref_11 article-title: Water Quality Prediction Using Artificial Intelligence Algorithms publication-title: Appl. Bionics. Biomech. doi: 10.1155/2020/6659314 contributor: fullname: Aldhyani – volume: 170 start-page: 112639 year: 2021 ident: ref_28 article-title: Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: Development of hybrid tree-based artificial intelligence models publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2021.112639 contributor: fullname: Tiyasha – ident: ref_70 doi: 10.3390/w13070888 – volume: 249 start-page: 126169 year: 2020 ident: ref_38 article-title: Hybrid decision tree-based machine learning models for short-term water quality prediction publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126169 contributor: fullname: Lu – volume: 226 start-page: 756 year: 2018 ident: ref_88 article-title: A hybrid system for short-term wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.053 contributor: fullname: He – volume: 34 start-page: 139 year: 2019 ident: ref_39 article-title: Decision Tree-Based Data Mining and Rule Induction for Identifying High Quality Groundwater Zones to Water Supply Management: A Novel Hybrid Use of Data Mining and GIS publication-title: Water Resour. Manag. doi: 10.1007/s11269-019-02447-w contributor: fullname: Jeihouni – volume: 13 start-page: 101635 year: 2022 ident: ref_34 article-title: Application of random forest for modelling of surface water salinity publication-title: Ain. Shams Eng. J. doi: 10.1016/j.asej.2021.11.004 contributor: fullname: Rasheed – ident: ref_35 doi: 10.3390/su14031183 – volume: 561 start-page: 136 year: 2018 ident: ref_49 article-title: A Novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.03.047 contributor: fullname: Zubaidi – volume: 108 start-page: E232 year: 2016 ident: ref_36 article-title: Estimation of Water Quality Parameters With Data-Driven Model publication-title: J. Am. Water Work. Assoc. contributor: fullname: Sattari – volume: 596 start-page: 126099 year: 2021 ident: ref_60 article-title: The performance of classification and forecasting Dong Nai River water quality for sustainable water resources management using neural network techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126099 – volume: 154 start-page: 1110 year: 2016 ident: ref_6 article-title: Forecasting Water Quality Parameters by ANN Model Using Pre-processing Technique at the Downstream of Cheongpyeong Dam publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.07.519 contributor: fullname: Seo – volume: 7 start-page: 136254 year: 2019 ident: ref_46 article-title: Wind Power Prediction Based on PSO-SVR and Grey Combination Model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942012 contributor: fullname: Zhang – volume: 271 start-page: 116332 year: 2021 ident: ref_20 article-title: Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.116332 contributor: fullname: Giri – volume: 86 start-page: 83 year: 2019 ident: ref_21 article-title: Hybrid structures in time series modeling and forecasting: A review publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.018 contributor: fullname: Hajirahimi – volume: 12 start-page: 1607 year: 2021 ident: ref_27 article-title: Investigating the reliability of machine learning algorithms as a sustainable tool for total suspended solid prediction publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2021.01.007 contributor: fullname: Sami – volume: 8 start-page: 157218 year: 2020 ident: ref_101 article-title: Hybrid Machine Learning Ensemble Techniques for Modeling Dissolved Oxygen Concentration publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3017743 contributor: fullname: Abba – volume: 27 start-page: 28183 year: 2020 ident: ref_106 article-title: Modeling groundwater quality by using hybrid intelligent and geostatistical methods publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-020-09188-z contributor: fullname: Maroufpoor – volume: 63 start-page: 1091 year: 2018 ident: ref_43 article-title: Univariate streamflow forecasting using commonly used data-driven models: Literature review and case study publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2018.1469756 contributor: fullname: Zhang – volume: 47 start-page: 69 year: 2016 ident: ref_45 article-title: Comparison of random forests and other statistical methods for the prediction of lake water level: A case study of the Poyang Lake in China publication-title: Hydrol. Res. doi: 10.2166/nh.2016.264 contributor: fullname: Zhang – volume: 28 start-page: 57060 year: 2021 ident: ref_33 article-title: Prediction of water quality parameters using machine learning models: A case study of the Karun River, Iran publication-title: Environ. Sci Pollut. Res. Int. doi: 10.1007/s11356-021-14560-8 contributor: fullname: Nouraki – volume: 600 start-page: 126506 year: 2021 ident: ref_55 article-title: Artificial intelligence modelling integrated with Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow predictions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126506 contributor: fullname: Apaydin – volume: 24 start-page: 169 year: 2013 ident: ref_79 article-title: Cuckoo search: Recent advances and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1367-1 contributor: fullname: Yang – volume: 193 start-page: 363 year: 2021 ident: ref_102 article-title: A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China publication-title: Environ. Monit. Assess doi: 10.1007/s10661-021-09127-6 contributor: fullname: Song – volume: 7 start-page: 669 year: 2020 ident: ref_17 article-title: Artificial intelligence for surface water quality monitoring and assessment: A systematic literature analysis publication-title: Modeling Earth Syst. Environ. doi: 10.1007/s40808-020-01041-z contributor: fullname: Ighalo – volume: 60 start-page: 101157 year: 2020 ident: ref_1 article-title: Forecasting environmental factors and zooplankton of Bakreswar reservoir in India using time series model publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101157 contributor: fullname: Banerjee – volume: 2 start-page: 78 year: 2010 ident: ref_76 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2010.032124 contributor: fullname: Yang – volume: 200 start-page: 103978 year: 2020 ident: ref_14 article-title: Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.103978 contributor: fullname: Rajaee – ident: ref_74 doi: 10.3390/su12135374 – ident: ref_4 doi: 10.3390/w12102951 – volume: 34 start-page: 415 year: 2020 ident: ref_57 article-title: Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-020-01776-2 contributor: fullname: Barzegar – ident: ref_13 doi: 10.3390/w11112210 – volume: 56 start-page: 867 year: 2021 ident: ref_10 article-title: Application of ANN and SVM for prediction nutrients in rivers publication-title: J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. doi: 10.1080/10934529.2021.1933325 contributor: fullname: Stamenkovic – ident: ref_82 – volume: 13 start-page: 27 year: 2018 ident: ref_56 article-title: Improving the performance of ann-arima models for predicting water quality in the offshore area of kuala terengganu, terengganu, malaysia publication-title: J. Sustain. Sci. Manag. contributor: fullname: Lola – volume: 143 start-page: 04017070 year: 2017 ident: ref_32 article-title: Water-Quality Prediction Using Multimodal Support Vector Regression: Case Study of Jialing River, China publication-title: Am. Soc. Civ. Eng. contributor: fullname: Li – ident: ref_113 doi: 10.3390/w10101471 – volume: 23 start-page: 450 year: 2013 ident: ref_3 article-title: Global river discharge and water temperature under climate change publication-title: Glob. Environ. Change doi: 10.1016/j.gloenvcha.2012.11.002 contributor: fullname: Franssen – ident: ref_59 doi: 10.3390/w13091273 – volume: 33 start-page: 847 year: 2018 ident: ref_111 article-title: Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods publication-title: Water Resour. Manag. doi: 10.1007/s11269-018-2147-6 contributor: fullname: Kisi – volume: 32 start-page: 799 year: 2017 ident: ref_116 article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-017-1394-z contributor: fullname: Barzegar – volume: 23 start-page: 864 year: 2021 ident: ref_105 article-title: A hybrid wavelet-Lyapunov exponent model for river water quality forecast publication-title: J. Hydroinform. doi: 10.2166/hydro.2021.023 contributor: fullname: Jiang – volume: 587 start-page: 124989 year: 2020 ident: ref_16 article-title: Estimation of total dissolved solids (TDS) using new hybrid machine learning models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124989 contributor: fullname: Banadkooki – volume: 17 start-page: 164 year: 2017 ident: ref_89 article-title: Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD) publication-title: Ecohydrol. Hydrobiol. doi: 10.1016/j.ecohyd.2017.02.002 contributor: fullname: Solgi – ident: ref_24 doi: 10.3390/w14071067 – volume: 76 start-page: 503 year: 2017 ident: ref_78 article-title: Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: A case study of Langat River publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6842-z contributor: fullname: Raheli – ident: ref_5 doi: 10.3390/app10175776 – volume: 22 start-page: 6208 year: 2015 ident: ref_9 article-title: Prediction of water quality index in constructed wetlands using support vector machine publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-014-3806-7 contributor: fullname: Mohammadpour – ident: ref_65 doi: 10.3390/w9060406 – ident: ref_94 doi: 10.3390/w13131782 – volume: 145 start-page: 2191 year: 2021 ident: ref_15 article-title: A review of artificial neural network techniques for environmental issues prediction publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-021-10748-9 contributor: fullname: Han – volume: 9 start-page: 108527 year: 2021 ident: ref_90 article-title: Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3100490 contributor: fullname: Roomi – volume: 97 start-page: 955 year: 2019 ident: ref_41 article-title: Drought forecasting through statistical models using standardised precipitation index: A systematic review and meta-regression analysis publication-title: Nat. Hazards doi: 10.1007/s11069-019-03665-6 contributor: fullname: Anshuka – ident: ref_48 doi: 10.3390/atmos11060585 – volume: 151 start-page: 324 year: 2021 ident: ref_69 article-title: Environmental assessment based surface water quality prediction using hyper-parameter optimized machine learning models based on consistent big data publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.05.026 contributor: fullname: Shah – ident: ref_100 doi: 10.3390/app9091863 – volume: 22 start-page: 2206 year: 2017 ident: ref_73 article-title: Prediction of Water Quality Parameters Using ANFIS Optimized by Intelligence Algorithms (Case Study: Gorganrood River) publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-017-1703-6 contributor: fullname: Azad – ident: ref_23 doi: 10.3390/w12020585 – volume: 128 start-page: 447 year: 2021 ident: ref_25 article-title: A Contemporary Review on Drought Modeling Using Machine Learning Approaches publication-title: Comput. Modeling Eng. Sci. doi: 10.32604/cmes.2021.015528 contributor: fullname: Sundararajan – ident: ref_83 doi: 10.3390/w10060806 – volume: 6 start-page: 229 year: 2017 ident: ref_80 article-title: Application of cuckoo search in water quality prediction using artificial neural network publication-title: Int. J. Comput. Intell. Stud. contributor: fullname: Chatterjee – volume: 8 start-page: 2599 year: 2021 ident: ref_87 article-title: Dissolved oxygen concentration predictions for running waters with using hybrid machine learning techniques publication-title: Modeling Earth Syst. Environ. doi: 10.1007/s40808-021-01253-x contributor: fullname: Dehghani – volume: 284 start-page: 112051 year: 2021 ident: ref_103 article-title: Machine learning based marine water quality prediction for coastal hydro-environment management publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112051 contributor: fullname: Deng – volume: 585 start-page: 124670 year: 2020 ident: ref_19 article-title: A survey on river water quality modelling using artificial intelligence models: 2000–2020 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124670 contributor: fullname: Tiyasha – ident: ref_92 doi: 10.21203/rs.3.rs-1100147/v1 – volume: 35 start-page: 3939 year: 2021 ident: ref_86 article-title: A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters publication-title: Water Resour. Manag. doi: 10.1007/s11269-021-02913-4 contributor: fullname: Kadkhodazadeh |
SSID | ssj0001583733 |
Score | 2.323621 |
Snippet | Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water... |
SourceID | doaj swepub proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 85 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Chemical oxygen demand Data processing Dissolved oxygen Forecasting Freshwater resources Geoteknik hybrid model Internet of Things Machine learning Mathematical models metaheuristic algorithms Model accuracy Modelling Neural networks Parameters Prediction models Rain Rivers Soft computing Soil Mechanics Support vector machines Time series Water quality water quality parameters |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLOejNxd0kzSbeqrUUQSn4wNuSZLMoSCvtFvHmz9C_5y9xstnKFgQvwh6WEEjITJLvCzPfEHIodWGVdCLSLm5HXIkkMkKayHFLbVEIU1Cf73x1Lfp3_PKh_dAo9eVjwoI8cFi4kwQBceyksGkuOU-VSaltayRu-CfTNBCfWDXIVMgPRuLFWJAZYsjrT5p5Y0gIPdSYu4oqxf55mNmUDq2um94qWalxInTC_NbIghuuk-WGeuAG-ehAeNmHUQH9N596BTd4qkKo1IB9QA9z6OpSw2DsojonwLffzpRbJ1COwJfntHpSQg-59-Mros8xBG2Nt6_3zwkMtI_g8jKcp1DrOUGIpa0G6FWyJFAfnujFm-Sud3F73o_qQguRxS1bRtpyG1upaSpMIi1LqaF4d0olrGQSfU0YmuCqO4rojSua80Tlwj-FJMYggGNbZHE4GrptAhohiHGscO3Yy-YY7T9ZFFZwxWyetMjxbM2zl6CnkSEP8SbKfjFRi5x5u_x09WLYVQO6SFa7SPaXi7TI3syqWb1DJxnF-SOXkoy1yFGw9Nwo3af7TjXKcznNFEVYu_Mfc9klS9QnUFQBv3tksRxP3T7CmtIcVB78DRr4-go priority: 102 providerName: Directory of Open Access Journals |
Title | A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions |
URI | https://www.proquest.com/docview/2693974833 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-92057 https://doaj.org/article/15760e86c7d84479b72c5a7889b78771 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge4FDxadYWqo5wA2rG9txHC5oS7taIVGtoEW9RbbjABLalE0q1Bs_A_4ev4QZx0t3JYSUQ2RZcZTxx3uTmTeMPTe28aUJmtswybkqdcadNo4H5YVvGu0aQfnO7071_Fy9vcgvksOtS2GV6z0xbtR168lHfih0iUenMlK-vvzGqWoU_V1NJTRusx1BTGHEdo5OThfvb7wsORIwKQe5IYn8_nAzfwyJIUGOrSMpKvdvw81NCdF47Mzusd2EF2E6GPg-uxWWD9jdDRXBh-znFAYPP7QNzK8pBQs-4O4KQ8UG7AN2WcOx7S0sVoGn3ABqP1sruHbQt0BlOr3tepghB__8HVHoCgaNjevfP351sLAUyUVynK8g6TrBEFMbB5hFeRJImyjO5kfsfHZy9mbOU8EF7nHp9tx65SfeWFFolxkvC-EEnqGm1N5Ig3NOO5H53AaBKE6VolZZWWtyiWTOIZCTj9lo2S7DEwYWoYgLsgn5hORznKXLNI3XqpS-zsbs5fqbV5eDrkaFfIRMVP3DRGN2RHb525VEsWNDu_pUpTVWZcidJsFoX9RGqaJ0hcCXRY6Pd6YocMz9tVWrtFK76mZejdmLwdJboxx_-TiNo3ztr6pSILx9-v_H7LE7glIkYkjvPhv1q6vwDIFL7w7S7DyIxP8P96L1bA |
link.rule.ids | 230,315,783,787,867,888,2109,21401,27937,27938,33757,43818,74637 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELagewAOiF9RWMAHuGFtYzuOzQV12a0K7FYVdNHeLNtxAAk1S5MV2huPAa_HkzCTuGwrIaQcIsuKo8x4_M1k5htCnmlXBaOjYi6OciaNyphX2rMoAw9VpXzFsd75eKamJ_LtaX6aAm5NSqtc28TOUJd1wBj5HlcGjk6phXh19o1h1yj8u5paaFwlO0hVpQdkZ_9wNn9_GWXJwQEToqcbEuDf723Wj4FjiJBj60jqmPu34eYmhWh37ExukZsJL9JxL-Db5Epc3iE3NlgE75KfY9pH-Gld0ekFlmDRD2Bdad-xAeZQtyzpgWsdna8iS7UBOL5YM7g2tK0ptukMrmnpBHzwz98Bha5oz7Fx8fvHr4bOHWZyIR3nS5p4nWifU9stMOnoSWgyoqDN98jJ5HDxespSwwUWYOu2zAUZRkE7Xiif6SAK7jmcodqooIUGnVOeZyF3kQOKk4aXMjOlwpBI5j0AOXGfDJb1Mj4g1AEU8VFUMR8hfY53eOmqCkoaEcpsSF6sv7k963k1LPgjKCL7DxENyT7K5e9UJMXuBurVJ5v2mM3AdxpFrUJRaikL4wsOLws-PtzpooA1d9dStWmnNvZSr4bkeS_prVUOvnwcd6t8bc-t4QBvH_7_MU_Jteni-MgevZm9e0SucyyX6NJ7d8mgXZ3HxwBiWv8kaeof-wT3cQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELaglRA9IH7FQgEf4Ia1G9txbC5oyzZa_lYraFFvlu3YtFK1KZtUqDceo309noRx4qW7EkLKIbKsTJQZe75xZr5B6KU0wSnpBTF-lBOuREaskJZ47qgLQdhAY73z55mYHvIPR_lRyn9qUlrlak_sNuqqdvGMfEiFAtfJJWPDkNIi5pPy7dkPEjtIxT-tqZ3GTbRdcMEgENve25_Nv1yfuOQQjDHWUw8xiPWH67VkECRG-LHhnjoW_03ouU4n2rmg8i66k7AjHvfKvodu-MV9tLPGKPgAXY5xf9qP64CnF7EcC3-FnRb33RtgDjaLCk9Ma_B86UmqE4jjBys21wa3NY4tO51pWlxCPH78ExDpEvd8Gxe_f101eG5iVlek5nyDE8cT7vNrOwFlR1WC04YKlv0QHZb7B--mJDVfIA6WcUuM427kpKGFsJl0rKCWgj-VSjjJJNifsDRzufEUEB1XtOKZqkQ8HsmsBVDHHqGtRb3wjxE2AEusZ8Hno0ilY028ZAhOcMVclQ3Q69U312c9x4aG2CSqSP9DRQO0F_Xyd2okyO4G6uV3ndabziCOGnkpXFFJzgtlCwovC_E-3MmiAJm7K63qtGobfW1jA_Sq1_SGlMnJt3En5bQ914oC1H3y_8e8QLfASPWn97OPT9FtGisnukzfXbTVLs_9M8AzrX2eDPUPNFD7pQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Hybrid+Soft+Computing+and+Data+Pre-Processing+Techniques+to+Forecast+Freshwater+Quality%E2%80%99s+Parameters%3A+Current+Trends+and+Future+Directions&rft.jtitle=Environments+%28Basel%2C+Switzerland%29&rft.au=Khudhair%2C+Zahraa+S&rft.au=Zubaidi%2C+Salah+L&rft.au=Ortega-Martorell%2C+Sandra&rft.au=Al-Ansari%2C+Nadhir&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3298&rft.volume=9&rft.issue=7&rft.spage=85&rft_id=info:doi/10.3390%2Fenvironments9070085&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3298&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3298&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3298&client=summon |