A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions

Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques...

Full description

Saved in:
Bibliographic Details
Published inEnvironments (Basel, Switzerland) Vol. 9; no. 7; p. 85
Main Authors Khudhair, Zahraa S., Zubaidi, Salah L., Ortega-Martorell, Sandra, Al-Ansari, Nadhir, Ethaib, Saleem, Hashim, Khalid
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hybrid approaches have generally been seen as a potential way of improving the accuracy of water quality modelling and forecasting compared with individual models. Consequently, recent studies have focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved oxygen is receiving more attention. From a review of relevant articles, it is clear that hybrid techniques are viable and precise methods for water quality prediction. Additionally, this paper presents future research directions to help researchers predict freshwater quality variables.
AbstractList Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hybrid approaches have generally been seen as a potential way of improving the accuracy of water quality modelling and forecasting compared with individual models. Consequently, recent studies have focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved oxygen is receiving more attention. From a review of relevant articles, it is clear that hybrid techniques are viable and precise methods for water quality prediction. Additionally, this paper presents future research directions to help researchers predict freshwater quality variables.
Author Ortega-Martorell, Sandra
Zubaidi, Salah L.
Khudhair, Zahraa S.
Ethaib, Saleem
Hashim, Khalid
Al-Ansari, Nadhir
Author_xml – sequence: 1
  givenname: Zahraa S.
  surname: Khudhair
  fullname: Khudhair, Zahraa S.
– sequence: 2
  givenname: Salah L.
  orcidid: 0000-0003-4229-9314
  surname: Zubaidi
  fullname: Zubaidi, Salah L.
– sequence: 3
  givenname: Sandra
  orcidid: 0000-0001-9927-3209
  surname: Ortega-Martorell
  fullname: Ortega-Martorell, Sandra
– sequence: 4
  givenname: Nadhir
  orcidid: 0000-0002-6790-2653
  surname: Al-Ansari
  fullname: Al-Ansari, Nadhir
– sequence: 5
  givenname: Saleem
  surname: Ethaib
  fullname: Ethaib, Saleem
– sequence: 6
  givenname: Khalid
  orcidid: 0000-0001-9623-4060
  surname: Hashim
  fullname: Hashim, Khalid
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-92057$$DView record from Swedish Publication Index
BookMark eNptks1uEzEQx1eoSJTSJ-BiiSsBf-yubW5RQmilSg0QuFpe76R1lNhh7G2UG48Br8eT1EkQAonLzOivv37zoXlenYUYoKpeMvpGCE3fQnjwGMMGQk6aSkpV86Q651S2I8G1OvurflZdprSilLJGCSnEefVjTD7Bg4cdiUtyte_Q9-RzXGYyiZvtkH24Izb0ZGqzJXOE0Ryjg5QO-gLcffDfBkgkRzKLCM6mTGYI6X5nMyD5ONi1z_tf338mMrdoN1DU9I5MBsQyLVmU2Kdjg9mQBwQy9YWSfQzpRfV0adcJLn_ni-rL7P1icjW6uf1wPRnfjFzNmzyyrnbUKctl2zHlhOQdB-iVbp0SCmzfdpy5xgJnrag172um-1YLQVnXNZyLi-r6xO2jXZkt-o3FvYnWm6MQ8c5YzN6twbBGthRU62Sv6lrqTvJClkqVSknJCuv1iZV2sB26f2hT_3V8pK3zYDSnjSz2Vyf7FuPhjNms4oChbGt4GVHLWglRXOLkchhTQlj-wTJqDg9g_vMA4hHlqqtK
CitedBy_id crossref_primary_10_3390_environments9100123
crossref_primary_10_1038_s41598_023_48409_6
crossref_primary_10_3390_su151914222
crossref_primary_10_1021_acsomega_3c03294
crossref_primary_10_1007_s11600_023_01240_z
crossref_primary_10_1007_s42107_023_00940_7
crossref_primary_10_7763_IJCTE_2023_V15_1333
crossref_primary_10_1111_gcb_16590
crossref_primary_10_3390_atmos14010077
crossref_primary_10_1016_j_asej_2024_102916
crossref_primary_10_1080_23311916_2022_2150121
crossref_primary_10_3390_su151914320
crossref_primary_10_1080_23311916_2022_2143051
Cites_doi 10.2166/wcc.2019.236
10.1007/s00477-016-1213-y
10.1007/s00521-017-3112-7
10.1109/ICoICT.2017.8074670
10.1016/j.ijpe.2014.09.027
10.1007/s10462-022-10199-0
10.1016/j.jhydrol.2020.125197
10.1007/s12665-017-6845-9
10.1016/j.wse.2018.11.001
10.1007/s00477-018-1554-9
10.1109/CCDC.2019.8832885
10.1007/s11356-019-06049-2
10.1007/s00521-019-04560-8
10.3390/w12061628
10.1109/JSEN.2019.2940186
10.1109/ACCESS.2020.2964584
10.1016/j.knosys.2021.107379
10.3390/w12051476
10.1109/ICICT50816.2021.9358675
10.5004/dwt.2021.26813
10.1007/s11356-019-05116-y
10.1007/s11269-018-2061-y
10.3390/w12123399
10.1007/s40899-021-00584-y
10.1016/j.jenvman.2010.09.014
10.1016/j.jenvman.2021.113774
10.1007/s11269-020-02500-z
10.1016/j.jhydrol.2021.126879
10.1007/s11053-020-09702-7
10.1007/s13762-018-1896-3
10.1016/j.scitotenv.2020.139099
10.1016/j.jconhyd.2020.103641
10.3390/su13084576
10.3390/su13084259
10.1016/j.compag.2021.106216
10.1016/j.aej.2021.04.100
10.1155/2018/8241342
10.3390/w12071885
10.1007/s00521-020-05194-x
10.3390/w12071929
10.1016/j.procs.2017.11.212
10.1016/j.ins.2021.04.057
10.1007/s12205-021-1859-y
10.1016/j.scitotenv.2018.08.221
10.1016/j.ifacol.2018.08.091
10.3390/w10091148
10.3390/w13111547
10.1155/2020/6659314
10.1016/j.marpolbul.2021.112639
10.3390/w13070888
10.1016/j.chemosphere.2020.126169
10.1016/j.apenergy.2018.06.053
10.1007/s11269-019-02447-w
10.1016/j.asej.2021.11.004
10.3390/su14031183
10.1016/j.jhydrol.2018.03.047
10.1016/j.jhydrol.2021.126099
10.1016/j.proeng.2016.07.519
10.1109/ACCESS.2019.2942012
10.1016/j.envpol.2020.116332
10.1016/j.engappai.2019.08.018
10.1016/j.asej.2021.01.007
10.1109/ACCESS.2020.3017743
10.1007/s11356-020-09188-z
10.1080/02626667.2018.1469756
10.2166/nh.2016.264
10.1007/s11356-021-14560-8
10.1016/j.jhydrol.2021.126506
10.1007/s00521-013-1367-1
10.1007/s10661-021-09127-6
10.1007/s40808-020-01041-z
10.1016/j.ecoinf.2020.101157
10.1504/IJBIC.2010.032124
10.1016/j.chemolab.2020.103978
10.3390/su12135374
10.3390/w12102951
10.1007/s00477-020-01776-2
10.3390/w11112210
10.1080/10934529.2021.1933325
10.3390/w10101471
10.1016/j.gloenvcha.2012.11.002
10.3390/w13091273
10.1007/s11269-018-2147-6
10.1007/s00477-017-1394-z
10.2166/hydro.2021.023
10.1016/j.jhydrol.2020.124989
10.1016/j.ecohyd.2017.02.002
10.3390/w14071067
10.1007/s12665-017-6842-z
10.3390/app10175776
10.1007/s11356-014-3806-7
10.3390/w9060406
10.3390/w13131782
10.1007/s10973-021-10748-9
10.1109/ACCESS.2021.3100490
10.1007/s11069-019-03665-6
10.3390/atmos11060585
10.1016/j.psep.2021.05.026
10.3390/app9091863
10.1007/s12205-017-1703-6
10.3390/w12020585
10.32604/cmes.2021.015528
10.3390/w10060806
10.1007/s40808-021-01253-x
10.1016/j.jenvman.2021.112051
10.1016/j.jhydrol.2020.124670
10.21203/rs.3.rs-1100147/v1
10.1007/s11269-021-02913-4
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PYCSY
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.3390/environments9070085
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Environmental Science Database
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Environmental Science Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-3298
ExternalDocumentID oai_doaj_org_article_15760e86c7d84479b72c5a7889b78771
oai_DiVA_org_ltu_92057
10_3390_environments9070085
GroupedDBID 5VS
7XC
8FE
8FH
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
PATMY
PIMPY
PROAC
PYCSY
RIG
ABUWG
AZQEC
DWQXO
GNUQQ
PQEST
PQQKQ
PQUKI
ADTPV
AOWAS
D8T
IPNFZ
ZZAVC
ID FETCH-LOGICAL-c425t-ac4c0c8a276b18c372b2eed896c838ead6b21c5ae2163492d419d693301bb5223
IEDL.DBID BENPR
ISSN 2076-3298
IngestDate Tue Oct 22 15:16:01 EDT 2024
Tue Oct 01 22:32:01 EDT 2024
Tue Nov 05 12:40:34 EST 2024
Thu Sep 26 20:51:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-ac4c0c8a276b18c372b2eed896c838ead6b21c5ae2163492d419d693301bb5223
ORCID 0000-0001-9927-3209
0000-0002-6790-2653
0000-0003-4229-9314
0000-0001-9623-4060
OpenAccessLink https://www.proquest.com/docview/2693974833?pq-origsite=%requestingapplication%
PQID 2693974833
PQPubID 2055416
ParticipantIDs doaj_primary_oai_doaj_org_article_15760e86c7d84479b72c5a7889b78771
swepub_primary_oai_DiVA_org_ltu_92057
proquest_journals_2693974833
crossref_primary_10_3390_environments9070085
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Environments (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
Azad (ref_68) 2019; 12
ref_92
Deng (ref_103) 2021; 284
Jiang (ref_105) 2021; 23
Rajaee (ref_14) 2020; 200
Tiyasha (ref_19) 2020; 585
ref_13
ref_12
ref_99
Yang (ref_76) 2010; 2
Solgi (ref_89) 2017; 17
ref_96
ref_95
Roomi (ref_90) 2021; 9
Banerjee (ref_1) 2020; 60
ref_18
Abba (ref_7) 2017; 120
Banadkooki (ref_16) 2020; 587
He (ref_88) 2018; 226
Li (ref_109) 2019; 26
Naghibi (ref_40) 2020; 589
Anshuka (ref_41) 2019; 97
Montaseri (ref_114) 2018; 32
ref_24
ref_23
ref_22
Sami (ref_27) 2021; 12
Barzegar (ref_116) 2017; 32
(ref_60) 2021; 596
ref_70
Giri (ref_20) 2021; 271
Apaydin (ref_55) 2021; 600
Aghel (ref_67) 2018; 16
Han (ref_15) 2021; 145
ref_74
Najah (ref_54) 2009; 28
Jamei (ref_98) 2021; 300
Li (ref_31) 2020; 731
Parmar (ref_110) 2019; 31
Nouraki (ref_33) 2021; 28
Zubaidi (ref_61) 2018; 32
ref_83
ref_82
Sattari (ref_36) 2016; 108
Ibrahim (ref_47) 2022; 61
Hajirahimi (ref_21) 2019; 86
ref_85
Lu (ref_38) 2020; 249
Zubaidi (ref_51) 2022; 34
Li (ref_77) 2017; 31
Fung (ref_42) 2020; 11
Jafari (ref_107) 2020; 29
Li (ref_32) 2017; 143
Shah (ref_69) 2021; 151
Azad (ref_73) 2017; 22
Li (ref_81) 2018; 51–17
Huang (ref_104) 2021; 186
Maroufpoor (ref_106) 2020; 27
Jeihouni (ref_39) 2019; 34
ref_50
Ighalo (ref_17) 2020; 7
ref_58
Bi (ref_91) 2021; 571
ref_53
Hassan (ref_72) 2021; 25
ref_59
Yang (ref_79) 2013; 24
Kadkhodazadeh (ref_86) 2021; 35
ref_65
ref_64
Tahraoui (ref_8) 2021; 217
Raheli (ref_78) 2017; 76
He (ref_26) 2011; 92
Kisi (ref_111) 2018; 33
Jawad (ref_63) 2020; 20
Zubaidi (ref_49) 2018; 561
Stamenkovic (ref_10) 2021; 56
Dehghani (ref_87) 2021; 8
Rasheed (ref_34) 2022; 13
ref_35
Zhang (ref_46) 2019; 7
Nabipour (ref_66) 2020; 8
Song (ref_102) 2021; 193
Huang (ref_115) 2018; 2018
ref_30
ref_113
Seo (ref_6) 2016; 154
Song (ref_97) 2021; 603
Ahmadianfar (ref_93) 2020; 232
Sundararajan (ref_25) 2021; 128
ref_108
Tiyasha (ref_28) 2021; 170
Barzegar (ref_29) 2016; 30
Jin (ref_75) 2019; 26
Aldhyani (ref_11) 2020; 2020
Zubaidi (ref_52) 2020; 34
Mohammadi (ref_44) 2021; 7
Barzegar (ref_57) 2020; 34
ref_100
Mohammadpour (ref_9) 2015; 22
Babbar (ref_37) 2017; 76
Fijani (ref_112) 2019; 648
Abba (ref_101) 2020; 8
Zhang (ref_45) 2016; 47
ref_2
Tripura (ref_71) 2020; 33
Adnan (ref_62) 2021; 230
Hashemi (ref_84) 2015; 159
ref_48
Zhang (ref_43) 2018; 63
ref_5
ref_4
Franssen (ref_3) 2013; 23
Chatterjee (ref_80) 2017; 6
Lola (ref_56) 2018; 13
References_xml – volume: 11
  start-page: 771
  year: 2020
  ident: ref_42
  article-title: Drought forecasting: A review of modelling approaches 2007–2017
  publication-title: J. Water Clim. Change
  doi: 10.2166/wcc.2019.236
  contributor:
    fullname: Fung
– volume: 30
  start-page: 1797
  year: 2016
  ident: ref_29
  article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: A case study in Aji-Chay River, Iran
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-016-1213-y
  contributor:
    fullname: Barzegar
– volume: 31
  start-page: 827
  year: 2017
  ident: ref_77
  article-title: Hybrid soft computing approach for determining water quality indicator: Euphrates River
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3112-7
  contributor:
    fullname: Li
– volume: 34
  start-page: 163
  year: 2022
  ident: ref_51
  article-title: A novel methodology to predict monthly municipal water demand based on weather variables scenario
  publication-title: J. King Saud. Univ. Eng. Sci.
  contributor:
    fullname: Zubaidi
– ident: ref_64
  doi: 10.1109/ICoICT.2017.8074670
– volume: 159
  start-page: 178
  year: 2015
  ident: ref_84
  article-title: An integrated green supplier selection approach with analytic network process and improved Grey relational analysis
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2014.09.027
  contributor:
    fullname: Hashemi
– ident: ref_22
  doi: 10.1007/s10462-022-10199-0
– volume: 589
  start-page: 125197
  year: 2020
  ident: ref_40
  article-title: Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125197
  contributor:
    fullname: Naghibi
– volume: 76
  start-page: 504
  year: 2017
  ident: ref_37
  article-title: Predicting river water quality index using data mining techniques
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6845-9
  contributor:
    fullname: Babbar
– volume: 12
  start-page: 45
  year: 2019
  ident: ref_68
  article-title: Modeling river water quality parameters using modified adaptive neuro fuzzy inference system
  publication-title: Water Sci. Eng.
  doi: 10.1016/j.wse.2018.11.001
  contributor:
    fullname: Azad
– volume: 32
  start-page: 2253
  year: 2018
  ident: ref_114
  article-title: Water quality variations in different climates of Iran: Toward modeling total dissolved solid using soft computing techniques
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-1554-9
  contributor:
    fullname: Montaseri
– ident: ref_108
  doi: 10.1109/CCDC.2019.8832885
– volume: 26
  start-page: 30374
  year: 2019
  ident: ref_75
  article-title: A data-driven model for real-time water quality prediction and early warning by an integration method
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-019-06049-2
  contributor:
    fullname: Jin
– volume: 31
  start-page: 8463
  year: 2019
  ident: ref_110
  article-title: Neuro-fuzzy-wavelet hybrid approach to estimate the future trends of river water quality
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04560-8
  contributor:
    fullname: Parmar
– ident: ref_50
  doi: 10.3390/w12061628
– volume: 20
  start-page: 552
  year: 2020
  ident: ref_63
  article-title: Accurate Empirical Path-Loss Model Based on Particle Swarm Optimization for Wireless Sensor Networks in Smart Agriculture
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2940186
  contributor:
    fullname: Jawad
– volume: 8
  start-page: 15210
  year: 2020
  ident: ref_66
  article-title: Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964584
  contributor:
    fullname: Nabipour
– volume: 230
  start-page: 107379
  year: 2021
  ident: ref_62
  article-title: Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.107379
  contributor:
    fullname: Adnan
– ident: ref_96
  doi: 10.3390/w12051476
– ident: ref_53
– ident: ref_18
  doi: 10.1109/ICICT50816.2021.9358675
– volume: 217
  start-page: 181
  year: 2021
  ident: ref_8
  article-title: Predicting the concentration of sulfate (SO42−) in drinking water using artificial neural networks: A case study: Médéa-Algeria
  publication-title: Desalination Water Treat.
  doi: 10.5004/dwt.2021.26813
  contributor:
    fullname: Tahraoui
– volume: 26
  start-page: 19879
  year: 2019
  ident: ref_109
  article-title: Water quality prediction based on recurrent neural network and improved evidence theory: A case study of Qiantang River, China
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-019-05116-y
  contributor:
    fullname: Li
– volume: 32
  start-page: 4527
  year: 2018
  ident: ref_61
  article-title: Short-Term Urban Water Demand Prediction Considering Weather Factors
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-2061-y
  contributor:
    fullname: Zubaidi
– ident: ref_58
  doi: 10.3390/w12123399
– volume: 7
  start-page: 98
  year: 2021
  ident: ref_44
  article-title: A review on the applications of machine learning for runoff modeling
  publication-title: Sustain. Water Resour. Manag.
  doi: 10.1007/s40899-021-00584-y
  contributor:
    fullname: Mohammadi
– volume: 92
  start-page: 172
  year: 2011
  ident: ref_26
  article-title: Estimating monthly total nitrogen concentration in streams by using artificial neural network
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2010.09.014
  contributor:
    fullname: He
– volume: 300
  start-page: 113774
  year: 2021
  ident: ref_98
  article-title: The assessment of emerging data-intelligence technologies for modeling Mg+2 and SO4−2 surface water quality
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113774
  contributor:
    fullname: Jamei
– volume: 34
  start-page: 1265
  year: 2020
  ident: ref_52
  article-title: A Method for Predicting Long-Term Municipal Water Demands Under Climate Change
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-020-02500-z
  contributor:
    fullname: Zubaidi
– volume: 603
  start-page: 126879
  year: 2021
  ident: ref_97
  article-title: A novel hybrid model for water quality prediction based on synchrosqueezed wavelet transform technique and improved long short-term memory
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126879
  contributor:
    fullname: Song
– volume: 29
  start-page: 3819
  year: 2020
  ident: ref_107
  article-title: Improved Water Quality Prediction with Hybrid Wavelet-Genetic Programming Model and Shannon Entropy
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09702-7
  contributor:
    fullname: Jafari
– volume: 16
  start-page: 4823
  year: 2018
  ident: ref_67
  article-title: Modeling and prediction of water quality parameters using a hybrid particle swarm optimization–neural fuzzy approach
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-018-1896-3
  contributor:
    fullname: Aghel
– volume: 731
  start-page: 139099
  year: 2020
  ident: ref_31
  article-title: Concentration estimation of dissolved oxygen in Pearl River Basin using input variable selection and machine learning techniques
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139099
  contributor:
    fullname: Li
– volume: 232
  start-page: 103641
  year: 2020
  ident: ref_93
  article-title: A novel Hybrid Wavelet-Locally Weighted Linear Regression (W-LWLR) Model for Electrical Conductivity (EC) Prediction in Surface Water
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2020.103641
  contributor:
    fullname: Ahmadianfar
– ident: ref_30
  doi: 10.3390/su13084576
– volume: 28
  start-page: 422
  year: 2009
  ident: ref_54
  article-title: Prediction of Johor River Water Quality Parameters Using Artificial Neural Networks
  publication-title: Eur. J. Sci. Res.
  contributor:
    fullname: Najah
– ident: ref_12
  doi: 10.3390/su13084259
– volume: 186
  start-page: 106216
  year: 2021
  ident: ref_104
  article-title: A hybrid model for short-term dissolved oxygen content prediction
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106216
  contributor:
    fullname: Huang
– volume: 61
  start-page: 279
  year: 2022
  ident: ref_47
  article-title: A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.04.100
  contributor:
    fullname: Ibrahim
– volume: 2018
  start-page: 8241342
  year: 2018
  ident: ref_115
  article-title: A Hybrid Fuzzy Wavelet Neural Network Model with Self-Adapted Fuzzy c-Means Clustering and Genetic Algorithm for Water Quality Prediction in Rivers
  publication-title: Complexity
  doi: 10.1155/2018/8241342
  contributor:
    fullname: Huang
– ident: ref_2
  doi: 10.3390/w12071885
– volume: 33
  start-page: 3221
  year: 2020
  ident: ref_71
  article-title: Simultaneous streamflow forecasting based on hybridized neuro-fuzzy method for a river system
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05194-x
  contributor:
    fullname: Tripura
– ident: ref_95
  doi: 10.3390/w12071929
– volume: 120
  start-page: 75
  year: 2017
  ident: ref_7
  article-title: River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.212
  contributor:
    fullname: Abba
– volume: 571
  start-page: 191
  year: 2021
  ident: ref_91
  article-title: Large-scale water quality prediction with integrated deep neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.04.057
  contributor:
    fullname: Bi
– volume: 25
  start-page: 3583
  year: 2021
  ident: ref_72
  article-title: Improving Artificial Neural Network Based Streamflow Forecasting Models through Data Preprocessing
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-021-1859-y
  contributor:
    fullname: Hassan
– volume: 648
  start-page: 839
  year: 2019
  ident: ref_112
  article-title: Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.221
  contributor:
    fullname: Fijani
– volume: 51–17
  start-page: 831
  year: 2018
  ident: ref_81
  article-title: Water Quality Prediction Model Combining Sparse Auto-encoder and LSTM Network
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.091
  contributor:
    fullname: Li
– ident: ref_85
  doi: 10.3390/w10091148
– ident: ref_99
  doi: 10.3390/w13111547
– volume: 2020
  start-page: 6659314
  year: 2020
  ident: ref_11
  article-title: Water Quality Prediction Using Artificial Intelligence Algorithms
  publication-title: Appl. Bionics. Biomech.
  doi: 10.1155/2020/6659314
  contributor:
    fullname: Aldhyani
– volume: 170
  start-page: 112639
  year: 2021
  ident: ref_28
  article-title: Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: Development of hybrid tree-based artificial intelligence models
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2021.112639
  contributor:
    fullname: Tiyasha
– ident: ref_70
  doi: 10.3390/w13070888
– volume: 249
  start-page: 126169
  year: 2020
  ident: ref_38
  article-title: Hybrid decision tree-based machine learning models for short-term water quality prediction
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126169
  contributor:
    fullname: Lu
– volume: 226
  start-page: 756
  year: 2018
  ident: ref_88
  article-title: A hybrid system for short-term wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.053
  contributor:
    fullname: He
– volume: 34
  start-page: 139
  year: 2019
  ident: ref_39
  article-title: Decision Tree-Based Data Mining and Rule Induction for Identifying High Quality Groundwater Zones to Water Supply Management: A Novel Hybrid Use of Data Mining and GIS
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-019-02447-w
  contributor:
    fullname: Jeihouni
– volume: 13
  start-page: 101635
  year: 2022
  ident: ref_34
  article-title: Application of random forest for modelling of surface water salinity
  publication-title: Ain. Shams Eng. J.
  doi: 10.1016/j.asej.2021.11.004
  contributor:
    fullname: Rasheed
– ident: ref_35
  doi: 10.3390/su14031183
– volume: 561
  start-page: 136
  year: 2018
  ident: ref_49
  article-title: A Novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.03.047
  contributor:
    fullname: Zubaidi
– volume: 108
  start-page: E232
  year: 2016
  ident: ref_36
  article-title: Estimation of Water Quality Parameters With Data-Driven Model
  publication-title: J. Am. Water Work. Assoc.
  contributor:
    fullname: Sattari
– volume: 596
  start-page: 126099
  year: 2021
  ident: ref_60
  article-title: The performance of classification and forecasting Dong Nai River water quality for sustainable water resources management using neural network techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126099
– volume: 154
  start-page: 1110
  year: 2016
  ident: ref_6
  article-title: Forecasting Water Quality Parameters by ANN Model Using Pre-processing Technique at the Downstream of Cheongpyeong Dam
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.07.519
  contributor:
    fullname: Seo
– volume: 7
  start-page: 136254
  year: 2019
  ident: ref_46
  article-title: Wind Power Prediction Based on PSO-SVR and Grey Combination Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2942012
  contributor:
    fullname: Zhang
– volume: 271
  start-page: 116332
  year: 2021
  ident: ref_20
  article-title: Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.116332
  contributor:
    fullname: Giri
– volume: 86
  start-page: 83
  year: 2019
  ident: ref_21
  article-title: Hybrid structures in time series modeling and forecasting: A review
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.08.018
  contributor:
    fullname: Hajirahimi
– volume: 12
  start-page: 1607
  year: 2021
  ident: ref_27
  article-title: Investigating the reliability of machine learning algorithms as a sustainable tool for total suspended solid prediction
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2021.01.007
  contributor:
    fullname: Sami
– volume: 8
  start-page: 157218
  year: 2020
  ident: ref_101
  article-title: Hybrid Machine Learning Ensemble Techniques for Modeling Dissolved Oxygen Concentration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3017743
  contributor:
    fullname: Abba
– volume: 27
  start-page: 28183
  year: 2020
  ident: ref_106
  article-title: Modeling groundwater quality by using hybrid intelligent and geostatistical methods
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-020-09188-z
  contributor:
    fullname: Maroufpoor
– volume: 63
  start-page: 1091
  year: 2018
  ident: ref_43
  article-title: Univariate streamflow forecasting using commonly used data-driven models: Literature review and case study
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2018.1469756
  contributor:
    fullname: Zhang
– volume: 47
  start-page: 69
  year: 2016
  ident: ref_45
  article-title: Comparison of random forests and other statistical methods for the prediction of lake water level: A case study of the Poyang Lake in China
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2016.264
  contributor:
    fullname: Zhang
– volume: 28
  start-page: 57060
  year: 2021
  ident: ref_33
  article-title: Prediction of water quality parameters using machine learning models: A case study of the Karun River, Iran
  publication-title: Environ. Sci Pollut. Res. Int.
  doi: 10.1007/s11356-021-14560-8
  contributor:
    fullname: Nouraki
– volume: 600
  start-page: 126506
  year: 2021
  ident: ref_55
  article-title: Artificial intelligence modelling integrated with Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow predictions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126506
  contributor:
    fullname: Apaydin
– volume: 24
  start-page: 169
  year: 2013
  ident: ref_79
  article-title: Cuckoo search: Recent advances and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1367-1
  contributor:
    fullname: Yang
– volume: 193
  start-page: 363
  year: 2021
  ident: ref_102
  article-title: A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China
  publication-title: Environ. Monit. Assess
  doi: 10.1007/s10661-021-09127-6
  contributor:
    fullname: Song
– volume: 7
  start-page: 669
  year: 2020
  ident: ref_17
  article-title: Artificial intelligence for surface water quality monitoring and assessment: A systematic literature analysis
  publication-title: Modeling Earth Syst. Environ.
  doi: 10.1007/s40808-020-01041-z
  contributor:
    fullname: Ighalo
– volume: 60
  start-page: 101157
  year: 2020
  ident: ref_1
  article-title: Forecasting environmental factors and zooplankton of Bakreswar reservoir in India using time series model
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101157
  contributor:
    fullname: Banerjee
– volume: 2
  start-page: 78
  year: 2010
  ident: ref_76
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2010.032124
  contributor:
    fullname: Yang
– volume: 200
  start-page: 103978
  year: 2020
  ident: ref_14
  article-title: Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.103978
  contributor:
    fullname: Rajaee
– ident: ref_74
  doi: 10.3390/su12135374
– ident: ref_4
  doi: 10.3390/w12102951
– volume: 34
  start-page: 415
  year: 2020
  ident: ref_57
  article-title: Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-020-01776-2
  contributor:
    fullname: Barzegar
– ident: ref_13
  doi: 10.3390/w11112210
– volume: 56
  start-page: 867
  year: 2021
  ident: ref_10
  article-title: Application of ANN and SVM for prediction nutrients in rivers
  publication-title: J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng.
  doi: 10.1080/10934529.2021.1933325
  contributor:
    fullname: Stamenkovic
– ident: ref_82
– volume: 13
  start-page: 27
  year: 2018
  ident: ref_56
  article-title: Improving the performance of ann-arima models for predicting water quality in the offshore area of kuala terengganu, terengganu, malaysia
  publication-title: J. Sustain. Sci. Manag.
  contributor:
    fullname: Lola
– volume: 143
  start-page: 04017070
  year: 2017
  ident: ref_32
  article-title: Water-Quality Prediction Using Multimodal Support Vector Regression: Case Study of Jialing River, China
  publication-title: Am. Soc. Civ. Eng.
  contributor:
    fullname: Li
– ident: ref_113
  doi: 10.3390/w10101471
– volume: 23
  start-page: 450
  year: 2013
  ident: ref_3
  article-title: Global river discharge and water temperature under climate change
  publication-title: Glob. Environ. Change
  doi: 10.1016/j.gloenvcha.2012.11.002
  contributor:
    fullname: Franssen
– ident: ref_59
  doi: 10.3390/w13091273
– volume: 33
  start-page: 847
  year: 2018
  ident: ref_111
  article-title: Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-2147-6
  contributor:
    fullname: Kisi
– volume: 32
  start-page: 799
  year: 2017
  ident: ref_116
  article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-017-1394-z
  contributor:
    fullname: Barzegar
– volume: 23
  start-page: 864
  year: 2021
  ident: ref_105
  article-title: A hybrid wavelet-Lyapunov exponent model for river water quality forecast
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2021.023
  contributor:
    fullname: Jiang
– volume: 587
  start-page: 124989
  year: 2020
  ident: ref_16
  article-title: Estimation of total dissolved solids (TDS) using new hybrid machine learning models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124989
  contributor:
    fullname: Banadkooki
– volume: 17
  start-page: 164
  year: 2017
  ident: ref_89
  article-title: Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD)
  publication-title: Ecohydrol. Hydrobiol.
  doi: 10.1016/j.ecohyd.2017.02.002
  contributor:
    fullname: Solgi
– ident: ref_24
  doi: 10.3390/w14071067
– volume: 76
  start-page: 503
  year: 2017
  ident: ref_78
  article-title: Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: A case study of Langat River
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6842-z
  contributor:
    fullname: Raheli
– ident: ref_5
  doi: 10.3390/app10175776
– volume: 22
  start-page: 6208
  year: 2015
  ident: ref_9
  article-title: Prediction of water quality index in constructed wetlands using support vector machine
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-014-3806-7
  contributor:
    fullname: Mohammadpour
– ident: ref_65
  doi: 10.3390/w9060406
– ident: ref_94
  doi: 10.3390/w13131782
– volume: 145
  start-page: 2191
  year: 2021
  ident: ref_15
  article-title: A review of artificial neural network techniques for environmental issues prediction
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-021-10748-9
  contributor:
    fullname: Han
– volume: 9
  start-page: 108527
  year: 2021
  ident: ref_90
  article-title: Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100490
  contributor:
    fullname: Roomi
– volume: 97
  start-page: 955
  year: 2019
  ident: ref_41
  article-title: Drought forecasting through statistical models using standardised precipitation index: A systematic review and meta-regression analysis
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-019-03665-6
  contributor:
    fullname: Anshuka
– ident: ref_48
  doi: 10.3390/atmos11060585
– volume: 151
  start-page: 324
  year: 2021
  ident: ref_69
  article-title: Environmental assessment based surface water quality prediction using hyper-parameter optimized machine learning models based on consistent big data
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.05.026
  contributor:
    fullname: Shah
– ident: ref_100
  doi: 10.3390/app9091863
– volume: 22
  start-page: 2206
  year: 2017
  ident: ref_73
  article-title: Prediction of Water Quality Parameters Using ANFIS Optimized by Intelligence Algorithms (Case Study: Gorganrood River)
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-017-1703-6
  contributor:
    fullname: Azad
– ident: ref_23
  doi: 10.3390/w12020585
– volume: 128
  start-page: 447
  year: 2021
  ident: ref_25
  article-title: A Contemporary Review on Drought Modeling Using Machine Learning Approaches
  publication-title: Comput. Modeling Eng. Sci.
  doi: 10.32604/cmes.2021.015528
  contributor:
    fullname: Sundararajan
– ident: ref_83
  doi: 10.3390/w10060806
– volume: 6
  start-page: 229
  year: 2017
  ident: ref_80
  article-title: Application of cuckoo search in water quality prediction using artificial neural network
  publication-title: Int. J. Comput. Intell. Stud.
  contributor:
    fullname: Chatterjee
– volume: 8
  start-page: 2599
  year: 2021
  ident: ref_87
  article-title: Dissolved oxygen concentration predictions for running waters with using hybrid machine learning techniques
  publication-title: Modeling Earth Syst. Environ.
  doi: 10.1007/s40808-021-01253-x
  contributor:
    fullname: Dehghani
– volume: 284
  start-page: 112051
  year: 2021
  ident: ref_103
  article-title: Machine learning based marine water quality prediction for coastal hydro-environment management
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112051
  contributor:
    fullname: Deng
– volume: 585
  start-page: 124670
  year: 2020
  ident: ref_19
  article-title: A survey on river water quality modelling using artificial intelligence models: 2000–2020
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124670
  contributor:
    fullname: Tiyasha
– ident: ref_92
  doi: 10.21203/rs.3.rs-1100147/v1
– volume: 35
  start-page: 3939
  year: 2021
  ident: ref_86
  article-title: A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-02913-4
  contributor:
    fullname: Kadkhodazadeh
SSID ssj0001583733
Score 2.323621
Snippet Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water...
SourceID doaj
swepub
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 85
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Chemical oxygen demand
Data processing
Dissolved oxygen
Forecasting
Freshwater resources
Geoteknik
hybrid model
Internet of Things
Machine learning
Mathematical models
metaheuristic algorithms
Model accuracy
Modelling
Neural networks
Parameters
Prediction models
Rain
Rivers
Soft computing
Soil Mechanics
Support vector machines
Time series
Water quality
water quality parameters
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLOejNxd0kzSbeqrUUQSn4wNuSZLMoSCvtFvHmz9C_5y9xstnKFgQvwh6WEEjITJLvCzPfEHIodWGVdCLSLm5HXIkkMkKayHFLbVEIU1Cf73x1Lfp3_PKh_dAo9eVjwoI8cFi4kwQBceyksGkuOU-VSaltayRu-CfTNBCfWDXIVMgPRuLFWJAZYsjrT5p5Y0gIPdSYu4oqxf55mNmUDq2um94qWalxInTC_NbIghuuk-WGeuAG-ehAeNmHUQH9N596BTd4qkKo1IB9QA9z6OpSw2DsojonwLffzpRbJ1COwJfntHpSQg-59-Mros8xBG2Nt6_3zwkMtI_g8jKcp1DrOUGIpa0G6FWyJFAfnujFm-Sud3F73o_qQguRxS1bRtpyG1upaSpMIi1LqaF4d0olrGQSfU0YmuCqO4rojSua80Tlwj-FJMYggGNbZHE4GrptAhohiHGscO3Yy-YY7T9ZFFZwxWyetMjxbM2zl6CnkSEP8SbKfjFRi5x5u_x09WLYVQO6SFa7SPaXi7TI3syqWb1DJxnF-SOXkoy1yFGw9Nwo3af7TjXKcznNFEVYu_Mfc9klS9QnUFQBv3tksRxP3T7CmtIcVB78DRr4-go
  priority: 102
  providerName: Directory of Open Access Journals
Title A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions
URI https://www.proquest.com/docview/2693974833
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-92057
https://doaj.org/article/15760e86c7d84479b72c5a7889b78771
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge4FDxadYWqo5wA2rG9txHC5oS7taIVGtoEW9RbbjABLalE0q1Bs_A_4ev4QZx0t3JYSUQ2RZcZTxx3uTmTeMPTe28aUJmtswybkqdcadNo4H5YVvGu0aQfnO7071_Fy9vcgvksOtS2GV6z0xbtR168lHfih0iUenMlK-vvzGqWoU_V1NJTRusx1BTGHEdo5OThfvb7wsORIwKQe5IYn8_nAzfwyJIUGOrSMpKvdvw81NCdF47Mzusd2EF2E6GPg-uxWWD9jdDRXBh-znFAYPP7QNzK8pBQs-4O4KQ8UG7AN2WcOx7S0sVoGn3ABqP1sruHbQt0BlOr3tepghB__8HVHoCgaNjevfP351sLAUyUVynK8g6TrBEFMbB5hFeRJImyjO5kfsfHZy9mbOU8EF7nHp9tx65SfeWFFolxkvC-EEnqGm1N5Ig3NOO5H53AaBKE6VolZZWWtyiWTOIZCTj9lo2S7DEwYWoYgLsgn5hORznKXLNI3XqpS-zsbs5fqbV5eDrkaFfIRMVP3DRGN2RHb525VEsWNDu_pUpTVWZcidJsFoX9RGqaJ0hcCXRY6Pd6YocMz9tVWrtFK76mZejdmLwdJboxx_-TiNo3ztr6pSILx9-v_H7LE7glIkYkjvPhv1q6vwDIFL7w7S7DyIxP8P96L1bA
link.rule.ids 230,315,783,787,867,888,2109,21401,27937,27938,33757,43818,74637
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELagewAOiF9RWMAHuGFtYzuOzQV12a0K7FYVdNHeLNtxAAk1S5MV2huPAa_HkzCTuGwrIaQcIsuKo8x4_M1k5htCnmlXBaOjYi6OciaNyphX2rMoAw9VpXzFsd75eKamJ_LtaX6aAm5NSqtc28TOUJd1wBj5HlcGjk6phXh19o1h1yj8u5paaFwlO0hVpQdkZ_9wNn9_GWXJwQEToqcbEuDf723Wj4FjiJBj60jqmPu34eYmhWh37ExukZsJL9JxL-Db5Epc3iE3NlgE75KfY9pH-Gld0ekFlmDRD2Bdad-xAeZQtyzpgWsdna8iS7UBOL5YM7g2tK0ptukMrmnpBHzwz98Bha5oz7Fx8fvHr4bOHWZyIR3nS5p4nWifU9stMOnoSWgyoqDN98jJ5HDxespSwwUWYOu2zAUZRkE7Xiif6SAK7jmcodqooIUGnVOeZyF3kQOKk4aXMjOlwpBI5j0AOXGfDJb1Mj4g1AEU8VFUMR8hfY53eOmqCkoaEcpsSF6sv7k963k1LPgjKCL7DxENyT7K5e9UJMXuBurVJ5v2mM3AdxpFrUJRaikL4wsOLws-PtzpooA1d9dStWmnNvZSr4bkeS_prVUOvnwcd6t8bc-t4QBvH_7_MU_Jteni-MgevZm9e0SucyyX6NJ7d8mgXZ3HxwBiWv8kaeof-wT3cQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELaglRA9IH7FQgEf4Ia1G9txbC5oyzZa_lYraFFvlu3YtFK1KZtUqDceo309noRx4qW7EkLKIbKsTJQZe75xZr5B6KU0wSnpBTF-lBOuREaskJZ47qgLQdhAY73z55mYHvIPR_lRyn9qUlrlak_sNuqqdvGMfEiFAtfJJWPDkNIi5pPy7dkPEjtIxT-tqZ3GTbRdcMEgENve25_Nv1yfuOQQjDHWUw8xiPWH67VkECRG-LHhnjoW_03ouU4n2rmg8i66k7AjHvfKvodu-MV9tLPGKPgAXY5xf9qP64CnF7EcC3-FnRb33RtgDjaLCk9Ma_B86UmqE4jjBys21wa3NY4tO51pWlxCPH78ExDpEvd8Gxe_f101eG5iVlek5nyDE8cT7vNrOwFlR1WC04YKlv0QHZb7B--mJDVfIA6WcUuM427kpKGFsJl0rKCWgj-VSjjJJNifsDRzufEUEB1XtOKZqkQ8HsmsBVDHHqGtRb3wjxE2AEusZ8Hno0ilY028ZAhOcMVclQ3Q69U312c9x4aG2CSqSP9DRQO0F_Xyd2okyO4G6uV3ndabziCOGnkpXFFJzgtlCwovC_E-3MmiAJm7K63qtGobfW1jA_Sq1_SGlMnJt3En5bQ914oC1H3y_8e8QLfASPWn97OPT9FtGisnukzfXbTVLs_9M8AzrX2eDPUPNFD7pQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Hybrid+Soft+Computing+and+Data+Pre-Processing+Techniques+to+Forecast+Freshwater+Quality%E2%80%99s+Parameters%3A+Current+Trends+and+Future+Directions&rft.jtitle=Environments+%28Basel%2C+Switzerland%29&rft.au=Khudhair%2C+Zahraa+S&rft.au=Zubaidi%2C+Salah+L&rft.au=Ortega-Martorell%2C+Sandra&rft.au=Al-Ansari%2C+Nadhir&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3298&rft.volume=9&rft.issue=7&rft.spage=85&rft_id=info:doi/10.3390%2Fenvironments9070085&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3298&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3298&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3298&client=summon