Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization

One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit’s rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 5; no. 12; pp. 903 - 908
Main Authors Foletti, Sandra, Bluhm, Hendrik, Mahalu, Diana, Umansky, Vladimir, Yacoby, Amir
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2009
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit’s rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here, we show that by subjecting each electron spin to a magnetic field of different magnitude, we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic-field gradient of several hundred millitesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single- and potentially multiple-qubit operations with gate times that approach the threshold required for quantum error correction. The spin state of two electrons in a double well is a promising qubit. Now, such qubits can be arbitrarily rotated around two different axes by applying a magnetic field of different magnitude to each electron. This can be done in nanoseconds, before the stored information is lost.
AbstractList One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit's rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here, we show that by subjecting each electron spin to a magnetic field of different magnitude, we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic-field gradient of several hundred millitesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single- and potentially multiple-qubit operations with gate times that approach the threshold required for quantum error correction.
One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit's rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here, we show that by subjecting each electron spin to a magnetic field of different magnitude, we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic-field gradient of several hundred millitesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single- and potentially multiple-qubit operations with gate times that approach the threshold required for quantum error correction. [PUBLICATION ABSTRACT]
One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit’s rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here, we show that by subjecting each electron spin to a magnetic field of different magnitude, we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic-field gradient of several hundred millitesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single- and potentially multiple-qubit operations with gate times that approach the threshold required for quantum error correction. The spin state of two electrons in a double well is a promising qubit. Now, such qubits can be arbitrarily rotated around two different axes by applying a magnetic field of different magnitude to each electron. This can be done in nanoseconds, before the stored information is lost.
Author Umansky, Vladimir
Yacoby, Amir
Foletti, Sandra
Bluhm, Hendrik
Mahalu, Diana
Author_xml – sequence: 1
  givenname: Sandra
  surname: Foletti
  fullname: Foletti, Sandra
  organization: Department of Physics, Harvard University
– sequence: 2
  givenname: Hendrik
  surname: Bluhm
  fullname: Bluhm, Hendrik
  organization: Department of Physics, Harvard University
– sequence: 3
  givenname: Diana
  surname: Mahalu
  fullname: Mahalu, Diana
  organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science
– sequence: 4
  givenname: Vladimir
  surname: Umansky
  fullname: Umansky, Vladimir
  organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science
– sequence: 5
  givenname: Amir
  surname: Yacoby
  fullname: Yacoby, Amir
  email: yacoby@physics.harvard.edu
  organization: Department of Physics, Harvard University
BookMark eNpt0F9LwzAQAPAgE9ymD36D4JMKdUmbNt2jDP-B4It7tVzTdGZkSZekyvz0RidDpk93B7877m6EBsYaidApJVeUZOXEdK8bT1nKDtCQcpYnKSvpYJfz7AiNvF8SwtKCZkP0MjfqTToPGq97MKFfYWFNcFZj2-LwbhOppYi1wb5TZodqFTzuvTIL3GwMrJTAphdagsOd1eDUBwRlzTE6bEF7efITx2h-e_M8u08en-4eZtePiWBpHhLgeUtTmhMx5SXJs4YXNSeiziiFtpZNWZdSgCRZA6yNZ6aUS4C6bIhoOIDIxuh8O7dzdt1LH6qV8kJqDUba3leU0GmRl5TySM_26NL2zsTtKjplERV5GtFki4Sz3jvZVkKF74uCA6XjvOrr3dXu3bHjYq-jc2oFbvOvvdxaH41ZSPdrhT_4EzBElJc
CitedBy_id crossref_primary_10_1103_PhysRevB_101_115303
crossref_primary_10_1103_PhysRevB_101_115302
crossref_primary_10_1103_PhysRevB_86_035452
crossref_primary_10_1038_477414a
crossref_primary_10_1007_s12648_017_1131_y
crossref_primary_10_1021_acs_nanolett_4c01781
crossref_primary_10_1103_PhysRevB_96_195424
crossref_primary_10_1103_PhysRevB_89_245311
crossref_primary_10_1103_PhysRevB_94_045435
crossref_primary_10_1140_epjqt_s40507_021_00119_6
crossref_primary_10_1103_PhysRevB_91_134303
crossref_primary_10_1103_PhysRevA_104_032409
crossref_primary_10_3390_e23111479
crossref_primary_10_1038_s41467_020_16745_0
crossref_primary_10_1103_PhysRevB_106_134107
crossref_primary_10_1088_1612_202X_ac6250
crossref_primary_10_1038_nnano_2012_142
crossref_primary_10_1103_PhysRevB_96_045443
crossref_primary_10_1063_5_0035300
crossref_primary_10_1103_PhysRevA_97_042324
crossref_primary_10_1103_PhysRevB_88_195131
crossref_primary_10_1103_PhysRevB_90_125303
crossref_primary_10_1103_PhysRevB_96_125201
crossref_primary_10_1103_PhysRevLett_107_047601
crossref_primary_10_22331_q_2018_05_28_70
crossref_primary_10_1103_PhysRevB_89_165301
crossref_primary_10_1140_epjp_i2014_14151_x
crossref_primary_10_21468_SciPostPhys_17_1_014
crossref_primary_10_1038_nphoton_2010_284
crossref_primary_10_1063_1_4922771
crossref_primary_10_1103_PhysRevApplied_10_054026
crossref_primary_10_1103_PhysRevB_84_075339
crossref_primary_10_1103_PhysRevLett_107_030506
crossref_primary_10_1103_PhysRevB_84_205127
crossref_primary_10_1103_PhysRevLett_106_160602
crossref_primary_10_1088_2058_9565_ad92a4
crossref_primary_10_1103_PhysRevB_84_035441
crossref_primary_10_1016_j_aop_2018_03_012
crossref_primary_10_1038_s41598_023_47405_0
crossref_primary_10_1038_s41467_021_22416_5
crossref_primary_10_1103_PhysRevB_83_125311
crossref_primary_10_1038_s41566_022_01038_3
crossref_primary_10_1038_s41586_019_1919_3
crossref_primary_10_1088_2058_9565_ac1dfe
crossref_primary_10_1038_s41534_020_00295_w
crossref_primary_10_1103_PhysRevB_88_035317
crossref_primary_10_1103_PhysRevB_84_155329
crossref_primary_10_1103_PhysRevB_87_195309
crossref_primary_10_1038_ncomms2407
crossref_primary_10_1038_nmat3102
crossref_primary_10_1103_PhysRevB_90_045418
crossref_primary_10_1063_1_4752863
crossref_primary_10_1103_PhysRevB_105_155305
crossref_primary_10_1103_PhysRevLett_111_246802
crossref_primary_10_1103_PhysRevB_87_241414
crossref_primary_10_1016_j_micpro_2019_02_004
crossref_primary_10_1073_pnas_1412230111
crossref_primary_10_1103_PhysRevLett_122_217702
crossref_primary_10_1038_nnano_2016_170
crossref_primary_10_1103_PhysRevA_99_052339
crossref_primary_10_1103_PhysRevB_88_235211
crossref_primary_10_1103_PhysRevB_88_035309
crossref_primary_10_1038_nature09682
crossref_primary_10_1103_PhysRevLett_110_146804
crossref_primary_10_1016_j_physe_2016_08_013
crossref_primary_10_1103_PhysRevApplied_19_044095
crossref_primary_10_1103_PhysRevB_103_235301
crossref_primary_10_1088_1367_2630_13_4_043010
crossref_primary_10_12693_APhysPolA_119_576
crossref_primary_10_1103_PhysRevB_98_035406
crossref_primary_10_1103_PhysRevB_88_035303
crossref_primary_10_1103_PhysRevB_90_235311
crossref_primary_10_1103_PhysRevB_90_045306
crossref_primary_10_1103_PhysRevB_103_075118
crossref_primary_10_1103_PhysRevB_96_115305
crossref_primary_10_22331_q_2024_07_02_1392
crossref_primary_10_1103_PhysRevB_85_075416
crossref_primary_10_1103_PhysRevLett_105_266808
crossref_primary_10_1007_s11467_016_0640_z
crossref_primary_10_1103_PhysRevB_90_045308
crossref_primary_10_1038_s41563_024_01922_z
crossref_primary_10_1038_ncomms2776
crossref_primary_10_1103_PhysRevB_82_115445
crossref_primary_10_1103_PhysRevA_99_042310
crossref_primary_10_1103_PhysRevB_89_081310
crossref_primary_10_1134_S0018151X17010217
crossref_primary_10_1103_PhysRevB_82_155424
crossref_primary_10_1103_PhysRevB_85_195441
crossref_primary_10_1038_ncomms11170
crossref_primary_10_1038_s41586_018_0154_7
crossref_primary_10_1088_1361_648X_aabe50
crossref_primary_10_1103_PhysRevB_105_L041303
crossref_primary_10_1038_s41598_018_31879_4
crossref_primary_10_1103_PhysRevApplied_16_024029
crossref_primary_10_1038_s41565_023_01596_9
crossref_primary_10_1103_PhysRevA_94_032311
crossref_primary_10_1103_PhysRevB_84_075303
crossref_primary_10_1038_npjqi_2016_32
crossref_primary_10_1103_PhysRevA_100_032332
crossref_primary_10_1103_PhysRevA_84_012118
crossref_primary_10_1103_PhysRevB_104_195421
crossref_primary_10_1146_annurev_conmatphys_030212_184248
crossref_primary_10_1088_0256_307X_37_2_020302
crossref_primary_10_1038_ncomms3045
crossref_primary_10_1038_s41467_018_04200_0
crossref_primary_10_1038_s41467_024_45857_0
crossref_primary_10_1126_science_1209524
crossref_primary_10_1103_PhysRevB_83_121403
crossref_primary_10_1103_PhysRevB_95_035306
crossref_primary_10_1103_PhysRevB_82_155312
crossref_primary_10_1103_PhysRevA_86_042329
crossref_primary_10_1103_PhysRevB_98_125404
crossref_primary_10_1088_0268_1242_30_10_105025
crossref_primary_10_1103_PhysRevB_92_125402
crossref_primary_10_1126_sciadv_aax3800
crossref_primary_10_1002_qute_202000005
crossref_primary_10_1038_s41467_019_11502_4
crossref_primary_10_1103_PhysRevB_90_075436
crossref_primary_10_1103_PhysRevB_86_121303
crossref_primary_10_1103_PhysRevB_94_045403
crossref_primary_10_1038_ncomms2519
crossref_primary_10_1007_s11434_012_5091_5
crossref_primary_10_1038_s41534_017_0024_4
crossref_primary_10_1088_2058_9565_ab5e07
crossref_primary_10_1103_PhysRevA_95_052325
crossref_primary_10_1103_RevModPhys_95_025003
crossref_primary_10_1103_PhysRevLett_107_216802
crossref_primary_10_1209_0295_5075_104_57004
crossref_primary_10_1063_5_0055908
crossref_primary_10_1063_1_3676083
crossref_primary_10_1103_PhysRevB_91_085419
crossref_primary_10_1103_PhysRevLett_118_216802
crossref_primary_10_1038_npjqi_2015_4
crossref_primary_10_1038_npjqi_2015_3
crossref_primary_10_1063_1_4887060
crossref_primary_10_1134_S1995078016040169
crossref_primary_10_1103_PhysRevB_84_235309
crossref_primary_10_1038_s42254_021_00283_9
crossref_primary_10_1103_PhysRevA_92_062346
crossref_primary_10_1063_1_4736419
crossref_primary_10_1103_PhysRevB_86_125317
crossref_primary_10_1126_sciadv_aau4159
crossref_primary_10_1103_PhysRevB_91_155425
crossref_primary_10_1038_nnano_2013_168
crossref_primary_10_1103_PhysRevApplied_5_024014
crossref_primary_10_1103_PhysRevX_8_021046
crossref_primary_10_1038_nnano_2011_234
crossref_primary_10_1088_1367_2630_13_8_083021
crossref_primary_10_1103_PhysRevA_84_052315
crossref_primary_10_1038_s41534_021_00449_4
crossref_primary_10_1103_PhysRevB_81_201305
crossref_primary_10_1103_PhysRevB_82_075403
crossref_primary_10_1103_PhysRevB_88_161408
crossref_primary_10_1103_PhysRevLett_118_177702
crossref_primary_10_1103_PhysRevB_91_155310
crossref_primary_10_1088_1367_2630_15_10_103015
crossref_primary_10_1038_s41598_018_34108_0
crossref_primary_10_1103_PhysRevB_93_085420
crossref_primary_10_1038_s41467_023_38649_5
crossref_primary_10_1103_PhysRevB_88_085402
crossref_primary_10_1103_PhysRevA_94_042323
crossref_primary_10_1093_nsr_nwy153
crossref_primary_10_1103_PhysRevLett_117_206802
crossref_primary_10_1038_nmat3154
crossref_primary_10_1038_nphys1922
crossref_primary_10_1103_PhysRevB_83_165322
crossref_primary_10_1103_PhysRevB_83_115306
crossref_primary_10_1103_PhysRevLett_126_017701
crossref_primary_10_1103_PhysRevA_88_013818
crossref_primary_10_1038_s41467_021_22415_6
crossref_primary_10_1016_j_physe_2020_114151
crossref_primary_10_1103_PhysRevB_92_235301
crossref_primary_10_1134_S1028335815080042
crossref_primary_10_1103_PhysRevB_88_085314
crossref_primary_10_1103_PhysRevB_95_195302
crossref_primary_10_1016_j_physleta_2016_06_037
crossref_primary_10_1103_PhysRevLett_110_177602
crossref_primary_10_1103_PhysRevA_91_022305
crossref_primary_10_1038_nnano_2013_103
crossref_primary_10_1038_s41534_017_0034_2
crossref_primary_10_1103_PhysRevLett_129_040501
crossref_primary_10_1103_PhysRevLett_104_226807
crossref_primary_10_1103_PhysRevB_90_134305
crossref_primary_10_1038_s41586_019_1566_8
crossref_primary_10_1063_1_3681195
crossref_primary_10_1103_PhysRevLett_105_246804
crossref_primary_10_1103_PhysRevB_86_085423
crossref_primary_10_1103_PhysRevB_86_125408
crossref_primary_10_1103_PhysRevB_84_045301
crossref_primary_10_1103_PhysRevLett_115_106804
crossref_primary_10_1088_1361_648X_aa7648
crossref_primary_10_1103_PhysRevB_89_115322
crossref_primary_10_1103_PhysRevApplied_16_064019
crossref_primary_10_1103_PhysRevB_86_085301
crossref_primary_10_1016_j_physe_2024_116159
crossref_primary_10_1038_nmat3652
crossref_primary_10_1103_PhysRevB_97_045306
crossref_primary_10_1038_npjqi_2015_11
crossref_primary_10_1103_PhysRevA_108_052418
crossref_primary_10_1007_s11128_024_04407_9
crossref_primary_10_1016_j_physb_2022_414175
crossref_primary_10_1103_PhysRevB_97_045431
crossref_primary_10_1063_5_0031231
crossref_primary_10_1557_mrs_2013_205
crossref_primary_10_1038_s41567_022_01870_y
crossref_primary_10_1063_1_5133894
crossref_primary_10_1038_s41567_024_02773_w
crossref_primary_10_1103_PhysRevB_99_205415
crossref_primary_10_1126_science_1217692
crossref_primary_10_1103_PhysRevB_85_035306
crossref_primary_10_1126_sciadv_1500214
crossref_primary_10_1103_PhysRevX_8_011045
crossref_primary_10_1038_s41598_020_61976_2
crossref_primary_10_1063_1_5088412
crossref_primary_10_1103_PhysRevLett_110_010403
crossref_primary_10_1103_PhysRevA_96_012318
crossref_primary_10_1103_PhysRevLett_104_177403
crossref_primary_10_1103_PhysRevLett_109_060401
crossref_primary_10_1103_PhysRevB_81_041304
crossref_primary_10_1088_0256_307X_31_6_068501
crossref_primary_10_1103_PhysRevB_91_125204
crossref_primary_10_2478_cait_2020_0061
crossref_primary_10_1103_PhysRevLett_107_026602
crossref_primary_10_1088_1674_1056_27_2_020305
crossref_primary_10_1103_PhysRevB_83_235314
crossref_primary_10_1103_PhysRevA_89_042329
crossref_primary_10_1103_PhysRevLett_116_116801
crossref_primary_10_1103_PhysRevB_87_224301
crossref_primary_10_1103_PhysRevB_82_155418
crossref_primary_10_1103_PhysRevB_100_075411
crossref_primary_10_1103_PhysRevB_99_205423
crossref_primary_10_1038_s41534_016_0003_1
crossref_primary_10_1063_1_4731275
crossref_primary_10_1142_S0217979219300032
crossref_primary_10_1038_nphys3077
crossref_primary_10_1142_S0219749918500491
crossref_primary_10_1103_PhysRevB_93_075436
crossref_primary_10_1016_j_cjph_2022_08_001
crossref_primary_10_1143_JJAP_50_04DJ03
crossref_primary_10_1103_PhysRevLett_113_176801
crossref_primary_10_1088_1367_2630_12_11_113019
crossref_primary_10_1103_PhysRevLett_110_086803
crossref_primary_10_1073_pnas_1807125115
crossref_primary_10_1103_PhysRevLett_110_086804
crossref_primary_10_1038_nature13407
crossref_primary_10_1088_1742_6596_334_1_012009
crossref_primary_10_1103_RevModPhys_85_961
crossref_primary_10_1038_srep28996
crossref_primary_10_1088_1361_648X_aacabc
crossref_primary_10_1103_PhysRevA_97_012304
crossref_primary_10_1103_PhysRevX_5_031024
crossref_primary_10_1038_ncomms6156
crossref_primary_10_1103_PhysRevB_99_035311
crossref_primary_10_1016_j_ssc_2014_08_011
crossref_primary_10_1088_1367_2630_14_12_123036
crossref_primary_10_1103_PhysRevB_82_241302
crossref_primary_10_1038_nphys1856
crossref_primary_10_1038_s41567_021_01176_5
crossref_primary_10_1103_PhysRevB_91_035305
crossref_primary_10_1103_PhysRevLett_109_236805
crossref_primary_10_7498_aps_64_167303
crossref_primary_10_1103_PhysRevB_91_035301
crossref_primary_10_1088_0034_4885_74_10_104401
crossref_primary_10_1103_PRXQuantum_2_030102
crossref_primary_10_1103_PhysRevB_96_201307
crossref_primary_10_7567_JJAP_50_04DJ03
crossref_primary_10_1103_PhysRevX_5_031031
crossref_primary_10_1103_PhysRevB_87_235318
crossref_primary_10_1002_andp_202100054
crossref_primary_10_1007_s40042_021_00383_w
crossref_primary_10_1103_PhysRevB_95_144306
crossref_primary_10_1103_PhysRevB_89_085403
crossref_primary_10_1103_PhysRevB_89_035423
crossref_primary_10_1103_PhysRevB_86_205202
crossref_primary_10_1103_PhysRevB_90_045404
crossref_primary_10_1103_PhysRevB_84_155315
crossref_primary_10_1103_PhysRevB_86_205321
crossref_primary_10_1103_PhysRevB_95_085405
crossref_primary_10_1103_PhysRevB_92_045403
crossref_primary_10_1038_nphys1863
crossref_primary_10_1103_PhysRevB_97_245428
crossref_primary_10_1103_PhysRevB_97_245301
crossref_primary_10_1038_ncomms2003
crossref_primary_10_1007_s10773_022_05055_4
crossref_primary_10_1103_PhysRevLett_105_216803
crossref_primary_10_1103_PhysRevB_84_115301
crossref_primary_10_1103_PhysRevB_108_035402
crossref_primary_10_1103_PhysRevB_103_045301
crossref_primary_10_1103_PhysRevB_88_235304
crossref_primary_10_1073_pnas_1319875110
crossref_primary_10_1103_PhysRevB_101_165308
crossref_primary_10_1103_PhysRevX_10_011060
crossref_primary_10_1103_PRXQuantum_3_040308
crossref_primary_10_1103_PhysRevB_108_155306
crossref_primary_10_1103_PhysRevX_10_031006
crossref_primary_10_1103_PhysRevLett_109_140403
crossref_primary_10_1103_PhysRevB_103_155301
crossref_primary_10_1063_1_4746260
crossref_primary_10_1103_PhysRevB_92_155422
crossref_primary_10_1103_PhysRevLett_113_150501
crossref_primary_10_1103_PhysRevB_91_075301
crossref_primary_10_1103_PhysRevX_4_021044
crossref_primary_10_1103_PhysRevB_86_035314
crossref_primary_10_1103_PhysRevA_85_052313
crossref_primary_10_1103_PhysRevB_95_195407
crossref_primary_10_1038_nphys1999
crossref_primary_10_1103_PhysRevA_94_012321
crossref_primary_10_1103_PhysRevB_109_245105
crossref_primary_10_1103_PhysRevB_92_115448
crossref_primary_10_1103_PhysRevA_89_022310
crossref_primary_10_1007_s11801_015_5083_1
crossref_primary_10_1103_PhysRevLett_111_050501
crossref_primary_10_1103_PhysRevLett_111_050503
crossref_primary_10_1103_PhysRevLett_110_140502
crossref_primary_10_1016_j_physleta_2018_05_005
crossref_primary_10_1103_PhysRevB_89_195310
crossref_primary_10_1103_PhysRevB_84_121306
crossref_primary_10_1103_PhysRevB_93_121407
crossref_primary_10_1103_PhysRevB_81_045304
crossref_primary_10_1016_j_cjph_2024_10_007
crossref_primary_10_1021_nl300775c
crossref_primary_10_1016_j_physe_2014_06_012
crossref_primary_10_1103_PhysRevB_91_235411
crossref_primary_10_1103_PhysRevApplied_22_014033
crossref_primary_10_1103_PhysRevB_88_245441
crossref_primary_10_1103_PhysRevB_92_155314
crossref_primary_10_1143_APEX_5_025002
crossref_primary_10_1038_ncomms8682
crossref_primary_10_1002_adom_202301608
crossref_primary_10_1038_nmat3671
crossref_primary_10_1103_PhysRevB_86_205306
crossref_primary_10_1126_science_1185548
crossref_primary_10_1103_PhysRevA_88_022120
crossref_primary_10_1088_1674_1056_27_12_120303
crossref_primary_10_1088_2058_9565_ad692c
crossref_primary_10_1103_PhysRevA_105_022620
crossref_primary_10_1103_PhysRevLett_108_046808
crossref_primary_10_1103_PhysRevLett_117_170501
crossref_primary_10_1088_1361_648X_aa761f
crossref_primary_10_1088_2058_9565_ad8ef0
crossref_primary_10_1209_0295_5075_acd4e5
crossref_primary_10_1103_PhysRevB_89_085410
crossref_primary_10_22331_q_2024_11_21_1533
crossref_primary_10_1070_RCR4797
Cites_doi 10.1038/nphys1053
10.1103/PhysRevB.76.035315
10.1103/PhysRevB.15.5780
10.1038/nphys1226
10.1126/science.1159221
10.1103/PhysRevB.74.205313
10.1103/PhysRevLett.102.057601
10.1103/PhysRevLett.88.186802
10.1126/science.1148092
10.1038/nature03815
10.1038/nphys174
10.1103/PhysRevLett.98.050502
10.1103/PhysRevLett.81.2594
10.1103/PhysRevB.75.161302
10.1103/PhysRevLett.99.056804
10.1103/PhysRevLett.89.147902
10.1038/nature07530
10.1137/S0097539799359385
10.1038/nature05065
10.1103/PhysRevB.65.205309
10.1126/science.1116955
10.1103/PhysRevB.74.035322
10.1103/PhysRevB.74.195301
10.1126/science.1113719
10.1103/PhysRevB.77.125329
10.1103/PhysRevLett.100.067601
ContentType Journal Article
Copyright Springer Nature Limited 2009
Copyright Nature Publishing Group Dec 2009
Copyright_xml – notice: Springer Nature Limited 2009
– notice: Copyright Nature Publishing Group Dec 2009
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/nphys1424
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Technology Research Database
ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1745-2481
EndPage 908
ExternalDocumentID 1916133231
10_1038_nphys1424
Genre Feature
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACMFV
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c425t-a75f12150c978053d76b70cb311afbed8b8ecae03da4f038217eaab8d0cd7aac3
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Fri Jul 11 01:01:02 EDT 2025
Sat Aug 23 14:05:26 EDT 2025
Tue Jul 01 03:48:10 EDT 2025
Thu Apr 24 23:06:53 EDT 2025
Fri Feb 21 02:38:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-a75f12150c978053d76b70cb311afbed8b8ecae03da4f038217eaab8d0cd7aac3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink http://nrs.harvard.edu/urn-3:HUL.InstRepos:8013324
PQID 194658652
PQPubID 27545
PageCount 6
ParticipantIDs proquest_miscellaneous_1019658117
proquest_journals_194658652
crossref_citationtrail_10_1038_nphys1424
crossref_primary_10_1038_nphys1424
springer_journals_10_1038_nphys1424
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2009
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References KoppensFHLControl and detection of singlet–triplet mixing in a random nuclear fieldScience2005309134613502005Sci...309.1346K10.1126/science.1113719
HansonRBurkardGUniversal set of quantum gates for double-dot spin qubits with fixed interdot couplingPhys. Rev. Lett.2007980505022007PhRvL..98e0502H10.1103/PhysRevLett.98.050502
LevyJUniversal quantum computation with spin-1/2 pairs and Heisenberg exchangePhys. Rev. Lett.2002891479022002PhRvL..89n7902L193229410.1103/PhysRevLett.89.147902
KoppensFHLDriven coherent oscillations of a single electron spin in a quantum dotNature20064427667712006Natur.442..766K10.1038/nature05065
TaylorJMFault-tolerant architecture for quantum computation using electrically controlled semiconductor spinsNature Phys.200511771832005NatPh...1..177T10.1038/nphys174
PettaJRDynamic nuclear polarization with single electron spinsPhys. Rev. Lett.20081000676012008PhRvL.100f7601P10.1103/PhysRevLett.100.067601
MaletinskyPBadolatoAImamogluADynamics of quantum dot nuclear spin polarizationPhys. Rev. Lett.2007990568042007PhRvL..99e6804M10.1103/PhysRevLett.99.056804
Pioro-LadriereMElectrically driven single electron spin resonance in a slanting Zeeman fieldNature Phys.200847767792008NatPh...4..776P10.1038/nphys1053
PettaJRCoherent manipulation of coupled electron spins in semiconductor quantum dotsScience2005309218021842005Sci...309.2180P10.1126/science.1116955
KhaetskiiAVLossDGlazmanLElectron spin decoherence in quantum dots due to interaction with nucleiPhys. Rev. Lett.2002881868022002PhRvL..88r6802K10.1103/PhysRevLett.88.186802
TaylorJMRelaxation, dephasing, and quantum control of electron spins in double quantum dotsPhys. Rev. B2007760353152007PhRvB..76c5315T10.1103/PhysRevB.76.035315
NielsenMAChuangILQuantum Computation and Quantum Information20001049.81015
AharonovDBen-OrMFault-tolerant quantum computation with constant error rateSIAM J. Comput.20083812071282244844710.1137/S0097539799359385
GreilichAUltrafast optical rotations of electron spins in quantum dotsNature Phys.200952622662009NatPh...5..262G10.1038/nphys1226
CywinskiLWitzelWMDas SarmaSElectron spin dephasing due to hyperfine interactions with a nuclear spin bathPhys. Rev. Lett.20091020576012009PhRvL.102e7601C10.1103/PhysRevLett.102.057601
ReillyDJSuppressing spin qubit dephasing by nuclear state preparationScience20083218178212008Sci...321..817R10.1126/science.1159221
PressDLaddTDZhangBYamamotoYComplete quantum control of a single quantum dot spin using ultrafast optical pulsesNature20084562182212008Natur.456..218P10.1038/nature07530
JohnsonACTriplet–singlet spin relaxation via nuclei in a double quantum dotNature20054359259282005Natur.435..925J10.1038/nature03815
NovackKCKoppensFHLNazarovYVVandersypenLMKCoherent control of a single electron spin with electric fieldsScience2007318143014332007Sci...318.1430N10.1126/science.1148092
Stopa, M., Krich, J. J. & Yacoby, A. Inhomogeneous nuclear spin flips. Preprint at <http://arxiv.org/abs/0905.4520v1> (2009).
ZhangWDobrovitkiVAl-HassaniehKDagottoEHarmonBHyperfine interaction induced decoherence of electron spins in quantum dotsPhys. Rev. B2006742053132006PhRvB..74t5313Z10.1103/PhysRevB.74.205313
WitzelWMSarmaSDQuantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architecturePhys. Rev. B2006740353222006PhRvB..74c5322W10.1103/PhysRevB.74.035322
Reilly, D. J. et al. Exchange control of nuclear spin diffusion in double quantum dots. Preprint at <http://arxiv.org/abs/0803.3082v1> (2008).
PagetDLampelGSapovalBLow field electron–nuclear spin coupling in gallium arsenide under optical pumping conditionsPhys. Rev. B197715578057961977PhRvB..15.5780P10.1103/PhysRevB.15.5780
CoishWLossDExchange-controlled single-electron-spin rotations in quantum dotsPhys. Rev. B2007751613022007PhRvB..75p1302C10.1103/PhysRevB.75.161302
YaoWLiuRBShamLJTheory of electron spin decoherence by interacting nuclear spins in a quantum dotPhys. Rev. B2006741953012006PhRvB..74s5301Y10.1103/PhysRevB.74.195301
MerkulovIAEfrosALRosenMElectron spin relaxation by nuclei in semiconductor quantum dotsPhys. Rev. B2002652053092002PhRvB..65t5309M10.1103/PhysRevB.65.205309
CoishWFischerJLossDExponential decay in a spin bathPhys. Rev. B2008771253292008PhRvB..77l5329C10.1103/PhysRevB.77.125329
LidarDAChuangILWhaleyKBDecoherence-free subspace for quantum computationPhys. Rev. Lett.199881259425971998PhRvL..81.2594L10.1103/PhysRevLett.81.2594
JR Petta (BFnphys1424_CR7) 2005; 309
W Coish (BFnphys1424_CR3) 2007; 75
W Zhang (BFnphys1424_CR12) 2006; 74
W Yao (BFnphys1424_CR27) 2006; 74
WM Witzel (BFnphys1424_CR10) 2006; 74
KC Novack (BFnphys1424_CR25) 2007; 318
D Paget (BFnphys1424_CR19) 1977; 15
JM Taylor (BFnphys1424_CR14) 2005; 1
JR Petta (BFnphys1424_CR16) 2008; 100
IA Merkulov (BFnphys1424_CR9) 2002; 65
P Maletinsky (BFnphys1424_CR21) 2007; 99
BFnphys1424_CR22
BFnphys1424_CR20
L Cywinski (BFnphys1424_CR28) 2009; 102
AC Johnson (BFnphys1424_CR18) 2005; 435
AV Khaetskii (BFnphys1424_CR8) 2002; 88
MA Nielsen (BFnphys1424_CR1) 2000
D Press (BFnphys1424_CR4) 2008; 456
M Pioro-Ladriere (BFnphys1424_CR26) 2008; 4
R Hanson (BFnphys1424_CR5) 2007; 98
JM Taylor (BFnphys1424_CR15) 2007; 76
D Aharonov (BFnphys1424_CR6) 2008; 38
W Coish (BFnphys1424_CR29) 2008; 77
A Greilich (BFnphys1424_CR23) 2009; 5
DA Lidar (BFnphys1424_CR13) 1998; 81
FHL Koppens (BFnphys1424_CR11) 2005; 309
FHL Koppens (BFnphys1424_CR24) 2006; 442
DJ Reilly (BFnphys1424_CR17) 2008; 321
J Levy (BFnphys1424_CR2) 2002; 89
References_xml – reference: YaoWLiuRBShamLJTheory of electron spin decoherence by interacting nuclear spins in a quantum dotPhys. Rev. B2006741953012006PhRvB..74s5301Y10.1103/PhysRevB.74.195301
– reference: HansonRBurkardGUniversal set of quantum gates for double-dot spin qubits with fixed interdot couplingPhys. Rev. Lett.2007980505022007PhRvL..98e0502H10.1103/PhysRevLett.98.050502
– reference: ZhangWDobrovitkiVAl-HassaniehKDagottoEHarmonBHyperfine interaction induced decoherence of electron spins in quantum dotsPhys. Rev. B2006742053132006PhRvB..74t5313Z10.1103/PhysRevB.74.205313
– reference: TaylorJMRelaxation, dephasing, and quantum control of electron spins in double quantum dotsPhys. Rev. B2007760353152007PhRvB..76c5315T10.1103/PhysRevB.76.035315
– reference: MerkulovIAEfrosALRosenMElectron spin relaxation by nuclei in semiconductor quantum dotsPhys. Rev. B2002652053092002PhRvB..65t5309M10.1103/PhysRevB.65.205309
– reference: KhaetskiiAVLossDGlazmanLElectron spin decoherence in quantum dots due to interaction with nucleiPhys. Rev. Lett.2002881868022002PhRvL..88r6802K10.1103/PhysRevLett.88.186802
– reference: PettaJRDynamic nuclear polarization with single electron spinsPhys. Rev. Lett.20081000676012008PhRvL.100f7601P10.1103/PhysRevLett.100.067601
– reference: Reilly, D. J. et al. Exchange control of nuclear spin diffusion in double quantum dots. Preprint at <http://arxiv.org/abs/0803.3082v1> (2008).
– reference: JohnsonACTriplet–singlet spin relaxation via nuclei in a double quantum dotNature20054359259282005Natur.435..925J10.1038/nature03815
– reference: NielsenMAChuangILQuantum Computation and Quantum Information20001049.81015
– reference: GreilichAUltrafast optical rotations of electron spins in quantum dotsNature Phys.200952622662009NatPh...5..262G10.1038/nphys1226
– reference: LevyJUniversal quantum computation with spin-1/2 pairs and Heisenberg exchangePhys. Rev. Lett.2002891479022002PhRvL..89n7902L193229410.1103/PhysRevLett.89.147902
– reference: AharonovDBen-OrMFault-tolerant quantum computation with constant error rateSIAM J. Comput.20083812071282244844710.1137/S0097539799359385
– reference: CoishWLossDExchange-controlled single-electron-spin rotations in quantum dotsPhys. Rev. B2007751613022007PhRvB..75p1302C10.1103/PhysRevB.75.161302
– reference: Stopa, M., Krich, J. J. & Yacoby, A. Inhomogeneous nuclear spin flips. Preprint at <http://arxiv.org/abs/0905.4520v1> (2009).
– reference: KoppensFHLDriven coherent oscillations of a single electron spin in a quantum dotNature20064427667712006Natur.442..766K10.1038/nature05065
– reference: WitzelWMSarmaSDQuantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architecturePhys. Rev. B2006740353222006PhRvB..74c5322W10.1103/PhysRevB.74.035322
– reference: Pioro-LadriereMElectrically driven single electron spin resonance in a slanting Zeeman fieldNature Phys.200847767792008NatPh...4..776P10.1038/nphys1053
– reference: CoishWFischerJLossDExponential decay in a spin bathPhys. Rev. B2008771253292008PhRvB..77l5329C10.1103/PhysRevB.77.125329
– reference: KoppensFHLControl and detection of singlet–triplet mixing in a random nuclear fieldScience2005309134613502005Sci...309.1346K10.1126/science.1113719
– reference: PressDLaddTDZhangBYamamotoYComplete quantum control of a single quantum dot spin using ultrafast optical pulsesNature20084562182212008Natur.456..218P10.1038/nature07530
– reference: LidarDAChuangILWhaleyKBDecoherence-free subspace for quantum computationPhys. Rev. Lett.199881259425971998PhRvL..81.2594L10.1103/PhysRevLett.81.2594
– reference: ReillyDJSuppressing spin qubit dephasing by nuclear state preparationScience20083218178212008Sci...321..817R10.1126/science.1159221
– reference: NovackKCKoppensFHLNazarovYVVandersypenLMKCoherent control of a single electron spin with electric fieldsScience2007318143014332007Sci...318.1430N10.1126/science.1148092
– reference: MaletinskyPBadolatoAImamogluADynamics of quantum dot nuclear spin polarizationPhys. Rev. Lett.2007990568042007PhRvL..99e6804M10.1103/PhysRevLett.99.056804
– reference: CywinskiLWitzelWMDas SarmaSElectron spin dephasing due to hyperfine interactions with a nuclear spin bathPhys. Rev. Lett.20091020576012009PhRvL.102e7601C10.1103/PhysRevLett.102.057601
– reference: TaylorJMFault-tolerant architecture for quantum computation using electrically controlled semiconductor spinsNature Phys.200511771832005NatPh...1..177T10.1038/nphys174
– reference: PagetDLampelGSapovalBLow field electron–nuclear spin coupling in gallium arsenide under optical pumping conditionsPhys. Rev. B197715578057961977PhRvB..15.5780P10.1103/PhysRevB.15.5780
– reference: PettaJRCoherent manipulation of coupled electron spins in semiconductor quantum dotsScience2005309218021842005Sci...309.2180P10.1126/science.1116955
– volume: 4
  start-page: 776
  year: 2008
  ident: BFnphys1424_CR26
  publication-title: Nature Phys.
  doi: 10.1038/nphys1053
– volume: 76
  start-page: 035315
  year: 2007
  ident: BFnphys1424_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.035315
– volume: 15
  start-page: 5780
  year: 1977
  ident: BFnphys1424_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.15.5780
– volume: 5
  start-page: 262
  year: 2009
  ident: BFnphys1424_CR23
  publication-title: Nature Phys.
  doi: 10.1038/nphys1226
– volume: 321
  start-page: 817
  year: 2008
  ident: BFnphys1424_CR17
  publication-title: Science
  doi: 10.1126/science.1159221
– volume: 74
  start-page: 205313
  year: 2006
  ident: BFnphys1424_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.205313
– volume-title: Quantum Computation and Quantum Information
  year: 2000
  ident: BFnphys1424_CR1
– volume: 102
  start-page: 057601
  year: 2009
  ident: BFnphys1424_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.057601
– volume: 88
  start-page: 186802
  year: 2002
  ident: BFnphys1424_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.186802
– volume: 318
  start-page: 1430
  year: 2007
  ident: BFnphys1424_CR25
  publication-title: Science
  doi: 10.1126/science.1148092
– volume: 435
  start-page: 925
  year: 2005
  ident: BFnphys1424_CR18
  publication-title: Nature
  doi: 10.1038/nature03815
– volume: 1
  start-page: 177
  year: 2005
  ident: BFnphys1424_CR14
  publication-title: Nature Phys.
  doi: 10.1038/nphys174
– volume: 98
  start-page: 050502
  year: 2007
  ident: BFnphys1424_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.050502
– volume: 81
  start-page: 2594
  year: 1998
  ident: BFnphys1424_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2594
– volume: 75
  start-page: 161302
  year: 2007
  ident: BFnphys1424_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.161302
– volume: 99
  start-page: 056804
  year: 2007
  ident: BFnphys1424_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.056804
– volume: 89
  start-page: 147902
  year: 2002
  ident: BFnphys1424_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.147902
– volume: 456
  start-page: 218
  year: 2008
  ident: BFnphys1424_CR4
  publication-title: Nature
  doi: 10.1038/nature07530
– volume: 38
  start-page: 1207
  year: 2008
  ident: BFnphys1424_CR6
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539799359385
– volume: 442
  start-page: 766
  year: 2006
  ident: BFnphys1424_CR24
  publication-title: Nature
  doi: 10.1038/nature05065
– volume: 65
  start-page: 205309
  year: 2002
  ident: BFnphys1424_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.205309
– volume: 309
  start-page: 2180
  year: 2005
  ident: BFnphys1424_CR7
  publication-title: Science
  doi: 10.1126/science.1116955
– volume: 74
  start-page: 035322
  year: 2006
  ident: BFnphys1424_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.035322
– volume: 74
  start-page: 195301
  year: 2006
  ident: BFnphys1424_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.195301
– volume: 309
  start-page: 1346
  year: 2005
  ident: BFnphys1424_CR11
  publication-title: Science
  doi: 10.1126/science.1113719
– volume: 77
  start-page: 125329
  year: 2008
  ident: BFnphys1424_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.125329
– volume: 100
  start-page: 067601
  year: 2008
  ident: BFnphys1424_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.067601
– ident: BFnphys1424_CR20
– ident: BFnphys1424_CR22
SSID ssj0042613
Score 2.5018873
Snippet One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit’s rate of...
One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit's rate of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 903
SubjectTerms Atomic
Classical and Continuum Physics
Complex Systems
Computer science
Condensed Matter Physics
Dynamics
Electron spin
Electrons
Gallium
Gates
Logic
Magnetic fields
Mathematical and Computational Physics
Molecular
Nanocomposites
Nanostructure
Optical and Plasma Physics
Physics
Physics and Astronomy
Polarization
Quantum physics
Qubits (quantum computing)
Theoretical
Title Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization
URI https://link.springer.com/article/10.1038/nphys1424
https://www.proquest.com/docview/194658652
https://www.proquest.com/docview/1019658117
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHjxsSquL-Lj4KVsu23T7ElUdl0ERURhT5YkTUXQdrVd_PvOdNOqi3humpSZzCTTmfk-gBNUpNaBlE6YhD0MULhyegR4mSq0SjQnrjg1Ct_c8uFjcD0KR7Y2p7BllbVPrBx1kmv6R97BYBsPSx52z8bvDpFGUXLVMmjMwyJ6YIGx1-JF__buvnbFFB74047I0OkGkV9DC_mik9GfA2rz-n0gfd8yZxKj1XkzWIMVe1Fk51PNrsOcyVqwWpMwMGuTLViqajh1sQFPtsgC33qfoMAmb8wWorM8ZeVn7tScN6wYv2TNIPVSFozq359ZMuWnZxmhHMsPNqbA13ZqbsLjoP9wOXQsfYKj0RBLR0ZhStgRrq6IC_wk4ipytfI9T6bKJEIJo6Vx_UQGKYoEgxMjpRKJq5NISu1vwUKWZ2YbWBikHjecS6N7AU6jlCdVN0yV0IIyf204rWUYa4stThQXr3GV4_ZF3Ii7DUfN0PEUUOOvQbu1ImJrU0Xc7IA2HDZP0RgowyEzk08KqlcjMBvPwy86rvX3Y4bZdXb-XWcXlruWLcL19mCh_JiYfbyClOoA5sXg6sButy8gf-GQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUEUvhVKqbmmp-5J6iUjixPEeUFUB26U8TiBxarAdp1qpJAvJCvGj-h87k7XTFlXcOMexLc_DM56ZbwA-ICGNSZQK0iIdooMidDAkwMtSo1SiOAktqFD4-ESMz5Jv5-n5AvzytTCUVul1Yqeoi9rQG_k2Ott4WYo0_jy9CqhpFAVXfQeNOVcc2tsb9NianYM9JO_HOB7tn-6OA9dUIDDInm2gsrQkRIXQdHD-vMiEzkKjeRSpUttCammNsiEvVFKGXKLJbpXSsghNkSllOM67CMsJ50MSKDn66hU_OSN8Xn-ZBnGScQ9kxOV2Re8UVFT27_X3x6a9E4btbrfRGjxxZin7Muejp7Bgq3VY9S0fmNMA6_Coyxg1zTP47lI68K-rGZJndslc2jurS9be1IHvsMOa6aTqB-lJ2zDKtv_BittKXU4MqwhTWV2zKbnZri50A84e5Fyfw1JVV_YFsDQpI2GFUNYME5xG60jpOC21NJLijAP45M8wNw7JnBpq_My7iDqXeX_cA3jXD53O4Tv-N2jTEyJ3EtzkPb8N4G3_FUWP4imqsvWsoew4gs6JItzRe0-_v2a4u87Le9d5Ayvj0-Oj_Ojg5HATHseuT0UYvYKl9npmX6Px0-qtjuUYXDw0j_8GV58d-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9wwDLfYoU28wMaGOGBb2Ie0l-rapk17D9O0ASc-thOahsTTuiRN0UnQHrQnxJ_Gfze7l3QDTXvjuWkSxXZsx_bPAO-QkFpHUnpxHg_RQRHKGxLgZaFQKlGchBJUKPxtLPZPosPT-HQBbl0tDKVVujuxvajzStMb-QCdbVSWIg4Hhc2KON4dfZpeetRAigKtrpvGnEOOzM01em_1x4NdJPX7MBzt_djZ92yDAU8jqzaeTOKC0BV83UL78zwRKvG14kEgC2XyVKVGS-PzXEaFz1M0342UKs19nSdSao7zPoLFBJ0ivweLX_bGx9-dGiDXhM-rMWMvjBLuYI14Oijp1YJKzO4qwz8W7r2gbKvrRk9h2Rqp7POcq57BgilXYcU1gGD2PliFx23-qK6fw0-b4IF_Xc6QWLMLZpPgWVWw5rryXL8dVk8nZTdITZqaUe79GctvSnkx0awkhGV5xabkdNsq0Rdw8iAnuwa9sirNOrA4KgJhhJBGDyOcRqlAqjAuVKpTijr24YM7w0xbXHNqr3GetfF1nmbdcffhTTd0Ogfz-NegTUeIzMpznXXc14ft7isKIkVXZGmqWU25cgSkEwS4o7eOfn_NcH-djf-u8xqeIH9nXw_GR5uwFNqmFX6wBb3mamZeoiXUqFeW5xj8emg2_w3n5CON
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+quantum+control+of+two-electron+spin+quantum+bits+using+dynamic+nuclear+polarization&rft.jtitle=Nature+physics&rft.au=Foletti%2C+Sandra&rft.au=Bluhm%2C+Hendrik&rft.au=Mahalu%2C+Diana&rft.au=Umansky%2C+Vladimir&rft.date=2009-12-01&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=5&rft.issue=12&rft.spage=903&rft.epage=908&rft_id=info:doi/10.1038%2Fnphys1424&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nphys1424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon