Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization
One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit’s rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange...
Saved in:
Published in | Nature physics Vol. 5; no. 12; pp. 903 - 908 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2009
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit’s rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here, we show that by subjecting each electron spin to a magnetic field of different magnitude, we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic-field gradient of several hundred millitesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single- and potentially multiple-qubit operations with gate times that approach the threshold required for quantum error correction.
The spin state of two electrons in a double well is a promising qubit. Now, such qubits can be arbitrarily rotated around two different axes by applying a magnetic field of different magnitude to each electron. This can be done in nanoseconds, before the stored information is lost. |
---|---|
AbstractList | One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit's rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here, we show that by subjecting each electron spin to a magnetic field of different magnitude, we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic-field gradient of several hundred millitesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single- and potentially multiple-qubit operations with gate times that approach the threshold required for quantum error correction. One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit's rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here, we show that by subjecting each electron spin to a magnetic field of different magnitude, we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic-field gradient of several hundred millitesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single- and potentially multiple-qubit operations with gate times that approach the threshold required for quantum error correction. [PUBLICATION ABSTRACT] One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit’s rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here, we show that by subjecting each electron spin to a magnetic field of different magnitude, we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic-field gradient of several hundred millitesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single- and potentially multiple-qubit operations with gate times that approach the threshold required for quantum error correction. The spin state of two electrons in a double well is a promising qubit. Now, such qubits can be arbitrarily rotated around two different axes by applying a magnetic field of different magnitude to each electron. This can be done in nanoseconds, before the stored information is lost. |
Author | Umansky, Vladimir Yacoby, Amir Foletti, Sandra Bluhm, Hendrik Mahalu, Diana |
Author_xml | – sequence: 1 givenname: Sandra surname: Foletti fullname: Foletti, Sandra organization: Department of Physics, Harvard University – sequence: 2 givenname: Hendrik surname: Bluhm fullname: Bluhm, Hendrik organization: Department of Physics, Harvard University – sequence: 3 givenname: Diana surname: Mahalu fullname: Mahalu, Diana organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science – sequence: 4 givenname: Vladimir surname: Umansky fullname: Umansky, Vladimir organization: Department of Condensed Matter Physics, Braun Center for Submicron Research, Weizmann Institute of Science – sequence: 5 givenname: Amir surname: Yacoby fullname: Yacoby, Amir email: yacoby@physics.harvard.edu organization: Department of Physics, Harvard University |
BookMark | eNpt0F9LwzAQAPAgE9ymD36D4JMKdUmbNt2jDP-B4It7tVzTdGZkSZekyvz0RidDpk93B7877m6EBsYaidApJVeUZOXEdK8bT1nKDtCQcpYnKSvpYJfz7AiNvF8SwtKCZkP0MjfqTToPGq97MKFfYWFNcFZj2-LwbhOppYi1wb5TZodqFTzuvTIL3GwMrJTAphdagsOd1eDUBwRlzTE6bEF7efITx2h-e_M8u08en-4eZtePiWBpHhLgeUtTmhMx5SXJs4YXNSeiziiFtpZNWZdSgCRZA6yNZ6aUS4C6bIhoOIDIxuh8O7dzdt1LH6qV8kJqDUba3leU0GmRl5TySM_26NL2zsTtKjplERV5GtFki4Sz3jvZVkKF74uCA6XjvOrr3dXu3bHjYq-jc2oFbvOvvdxaH41ZSPdrhT_4EzBElJc |
CitedBy_id | crossref_primary_10_1103_PhysRevB_101_115303 crossref_primary_10_1103_PhysRevB_101_115302 crossref_primary_10_1103_PhysRevB_86_035452 crossref_primary_10_1038_477414a crossref_primary_10_1007_s12648_017_1131_y crossref_primary_10_1021_acs_nanolett_4c01781 crossref_primary_10_1103_PhysRevB_96_195424 crossref_primary_10_1103_PhysRevB_89_245311 crossref_primary_10_1103_PhysRevB_94_045435 crossref_primary_10_1140_epjqt_s40507_021_00119_6 crossref_primary_10_1103_PhysRevB_91_134303 crossref_primary_10_1103_PhysRevA_104_032409 crossref_primary_10_3390_e23111479 crossref_primary_10_1038_s41467_020_16745_0 crossref_primary_10_1103_PhysRevB_106_134107 crossref_primary_10_1088_1612_202X_ac6250 crossref_primary_10_1038_nnano_2012_142 crossref_primary_10_1103_PhysRevB_96_045443 crossref_primary_10_1063_5_0035300 crossref_primary_10_1103_PhysRevA_97_042324 crossref_primary_10_1103_PhysRevB_88_195131 crossref_primary_10_1103_PhysRevB_90_125303 crossref_primary_10_1103_PhysRevB_96_125201 crossref_primary_10_1103_PhysRevLett_107_047601 crossref_primary_10_22331_q_2018_05_28_70 crossref_primary_10_1103_PhysRevB_89_165301 crossref_primary_10_1140_epjp_i2014_14151_x crossref_primary_10_21468_SciPostPhys_17_1_014 crossref_primary_10_1038_nphoton_2010_284 crossref_primary_10_1063_1_4922771 crossref_primary_10_1103_PhysRevApplied_10_054026 crossref_primary_10_1103_PhysRevB_84_075339 crossref_primary_10_1103_PhysRevLett_107_030506 crossref_primary_10_1103_PhysRevB_84_205127 crossref_primary_10_1103_PhysRevLett_106_160602 crossref_primary_10_1088_2058_9565_ad92a4 crossref_primary_10_1103_PhysRevB_84_035441 crossref_primary_10_1016_j_aop_2018_03_012 crossref_primary_10_1038_s41598_023_47405_0 crossref_primary_10_1038_s41467_021_22416_5 crossref_primary_10_1103_PhysRevB_83_125311 crossref_primary_10_1038_s41566_022_01038_3 crossref_primary_10_1038_s41586_019_1919_3 crossref_primary_10_1088_2058_9565_ac1dfe crossref_primary_10_1038_s41534_020_00295_w crossref_primary_10_1103_PhysRevB_88_035317 crossref_primary_10_1103_PhysRevB_84_155329 crossref_primary_10_1103_PhysRevB_87_195309 crossref_primary_10_1038_ncomms2407 crossref_primary_10_1038_nmat3102 crossref_primary_10_1103_PhysRevB_90_045418 crossref_primary_10_1063_1_4752863 crossref_primary_10_1103_PhysRevB_105_155305 crossref_primary_10_1103_PhysRevLett_111_246802 crossref_primary_10_1103_PhysRevB_87_241414 crossref_primary_10_1016_j_micpro_2019_02_004 crossref_primary_10_1073_pnas_1412230111 crossref_primary_10_1103_PhysRevLett_122_217702 crossref_primary_10_1038_nnano_2016_170 crossref_primary_10_1103_PhysRevA_99_052339 crossref_primary_10_1103_PhysRevB_88_235211 crossref_primary_10_1103_PhysRevB_88_035309 crossref_primary_10_1038_nature09682 crossref_primary_10_1103_PhysRevLett_110_146804 crossref_primary_10_1016_j_physe_2016_08_013 crossref_primary_10_1103_PhysRevApplied_19_044095 crossref_primary_10_1103_PhysRevB_103_235301 crossref_primary_10_1088_1367_2630_13_4_043010 crossref_primary_10_12693_APhysPolA_119_576 crossref_primary_10_1103_PhysRevB_98_035406 crossref_primary_10_1103_PhysRevB_88_035303 crossref_primary_10_1103_PhysRevB_90_235311 crossref_primary_10_1103_PhysRevB_90_045306 crossref_primary_10_1103_PhysRevB_103_075118 crossref_primary_10_1103_PhysRevB_96_115305 crossref_primary_10_22331_q_2024_07_02_1392 crossref_primary_10_1103_PhysRevB_85_075416 crossref_primary_10_1103_PhysRevLett_105_266808 crossref_primary_10_1007_s11467_016_0640_z crossref_primary_10_1103_PhysRevB_90_045308 crossref_primary_10_1038_s41563_024_01922_z crossref_primary_10_1038_ncomms2776 crossref_primary_10_1103_PhysRevB_82_115445 crossref_primary_10_1103_PhysRevA_99_042310 crossref_primary_10_1103_PhysRevB_89_081310 crossref_primary_10_1134_S0018151X17010217 crossref_primary_10_1103_PhysRevB_82_155424 crossref_primary_10_1103_PhysRevB_85_195441 crossref_primary_10_1038_ncomms11170 crossref_primary_10_1038_s41586_018_0154_7 crossref_primary_10_1088_1361_648X_aabe50 crossref_primary_10_1103_PhysRevB_105_L041303 crossref_primary_10_1038_s41598_018_31879_4 crossref_primary_10_1103_PhysRevApplied_16_024029 crossref_primary_10_1038_s41565_023_01596_9 crossref_primary_10_1103_PhysRevA_94_032311 crossref_primary_10_1103_PhysRevB_84_075303 crossref_primary_10_1038_npjqi_2016_32 crossref_primary_10_1103_PhysRevA_100_032332 crossref_primary_10_1103_PhysRevA_84_012118 crossref_primary_10_1103_PhysRevB_104_195421 crossref_primary_10_1146_annurev_conmatphys_030212_184248 crossref_primary_10_1088_0256_307X_37_2_020302 crossref_primary_10_1038_ncomms3045 crossref_primary_10_1038_s41467_018_04200_0 crossref_primary_10_1038_s41467_024_45857_0 crossref_primary_10_1126_science_1209524 crossref_primary_10_1103_PhysRevB_83_121403 crossref_primary_10_1103_PhysRevB_95_035306 crossref_primary_10_1103_PhysRevB_82_155312 crossref_primary_10_1103_PhysRevA_86_042329 crossref_primary_10_1103_PhysRevB_98_125404 crossref_primary_10_1088_0268_1242_30_10_105025 crossref_primary_10_1103_PhysRevB_92_125402 crossref_primary_10_1126_sciadv_aax3800 crossref_primary_10_1002_qute_202000005 crossref_primary_10_1038_s41467_019_11502_4 crossref_primary_10_1103_PhysRevB_90_075436 crossref_primary_10_1103_PhysRevB_86_121303 crossref_primary_10_1103_PhysRevB_94_045403 crossref_primary_10_1038_ncomms2519 crossref_primary_10_1007_s11434_012_5091_5 crossref_primary_10_1038_s41534_017_0024_4 crossref_primary_10_1088_2058_9565_ab5e07 crossref_primary_10_1103_PhysRevA_95_052325 crossref_primary_10_1103_RevModPhys_95_025003 crossref_primary_10_1103_PhysRevLett_107_216802 crossref_primary_10_1209_0295_5075_104_57004 crossref_primary_10_1063_5_0055908 crossref_primary_10_1063_1_3676083 crossref_primary_10_1103_PhysRevB_91_085419 crossref_primary_10_1103_PhysRevLett_118_216802 crossref_primary_10_1038_npjqi_2015_4 crossref_primary_10_1038_npjqi_2015_3 crossref_primary_10_1063_1_4887060 crossref_primary_10_1134_S1995078016040169 crossref_primary_10_1103_PhysRevB_84_235309 crossref_primary_10_1038_s42254_021_00283_9 crossref_primary_10_1103_PhysRevA_92_062346 crossref_primary_10_1063_1_4736419 crossref_primary_10_1103_PhysRevB_86_125317 crossref_primary_10_1126_sciadv_aau4159 crossref_primary_10_1103_PhysRevB_91_155425 crossref_primary_10_1038_nnano_2013_168 crossref_primary_10_1103_PhysRevApplied_5_024014 crossref_primary_10_1103_PhysRevX_8_021046 crossref_primary_10_1038_nnano_2011_234 crossref_primary_10_1088_1367_2630_13_8_083021 crossref_primary_10_1103_PhysRevA_84_052315 crossref_primary_10_1038_s41534_021_00449_4 crossref_primary_10_1103_PhysRevB_81_201305 crossref_primary_10_1103_PhysRevB_82_075403 crossref_primary_10_1103_PhysRevB_88_161408 crossref_primary_10_1103_PhysRevLett_118_177702 crossref_primary_10_1103_PhysRevB_91_155310 crossref_primary_10_1088_1367_2630_15_10_103015 crossref_primary_10_1038_s41598_018_34108_0 crossref_primary_10_1103_PhysRevB_93_085420 crossref_primary_10_1038_s41467_023_38649_5 crossref_primary_10_1103_PhysRevB_88_085402 crossref_primary_10_1103_PhysRevA_94_042323 crossref_primary_10_1093_nsr_nwy153 crossref_primary_10_1103_PhysRevLett_117_206802 crossref_primary_10_1038_nmat3154 crossref_primary_10_1038_nphys1922 crossref_primary_10_1103_PhysRevB_83_165322 crossref_primary_10_1103_PhysRevB_83_115306 crossref_primary_10_1103_PhysRevLett_126_017701 crossref_primary_10_1103_PhysRevA_88_013818 crossref_primary_10_1038_s41467_021_22415_6 crossref_primary_10_1016_j_physe_2020_114151 crossref_primary_10_1103_PhysRevB_92_235301 crossref_primary_10_1134_S1028335815080042 crossref_primary_10_1103_PhysRevB_88_085314 crossref_primary_10_1103_PhysRevB_95_195302 crossref_primary_10_1016_j_physleta_2016_06_037 crossref_primary_10_1103_PhysRevLett_110_177602 crossref_primary_10_1103_PhysRevA_91_022305 crossref_primary_10_1038_nnano_2013_103 crossref_primary_10_1038_s41534_017_0034_2 crossref_primary_10_1103_PhysRevLett_129_040501 crossref_primary_10_1103_PhysRevLett_104_226807 crossref_primary_10_1103_PhysRevB_90_134305 crossref_primary_10_1038_s41586_019_1566_8 crossref_primary_10_1063_1_3681195 crossref_primary_10_1103_PhysRevLett_105_246804 crossref_primary_10_1103_PhysRevB_86_085423 crossref_primary_10_1103_PhysRevB_86_125408 crossref_primary_10_1103_PhysRevB_84_045301 crossref_primary_10_1103_PhysRevLett_115_106804 crossref_primary_10_1088_1361_648X_aa7648 crossref_primary_10_1103_PhysRevB_89_115322 crossref_primary_10_1103_PhysRevApplied_16_064019 crossref_primary_10_1103_PhysRevB_86_085301 crossref_primary_10_1016_j_physe_2024_116159 crossref_primary_10_1038_nmat3652 crossref_primary_10_1103_PhysRevB_97_045306 crossref_primary_10_1038_npjqi_2015_11 crossref_primary_10_1103_PhysRevA_108_052418 crossref_primary_10_1007_s11128_024_04407_9 crossref_primary_10_1016_j_physb_2022_414175 crossref_primary_10_1103_PhysRevB_97_045431 crossref_primary_10_1063_5_0031231 crossref_primary_10_1557_mrs_2013_205 crossref_primary_10_1038_s41567_022_01870_y crossref_primary_10_1063_1_5133894 crossref_primary_10_1038_s41567_024_02773_w crossref_primary_10_1103_PhysRevB_99_205415 crossref_primary_10_1126_science_1217692 crossref_primary_10_1103_PhysRevB_85_035306 crossref_primary_10_1126_sciadv_1500214 crossref_primary_10_1103_PhysRevX_8_011045 crossref_primary_10_1038_s41598_020_61976_2 crossref_primary_10_1063_1_5088412 crossref_primary_10_1103_PhysRevLett_110_010403 crossref_primary_10_1103_PhysRevA_96_012318 crossref_primary_10_1103_PhysRevLett_104_177403 crossref_primary_10_1103_PhysRevLett_109_060401 crossref_primary_10_1103_PhysRevB_81_041304 crossref_primary_10_1088_0256_307X_31_6_068501 crossref_primary_10_1103_PhysRevB_91_125204 crossref_primary_10_2478_cait_2020_0061 crossref_primary_10_1103_PhysRevLett_107_026602 crossref_primary_10_1088_1674_1056_27_2_020305 crossref_primary_10_1103_PhysRevB_83_235314 crossref_primary_10_1103_PhysRevA_89_042329 crossref_primary_10_1103_PhysRevLett_116_116801 crossref_primary_10_1103_PhysRevB_87_224301 crossref_primary_10_1103_PhysRevB_82_155418 crossref_primary_10_1103_PhysRevB_100_075411 crossref_primary_10_1103_PhysRevB_99_205423 crossref_primary_10_1038_s41534_016_0003_1 crossref_primary_10_1063_1_4731275 crossref_primary_10_1142_S0217979219300032 crossref_primary_10_1038_nphys3077 crossref_primary_10_1142_S0219749918500491 crossref_primary_10_1103_PhysRevB_93_075436 crossref_primary_10_1016_j_cjph_2022_08_001 crossref_primary_10_1143_JJAP_50_04DJ03 crossref_primary_10_1103_PhysRevLett_113_176801 crossref_primary_10_1088_1367_2630_12_11_113019 crossref_primary_10_1103_PhysRevLett_110_086803 crossref_primary_10_1073_pnas_1807125115 crossref_primary_10_1103_PhysRevLett_110_086804 crossref_primary_10_1038_nature13407 crossref_primary_10_1088_1742_6596_334_1_012009 crossref_primary_10_1103_RevModPhys_85_961 crossref_primary_10_1038_srep28996 crossref_primary_10_1088_1361_648X_aacabc crossref_primary_10_1103_PhysRevA_97_012304 crossref_primary_10_1103_PhysRevX_5_031024 crossref_primary_10_1038_ncomms6156 crossref_primary_10_1103_PhysRevB_99_035311 crossref_primary_10_1016_j_ssc_2014_08_011 crossref_primary_10_1088_1367_2630_14_12_123036 crossref_primary_10_1103_PhysRevB_82_241302 crossref_primary_10_1038_nphys1856 crossref_primary_10_1038_s41567_021_01176_5 crossref_primary_10_1103_PhysRevB_91_035305 crossref_primary_10_1103_PhysRevLett_109_236805 crossref_primary_10_7498_aps_64_167303 crossref_primary_10_1103_PhysRevB_91_035301 crossref_primary_10_1088_0034_4885_74_10_104401 crossref_primary_10_1103_PRXQuantum_2_030102 crossref_primary_10_1103_PhysRevB_96_201307 crossref_primary_10_7567_JJAP_50_04DJ03 crossref_primary_10_1103_PhysRevX_5_031031 crossref_primary_10_1103_PhysRevB_87_235318 crossref_primary_10_1002_andp_202100054 crossref_primary_10_1007_s40042_021_00383_w crossref_primary_10_1103_PhysRevB_95_144306 crossref_primary_10_1103_PhysRevB_89_085403 crossref_primary_10_1103_PhysRevB_89_035423 crossref_primary_10_1103_PhysRevB_86_205202 crossref_primary_10_1103_PhysRevB_90_045404 crossref_primary_10_1103_PhysRevB_84_155315 crossref_primary_10_1103_PhysRevB_86_205321 crossref_primary_10_1103_PhysRevB_95_085405 crossref_primary_10_1103_PhysRevB_92_045403 crossref_primary_10_1038_nphys1863 crossref_primary_10_1103_PhysRevB_97_245428 crossref_primary_10_1103_PhysRevB_97_245301 crossref_primary_10_1038_ncomms2003 crossref_primary_10_1007_s10773_022_05055_4 crossref_primary_10_1103_PhysRevLett_105_216803 crossref_primary_10_1103_PhysRevB_84_115301 crossref_primary_10_1103_PhysRevB_108_035402 crossref_primary_10_1103_PhysRevB_103_045301 crossref_primary_10_1103_PhysRevB_88_235304 crossref_primary_10_1073_pnas_1319875110 crossref_primary_10_1103_PhysRevB_101_165308 crossref_primary_10_1103_PhysRevX_10_011060 crossref_primary_10_1103_PRXQuantum_3_040308 crossref_primary_10_1103_PhysRevB_108_155306 crossref_primary_10_1103_PhysRevX_10_031006 crossref_primary_10_1103_PhysRevLett_109_140403 crossref_primary_10_1103_PhysRevB_103_155301 crossref_primary_10_1063_1_4746260 crossref_primary_10_1103_PhysRevB_92_155422 crossref_primary_10_1103_PhysRevLett_113_150501 crossref_primary_10_1103_PhysRevB_91_075301 crossref_primary_10_1103_PhysRevX_4_021044 crossref_primary_10_1103_PhysRevB_86_035314 crossref_primary_10_1103_PhysRevA_85_052313 crossref_primary_10_1103_PhysRevB_95_195407 crossref_primary_10_1038_nphys1999 crossref_primary_10_1103_PhysRevA_94_012321 crossref_primary_10_1103_PhysRevB_109_245105 crossref_primary_10_1103_PhysRevB_92_115448 crossref_primary_10_1103_PhysRevA_89_022310 crossref_primary_10_1007_s11801_015_5083_1 crossref_primary_10_1103_PhysRevLett_111_050501 crossref_primary_10_1103_PhysRevLett_111_050503 crossref_primary_10_1103_PhysRevLett_110_140502 crossref_primary_10_1016_j_physleta_2018_05_005 crossref_primary_10_1103_PhysRevB_89_195310 crossref_primary_10_1103_PhysRevB_84_121306 crossref_primary_10_1103_PhysRevB_93_121407 crossref_primary_10_1103_PhysRevB_81_045304 crossref_primary_10_1016_j_cjph_2024_10_007 crossref_primary_10_1021_nl300775c crossref_primary_10_1016_j_physe_2014_06_012 crossref_primary_10_1103_PhysRevB_91_235411 crossref_primary_10_1103_PhysRevApplied_22_014033 crossref_primary_10_1103_PhysRevB_88_245441 crossref_primary_10_1103_PhysRevB_92_155314 crossref_primary_10_1143_APEX_5_025002 crossref_primary_10_1038_ncomms8682 crossref_primary_10_1002_adom_202301608 crossref_primary_10_1038_nmat3671 crossref_primary_10_1103_PhysRevB_86_205306 crossref_primary_10_1126_science_1185548 crossref_primary_10_1103_PhysRevA_88_022120 crossref_primary_10_1088_1674_1056_27_12_120303 crossref_primary_10_1088_2058_9565_ad692c crossref_primary_10_1103_PhysRevA_105_022620 crossref_primary_10_1103_PhysRevLett_108_046808 crossref_primary_10_1103_PhysRevLett_117_170501 crossref_primary_10_1088_1361_648X_aa761f crossref_primary_10_1088_2058_9565_ad8ef0 crossref_primary_10_1209_0295_5075_acd4e5 crossref_primary_10_1103_PhysRevB_89_085410 crossref_primary_10_22331_q_2024_11_21_1533 crossref_primary_10_1070_RCR4797 |
Cites_doi | 10.1038/nphys1053 10.1103/PhysRevB.76.035315 10.1103/PhysRevB.15.5780 10.1038/nphys1226 10.1126/science.1159221 10.1103/PhysRevB.74.205313 10.1103/PhysRevLett.102.057601 10.1103/PhysRevLett.88.186802 10.1126/science.1148092 10.1038/nature03815 10.1038/nphys174 10.1103/PhysRevLett.98.050502 10.1103/PhysRevLett.81.2594 10.1103/PhysRevB.75.161302 10.1103/PhysRevLett.99.056804 10.1103/PhysRevLett.89.147902 10.1038/nature07530 10.1137/S0097539799359385 10.1038/nature05065 10.1103/PhysRevB.65.205309 10.1126/science.1116955 10.1103/PhysRevB.74.035322 10.1103/PhysRevB.74.195301 10.1126/science.1113719 10.1103/PhysRevB.77.125329 10.1103/PhysRevLett.100.067601 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2009 Copyright Nature Publishing Group Dec 2009 |
Copyright_xml | – notice: Springer Nature Limited 2009 – notice: Copyright Nature Publishing Group Dec 2009 |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1038/nphys1424 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Technology Research Database ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1745-2481 |
EndPage | 908 |
ExternalDocumentID | 1916133231 10_1038_nphys1424 |
Genre | Feature |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ACMFV ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI PUEGO Q9U |
ID | FETCH-LOGICAL-c425t-a75f12150c978053d76b70cb311afbed8b8ecae03da4f038217eaab8d0cd7aac3 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Fri Jul 11 01:01:02 EDT 2025 Sat Aug 23 14:05:26 EDT 2025 Tue Jul 01 03:48:10 EDT 2025 Thu Apr 24 23:06:53 EDT 2025 Fri Feb 21 02:38:29 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-a75f12150c978053d76b70cb311afbed8b8ecae03da4f038217eaab8d0cd7aac3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
OpenAccessLink | http://nrs.harvard.edu/urn-3:HUL.InstRepos:8013324 |
PQID | 194658652 |
PQPubID | 27545 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1019658117 proquest_journals_194658652 crossref_citationtrail_10_1038_nphys1424 crossref_primary_10_1038_nphys1424 springer_journals_10_1038_nphys1424 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-12-01 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nature Phys |
PublicationYear | 2009 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | KoppensFHLControl and detection of singlet–triplet mixing in a random nuclear fieldScience2005309134613502005Sci...309.1346K10.1126/science.1113719 HansonRBurkardGUniversal set of quantum gates for double-dot spin qubits with fixed interdot couplingPhys. Rev. Lett.2007980505022007PhRvL..98e0502H10.1103/PhysRevLett.98.050502 LevyJUniversal quantum computation with spin-1/2 pairs and Heisenberg exchangePhys. Rev. Lett.2002891479022002PhRvL..89n7902L193229410.1103/PhysRevLett.89.147902 KoppensFHLDriven coherent oscillations of a single electron spin in a quantum dotNature20064427667712006Natur.442..766K10.1038/nature05065 TaylorJMFault-tolerant architecture for quantum computation using electrically controlled semiconductor spinsNature Phys.200511771832005NatPh...1..177T10.1038/nphys174 PettaJRDynamic nuclear polarization with single electron spinsPhys. Rev. Lett.20081000676012008PhRvL.100f7601P10.1103/PhysRevLett.100.067601 MaletinskyPBadolatoAImamogluADynamics of quantum dot nuclear spin polarizationPhys. Rev. Lett.2007990568042007PhRvL..99e6804M10.1103/PhysRevLett.99.056804 Pioro-LadriereMElectrically driven single electron spin resonance in a slanting Zeeman fieldNature Phys.200847767792008NatPh...4..776P10.1038/nphys1053 PettaJRCoherent manipulation of coupled electron spins in semiconductor quantum dotsScience2005309218021842005Sci...309.2180P10.1126/science.1116955 KhaetskiiAVLossDGlazmanLElectron spin decoherence in quantum dots due to interaction with nucleiPhys. Rev. Lett.2002881868022002PhRvL..88r6802K10.1103/PhysRevLett.88.186802 TaylorJMRelaxation, dephasing, and quantum control of electron spins in double quantum dotsPhys. Rev. B2007760353152007PhRvB..76c5315T10.1103/PhysRevB.76.035315 NielsenMAChuangILQuantum Computation and Quantum Information20001049.81015 AharonovDBen-OrMFault-tolerant quantum computation with constant error rateSIAM J. Comput.20083812071282244844710.1137/S0097539799359385 GreilichAUltrafast optical rotations of electron spins in quantum dotsNature Phys.200952622662009NatPh...5..262G10.1038/nphys1226 CywinskiLWitzelWMDas SarmaSElectron spin dephasing due to hyperfine interactions with a nuclear spin bathPhys. Rev. Lett.20091020576012009PhRvL.102e7601C10.1103/PhysRevLett.102.057601 ReillyDJSuppressing spin qubit dephasing by nuclear state preparationScience20083218178212008Sci...321..817R10.1126/science.1159221 PressDLaddTDZhangBYamamotoYComplete quantum control of a single quantum dot spin using ultrafast optical pulsesNature20084562182212008Natur.456..218P10.1038/nature07530 JohnsonACTriplet–singlet spin relaxation via nuclei in a double quantum dotNature20054359259282005Natur.435..925J10.1038/nature03815 NovackKCKoppensFHLNazarovYVVandersypenLMKCoherent control of a single electron spin with electric fieldsScience2007318143014332007Sci...318.1430N10.1126/science.1148092 Stopa, M., Krich, J. J. & Yacoby, A. Inhomogeneous nuclear spin flips. Preprint at <http://arxiv.org/abs/0905.4520v1> (2009). ZhangWDobrovitkiVAl-HassaniehKDagottoEHarmonBHyperfine interaction induced decoherence of electron spins in quantum dotsPhys. Rev. B2006742053132006PhRvB..74t5313Z10.1103/PhysRevB.74.205313 WitzelWMSarmaSDQuantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architecturePhys. Rev. B2006740353222006PhRvB..74c5322W10.1103/PhysRevB.74.035322 Reilly, D. J. et al. Exchange control of nuclear spin diffusion in double quantum dots. Preprint at <http://arxiv.org/abs/0803.3082v1> (2008). PagetDLampelGSapovalBLow field electron–nuclear spin coupling in gallium arsenide under optical pumping conditionsPhys. Rev. B197715578057961977PhRvB..15.5780P10.1103/PhysRevB.15.5780 CoishWLossDExchange-controlled single-electron-spin rotations in quantum dotsPhys. Rev. B2007751613022007PhRvB..75p1302C10.1103/PhysRevB.75.161302 YaoWLiuRBShamLJTheory of electron spin decoherence by interacting nuclear spins in a quantum dotPhys. Rev. B2006741953012006PhRvB..74s5301Y10.1103/PhysRevB.74.195301 MerkulovIAEfrosALRosenMElectron spin relaxation by nuclei in semiconductor quantum dotsPhys. Rev. B2002652053092002PhRvB..65t5309M10.1103/PhysRevB.65.205309 CoishWFischerJLossDExponential decay in a spin bathPhys. Rev. B2008771253292008PhRvB..77l5329C10.1103/PhysRevB.77.125329 LidarDAChuangILWhaleyKBDecoherence-free subspace for quantum computationPhys. Rev. Lett.199881259425971998PhRvL..81.2594L10.1103/PhysRevLett.81.2594 JR Petta (BFnphys1424_CR7) 2005; 309 W Coish (BFnphys1424_CR3) 2007; 75 W Zhang (BFnphys1424_CR12) 2006; 74 W Yao (BFnphys1424_CR27) 2006; 74 WM Witzel (BFnphys1424_CR10) 2006; 74 KC Novack (BFnphys1424_CR25) 2007; 318 D Paget (BFnphys1424_CR19) 1977; 15 JM Taylor (BFnphys1424_CR14) 2005; 1 JR Petta (BFnphys1424_CR16) 2008; 100 IA Merkulov (BFnphys1424_CR9) 2002; 65 P Maletinsky (BFnphys1424_CR21) 2007; 99 BFnphys1424_CR22 BFnphys1424_CR20 L Cywinski (BFnphys1424_CR28) 2009; 102 AC Johnson (BFnphys1424_CR18) 2005; 435 AV Khaetskii (BFnphys1424_CR8) 2002; 88 MA Nielsen (BFnphys1424_CR1) 2000 D Press (BFnphys1424_CR4) 2008; 456 M Pioro-Ladriere (BFnphys1424_CR26) 2008; 4 R Hanson (BFnphys1424_CR5) 2007; 98 JM Taylor (BFnphys1424_CR15) 2007; 76 D Aharonov (BFnphys1424_CR6) 2008; 38 W Coish (BFnphys1424_CR29) 2008; 77 A Greilich (BFnphys1424_CR23) 2009; 5 DA Lidar (BFnphys1424_CR13) 1998; 81 FHL Koppens (BFnphys1424_CR11) 2005; 309 FHL Koppens (BFnphys1424_CR24) 2006; 442 DJ Reilly (BFnphys1424_CR17) 2008; 321 J Levy (BFnphys1424_CR2) 2002; 89 |
References_xml | – reference: YaoWLiuRBShamLJTheory of electron spin decoherence by interacting nuclear spins in a quantum dotPhys. Rev. B2006741953012006PhRvB..74s5301Y10.1103/PhysRevB.74.195301 – reference: HansonRBurkardGUniversal set of quantum gates for double-dot spin qubits with fixed interdot couplingPhys. Rev. Lett.2007980505022007PhRvL..98e0502H10.1103/PhysRevLett.98.050502 – reference: ZhangWDobrovitkiVAl-HassaniehKDagottoEHarmonBHyperfine interaction induced decoherence of electron spins in quantum dotsPhys. Rev. B2006742053132006PhRvB..74t5313Z10.1103/PhysRevB.74.205313 – reference: TaylorJMRelaxation, dephasing, and quantum control of electron spins in double quantum dotsPhys. Rev. B2007760353152007PhRvB..76c5315T10.1103/PhysRevB.76.035315 – reference: MerkulovIAEfrosALRosenMElectron spin relaxation by nuclei in semiconductor quantum dotsPhys. Rev. B2002652053092002PhRvB..65t5309M10.1103/PhysRevB.65.205309 – reference: KhaetskiiAVLossDGlazmanLElectron spin decoherence in quantum dots due to interaction with nucleiPhys. Rev. Lett.2002881868022002PhRvL..88r6802K10.1103/PhysRevLett.88.186802 – reference: PettaJRDynamic nuclear polarization with single electron spinsPhys. Rev. Lett.20081000676012008PhRvL.100f7601P10.1103/PhysRevLett.100.067601 – reference: Reilly, D. J. et al. Exchange control of nuclear spin diffusion in double quantum dots. Preprint at <http://arxiv.org/abs/0803.3082v1> (2008). – reference: JohnsonACTriplet–singlet spin relaxation via nuclei in a double quantum dotNature20054359259282005Natur.435..925J10.1038/nature03815 – reference: NielsenMAChuangILQuantum Computation and Quantum Information20001049.81015 – reference: GreilichAUltrafast optical rotations of electron spins in quantum dotsNature Phys.200952622662009NatPh...5..262G10.1038/nphys1226 – reference: LevyJUniversal quantum computation with spin-1/2 pairs and Heisenberg exchangePhys. Rev. Lett.2002891479022002PhRvL..89n7902L193229410.1103/PhysRevLett.89.147902 – reference: AharonovDBen-OrMFault-tolerant quantum computation with constant error rateSIAM J. Comput.20083812071282244844710.1137/S0097539799359385 – reference: CoishWLossDExchange-controlled single-electron-spin rotations in quantum dotsPhys. Rev. B2007751613022007PhRvB..75p1302C10.1103/PhysRevB.75.161302 – reference: Stopa, M., Krich, J. J. & Yacoby, A. Inhomogeneous nuclear spin flips. Preprint at <http://arxiv.org/abs/0905.4520v1> (2009). – reference: KoppensFHLDriven coherent oscillations of a single electron spin in a quantum dotNature20064427667712006Natur.442..766K10.1038/nature05065 – reference: WitzelWMSarmaSDQuantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architecturePhys. Rev. B2006740353222006PhRvB..74c5322W10.1103/PhysRevB.74.035322 – reference: Pioro-LadriereMElectrically driven single electron spin resonance in a slanting Zeeman fieldNature Phys.200847767792008NatPh...4..776P10.1038/nphys1053 – reference: CoishWFischerJLossDExponential decay in a spin bathPhys. Rev. B2008771253292008PhRvB..77l5329C10.1103/PhysRevB.77.125329 – reference: KoppensFHLControl and detection of singlet–triplet mixing in a random nuclear fieldScience2005309134613502005Sci...309.1346K10.1126/science.1113719 – reference: PressDLaddTDZhangBYamamotoYComplete quantum control of a single quantum dot spin using ultrafast optical pulsesNature20084562182212008Natur.456..218P10.1038/nature07530 – reference: LidarDAChuangILWhaleyKBDecoherence-free subspace for quantum computationPhys. Rev. Lett.199881259425971998PhRvL..81.2594L10.1103/PhysRevLett.81.2594 – reference: ReillyDJSuppressing spin qubit dephasing by nuclear state preparationScience20083218178212008Sci...321..817R10.1126/science.1159221 – reference: NovackKCKoppensFHLNazarovYVVandersypenLMKCoherent control of a single electron spin with electric fieldsScience2007318143014332007Sci...318.1430N10.1126/science.1148092 – reference: MaletinskyPBadolatoAImamogluADynamics of quantum dot nuclear spin polarizationPhys. Rev. Lett.2007990568042007PhRvL..99e6804M10.1103/PhysRevLett.99.056804 – reference: CywinskiLWitzelWMDas SarmaSElectron spin dephasing due to hyperfine interactions with a nuclear spin bathPhys. Rev. Lett.20091020576012009PhRvL.102e7601C10.1103/PhysRevLett.102.057601 – reference: TaylorJMFault-tolerant architecture for quantum computation using electrically controlled semiconductor spinsNature Phys.200511771832005NatPh...1..177T10.1038/nphys174 – reference: PagetDLampelGSapovalBLow field electron–nuclear spin coupling in gallium arsenide under optical pumping conditionsPhys. Rev. B197715578057961977PhRvB..15.5780P10.1103/PhysRevB.15.5780 – reference: PettaJRCoherent manipulation of coupled electron spins in semiconductor quantum dotsScience2005309218021842005Sci...309.2180P10.1126/science.1116955 – volume: 4 start-page: 776 year: 2008 ident: BFnphys1424_CR26 publication-title: Nature Phys. doi: 10.1038/nphys1053 – volume: 76 start-page: 035315 year: 2007 ident: BFnphys1424_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.035315 – volume: 15 start-page: 5780 year: 1977 ident: BFnphys1424_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.15.5780 – volume: 5 start-page: 262 year: 2009 ident: BFnphys1424_CR23 publication-title: Nature Phys. doi: 10.1038/nphys1226 – volume: 321 start-page: 817 year: 2008 ident: BFnphys1424_CR17 publication-title: Science doi: 10.1126/science.1159221 – volume: 74 start-page: 205313 year: 2006 ident: BFnphys1424_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.205313 – volume-title: Quantum Computation and Quantum Information year: 2000 ident: BFnphys1424_CR1 – volume: 102 start-page: 057601 year: 2009 ident: BFnphys1424_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.057601 – volume: 88 start-page: 186802 year: 2002 ident: BFnphys1424_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.186802 – volume: 318 start-page: 1430 year: 2007 ident: BFnphys1424_CR25 publication-title: Science doi: 10.1126/science.1148092 – volume: 435 start-page: 925 year: 2005 ident: BFnphys1424_CR18 publication-title: Nature doi: 10.1038/nature03815 – volume: 1 start-page: 177 year: 2005 ident: BFnphys1424_CR14 publication-title: Nature Phys. doi: 10.1038/nphys174 – volume: 98 start-page: 050502 year: 2007 ident: BFnphys1424_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.050502 – volume: 81 start-page: 2594 year: 1998 ident: BFnphys1424_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2594 – volume: 75 start-page: 161302 year: 2007 ident: BFnphys1424_CR3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.161302 – volume: 99 start-page: 056804 year: 2007 ident: BFnphys1424_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.056804 – volume: 89 start-page: 147902 year: 2002 ident: BFnphys1424_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.147902 – volume: 456 start-page: 218 year: 2008 ident: BFnphys1424_CR4 publication-title: Nature doi: 10.1038/nature07530 – volume: 38 start-page: 1207 year: 2008 ident: BFnphys1424_CR6 publication-title: SIAM J. Comput. doi: 10.1137/S0097539799359385 – volume: 442 start-page: 766 year: 2006 ident: BFnphys1424_CR24 publication-title: Nature doi: 10.1038/nature05065 – volume: 65 start-page: 205309 year: 2002 ident: BFnphys1424_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.205309 – volume: 309 start-page: 2180 year: 2005 ident: BFnphys1424_CR7 publication-title: Science doi: 10.1126/science.1116955 – volume: 74 start-page: 035322 year: 2006 ident: BFnphys1424_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.035322 – volume: 74 start-page: 195301 year: 2006 ident: BFnphys1424_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.195301 – volume: 309 start-page: 1346 year: 2005 ident: BFnphys1424_CR11 publication-title: Science doi: 10.1126/science.1113719 – volume: 77 start-page: 125329 year: 2008 ident: BFnphys1424_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.125329 – volume: 100 start-page: 067601 year: 2008 ident: BFnphys1424_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.067601 – ident: BFnphys1424_CR20 – ident: BFnphys1424_CR22 |
SSID | ssj0042613 |
Score | 2.5018873 |
Snippet | One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit’s rate of... One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit's rate of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 903 |
SubjectTerms | Atomic Classical and Continuum Physics Complex Systems Computer science Condensed Matter Physics Dynamics Electron spin Electrons Gallium Gates Logic Magnetic fields Mathematical and Computational Physics Molecular Nanocomposites Nanostructure Optical and Plasma Physics Physics Physics and Astronomy Polarization Quantum physics Qubits (quantum computing) Theoretical |
Title | Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization |
URI | https://link.springer.com/article/10.1038/nphys1424 https://www.proquest.com/docview/194658652 https://www.proquest.com/docview/1019658117 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHjxsSquL-Lj4KVsu23T7ElUdl0ERURhT5YkTUXQdrVd_PvOdNOqi3humpSZzCTTmfk-gBNUpNaBlE6YhD0MULhyegR4mSq0SjQnrjg1Ct_c8uFjcD0KR7Y2p7BllbVPrBx1kmv6R97BYBsPSx52z8bvDpFGUXLVMmjMwyJ6YIGx1-JF__buvnbFFB74047I0OkGkV9DC_mik9GfA2rz-n0gfd8yZxKj1XkzWIMVe1Fk51PNrsOcyVqwWpMwMGuTLViqajh1sQFPtsgC33qfoMAmb8wWorM8ZeVn7tScN6wYv2TNIPVSFozq359ZMuWnZxmhHMsPNqbA13ZqbsLjoP9wOXQsfYKj0RBLR0ZhStgRrq6IC_wk4ipytfI9T6bKJEIJo6Vx_UQGKYoEgxMjpRKJq5NISu1vwUKWZ2YbWBikHjecS6N7AU6jlCdVN0yV0IIyf204rWUYa4stThQXr3GV4_ZF3Ii7DUfN0PEUUOOvQbu1ImJrU0Xc7IA2HDZP0RgowyEzk08KqlcjMBvPwy86rvX3Y4bZdXb-XWcXlruWLcL19mCh_JiYfbyClOoA5sXg6sButy8gf-GQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUEUvhVKqbmmp-5J6iUjixPEeUFUB26U8TiBxarAdp1qpJAvJCvGj-h87k7XTFlXcOMexLc_DM56ZbwA-ICGNSZQK0iIdooMidDAkwMtSo1SiOAktqFD4-ESMz5Jv5-n5AvzytTCUVul1Yqeoi9rQG_k2Ott4WYo0_jy9CqhpFAVXfQeNOVcc2tsb9NianYM9JO_HOB7tn-6OA9dUIDDInm2gsrQkRIXQdHD-vMiEzkKjeRSpUttCammNsiEvVFKGXKLJbpXSsghNkSllOM67CMsJ50MSKDn66hU_OSN8Xn-ZBnGScQ9kxOV2Re8UVFT27_X3x6a9E4btbrfRGjxxZin7Muejp7Bgq3VY9S0fmNMA6_Coyxg1zTP47lI68K-rGZJndslc2jurS9be1IHvsMOa6aTqB-lJ2zDKtv_BittKXU4MqwhTWV2zKbnZri50A84e5Fyfw1JVV_YFsDQpI2GFUNYME5xG60jpOC21NJLijAP45M8wNw7JnBpq_My7iDqXeX_cA3jXD53O4Tv-N2jTEyJ3EtzkPb8N4G3_FUWP4imqsvWsoew4gs6JItzRe0-_v2a4u87Le9d5Ayvj0-Oj_Ojg5HATHseuT0UYvYKl9npmX6Px0-qtjuUYXDw0j_8GV58d-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9wwDLfYoU28wMaGOGBb2Ie0l-rapk17D9O0ASc-thOahsTTuiRN0UnQHrQnxJ_Gfze7l3QDTXvjuWkSxXZsx_bPAO-QkFpHUnpxHg_RQRHKGxLgZaFQKlGchBJUKPxtLPZPosPT-HQBbl0tDKVVujuxvajzStMb-QCdbVSWIg4Hhc2KON4dfZpeetRAigKtrpvGnEOOzM01em_1x4NdJPX7MBzt_djZ92yDAU8jqzaeTOKC0BV83UL78zwRKvG14kEgC2XyVKVGS-PzXEaFz1M0342UKs19nSdSao7zPoLFBJ0ivweLX_bGx9-dGiDXhM-rMWMvjBLuYI14Oijp1YJKzO4qwz8W7r2gbKvrRk9h2Rqp7POcq57BgilXYcU1gGD2PliFx23-qK6fw0-b4IF_Xc6QWLMLZpPgWVWw5rryXL8dVk8nZTdITZqaUe79GctvSnkx0awkhGV5xabkdNsq0Rdw8iAnuwa9sirNOrA4KgJhhJBGDyOcRqlAqjAuVKpTijr24YM7w0xbXHNqr3GetfF1nmbdcffhTTd0Ogfz-NegTUeIzMpznXXc14ft7isKIkVXZGmqWU25cgSkEwS4o7eOfn_NcH-djf-u8xqeIH9nXw_GR5uwFNqmFX6wBb3mamZeoiXUqFeW5xj8emg2_w3n5CON |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+quantum+control+of+two-electron+spin+quantum+bits+using+dynamic+nuclear+polarization&rft.jtitle=Nature+physics&rft.au=Foletti%2C+Sandra&rft.au=Bluhm%2C+Hendrik&rft.au=Mahalu%2C+Diana&rft.au=Umansky%2C+Vladimir&rft.date=2009-12-01&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=5&rft.issue=12&rft.spage=903&rft.epage=908&rft_id=info:doi/10.1038%2Fnphys1424&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nphys1424 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |