Efficient multiperiod heat exchanger network synthesis using a meta-heuristic approach
Multiperiod heat exchanger networks (HEN) are required in plants with seasonal alterations to operating conditions. Like for single-period HEN, the synthesis of multiperiod HEN can be formulated as a mathematical programming optimization problem. However, since the network needs to feasibly perform...
Saved in:
Published in | Energy (Oxford) Vol. 142; pp. 356 - 372 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiperiod heat exchanger networks (HEN) are required in plants with seasonal alterations to operating conditions. Like for single-period HEN, the synthesis of multiperiod HEN can be formulated as a mathematical programming optimization problem. However, since the network needs to feasibly perform heat integration under different process conditions, additional constraints are required and problem complexity is increased. Studies on the subject based on mathematical programming often use deterministic approaches and rely on commercial solvers. In this work, a meta-heuristic two-level method based on Simulated Annealing and Rocket Fireworks Optimization (SA-RFO), originally developed for single-period HEN synthesis, is adapted to handle multiperiod HEN optimization. A new post-optimization (PO) strategy is coupled with the main method in order to improve the results. Four case studies are investigated and results are compared to the literature. The solutions achieved presented lower total annual costs (TAC) than those obtained by other methods and the new PO scheme was able to significantly improve the results.
•A new method for multiperiod heat exchanger networks synthesis is proposed.•A hybrid meta-heuristic approach is used to solve the problem.•A post-optimization strategy is coupled with the method.•Required to available area ratios achieved were rather high in all periods.•The configurations found present lower costs than those of literature. |
---|---|
AbstractList | Multiperiod heat exchanger networks (HEN) are required in plants with seasonal alterations to operating conditions. Like for single-period HEN, the synthesis of multiperiod HEN can be formulated as a mathematical programming optimization problem. However, since the network needs to feasibly perform heat integration under different process conditions, additional constraints are required and problem complexity is increased. Studies on the subject based on mathematical programming often use deterministic approaches and rely on commercial solvers. In this work, a meta-heuristic two-level method based on Simulated Annealing and Rocket Fireworks Optimization (SA-RFO), originally developed for single-period HEN synthesis, is adapted to handle multiperiod HEN optimization. A new post-optimization (PO) strategy is coupled with the main method in order to improve the results. Four case studies are investigated and results are compared to the literature. The solutions achieved presented lower total annual costs (TAC) than those obtained by other methods and the new PO scheme was able to significantly improve the results. Multiperiod heat exchanger networks (HEN) are required in plants with seasonal alterations to operating conditions. Like for single-period HEN, the synthesis of multiperiod HEN can be formulated as a mathematical programming optimization problem. However, since the network needs to feasibly perform heat integration under different process conditions, additional constraints are required and problem complexity is increased. Studies on the subject based on mathematical programming often use deterministic approaches and rely on commercial solvers. In this work, a meta-heuristic two-level method based on Simulated Annealing and Rocket Fireworks Optimization (SA-RFO), originally developed for single-period HEN synthesis, is adapted to handle multiperiod HEN optimization. A new post-optimization (PO) strategy is coupled with the main method in order to improve the results. Four case studies are investigated and results are compared to the literature. The solutions achieved presented lower total annual costs (TAC) than those obtained by other methods and the new PO scheme was able to significantly improve the results. •A new method for multiperiod heat exchanger networks synthesis is proposed.•A hybrid meta-heuristic approach is used to solve the problem.•A post-optimization strategy is coupled with the method.•Required to available area ratios achieved were rather high in all periods.•The configurations found present lower costs than those of literature. |
Author | Pavão, Leandro V. Miranda, Camila B. Costa, Caliane B.B. Ravagnani, Mauro A.S.S. |
Author_xml | – sequence: 1 givenname: Leandro V. surname: Pavão fullname: Pavão, Leandro V. – sequence: 2 givenname: Camila B. surname: Miranda fullname: Miranda, Camila B. – sequence: 3 givenname: Caliane B.B. surname: Costa fullname: Costa, Caliane B.B. – sequence: 4 givenname: Mauro A.S.S. surname: Ravagnani fullname: Ravagnani, Mauro A.S.S. email: massravagnani@uem.br |
BookMark | eNqFkT1v3CAYgFGVSL2k-QcZkLp0sQucAbtDpCrKR6VIWdqu6D38-szVBxfATe7fh9N1ytAMiOV5XuDhjJz44JGQS85qzrj6uqnRY1zva8G4rllX80Z_IAve6mWldCtPyIItFatk04iP5CylDWNMtl23IL9vhsFZhz7T7Txlt8PoQk9HhEzxxY7g1xipx_wc4h-a9j6PmFyic3J-TYFuMUM14hxdys5S2O1iADt-IqcDTAkv_u3n5Nftzc_r--rh8e7H9feHyjZC5gq4tt2AEvpeWwbd0K24wrZFK4HzFjs5DL3QK4Gq5SshpNXcsl4q6BUIZpfn5Mtxbjn2acaUzdYli9MEHsOcjCgPVSWR0AX9_AbdhDn6crtC8WVZirFCfTtSNoaUIg7GugzZBZ8juMlwZg7JzcYckx9cbVhnSvIiN2_kXXRbiPv3tKujhqXUX4fRpMOPWOxdRJtNH9z_B7wCQqqhLw |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2021_121461 crossref_primary_10_1007_s12155_023_10603_9 crossref_primary_10_1016_j_ces_2020_115992 crossref_primary_10_1016_j_energy_2023_128175 crossref_primary_10_1016_j_egyr_2020_12_023 crossref_primary_10_3389_frsus_2022_888251 crossref_primary_10_1007_s11431_022_2337_1 crossref_primary_10_1016_j_enconman_2020_113587 crossref_primary_10_1016_j_energy_2023_127017 crossref_primary_10_3390_pr11020321 crossref_primary_10_1016_j_cherd_2024_01_018 crossref_primary_10_1016_j_jenvman_2018_05_062 crossref_primary_10_1016_j_vacuum_2018_12_052 crossref_primary_10_1016_j_tsep_2023_101912 crossref_primary_10_1007_s41660_023_00356_5 crossref_primary_10_1016_j_cjche_2018_09_015 crossref_primary_10_3390_en12050784 crossref_primary_10_1021_acs_iecr_7b03336 crossref_primary_10_2139_ssrn_4049701 crossref_primary_10_1021_acs_iecr_7b05251 crossref_primary_10_1016_j_ces_2018_11_044 crossref_primary_10_1016_j_compchemeng_2022_107771 crossref_primary_10_1016_j_ces_2022_117755 crossref_primary_10_1016_j_energy_2023_129029 crossref_primary_10_1016_j_energy_2020_118583 crossref_primary_10_1016_j_energy_2021_120437 |
Cites_doi | 10.1016/j.ces.2006.08.043 10.1016/j.compchemeng.2016.08.009 10.1016/j.applthermaleng.2011.12.015 10.1126/science.220.4598.671 10.1016/j.cep.2009.10.003 10.1016/0098-1354(90)85010-8 10.1016/0098-1354(87)85014-7 10.1007/BFb0040810 10.1016/j.cherd.2007.11.001 10.1016/j.energy.2016.06.047 10.1016/j.applthermaleng.2004.06.024 10.1016/0098-1354(87)80013-3 10.1021/ie301075v 10.1016/j.cherd.2012.03.020 10.1016/j.energy.2015.02.106 10.1016/j.applthermaleng.2016.09.045 10.1016/j.compchemeng.2006.12.005 10.1016/j.cherd.2010.02.019 10.1016/j.ces.2014.12.037 10.1016/j.compchemeng.2008.12.003 10.1016/j.ces.2016.09.030 10.1016/j.applthermaleng.2013.10.064 10.1021/acs.iecr.6b01117 10.1016/0009-2509(87)80128-8 10.1016/S1359-4311(02)00008-X 10.1016/j.applthermaleng.2007.07.015 10.1016/0098-1354(86)85027-X 10.1016/j.energy.2013.02.046 10.1007/s11081-009-9089-z 10.1002/aic.15524 10.1016/j.applthermaleng.2016.05.103 10.1016/B978-0-444-63455-9.50098-2 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Jan 1, 2018 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Jan 1, 2018 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2017.09.147 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
EndPage | 372 |
ExternalDocumentID | 10_1016_j_energy_2017_09_147 S0360544217316687 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c425t-a17c9fe5add7c0a9f9b16e88ec5a118e95ffd27b2e681b225c71c0d56ad6a20c3 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Mon Jul 21 11:43:31 EDT 2025 Wed Aug 13 04:08:37 EDT 2025 Thu Apr 24 22:55:21 EDT 2025 Tue Jul 01 00:53:12 EDT 2025 Fri Feb 23 02:45:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multiperiod heat exchanger networks Optimization Meta-heuristics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-a17c9fe5add7c0a9f9b16e88ec5a118e95ffd27b2e681b225c71c0d56ad6a20c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2013201600 |
PQPubID | 2045484 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2000601627 proquest_journals_2013201600 crossref_citationtrail_10_1016_j_energy_2017_09_147 crossref_primary_10_1016_j_energy_2017_09_147 elsevier_sciencedirect_doi_10_1016_j_energy_2017_09_147 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Floudas, Grossmann (bib4) 1987; 11 Shi, Eberhart (bib35) 1998; 1447 Linnhoff, Kotjabasakis (bib1) 1986; 5 Isafiade, Fraser (bib10) 2010; 88 Verheyen, Zhang (bib8) 2006; 61 Pavão, Costa, Ravagnani, Jiménez (bib28) 2017; 63 Jiang, Chang (bib13) 2013; 52 Miranda, Costa, Caballero, Ravagnani (bib21) 2016; 55 Isafiade, Fraser (bib11) 2008; 86 Pavão, Costa, Ravagnani (bib26) 2016; 94 Ravagnani, Silva, Arroyo, Constantino (bib22) 2005; 25 Ravagnani, Mano, Carvalho, Silva, Costa (bib31) 2014; 33 Miranda, Costa, Caballero, Ravagnani (bib20) 2016 Aaltola (bib6) 2002; 22 Luo, Wen, Fieg (bib23) 2009; 33 Silva, Ravagnani, Biscaia, Caballero (bib25) 2010; 11 Floudas, Grossmann (bib5) 1987; 11 Bogataj, Kravanja (bib17) 2012; 43 Ma, Yao, Luo, Roetzel (bib9) 2008; 28 Kirkpatrick, Gelatt, Vecchi (bib33) 1983; 220 Ravagnani, Caballero (bib32) 2007; 31 Zhang, Cui, Peng (bib29) 2016; 104 Ahmad, Zhang, Jobson, Chen (bib12) 2012; 90 Novak Pintarič, Kravanja (bib18) 2015; 92 Pavão, Costa, Ravagnani (bib27) 2017; 158 Zhang, Cui, Xiao, Chen (bib30) 2017; 110 Fieg, Luo, Jeżowski (bib24) 2009; 48 Yee, Grossmann (bib7) 1990; 14 Floudas, Grossmann (bib3) 1986; 10 Kennedy, Eberhart (bib34) 1995; 4 Isafiade, Bogataj, Fraser, Kravanja (bib16) 2015; 127 Kang, Liu, Wu (bib19) 2016; 116 Ravagnani, Módenes (bib2) 1996 Escobar, Trierweiler, Grossmann (bib15) 2014; 63 Nemet, Klemeš, Kravanja (bib14) 2013; 57 Chen (bib36) 1987; 42 Nemet (10.1016/j.energy.2017.09.147_bib14) 2013; 57 Escobar (10.1016/j.energy.2017.09.147_bib15) 2014; 63 Fieg (10.1016/j.energy.2017.09.147_bib24) 2009; 48 Floudas (10.1016/j.energy.2017.09.147_bib4) 1987; 11 Yee (10.1016/j.energy.2017.09.147_bib7) 1990; 14 Bogataj (10.1016/j.energy.2017.09.147_bib17) 2012; 43 Ravagnani (10.1016/j.energy.2017.09.147_bib22) 2005; 25 Novak Pintarič (10.1016/j.energy.2017.09.147_bib18) 2015; 92 Miranda (10.1016/j.energy.2017.09.147_bib21) 2016; 55 Pavão (10.1016/j.energy.2017.09.147_bib27) 2017; 158 Shi (10.1016/j.energy.2017.09.147_bib35) 1998; 1447 Kang (10.1016/j.energy.2017.09.147_bib19) 2016; 116 Pavão (10.1016/j.energy.2017.09.147_bib28) 2017; 63 Linnhoff (10.1016/j.energy.2017.09.147_bib1) 1986; 5 Verheyen (10.1016/j.energy.2017.09.147_bib8) 2006; 61 Isafiade (10.1016/j.energy.2017.09.147_bib16) 2015; 127 Luo (10.1016/j.energy.2017.09.147_bib23) 2009; 33 Kirkpatrick (10.1016/j.energy.2017.09.147_bib33) 1983; 220 Ravagnani (10.1016/j.energy.2017.09.147_bib2) 1996 Isafiade (10.1016/j.energy.2017.09.147_bib10) 2010; 88 Pavão (10.1016/j.energy.2017.09.147_bib26) 2016; 94 Jiang (10.1016/j.energy.2017.09.147_bib13) 2013; 52 Zhang (10.1016/j.energy.2017.09.147_bib30) 2017; 110 Ravagnani (10.1016/j.energy.2017.09.147_bib31) 2014; 33 Zhang (10.1016/j.energy.2017.09.147_bib29) 2016; 104 Isafiade (10.1016/j.energy.2017.09.147_bib11) 2008; 86 Miranda (10.1016/j.energy.2017.09.147_bib20) 2016 Floudas (10.1016/j.energy.2017.09.147_bib5) 1987; 11 Ravagnani (10.1016/j.energy.2017.09.147_bib32) 2007; 31 Floudas (10.1016/j.energy.2017.09.147_bib3) 1986; 10 Ma (10.1016/j.energy.2017.09.147_bib9) 2008; 28 Kennedy (10.1016/j.energy.2017.09.147_bib34) 1995; 4 Silva (10.1016/j.energy.2017.09.147_bib25) 2010; 11 Aaltola (10.1016/j.energy.2017.09.147_bib6) 2002; 22 Ahmad (10.1016/j.energy.2017.09.147_bib12) 2012; 90 Chen (10.1016/j.energy.2017.09.147_bib36) 1987; 42 |
References_xml | – volume: 33 start-page: 1169 year: 2009 end-page: 1181 ident: bib23 article-title: A hybrid genetic algorithm for synthesis of heat exchanger networks publication-title: Comput Chem Eng – volume: 110 start-page: 1659 year: 2017 end-page: 1673 ident: bib30 article-title: A novel simultaneous optimization model with efficient stream arrangement for heat exchanger network synthesis publication-title: Appl Therm Eng – volume: 10 start-page: 153 year: 1986 end-page: 168 ident: bib3 article-title: Synthesis of flexible heat exchanger networks for multi period operation publication-title: Comput Chem Eng – volume: 55 start-page: 10301 year: 2016 end-page: 10315 ident: bib21 article-title: Heat exchanger network optimization for multiple period operations publication-title: Ind Eng Chem Res – volume: 86 start-page: 245 year: 2008 end-page: 257 ident: bib11 article-title: Interval-based MINLP superstructure synthesis of heat exchange networks publication-title: Chem Eng Res Des – volume: 25 start-page: 1003 year: 2005 end-page: 1017 ident: bib22 article-title: Heat exchanger network synthesis and optimisation using genetic algorithm publication-title: Appl Therm Eng – volume: 1447 start-page: 591 year: 1998 end-page: 600 ident: bib35 article-title: Parameter selection in particle swarm optimization publication-title: Evol Program VII SE - 57 – volume: 11 start-page: 123 year: 1987 end-page: 142 ident: bib4 article-title: Automatic generation of multiperiod heat exchanger network configurations publication-title: Comput Chem Eng – volume: 31 start-page: 1432 year: 2007 end-page: 1448 ident: bib32 article-title: Optimal heat exchanger network synthesis with the detailed heat transfer equipment design publication-title: Comput Chem Eng – volume: 11 start-page: 319 year: 1987 end-page: 336 ident: bib5 article-title: Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures publication-title: Comput Chem Eng – volume: 57 start-page: 222 year: 2013 end-page: 235 ident: bib14 article-title: Optimising entire lifetime economy of heat exchanger networks publication-title: Energy – volume: 28 start-page: 809 year: 2008 end-page: 823 ident: bib9 article-title: Synthesis of multi-stream heat exchanger network for multi-period operation with genetic/simulated annealing algorithms publication-title: Appl Therm Eng – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: bib33 article-title: Optimization by simulated annealing publication-title: Science – volume: 90 start-page: 1883 year: 2012 end-page: 1895 ident: bib12 article-title: Multi-period design of heat exchanger networks publication-title: Chem Eng Res Des – year: 2016 ident: bib20 article-title: Optimal synthesis of multiperiod heat exchanger networks: a sequential approach publication-title: Appl Therm Eng – volume: 22 start-page: 907 year: 2002 end-page: 918 ident: bib6 article-title: Simultaneous synthesis of flexible heat exchanger network publication-title: Appl Therm Eng – volume: 48 start-page: 1506 year: 2009 end-page: 1516 ident: bib24 article-title: A monogenetic algorithm for optimal design of large-scale heat exchanger networks publication-title: Chem Eng Process Process Intensif – volume: 104 start-page: 707 year: 2016 end-page: 719 ident: bib29 article-title: A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis publication-title: Appl Therm Eng – volume: 61 start-page: 7730 year: 2006 end-page: 7753 ident: bib8 article-title: Design of flexible heat exchanger network for multi-period operation publication-title: Chem Eng Sci – volume: 43 start-page: 75 year: 2012 end-page: 90 ident: bib17 article-title: An alternative strategy for global optimization of heat exchanger networks publication-title: Appl Therm Eng – volume: 11 start-page: 459 year: 2010 end-page: 470 ident: bib25 article-title: Optimal heat exchanger network synthesis using particle swarm optimization publication-title: Optim Eng – volume: 88 start-page: 1329 year: 2010 end-page: 1341 ident: bib10 article-title: Interval based MINLP superstructure synthesis of heat exchanger networks for multi-period operations publication-title: Chem Eng Res Des – start-page: 71 year: 1996 end-page: 84 ident: bib2 article-title: Heat exchanger networks with multiple periods of operation publication-title: Braz J Chem Eng – volume: 92 start-page: 373 year: 2015 end-page: 382 ident: bib18 article-title: A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters publication-title: Energy – volume: 94 start-page: 370 year: 2016 end-page: 386 ident: bib26 article-title: Automated heat exchanger network synthesis by using hybrid natural algorithms and parallel processing publication-title: Comput Chem Eng – volume: 63 start-page: 1582 year: 2017 end-page: 1601 ident: bib28 article-title: Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization publication-title: AIChE J – volume: 158 start-page: 96 year: 2017 end-page: 107 ident: bib27 article-title: Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization publication-title: Chem Eng Sci – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib34 article-title: Particle swarm optimization publication-title: IEEE Int Conf Neural Netw – volume: 116 start-page: 1302 year: 2016 end-page: 1311 ident: bib19 article-title: Synthesis of multi-period heat exchanger networks based on features of sub-period durations publication-title: Energy – volume: 42 start-page: 2488 year: 1987 end-page: 2489 ident: bib36 article-title: Comments on improvements on a replacement for the logarithmic mean publication-title: Chem Eng Sci – volume: 5 start-page: 23 year: 1986 end-page: 28 ident: bib1 article-title: Downstream paths for operable process design publication-title: Chem Eng Prog – volume: 52 start-page: 3794 year: 2013 end-page: 3804 ident: bib13 article-title: A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms publication-title: Ind Eng Chem Res – volume: 33 start-page: 1579 year: 2014 end-page: 1584 ident: bib31 article-title: Multi-objective heat exchanger networks synthesis considering economic and environmental optimization publication-title: Comput Aided Chem Eng – volume: 63 start-page: 177 year: 2014 end-page: 191 ident: bib15 article-title: A heuristic Lagrangean approach for the synthesis of multiperiod heat exchanger networks publication-title: Appl Therm Eng – volume: 127 start-page: 175 year: 2015 end-page: 188 ident: bib16 article-title: Optimal synthesis of heat exchanger networks for multi-period operations involving single and multiple utilities publication-title: Chem Eng Sci – volume: 14 start-page: 1165 year: 1990 end-page: 1184 ident: bib7 article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis publication-title: Comput Chem Eng – volume: 61 start-page: 7730 year: 2006 ident: 10.1016/j.energy.2017.09.147_bib8 article-title: Design of flexible heat exchanger network for multi-period operation publication-title: Chem Eng Sci doi: 10.1016/j.ces.2006.08.043 – volume: 94 start-page: 370 year: 2016 ident: 10.1016/j.energy.2017.09.147_bib26 article-title: Automated heat exchanger network synthesis by using hybrid natural algorithms and parallel processing publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2016.08.009 – volume: 43 start-page: 75 year: 2012 ident: 10.1016/j.energy.2017.09.147_bib17 article-title: An alternative strategy for global optimization of heat exchanger networks publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.12.015 – volume: 220 start-page: 671 year: 1983 ident: 10.1016/j.energy.2017.09.147_bib33 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 48 start-page: 1506 year: 2009 ident: 10.1016/j.energy.2017.09.147_bib24 article-title: A monogenetic algorithm for optimal design of large-scale heat exchanger networks publication-title: Chem Eng Process Process Intensif doi: 10.1016/j.cep.2009.10.003 – start-page: 71 year: 1996 ident: 10.1016/j.energy.2017.09.147_bib2 article-title: Heat exchanger networks with multiple periods of operation publication-title: Braz J Chem Eng – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.energy.2017.09.147_bib34 article-title: Particle swarm optimization publication-title: IEEE Int Conf Neural Netw – volume: 14 start-page: 1165 year: 1990 ident: 10.1016/j.energy.2017.09.147_bib7 article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis publication-title: Comput Chem Eng doi: 10.1016/0098-1354(90)85010-8 – volume: 11 start-page: 319 year: 1987 ident: 10.1016/j.energy.2017.09.147_bib5 article-title: Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures publication-title: Comput Chem Eng doi: 10.1016/0098-1354(87)85014-7 – volume: 1447 start-page: 591 year: 1998 ident: 10.1016/j.energy.2017.09.147_bib35 article-title: Parameter selection in particle swarm optimization publication-title: Evol Program VII SE - 57 doi: 10.1007/BFb0040810 – volume: 86 start-page: 245 year: 2008 ident: 10.1016/j.energy.2017.09.147_bib11 article-title: Interval-based MINLP superstructure synthesis of heat exchange networks publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2007.11.001 – volume: 116 start-page: 1302 year: 2016 ident: 10.1016/j.energy.2017.09.147_bib19 article-title: Synthesis of multi-period heat exchanger networks based on features of sub-period durations publication-title: Energy doi: 10.1016/j.energy.2016.06.047 – volume: 25 start-page: 1003 year: 2005 ident: 10.1016/j.energy.2017.09.147_bib22 article-title: Heat exchanger network synthesis and optimisation using genetic algorithm publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2004.06.024 – volume: 11 start-page: 123 year: 1987 ident: 10.1016/j.energy.2017.09.147_bib4 article-title: Automatic generation of multiperiod heat exchanger network configurations publication-title: Comput Chem Eng doi: 10.1016/0098-1354(87)80013-3 – volume: 52 start-page: 3794 year: 2013 ident: 10.1016/j.energy.2017.09.147_bib13 article-title: A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms publication-title: Ind Eng Chem Res doi: 10.1021/ie301075v – volume: 90 start-page: 1883 year: 2012 ident: 10.1016/j.energy.2017.09.147_bib12 article-title: Multi-period design of heat exchanger networks publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2012.03.020 – volume: 92 start-page: 373 year: 2015 ident: 10.1016/j.energy.2017.09.147_bib18 article-title: A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters publication-title: Energy doi: 10.1016/j.energy.2015.02.106 – volume: 110 start-page: 1659 year: 2017 ident: 10.1016/j.energy.2017.09.147_bib30 article-title: A novel simultaneous optimization model with efficient stream arrangement for heat exchanger network synthesis publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.09.045 – volume: 31 start-page: 1432 year: 2007 ident: 10.1016/j.energy.2017.09.147_bib32 article-title: Optimal heat exchanger network synthesis with the detailed heat transfer equipment design publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2006.12.005 – volume: 88 start-page: 1329 year: 2010 ident: 10.1016/j.energy.2017.09.147_bib10 article-title: Interval based MINLP superstructure synthesis of heat exchanger networks for multi-period operations publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2010.02.019 – volume: 127 start-page: 175 year: 2015 ident: 10.1016/j.energy.2017.09.147_bib16 article-title: Optimal synthesis of heat exchanger networks for multi-period operations involving single and multiple utilities publication-title: Chem Eng Sci doi: 10.1016/j.ces.2014.12.037 – volume: 33 start-page: 1169 year: 2009 ident: 10.1016/j.energy.2017.09.147_bib23 article-title: A hybrid genetic algorithm for synthesis of heat exchanger networks publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2008.12.003 – volume: 158 start-page: 96 year: 2017 ident: 10.1016/j.energy.2017.09.147_bib27 article-title: Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization publication-title: Chem Eng Sci doi: 10.1016/j.ces.2016.09.030 – year: 2016 ident: 10.1016/j.energy.2017.09.147_bib20 article-title: Optimal synthesis of multiperiod heat exchanger networks: a sequential approach publication-title: Appl Therm Eng – volume: 63 start-page: 177 year: 2014 ident: 10.1016/j.energy.2017.09.147_bib15 article-title: A heuristic Lagrangean approach for the synthesis of multiperiod heat exchanger networks publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2013.10.064 – volume: 5 start-page: 23 year: 1986 ident: 10.1016/j.energy.2017.09.147_bib1 article-title: Downstream paths for operable process design publication-title: Chem Eng Prog – volume: 55 start-page: 10301 year: 2016 ident: 10.1016/j.energy.2017.09.147_bib21 article-title: Heat exchanger network optimization for multiple period operations publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.6b01117 – volume: 42 start-page: 2488 year: 1987 ident: 10.1016/j.energy.2017.09.147_bib36 article-title: Comments on improvements on a replacement for the logarithmic mean publication-title: Chem Eng Sci doi: 10.1016/0009-2509(87)80128-8 – volume: 22 start-page: 907 year: 2002 ident: 10.1016/j.energy.2017.09.147_bib6 article-title: Simultaneous synthesis of flexible heat exchanger network publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(02)00008-X – volume: 28 start-page: 809 year: 2008 ident: 10.1016/j.energy.2017.09.147_bib9 article-title: Synthesis of multi-stream heat exchanger network for multi-period operation with genetic/simulated annealing algorithms publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.07.015 – volume: 10 start-page: 153 year: 1986 ident: 10.1016/j.energy.2017.09.147_bib3 article-title: Synthesis of flexible heat exchanger networks for multi period operation publication-title: Comput Chem Eng doi: 10.1016/0098-1354(86)85027-X – volume: 57 start-page: 222 year: 2013 ident: 10.1016/j.energy.2017.09.147_bib14 article-title: Optimising entire lifetime economy of heat exchanger networks publication-title: Energy doi: 10.1016/j.energy.2013.02.046 – volume: 11 start-page: 459 year: 2010 ident: 10.1016/j.energy.2017.09.147_bib25 article-title: Optimal heat exchanger network synthesis using particle swarm optimization publication-title: Optim Eng doi: 10.1007/s11081-009-9089-z – volume: 63 start-page: 1582 year: 2017 ident: 10.1016/j.energy.2017.09.147_bib28 article-title: Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization publication-title: AIChE J doi: 10.1002/aic.15524 – volume: 104 start-page: 707 year: 2016 ident: 10.1016/j.energy.2017.09.147_bib29 article-title: A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.05.103 – volume: 33 start-page: 1579 year: 2014 ident: 10.1016/j.energy.2017.09.147_bib31 article-title: Multi-objective heat exchanger networks synthesis considering economic and environmental optimization publication-title: Comput Aided Chem Eng doi: 10.1016/B978-0-444-63455-9.50098-2 |
SSID | ssj0005899 |
Score | 2.3683126 |
Snippet | Multiperiod heat exchanger networks (HEN) are required in plants with seasonal alterations to operating conditions. Like for single-period HEN, the synthesis... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 356 |
SubjectTerms | case studies Computer simulation Fireworks Heat Heat exchangers Heuristic Heuristic methods Mathematical analysis Mathematical programming Meta-heuristics Multiperiod heat exchanger networks Network synthesis Optimization Simulated annealing Solvers Studies system optimization |
Title | Efficient multiperiod heat exchanger network synthesis using a meta-heuristic approach |
URI | https://dx.doi.org/10.1016/j.energy.2017.09.147 https://www.proquest.com/docview/2013201600 https://www.proquest.com/docview/2000601627 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hONALKlDU5SUjcXU3L9vJEa12tQXBhVJxixzHbhdBdkV2pXLhtzMTO_ShSkgcY4-VaDzzeZLMNwNwKrWgY0twnK54JqOKV9Jp7oTJjU5z5SQRhS-v5PQmO78Vt2sw6rkwlFYZsN9jeofWYWQYtDlczGbDa8RejDcyjKnTWMqcGOVZpsjKvzz_keaRdz0kSZiTdE-f63K8bMevowQvRdVOY2qy8v_j6R-g7k6fyUfYCmEjO_NPtg1rttmBzZ5V3O7A3vg3Yw0Fg8u2u_B93BWJwGHmkwfR5OY1Iwxm9lfg_bLGZ4Oz9qnBiLCdtYwS4n8wzR7sUvOfduUrOrO-BvknuJmMv42mPDRT4Abdcsl1rEzhrEA8UybShSuqWNo8t0ZofMmwhXCuTlSVWImRLHq5UbGJaiF1LXUSmXQP1pt5Yz8DyzJXaGrlh1iR1akonHNxbjAUqqPCJskA0l6HpQmVxqnhxX3Zp5TdlV7zJWm-jAp8AVED4K-rFr7Sxhvyqt-e8i-LKfEweGPlYb-bZfDYlubThMrtRQM4eZ1GX6MfKLqx8xXJ-PI1idp_980P4ANe5f4rziGsLx9X9gjjmmV13BnuMWycfb2YXr0Aa7L6ag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONALKhTUbSl1pV7dzct2cqzQouV5KVTcLMex20WQRc2uRC_8dmZih7aoElKvnrES2Z6Hk2--AfgkjaCwJTiKa17IpOa19IZ7YUtr8lJ5SYXCp2dyelEcXYrLFdgfamEIVhl9f_DpvbeOI-O4muPb2Wz8FX0v5hsF5tR5KmWpXsBageZLbQw-3_-B8yj7JpKkzUl9qJ_rQV6uL7AjhJciutOUuqz8Oz498dR9-Dl4BRsxb2Rfwqttwoprt2B9KCvutmBn8rtkDRWjzXav4dukZ4nAYRbQg3jm5g0jJ8zcXSz8ZW2Ag7PuV4spYTfrGCHivzPDbtzC8B9uGSid2UBCvg0XB5Pz_SmP3RS4RbtccJMqW3kn0KEpm5jKV3UqXVk6KwzeMlwlvG8yVWdOYiqLZm5VapNGSNNIkyU234HVdt66N8CKwleGevmhsyiaXFTe-7S0mAs1SeWybAT5sIbaRqpx6nhxrQdM2ZUOK69p5XVS4Q1EjYA_zroNVBvP6Kthe_RfR0ZjNHhm5u6wmzqabEfyPCO-vWQEHx_FaGz0B8W0br4kncBfk6m3__3wD7A-PT890SeHZ8fv4CVKyvBJZxdWFz-X7j0mOYt6rz_EDxuQ-_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+multiperiod+heat+exchanger+network+synthesis+using+a+meta-heuristic+approach&rft.jtitle=Energy+%28Oxford%29&rft.au=Pav%C3%A3o%2C+Leandro+V&rft.au=Miranda%2C+Camila+B&rft.au=Costa%2C+Caliane+B.B.&rft.au=Ravagnani%2C+Mauro+A.S.S.&rft.date=2018-01-01&rft.issn=0360-5442&rft.volume=142+p.356-372&rft.spage=356&rft.epage=372&rft_id=info:doi/10.1016%2Fj.energy.2017.09.147&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |