Efficient multiperiod heat exchanger network synthesis using a meta-heuristic approach

Multiperiod heat exchanger networks (HEN) are required in plants with seasonal alterations to operating conditions. Like for single-period HEN, the synthesis of multiperiod HEN can be formulated as a mathematical programming optimization problem. However, since the network needs to feasibly perform...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 142; pp. 356 - 372
Main Authors Pavão, Leandro V., Miranda, Camila B., Costa, Caliane B.B., Ravagnani, Mauro A.S.S.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiperiod heat exchanger networks (HEN) are required in plants with seasonal alterations to operating conditions. Like for single-period HEN, the synthesis of multiperiod HEN can be formulated as a mathematical programming optimization problem. However, since the network needs to feasibly perform heat integration under different process conditions, additional constraints are required and problem complexity is increased. Studies on the subject based on mathematical programming often use deterministic approaches and rely on commercial solvers. In this work, a meta-heuristic two-level method based on Simulated Annealing and Rocket Fireworks Optimization (SA-RFO), originally developed for single-period HEN synthesis, is adapted to handle multiperiod HEN optimization. A new post-optimization (PO) strategy is coupled with the main method in order to improve the results. Four case studies are investigated and results are compared to the literature. The solutions achieved presented lower total annual costs (TAC) than those obtained by other methods and the new PO scheme was able to significantly improve the results. •A new method for multiperiod heat exchanger networks synthesis is proposed.•A hybrid meta-heuristic approach is used to solve the problem.•A post-optimization strategy is coupled with the method.•Required to available area ratios achieved were rather high in all periods.•The configurations found present lower costs than those of literature.
AbstractList Multiperiod heat exchanger networks (HEN) are required in plants with seasonal alterations to operating conditions. Like for single-period HEN, the synthesis of multiperiod HEN can be formulated as a mathematical programming optimization problem. However, since the network needs to feasibly perform heat integration under different process conditions, additional constraints are required and problem complexity is increased. Studies on the subject based on mathematical programming often use deterministic approaches and rely on commercial solvers. In this work, a meta-heuristic two-level method based on Simulated Annealing and Rocket Fireworks Optimization (SA-RFO), originally developed for single-period HEN synthesis, is adapted to handle multiperiod HEN optimization. A new post-optimization (PO) strategy is coupled with the main method in order to improve the results. Four case studies are investigated and results are compared to the literature. The solutions achieved presented lower total annual costs (TAC) than those obtained by other methods and the new PO scheme was able to significantly improve the results.
Multiperiod heat exchanger networks (HEN) are required in plants with seasonal alterations to operating conditions. Like for single-period HEN, the synthesis of multiperiod HEN can be formulated as a mathematical programming optimization problem. However, since the network needs to feasibly perform heat integration under different process conditions, additional constraints are required and problem complexity is increased. Studies on the subject based on mathematical programming often use deterministic approaches and rely on commercial solvers. In this work, a meta-heuristic two-level method based on Simulated Annealing and Rocket Fireworks Optimization (SA-RFO), originally developed for single-period HEN synthesis, is adapted to handle multiperiod HEN optimization. A new post-optimization (PO) strategy is coupled with the main method in order to improve the results. Four case studies are investigated and results are compared to the literature. The solutions achieved presented lower total annual costs (TAC) than those obtained by other methods and the new PO scheme was able to significantly improve the results. •A new method for multiperiod heat exchanger networks synthesis is proposed.•A hybrid meta-heuristic approach is used to solve the problem.•A post-optimization strategy is coupled with the method.•Required to available area ratios achieved were rather high in all periods.•The configurations found present lower costs than those of literature.
Author Pavão, Leandro V.
Miranda, Camila B.
Costa, Caliane B.B.
Ravagnani, Mauro A.S.S.
Author_xml – sequence: 1
  givenname: Leandro V.
  surname: Pavão
  fullname: Pavão, Leandro V.
– sequence: 2
  givenname: Camila B.
  surname: Miranda
  fullname: Miranda, Camila B.
– sequence: 3
  givenname: Caliane B.B.
  surname: Costa
  fullname: Costa, Caliane B.B.
– sequence: 4
  givenname: Mauro A.S.S.
  surname: Ravagnani
  fullname: Ravagnani, Mauro A.S.S.
  email: massravagnani@uem.br
BookMark eNqFkT1v3CAYgFGVSL2k-QcZkLp0sQucAbtDpCrKR6VIWdqu6D38-szVBxfATe7fh9N1ytAMiOV5XuDhjJz44JGQS85qzrj6uqnRY1zva8G4rllX80Z_IAve6mWldCtPyIItFatk04iP5CylDWNMtl23IL9vhsFZhz7T7Txlt8PoQk9HhEzxxY7g1xipx_wc4h-a9j6PmFyic3J-TYFuMUM14hxdys5S2O1iADt-IqcDTAkv_u3n5Nftzc_r--rh8e7H9feHyjZC5gq4tt2AEvpeWwbd0K24wrZFK4HzFjs5DL3QK4Gq5SshpNXcsl4q6BUIZpfn5Mtxbjn2acaUzdYli9MEHsOcjCgPVSWR0AX9_AbdhDn6crtC8WVZirFCfTtSNoaUIg7GugzZBZ8juMlwZg7JzcYckx9cbVhnSvIiN2_kXXRbiPv3tKujhqXUX4fRpMOPWOxdRJtNH9z_B7wCQqqhLw
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2021_121461
crossref_primary_10_1007_s12155_023_10603_9
crossref_primary_10_1016_j_ces_2020_115992
crossref_primary_10_1016_j_energy_2023_128175
crossref_primary_10_1016_j_egyr_2020_12_023
crossref_primary_10_3389_frsus_2022_888251
crossref_primary_10_1007_s11431_022_2337_1
crossref_primary_10_1016_j_enconman_2020_113587
crossref_primary_10_1016_j_energy_2023_127017
crossref_primary_10_3390_pr11020321
crossref_primary_10_1016_j_cherd_2024_01_018
crossref_primary_10_1016_j_jenvman_2018_05_062
crossref_primary_10_1016_j_vacuum_2018_12_052
crossref_primary_10_1016_j_tsep_2023_101912
crossref_primary_10_1007_s41660_023_00356_5
crossref_primary_10_1016_j_cjche_2018_09_015
crossref_primary_10_3390_en12050784
crossref_primary_10_1021_acs_iecr_7b03336
crossref_primary_10_2139_ssrn_4049701
crossref_primary_10_1021_acs_iecr_7b05251
crossref_primary_10_1016_j_ces_2018_11_044
crossref_primary_10_1016_j_compchemeng_2022_107771
crossref_primary_10_1016_j_ces_2022_117755
crossref_primary_10_1016_j_energy_2023_129029
crossref_primary_10_1016_j_energy_2020_118583
crossref_primary_10_1016_j_energy_2021_120437
Cites_doi 10.1016/j.ces.2006.08.043
10.1016/j.compchemeng.2016.08.009
10.1016/j.applthermaleng.2011.12.015
10.1126/science.220.4598.671
10.1016/j.cep.2009.10.003
10.1016/0098-1354(90)85010-8
10.1016/0098-1354(87)85014-7
10.1007/BFb0040810
10.1016/j.cherd.2007.11.001
10.1016/j.energy.2016.06.047
10.1016/j.applthermaleng.2004.06.024
10.1016/0098-1354(87)80013-3
10.1021/ie301075v
10.1016/j.cherd.2012.03.020
10.1016/j.energy.2015.02.106
10.1016/j.applthermaleng.2016.09.045
10.1016/j.compchemeng.2006.12.005
10.1016/j.cherd.2010.02.019
10.1016/j.ces.2014.12.037
10.1016/j.compchemeng.2008.12.003
10.1016/j.ces.2016.09.030
10.1016/j.applthermaleng.2013.10.064
10.1021/acs.iecr.6b01117
10.1016/0009-2509(87)80128-8
10.1016/S1359-4311(02)00008-X
10.1016/j.applthermaleng.2007.07.015
10.1016/0098-1354(86)85027-X
10.1016/j.energy.2013.02.046
10.1007/s11081-009-9089-z
10.1002/aic.15524
10.1016/j.applthermaleng.2016.05.103
10.1016/B978-0-444-63455-9.50098-2
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Jan 1, 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 1, 2018
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2017.09.147
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 372
ExternalDocumentID 10_1016_j_energy_2017_09_147
S0360544217316687
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c425t-a17c9fe5add7c0a9f9b16e88ec5a118e95ffd27b2e681b225c71c0d56ad6a20c3
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Mon Jul 21 11:43:31 EDT 2025
Wed Aug 13 04:08:37 EDT 2025
Thu Apr 24 22:55:21 EDT 2025
Tue Jul 01 00:53:12 EDT 2025
Fri Feb 23 02:45:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiperiod heat exchanger networks
Optimization
Meta-heuristics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-a17c9fe5add7c0a9f9b16e88ec5a118e95ffd27b2e681b225c71c0d56ad6a20c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2013201600
PQPubID 2045484
PageCount 17
ParticipantIDs proquest_miscellaneous_2000601627
proquest_journals_2013201600
crossref_citationtrail_10_1016_j_energy_2017_09_147
crossref_primary_10_1016_j_energy_2017_09_147
elsevier_sciencedirect_doi_10_1016_j_energy_2017_09_147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Floudas, Grossmann (bib4) 1987; 11
Shi, Eberhart (bib35) 1998; 1447
Linnhoff, Kotjabasakis (bib1) 1986; 5
Isafiade, Fraser (bib10) 2010; 88
Verheyen, Zhang (bib8) 2006; 61
Pavão, Costa, Ravagnani, Jiménez (bib28) 2017; 63
Jiang, Chang (bib13) 2013; 52
Miranda, Costa, Caballero, Ravagnani (bib21) 2016; 55
Isafiade, Fraser (bib11) 2008; 86
Pavão, Costa, Ravagnani (bib26) 2016; 94
Ravagnani, Silva, Arroyo, Constantino (bib22) 2005; 25
Ravagnani, Mano, Carvalho, Silva, Costa (bib31) 2014; 33
Miranda, Costa, Caballero, Ravagnani (bib20) 2016
Aaltola (bib6) 2002; 22
Luo, Wen, Fieg (bib23) 2009; 33
Silva, Ravagnani, Biscaia, Caballero (bib25) 2010; 11
Floudas, Grossmann (bib5) 1987; 11
Bogataj, Kravanja (bib17) 2012; 43
Ma, Yao, Luo, Roetzel (bib9) 2008; 28
Kirkpatrick, Gelatt, Vecchi (bib33) 1983; 220
Ravagnani, Caballero (bib32) 2007; 31
Zhang, Cui, Peng (bib29) 2016; 104
Ahmad, Zhang, Jobson, Chen (bib12) 2012; 90
Novak Pintarič, Kravanja (bib18) 2015; 92
Pavão, Costa, Ravagnani (bib27) 2017; 158
Zhang, Cui, Xiao, Chen (bib30) 2017; 110
Fieg, Luo, Jeżowski (bib24) 2009; 48
Yee, Grossmann (bib7) 1990; 14
Floudas, Grossmann (bib3) 1986; 10
Kennedy, Eberhart (bib34) 1995; 4
Isafiade, Bogataj, Fraser, Kravanja (bib16) 2015; 127
Kang, Liu, Wu (bib19) 2016; 116
Ravagnani, Módenes (bib2) 1996
Escobar, Trierweiler, Grossmann (bib15) 2014; 63
Nemet, Klemeš, Kravanja (bib14) 2013; 57
Chen (bib36) 1987; 42
Nemet (10.1016/j.energy.2017.09.147_bib14) 2013; 57
Escobar (10.1016/j.energy.2017.09.147_bib15) 2014; 63
Fieg (10.1016/j.energy.2017.09.147_bib24) 2009; 48
Floudas (10.1016/j.energy.2017.09.147_bib4) 1987; 11
Yee (10.1016/j.energy.2017.09.147_bib7) 1990; 14
Bogataj (10.1016/j.energy.2017.09.147_bib17) 2012; 43
Ravagnani (10.1016/j.energy.2017.09.147_bib22) 2005; 25
Novak Pintarič (10.1016/j.energy.2017.09.147_bib18) 2015; 92
Miranda (10.1016/j.energy.2017.09.147_bib21) 2016; 55
Pavão (10.1016/j.energy.2017.09.147_bib27) 2017; 158
Shi (10.1016/j.energy.2017.09.147_bib35) 1998; 1447
Kang (10.1016/j.energy.2017.09.147_bib19) 2016; 116
Pavão (10.1016/j.energy.2017.09.147_bib28) 2017; 63
Linnhoff (10.1016/j.energy.2017.09.147_bib1) 1986; 5
Verheyen (10.1016/j.energy.2017.09.147_bib8) 2006; 61
Isafiade (10.1016/j.energy.2017.09.147_bib16) 2015; 127
Luo (10.1016/j.energy.2017.09.147_bib23) 2009; 33
Kirkpatrick (10.1016/j.energy.2017.09.147_bib33) 1983; 220
Ravagnani (10.1016/j.energy.2017.09.147_bib2) 1996
Isafiade (10.1016/j.energy.2017.09.147_bib10) 2010; 88
Pavão (10.1016/j.energy.2017.09.147_bib26) 2016; 94
Jiang (10.1016/j.energy.2017.09.147_bib13) 2013; 52
Zhang (10.1016/j.energy.2017.09.147_bib30) 2017; 110
Ravagnani (10.1016/j.energy.2017.09.147_bib31) 2014; 33
Zhang (10.1016/j.energy.2017.09.147_bib29) 2016; 104
Isafiade (10.1016/j.energy.2017.09.147_bib11) 2008; 86
Miranda (10.1016/j.energy.2017.09.147_bib20) 2016
Floudas (10.1016/j.energy.2017.09.147_bib5) 1987; 11
Ravagnani (10.1016/j.energy.2017.09.147_bib32) 2007; 31
Floudas (10.1016/j.energy.2017.09.147_bib3) 1986; 10
Ma (10.1016/j.energy.2017.09.147_bib9) 2008; 28
Kennedy (10.1016/j.energy.2017.09.147_bib34) 1995; 4
Silva (10.1016/j.energy.2017.09.147_bib25) 2010; 11
Aaltola (10.1016/j.energy.2017.09.147_bib6) 2002; 22
Ahmad (10.1016/j.energy.2017.09.147_bib12) 2012; 90
Chen (10.1016/j.energy.2017.09.147_bib36) 1987; 42
References_xml – volume: 33
  start-page: 1169
  year: 2009
  end-page: 1181
  ident: bib23
  article-title: A hybrid genetic algorithm for synthesis of heat exchanger networks
  publication-title: Comput Chem Eng
– volume: 110
  start-page: 1659
  year: 2017
  end-page: 1673
  ident: bib30
  article-title: A novel simultaneous optimization model with efficient stream arrangement for heat exchanger network synthesis
  publication-title: Appl Therm Eng
– volume: 10
  start-page: 153
  year: 1986
  end-page: 168
  ident: bib3
  article-title: Synthesis of flexible heat exchanger networks for multi period operation
  publication-title: Comput Chem Eng
– volume: 55
  start-page: 10301
  year: 2016
  end-page: 10315
  ident: bib21
  article-title: Heat exchanger network optimization for multiple period operations
  publication-title: Ind Eng Chem Res
– volume: 86
  start-page: 245
  year: 2008
  end-page: 257
  ident: bib11
  article-title: Interval-based MINLP superstructure synthesis of heat exchange networks
  publication-title: Chem Eng Res Des
– volume: 25
  start-page: 1003
  year: 2005
  end-page: 1017
  ident: bib22
  article-title: Heat exchanger network synthesis and optimisation using genetic algorithm
  publication-title: Appl Therm Eng
– volume: 1447
  start-page: 591
  year: 1998
  end-page: 600
  ident: bib35
  article-title: Parameter selection in particle swarm optimization
  publication-title: Evol Program VII SE - 57
– volume: 11
  start-page: 123
  year: 1987
  end-page: 142
  ident: bib4
  article-title: Automatic generation of multiperiod heat exchanger network configurations
  publication-title: Comput Chem Eng
– volume: 31
  start-page: 1432
  year: 2007
  end-page: 1448
  ident: bib32
  article-title: Optimal heat exchanger network synthesis with the detailed heat transfer equipment design
  publication-title: Comput Chem Eng
– volume: 11
  start-page: 319
  year: 1987
  end-page: 336
  ident: bib5
  article-title: Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures
  publication-title: Comput Chem Eng
– volume: 57
  start-page: 222
  year: 2013
  end-page: 235
  ident: bib14
  article-title: Optimising entire lifetime economy of heat exchanger networks
  publication-title: Energy
– volume: 28
  start-page: 809
  year: 2008
  end-page: 823
  ident: bib9
  article-title: Synthesis of multi-stream heat exchanger network for multi-period operation with genetic/simulated annealing algorithms
  publication-title: Appl Therm Eng
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: bib33
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 90
  start-page: 1883
  year: 2012
  end-page: 1895
  ident: bib12
  article-title: Multi-period design of heat exchanger networks
  publication-title: Chem Eng Res Des
– year: 2016
  ident: bib20
  article-title: Optimal synthesis of multiperiod heat exchanger networks: a sequential approach
  publication-title: Appl Therm Eng
– volume: 22
  start-page: 907
  year: 2002
  end-page: 918
  ident: bib6
  article-title: Simultaneous synthesis of flexible heat exchanger network
  publication-title: Appl Therm Eng
– volume: 48
  start-page: 1506
  year: 2009
  end-page: 1516
  ident: bib24
  article-title: A monogenetic algorithm for optimal design of large-scale heat exchanger networks
  publication-title: Chem Eng Process Process Intensif
– volume: 104
  start-page: 707
  year: 2016
  end-page: 719
  ident: bib29
  article-title: A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis
  publication-title: Appl Therm Eng
– volume: 61
  start-page: 7730
  year: 2006
  end-page: 7753
  ident: bib8
  article-title: Design of flexible heat exchanger network for multi-period operation
  publication-title: Chem Eng Sci
– volume: 43
  start-page: 75
  year: 2012
  end-page: 90
  ident: bib17
  article-title: An alternative strategy for global optimization of heat exchanger networks
  publication-title: Appl Therm Eng
– volume: 11
  start-page: 459
  year: 2010
  end-page: 470
  ident: bib25
  article-title: Optimal heat exchanger network synthesis using particle swarm optimization
  publication-title: Optim Eng
– volume: 88
  start-page: 1329
  year: 2010
  end-page: 1341
  ident: bib10
  article-title: Interval based MINLP superstructure synthesis of heat exchanger networks for multi-period operations
  publication-title: Chem Eng Res Des
– start-page: 71
  year: 1996
  end-page: 84
  ident: bib2
  article-title: Heat exchanger networks with multiple periods of operation
  publication-title: Braz J Chem Eng
– volume: 92
  start-page: 373
  year: 2015
  end-page: 382
  ident: bib18
  article-title: A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters
  publication-title: Energy
– volume: 94
  start-page: 370
  year: 2016
  end-page: 386
  ident: bib26
  article-title: Automated heat exchanger network synthesis by using hybrid natural algorithms and parallel processing
  publication-title: Comput Chem Eng
– volume: 63
  start-page: 1582
  year: 2017
  end-page: 1601
  ident: bib28
  article-title: Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization
  publication-title: AIChE J
– volume: 158
  start-page: 96
  year: 2017
  end-page: 107
  ident: bib27
  article-title: Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization
  publication-title: Chem Eng Sci
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib34
  article-title: Particle swarm optimization
  publication-title: IEEE Int Conf Neural Netw
– volume: 116
  start-page: 1302
  year: 2016
  end-page: 1311
  ident: bib19
  article-title: Synthesis of multi-period heat exchanger networks based on features of sub-period durations
  publication-title: Energy
– volume: 42
  start-page: 2488
  year: 1987
  end-page: 2489
  ident: bib36
  article-title: Comments on improvements on a replacement for the logarithmic mean
  publication-title: Chem Eng Sci
– volume: 5
  start-page: 23
  year: 1986
  end-page: 28
  ident: bib1
  article-title: Downstream paths for operable process design
  publication-title: Chem Eng Prog
– volume: 52
  start-page: 3794
  year: 2013
  end-page: 3804
  ident: bib13
  article-title: A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms
  publication-title: Ind Eng Chem Res
– volume: 33
  start-page: 1579
  year: 2014
  end-page: 1584
  ident: bib31
  article-title: Multi-objective heat exchanger networks synthesis considering economic and environmental optimization
  publication-title: Comput Aided Chem Eng
– volume: 63
  start-page: 177
  year: 2014
  end-page: 191
  ident: bib15
  article-title: A heuristic Lagrangean approach for the synthesis of multiperiod heat exchanger networks
  publication-title: Appl Therm Eng
– volume: 127
  start-page: 175
  year: 2015
  end-page: 188
  ident: bib16
  article-title: Optimal synthesis of heat exchanger networks for multi-period operations involving single and multiple utilities
  publication-title: Chem Eng Sci
– volume: 14
  start-page: 1165
  year: 1990
  end-page: 1184
  ident: bib7
  article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis
  publication-title: Comput Chem Eng
– volume: 61
  start-page: 7730
  year: 2006
  ident: 10.1016/j.energy.2017.09.147_bib8
  article-title: Design of flexible heat exchanger network for multi-period operation
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2006.08.043
– volume: 94
  start-page: 370
  year: 2016
  ident: 10.1016/j.energy.2017.09.147_bib26
  article-title: Automated heat exchanger network synthesis by using hybrid natural algorithms and parallel processing
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2016.08.009
– volume: 43
  start-page: 75
  year: 2012
  ident: 10.1016/j.energy.2017.09.147_bib17
  article-title: An alternative strategy for global optimization of heat exchanger networks
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.12.015
– volume: 220
  start-page: 671
  year: 1983
  ident: 10.1016/j.energy.2017.09.147_bib33
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 48
  start-page: 1506
  year: 2009
  ident: 10.1016/j.energy.2017.09.147_bib24
  article-title: A monogenetic algorithm for optimal design of large-scale heat exchanger networks
  publication-title: Chem Eng Process Process Intensif
  doi: 10.1016/j.cep.2009.10.003
– start-page: 71
  year: 1996
  ident: 10.1016/j.energy.2017.09.147_bib2
  article-title: Heat exchanger networks with multiple periods of operation
  publication-title: Braz J Chem Eng
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.energy.2017.09.147_bib34
  article-title: Particle swarm optimization
  publication-title: IEEE Int Conf Neural Netw
– volume: 14
  start-page: 1165
  year: 1990
  ident: 10.1016/j.energy.2017.09.147_bib7
  article-title: Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(90)85010-8
– volume: 11
  start-page: 319
  year: 1987
  ident: 10.1016/j.energy.2017.09.147_bib5
  article-title: Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(87)85014-7
– volume: 1447
  start-page: 591
  year: 1998
  ident: 10.1016/j.energy.2017.09.147_bib35
  article-title: Parameter selection in particle swarm optimization
  publication-title: Evol Program VII SE - 57
  doi: 10.1007/BFb0040810
– volume: 86
  start-page: 245
  year: 2008
  ident: 10.1016/j.energy.2017.09.147_bib11
  article-title: Interval-based MINLP superstructure synthesis of heat exchange networks
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2007.11.001
– volume: 116
  start-page: 1302
  year: 2016
  ident: 10.1016/j.energy.2017.09.147_bib19
  article-title: Synthesis of multi-period heat exchanger networks based on features of sub-period durations
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.047
– volume: 25
  start-page: 1003
  year: 2005
  ident: 10.1016/j.energy.2017.09.147_bib22
  article-title: Heat exchanger network synthesis and optimisation using genetic algorithm
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2004.06.024
– volume: 11
  start-page: 123
  year: 1987
  ident: 10.1016/j.energy.2017.09.147_bib4
  article-title: Automatic generation of multiperiod heat exchanger network configurations
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(87)80013-3
– volume: 52
  start-page: 3794
  year: 2013
  ident: 10.1016/j.energy.2017.09.147_bib13
  article-title: A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie301075v
– volume: 90
  start-page: 1883
  year: 2012
  ident: 10.1016/j.energy.2017.09.147_bib12
  article-title: Multi-period design of heat exchanger networks
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2012.03.020
– volume: 92
  start-page: 373
  year: 2015
  ident: 10.1016/j.energy.2017.09.147_bib18
  article-title: A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters
  publication-title: Energy
  doi: 10.1016/j.energy.2015.02.106
– volume: 110
  start-page: 1659
  year: 2017
  ident: 10.1016/j.energy.2017.09.147_bib30
  article-title: A novel simultaneous optimization model with efficient stream arrangement for heat exchanger network synthesis
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.09.045
– volume: 31
  start-page: 1432
  year: 2007
  ident: 10.1016/j.energy.2017.09.147_bib32
  article-title: Optimal heat exchanger network synthesis with the detailed heat transfer equipment design
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2006.12.005
– volume: 88
  start-page: 1329
  year: 2010
  ident: 10.1016/j.energy.2017.09.147_bib10
  article-title: Interval based MINLP superstructure synthesis of heat exchanger networks for multi-period operations
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2010.02.019
– volume: 127
  start-page: 175
  year: 2015
  ident: 10.1016/j.energy.2017.09.147_bib16
  article-title: Optimal synthesis of heat exchanger networks for multi-period operations involving single and multiple utilities
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2014.12.037
– volume: 33
  start-page: 1169
  year: 2009
  ident: 10.1016/j.energy.2017.09.147_bib23
  article-title: A hybrid genetic algorithm for synthesis of heat exchanger networks
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2008.12.003
– volume: 158
  start-page: 96
  year: 2017
  ident: 10.1016/j.energy.2017.09.147_bib27
  article-title: Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2016.09.030
– year: 2016
  ident: 10.1016/j.energy.2017.09.147_bib20
  article-title: Optimal synthesis of multiperiod heat exchanger networks: a sequential approach
  publication-title: Appl Therm Eng
– volume: 63
  start-page: 177
  year: 2014
  ident: 10.1016/j.energy.2017.09.147_bib15
  article-title: A heuristic Lagrangean approach for the synthesis of multiperiod heat exchanger networks
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2013.10.064
– volume: 5
  start-page: 23
  year: 1986
  ident: 10.1016/j.energy.2017.09.147_bib1
  article-title: Downstream paths for operable process design
  publication-title: Chem Eng Prog
– volume: 55
  start-page: 10301
  year: 2016
  ident: 10.1016/j.energy.2017.09.147_bib21
  article-title: Heat exchanger network optimization for multiple period operations
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.6b01117
– volume: 42
  start-page: 2488
  year: 1987
  ident: 10.1016/j.energy.2017.09.147_bib36
  article-title: Comments on improvements on a replacement for the logarithmic mean
  publication-title: Chem Eng Sci
  doi: 10.1016/0009-2509(87)80128-8
– volume: 22
  start-page: 907
  year: 2002
  ident: 10.1016/j.energy.2017.09.147_bib6
  article-title: Simultaneous synthesis of flexible heat exchanger network
  publication-title: Appl Therm Eng
  doi: 10.1016/S1359-4311(02)00008-X
– volume: 28
  start-page: 809
  year: 2008
  ident: 10.1016/j.energy.2017.09.147_bib9
  article-title: Synthesis of multi-stream heat exchanger network for multi-period operation with genetic/simulated annealing algorithms
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2007.07.015
– volume: 10
  start-page: 153
  year: 1986
  ident: 10.1016/j.energy.2017.09.147_bib3
  article-title: Synthesis of flexible heat exchanger networks for multi period operation
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(86)85027-X
– volume: 57
  start-page: 222
  year: 2013
  ident: 10.1016/j.energy.2017.09.147_bib14
  article-title: Optimising entire lifetime economy of heat exchanger networks
  publication-title: Energy
  doi: 10.1016/j.energy.2013.02.046
– volume: 11
  start-page: 459
  year: 2010
  ident: 10.1016/j.energy.2017.09.147_bib25
  article-title: Optimal heat exchanger network synthesis using particle swarm optimization
  publication-title: Optim Eng
  doi: 10.1007/s11081-009-9089-z
– volume: 63
  start-page: 1582
  year: 2017
  ident: 10.1016/j.energy.2017.09.147_bib28
  article-title: Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization
  publication-title: AIChE J
  doi: 10.1002/aic.15524
– volume: 104
  start-page: 707
  year: 2016
  ident: 10.1016/j.energy.2017.09.147_bib29
  article-title: A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.05.103
– volume: 33
  start-page: 1579
  year: 2014
  ident: 10.1016/j.energy.2017.09.147_bib31
  article-title: Multi-objective heat exchanger networks synthesis considering economic and environmental optimization
  publication-title: Comput Aided Chem Eng
  doi: 10.1016/B978-0-444-63455-9.50098-2
SSID ssj0005899
Score 2.3683126
Snippet Multiperiod heat exchanger networks (HEN) are required in plants with seasonal alterations to operating conditions. Like for single-period HEN, the synthesis...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 356
SubjectTerms case studies
Computer simulation
Fireworks
Heat
Heat exchangers
Heuristic
Heuristic methods
Mathematical analysis
Mathematical programming
Meta-heuristics
Multiperiod heat exchanger networks
Network synthesis
Optimization
Simulated annealing
Solvers
Studies
system optimization
Title Efficient multiperiod heat exchanger network synthesis using a meta-heuristic approach
URI https://dx.doi.org/10.1016/j.energy.2017.09.147
https://www.proquest.com/docview/2013201600
https://www.proquest.com/docview/2000601627
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hONALKlDU5SUjcXU3L9vJEa12tQXBhVJxixzHbhdBdkV2pXLhtzMTO_ShSkgcY4-VaDzzeZLMNwNwKrWgY0twnK54JqOKV9Jp7oTJjU5z5SQRhS-v5PQmO78Vt2sw6rkwlFYZsN9jeofWYWQYtDlczGbDa8RejDcyjKnTWMqcGOVZpsjKvzz_keaRdz0kSZiTdE-f63K8bMevowQvRdVOY2qy8v_j6R-g7k6fyUfYCmEjO_NPtg1rttmBzZ5V3O7A3vg3Yw0Fg8u2u_B93BWJwGHmkwfR5OY1Iwxm9lfg_bLGZ4Oz9qnBiLCdtYwS4n8wzR7sUvOfduUrOrO-BvknuJmMv42mPDRT4Abdcsl1rEzhrEA8UybShSuqWNo8t0ZofMmwhXCuTlSVWImRLHq5UbGJaiF1LXUSmXQP1pt5Yz8DyzJXaGrlh1iR1akonHNxbjAUqqPCJskA0l6HpQmVxqnhxX3Zp5TdlV7zJWm-jAp8AVED4K-rFr7Sxhvyqt-e8i-LKfEweGPlYb-bZfDYlubThMrtRQM4eZ1GX6MfKLqx8xXJ-PI1idp_980P4ANe5f4rziGsLx9X9gjjmmV13BnuMWycfb2YXr0Aa7L6ag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONALKhTUbSl1pV7dzct2cqzQouV5KVTcLMex20WQRc2uRC_8dmZih7aoElKvnrES2Z6Hk2--AfgkjaCwJTiKa17IpOa19IZ7YUtr8lJ5SYXCp2dyelEcXYrLFdgfamEIVhl9f_DpvbeOI-O4muPb2Wz8FX0v5hsF5tR5KmWpXsBageZLbQw-3_-B8yj7JpKkzUl9qJ_rQV6uL7AjhJciutOUuqz8Oz498dR9-Dl4BRsxb2Rfwqttwoprt2B9KCvutmBn8rtkDRWjzXav4dukZ4nAYRbQg3jm5g0jJ8zcXSz8ZW2Ag7PuV4spYTfrGCHivzPDbtzC8B9uGSid2UBCvg0XB5Pz_SmP3RS4RbtccJMqW3kn0KEpm5jKV3UqXVk6KwzeMlwlvG8yVWdOYiqLZm5VapNGSNNIkyU234HVdt66N8CKwleGevmhsyiaXFTe-7S0mAs1SeWybAT5sIbaRqpx6nhxrQdM2ZUOK69p5XVS4Q1EjYA_zroNVBvP6Kthe_RfR0ZjNHhm5u6wmzqabEfyPCO-vWQEHx_FaGz0B8W0br4kncBfk6m3__3wD7A-PT890SeHZ8fv4CVKyvBJZxdWFz-X7j0mOYt6rz_EDxuQ-_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+multiperiod+heat+exchanger+network+synthesis+using+a+meta-heuristic+approach&rft.jtitle=Energy+%28Oxford%29&rft.au=Pav%C3%A3o%2C+Leandro+V&rft.au=Miranda%2C+Camila+B&rft.au=Costa%2C+Caliane+B.B.&rft.au=Ravagnani%2C+Mauro+A.S.S.&rft.date=2018-01-01&rft.issn=0360-5442&rft.volume=142+p.356-372&rft.spage=356&rft.epage=372&rft_id=info:doi/10.1016%2Fj.energy.2017.09.147&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon