Brain Injury Outcomes after Adjuvant Erythropoietin Neuroprotection for Moderate or Severe Neonatal Hypoxic-Ischemic Encephalopathy: A Report from the HEAL Trial

Abstract Introduction: Erythropoietin (Epo) is a putative neuroprotective therapy that did not improve overall outcomes in a phase 3 randomized controlled trial for neonates with moderate or severe hypoxic-ischemic encephalopathy (HIE). However, HIE is a heterogeneous disorder, and it remains to be...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental neuroscience Vol. 46; no. 5; pp. 285 - 296
Main Authors Wisnowski, Jessica L., Monsell, Sarah E., Bluml, Stefan, Goodman, Amy M., Li, Yi, Comstock, Bryan A., Heagerty, Patrick J., Juul, Sandra E., Wu, Yvonne W., McKinstry, Robert C., Mathur, Amit M.
Format Journal Article
LanguageEnglish
Published Basel, Switzerland 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Introduction: Erythropoietin (Epo) is a putative neuroprotective therapy that did not improve overall outcomes in a phase 3 randomized controlled trial for neonates with moderate or severe hypoxic-ischemic encephalopathy (HIE). However, HIE is a heterogeneous disorder, and it remains to be determined whether Epo had beneficial effects on a subset of perinatal brain injuries. Methods: This study was a secondary analysis of neuroimaging data from the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) Trial, which was conducted from 2016 to 2021 at 17 sites involving 23 US academic medical centers. Participants were neonates >36 weeks’ gestation undergoing therapeutic hypothermia for moderate or severe HIE who received 5 doses of study drug (Epoetin alpha 1,000 U/kg/dose) or placebo in the first week of life. Treatment assignment was stratified by trial site and severity of encephalopathy. The primary outcome was the locus, pattern, and acuity of brain injury as determined by three independent readers using a validated HIE Magnetic Resonance Imaging (MRI) scoring system. Results: Of the 500 infants enrolled in HEAL, 470 (94%) had high quality MRI data obtained at a median of 4.9 days of age (IQR: 4.5–5.8). The incidence of injury to the deep gray nuclei, cortex, white matter, brainstem and cerebellum was similar between Epo and placebo groups. Likewise, the distribution of injury patterns was similar between groups. Among infants imaged at less than 8 days (n = 414), 94 (23%) evidenced only acute, 93 (22%) only subacute and 89 (21%) both acute and subacute injuries, with similar distribution across treatment groups. Conclusion: Adjuvant erythropoietin did not reduce the incidence of regional brain injury. Subacute brain injury was more common than previously reported, which has key implications for the development of adjuvant neuroprotective therapies for this population.
AbstractList Erythropoietin (Epo) is a putative neuroprotective therapy that did not improve overall outcomes in a phase 3 randomized controlled trial for neonates with moderate or severe hypoxic-ischemic encephalopathy (HIE). However, HIE is a heterogeneous disorder, and it remains to be determined whether Epo had beneficial effects on a subset of perinatal brain injuries. This study was a secondary analysis of neuroimaging data from the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) Trial, which was conducted from 2016 to 2021 at 17 sites involving 23 US academic medical centers. Participants were neonates >36 weeks' gestation undergoing therapeutic hypothermia for moderate or severe HIE who received 5 doses of study drug (Epoetin alpha 1,000 U/kg/dose) or placebo in the first week of life. Treatment assignment was stratified by trial site and severity of encephalopathy. The primary outcome was the locus, pattern, and acuity of brain injury as determined by three independent readers using a validated HIE Magnetic Resonance Imaging (MRI) scoring system. Of the 500 infants enrolled in HEAL, 470 (94%) had high quality MRI data obtained at a median of 4.9 days of age (IQR: 4.5-5.8). The incidence of injury to the deep gray nuclei, cortex, white matter, brainstem and cerebellum was similar between Epo and placebo groups. Likewise, the distribution of injury patterns was similar between groups. Among infants imaged at less than 8 days (n = 414), 94 (23%) evidenced only acute, 93 (22%) only subacute and 89 (21%) both acute and subacute injuries, with similar distribution across treatment groups. Adjuvant erythropoietin did not reduce the incidence of regional brain injury. Subacute brain injury was more common than previously reported, which has key implications for the development of adjuvant neuroprotective therapies for this population.
Abstract Introduction: Erythropoietin (Epo) is a putative neuroprotective therapy that did not improve overall outcomes in a phase 3 randomized controlled trial for neonates with moderate or severe hypoxic-ischemic encephalopathy (HIE). However, HIE is a heterogeneous disorder, and it remains to be determined whether Epo had beneficial effects on a subset of perinatal brain injuries. Methods: This study was a secondary analysis of neuroimaging data from the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) Trial, which was conducted from 2016 to 2021 at 17 sites involving 23 US academic medical centers. Participants were neonates >36 weeks’ gestation undergoing therapeutic hypothermia for moderate or severe HIE who received 5 doses of study drug (Epoetin alpha 1,000 U/kg/dose) or placebo in the first week of life. Treatment assignment was stratified by trial site and severity of encephalopathy. The primary outcome was the locus, pattern, and acuity of brain injury as determined by three independent readers using a validated HIE Magnetic Resonance Imaging (MRI) scoring system. Results: Of the 500 infants enrolled in HEAL, 470 (94%) had high quality MRI data obtained at a median of 4.9 days of age (IQR: 4.5–5.8). The incidence of injury to the deep gray nuclei, cortex, white matter, brainstem and cerebellum was similar between Epo and placebo groups. Likewise, the distribution of injury patterns was similar between groups. Among infants imaged at less than 8 days (n = 414), 94 (23%) evidenced only acute, 93 (22%) only subacute and 89 (21%) both acute and subacute injuries, with similar distribution across treatment groups. Conclusion: Adjuvant erythropoietin did not reduce the incidence of regional brain injury. Subacute brain injury was more common than previously reported, which has key implications for the development of adjuvant neuroprotective therapies for this population.
Author Wisnowski, Jessica L.
Heagerty, Patrick J.
Juul, Sandra E.
Mathur, Amit M.
Goodman, Amy M.
Monsell, Sarah E.
McKinstry, Robert C.
Li, Yi
Wu, Yvonne W.
Bluml, Stefan
Comstock, Bryan A.
Author_xml – sequence: 1
  givenname: Jessica L.
  surname: Wisnowski
  fullname: Wisnowski, Jessica L.
  email: *Jessica L. Wisnowski, jwisnowski@chla.usc.edu
– sequence: 2
  givenname: Sarah E.
  surname: Monsell
  fullname: Monsell, Sarah E.
– sequence: 3
  givenname: Stefan
  surname: Bluml
  fullname: Bluml, Stefan
– sequence: 4
  givenname: Amy M.
  surname: Goodman
  fullname: Goodman, Amy M.
– sequence: 5
  givenname: Yi
  surname: Li
  fullname: Li, Yi
– sequence: 6
  givenname: Bryan A.
  surname: Comstock
  fullname: Comstock, Bryan A.
– sequence: 7
  givenname: Patrick J.
  surname: Heagerty
  fullname: Heagerty, Patrick J.
– sequence: 8
  givenname: Sandra E.
  surname: Juul
  fullname: Juul, Sandra E.
– sequence: 9
  givenname: Yvonne W.
  surname: Wu
  fullname: Wu, Yvonne W.
– sequence: 10
  givenname: Robert C.
  surname: McKinstry
  fullname: McKinstry, Robert C.
– sequence: 11
  givenname: Amit M.
  surname: Mathur
  fullname: Mathur, Amit M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37906983$$D View this record in MEDLINE/PubMed
BookMark eNpt0D1v2zAQBmCiSFF_pEP3oCDQWQkpihbZzXGV2ICbAG06GxfyWMmxRIGijOjn5J9WgJtMme4O74Mb3hk5a3yDhHzh7JJzqa8YY1JkC64-kCnPUp5oJfUZmTKRq0SqxWJCZl23Z4ynWuSfyETkmi20ElPych2gauim2fdhoPd9NL7GjoKLGOjS7vsjNJEWYYhl8K2vMI76DvvxCD6iiZVvqPOB_vQWA0Sk4_4bjxhwZL6BCAe6Hlr_XJlk05kS68rQojHYlnDwLcRy-E6X9Be2PkTqgq9pLJGui-WWPoQKDufko4NDh5__zzn5c1M8rNbJ9v52s1puE5OlMiYanTa548raR81AZBwE5JaLPAXGMqVtzlA6xcGCZDKVSro8dRo0ByOcEXPy9fS37R9rtLs2VDWEYffa1QguTuAJwl8Mb-BU_Rh_ezf-cVecxK61TvwDTlWEpw
CitedBy_id crossref_primary_10_1007_s12035_024_04398_9
crossref_primary_10_1136_archdischild_2024_327107
crossref_primary_10_1016_j_pediatrneurol_2024_10_003
crossref_primary_10_1007_s10787_024_01599_5
crossref_primary_10_18231_j_yjom_2024_019
crossref_primary_10_1016_j_earlhumdev_2024_106036
crossref_primary_10_1212_WNL_0000000000209557
ContentType Journal Article
Copyright 2023 The Author(s). Published by S. Karger AG, Basel
2023 The Author(s). Published by S. Karger AG, Basel.
Copyright_xml – notice: 2023 The Author(s). Published by S. Karger AG, Basel
– notice: 2023 The Author(s). Published by S. Karger AG, Basel.
CorporateAuthor HEAL Consortium
CorporateAuthor_xml – name: HEAL Consortium
DBID M--
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1159/000534618
DatabaseName Karger Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: M--
  name: Karger Open Access Journals
  url: https://www.karger.com/OpenAccess
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1421-9859
EndPage 296
ExternalDocumentID 37906983
534618
Genre Clinical Trial, Phase III
Multicenter Study
Randomized Controlled Trial
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: K23 HD099309
– fundername: NINDS NIH HHS
  grantid: U01 NS092553
– fundername: NINDS NIH HHS
  grantid: U01 NS092764
GroupedDBID ---
.55
.GJ
0~5
0~B
29F
30W
325
34G
36B
39C
3O.
3V.
4.4
53G
5GY
5RE
7X7
88E
8AO
8FI
8FJ
8UI
AAYIC
ABIVO
ABJNI
ABPAZ
ABUWG
ACCCW
ACGFO
ACGFS
ACIWK
ACPRK
ACPSR
ADAGL
ADBBV
ADFRT
ADGES
ADOJD
AENEX
AEYAO
AFFNX
AFJJK
AFKRA
AFRAH
AHMBA
ALDHI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZPMC
AZQEC
BENPR
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CYUIP
DU5
DWQXO
E0A
EBS
EJD
EMB
EMOBN
F5P
FB.
FYUFA
GNUQQ
HMCUK
HZ~
IY7
KUZGX
M--
M1P
M2M
N9A
O1H
O9-
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
RIG
RKO
RXVBD
SV3
TN5
UJ6
UKHRP
X7M
YYP
ZGI
ZXP
ABBTS
ABWCG
ACQXL
AFSIO
AHDLI
AHFRZ
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
ID FETCH-LOGICAL-c425t-9ef9c7f18ddb90a341a3a7d1372a00489d70e5f81ada5052585f72f9a91ac3fc3
IEDL.DBID M--
ISSN 0378-5866
IngestDate Thu Jun 26 01:51:15 EDT 2025
Thu Nov 28 21:33:39 EST 2024
Thu Nov 28 21:33:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Neuroprotection
Neonatal
Erythropoietin
Lactate
MRI
Language English
License This article is licensed under the Creative Commons Attribution 4.0 International License (CC BY). Usage, derivative works and distribution are permitted provided that proper credit is given to the author and the original publisher.
2023 The Author(s). Published by S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-9ef9c7f18ddb90a341a3a7d1372a00489d70e5f81ada5052585f72f9a91ac3fc3
OpenAccessLink https://karger.com/doi/10.1159/000534618
PMID 37906983
PageCount 12
ParticipantIDs karger_primary_534618
pubmed_primary_37906983
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Switzerland
PublicationTitle Developmental neuroscience
PublicationTitleAlternate Dev Neurosci
PublicationYear 2024
References Wu YW, Mathur AM, Chang T, McKinstry RC, Mulkey SB, Mayock DE. High-dose erythropoietin and hypothermia for hypoxic-Ischemic encephalopathy: a phase II trial. Pediatrics. 2016;137(6):e20160191.
Gunn AJ, Bennet L, Gunning MI, Gluckman PD, Gunn TR. Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheep. Pediatr Res. 1999;46(3):274–80.
Jonsson M, Söderling J, Ladfors L, Nordström L, Nilsson M, Algovik M. Implementation of a revised classification for intrapartum fetal heart rate monitoring and association to birth outcome: a national cohort study. Acta Obstet Gynecol Scand. 2022;101(2):183–92.
Bednarek N, Mathur A, Inder T, Wilkinson J, Neil J, Shimony J. Impact of therapeutic hypothermia on MRI diffusion changes in neonatal encephalopathy. Neurology. 2012;78(18):1420–7.
Wisnowski JL, Bluml S, Panigrahy A, Mathur AM, Berman J, Chen PSK. Integrating neuroimaging biomarkers into the multicentre, high-dose erythropoietin for asphyxia and encephalopathy (HEAL) trial: rationale, protocol and harmonisation. BMJ Open. 2021;11(4):e043852.
Wu TW, Tamrazi B, Hsu KH, Ho E, Reitman AJ, Borzage M. Cerebral lactate concentration in neonatal hypoxic-ischemic encephalopathy: in relation to time, characteristic of injury, and serum lactate concentration. Front Neurol. 20189MAY2938.
de Vries LS, Groenendaal F. Patterns of neonatal hypoxic-ischaemic brain injury. Neuroradiology. 2010;52(6):555–66.
Rogers EE, Bonifacio SL, Glass HC, Juul SE, Chang T, Mayock DE. Erythropoietin and hypothermia for hypoxic-ischemic encephalopathy. Pediatr Neurol. 2014;51(5):657–62.
Juul SE, Pet GC. Erythropoietin and neonatal neuroprotection. Clin Perinato. 2015;42(3):469–81.
Trivedi SB, Vesoulis ZA, Rao R, Liao SM, Shimony JS, McKinstry RC. A validated clinical MRI injury scoring system in neonatal hypoxic-ischemic encephalopathy. Pediatr Radiol. 2017;47(11):1491–9.
Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 201320131CD003311.
Corry KA, White OR, Shearlock AE, Moralejo DH, Law JB, Snyder JM. Evaluating neuroprotective effects of uridine, erythropoietin, and therapeutic hypothermia in a ferret model of inflammation-sensitized hypoxic-ischemic encephalopathy. Int J Mol Sci. 20211822.
Larpthaveesarp A, Georgevits M, Ferriero DM, Gonzalez FF. Delayed erythropoietin therapy improves histological and behavioral outcomes after transient neonatal stroke. Neurobiol Dis. 201693Suppl C5763.
Traudt CM, McPherson RJ, Bauer LA, Richards TL, Burbacher TM, McAdams RM. Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia. Dev Neurosci. 2013;35(6):491–503.
Newton CR. Global burden of pediatric neurological disorders. Semin Pediatr Neurol. 2018;27:10–5.
Ahn SY, Yoo HS, Lee JH, Sung DK, Jung YJ, Sung SI. Quantitative in vivo detection of brain cell death after hypoxia ischemia using the lipid peak at 1.3 ppm of proton magnetic resonance spectroscopy in neonatal rats. J Korean Med Sci. 2013;28(7):1071–6.
Wu YW, Bauer LA, Ballard RA, Ferriero DM, Glidden DV, Mayock DE. Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics. 2012;130(4):683–91.
Li Y, Wisnowski JL, Chalak L, Mathur AM, McKinstry RC, Licona G. Mild hypoxic-ischemic encephalopathy (HIE): timing and pattern of MRI brain injury. Pediatr Res. 2022;92(6):1731–6.
Cowan F, Rutherford M, Groenendaal F, Eken P, Mercuri E, Bydder GM. Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet. 2003;361(9359):736–42.
Penrice J, Lorek A, Cady EB, Amess PN, Wylezinska M, Cooper CE. Proton magnetic resonance spectroscopy of the brain during acute hypoxia-ischemia and delayed cerebral energy failure in the newborn piglet. Pediatr Res. 1997;41(6):795–802.
Zou LY, Huang BX, Zhang P, Cheng GQ, Lu CM, Sun JQIs erythropoietin combining with therapeutic hypothermia an ecient and safe therapy in neonatal hypoxic ischemic encephalopathy: a prospective and randomized clinical trial. 2020.
Saad K, Badr-El Din M, Abougabal A, Abdel-Salam H. Effect of erythropoietin as adjunctive therapy with whole-body cooling for treatment of hypoxic-ischemic encephalopathy in newborns. Alex J Pediatr. 2017;30(2):45.
Clark JB. N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci. 1998204–52716.
Laptook AR, Shankaran S, Tyson JE, Munoz B, Bell EF, Goldberg RN. Effect of therapeutic hypothermia initiated after 6 hours of age on death or disability among newborns with hypoxic-ischemic encephalopathy a randomized clinical trial. JAMA. 2017;318(16):1550–60.
Juul SE, Comstock BA, Heagerty PJ, Mayock DE, Goodman AM, Hauge S. High-dose erythropoietin for asphyxia and encephalopathy (HEAL): a randomized controlled trial – background, aims, and study protocol. Neonatology. 2018;113(4):331–8.
Wu YW, Comstock BA, Gonzalez FF, Mayock DE, Goodman AM, Maitre NL. Trial of erythropoietin for hypoxic-ischemic encephalopathy in newborns. N Engl J Med. 2022;387(2):148–59.
Wisnowski JL, Wintermark P, Bonifacio SL, Smyser CD, Barkovich AJ, Edwards AD. Neuroimaging in the term newborn with neonatal encephalopathy. Semin Fetal Neonatal Med. 2021;26(5):101304.
Prior T, Kumar S. Expert review – identification of intra-partum fetal compromise. Eur J Obstet Gynecol Reprod Biol. 2015;190:1–6.
Pang R, Avdic-Belltheus A, Meehan C, Martinello K, Mutshiya T, Yang Q. Melatonin and/or erythropoietin combined with hypothermia in a piglet model of perinatal asphyxia. Brain Commun. 202131fcaa211.
Mulkey SB, Ramakrishnaiah RH, Mckinstry RC, Chang T, Mathur AM, Mayock DE. Erythropoietin and brain magnetic resonance imaging findings in hypoxic-ischemic encephalopathy: volume of acute brain injury and 1-year neurodevelopmental outcome. J Pediatr. 2017;186:196–9.
Miller SP, Ramaswamy V, Michelson D, Barkovich AJ, Holshouser B, Wycliffe N. Patterns of brain injury in term neonatal encephalopathy. J Pediatr. 2005;146(4):453–60.
References_xml – reference: Larpthaveesarp A, Georgevits M, Ferriero DM, Gonzalez FF. Delayed erythropoietin therapy improves histological and behavioral outcomes after transient neonatal stroke. Neurobiol Dis. 201693Suppl C5763.
– reference: Wu YW, Comstock BA, Gonzalez FF, Mayock DE, Goodman AM, Maitre NL. Trial of erythropoietin for hypoxic-ischemic encephalopathy in newborns. N Engl J Med. 2022;387(2):148–59.
– reference: Juul SE, Comstock BA, Heagerty PJ, Mayock DE, Goodman AM, Hauge S. High-dose erythropoietin for asphyxia and encephalopathy (HEAL): a randomized controlled trial – background, aims, and study protocol. Neonatology. 2018;113(4):331–8.
– reference: Miller SP, Ramaswamy V, Michelson D, Barkovich AJ, Holshouser B, Wycliffe N. Patterns of brain injury in term neonatal encephalopathy. J Pediatr. 2005;146(4):453–60.
– reference: Ahn SY, Yoo HS, Lee JH, Sung DK, Jung YJ, Sung SI. Quantitative in vivo detection of brain cell death after hypoxia ischemia using the lipid peak at 1.3 ppm of proton magnetic resonance spectroscopy in neonatal rats. J Korean Med Sci. 2013;28(7):1071–6.
– reference: Mulkey SB, Ramakrishnaiah RH, Mckinstry RC, Chang T, Mathur AM, Mayock DE. Erythropoietin and brain magnetic resonance imaging findings in hypoxic-ischemic encephalopathy: volume of acute brain injury and 1-year neurodevelopmental outcome. J Pediatr. 2017;186:196–9.
– reference: Laptook AR, Shankaran S, Tyson JE, Munoz B, Bell EF, Goldberg RN. Effect of therapeutic hypothermia initiated after 6 hours of age on death or disability among newborns with hypoxic-ischemic encephalopathy a randomized clinical trial. JAMA. 2017;318(16):1550–60.
– reference: Jonsson M, Söderling J, Ladfors L, Nordström L, Nilsson M, Algovik M. Implementation of a revised classification for intrapartum fetal heart rate monitoring and association to birth outcome: a national cohort study. Acta Obstet Gynecol Scand. 2022;101(2):183–92.
– reference: Zou LY, Huang BX, Zhang P, Cheng GQ, Lu CM, Sun JQIs erythropoietin combining with therapeutic hypothermia an ecient and safe therapy in neonatal hypoxic ischemic encephalopathy: a prospective and randomized clinical trial. 2020.
– reference: Pang R, Avdic-Belltheus A, Meehan C, Martinello K, Mutshiya T, Yang Q. Melatonin and/or erythropoietin combined with hypothermia in a piglet model of perinatal asphyxia. Brain Commun. 202131fcaa211.
– reference: Traudt CM, McPherson RJ, Bauer LA, Richards TL, Burbacher TM, McAdams RM. Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia. Dev Neurosci. 2013;35(6):491–503.
– reference: Wu TW, Tamrazi B, Hsu KH, Ho E, Reitman AJ, Borzage M. Cerebral lactate concentration in neonatal hypoxic-ischemic encephalopathy: in relation to time, characteristic of injury, and serum lactate concentration. Front Neurol. 20189MAY2938.
– reference: Corry KA, White OR, Shearlock AE, Moralejo DH, Law JB, Snyder JM. Evaluating neuroprotective effects of uridine, erythropoietin, and therapeutic hypothermia in a ferret model of inflammation-sensitized hypoxic-ischemic encephalopathy. Int J Mol Sci. 20211822.
– reference: Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 201320131CD003311.
– reference: Prior T, Kumar S. Expert review – identification of intra-partum fetal compromise. Eur J Obstet Gynecol Reprod Biol. 2015;190:1–6.
– reference: Bednarek N, Mathur A, Inder T, Wilkinson J, Neil J, Shimony J. Impact of therapeutic hypothermia on MRI diffusion changes in neonatal encephalopathy. Neurology. 2012;78(18):1420–7.
– reference: Saad K, Badr-El Din M, Abougabal A, Abdel-Salam H. Effect of erythropoietin as adjunctive therapy with whole-body cooling for treatment of hypoxic-ischemic encephalopathy in newborns. Alex J Pediatr. 2017;30(2):45.
– reference: Clark JB. N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci. 1998204–52716.
– reference: Newton CR. Global burden of pediatric neurological disorders. Semin Pediatr Neurol. 2018;27:10–5.
– reference: Penrice J, Lorek A, Cady EB, Amess PN, Wylezinska M, Cooper CE. Proton magnetic resonance spectroscopy of the brain during acute hypoxia-ischemia and delayed cerebral energy failure in the newborn piglet. Pediatr Res. 1997;41(6):795–802.
– reference: Wu YW, Bauer LA, Ballard RA, Ferriero DM, Glidden DV, Mayock DE. Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics. 2012;130(4):683–91.
– reference: Wisnowski JL, Bluml S, Panigrahy A, Mathur AM, Berman J, Chen PSK. Integrating neuroimaging biomarkers into the multicentre, high-dose erythropoietin for asphyxia and encephalopathy (HEAL) trial: rationale, protocol and harmonisation. BMJ Open. 2021;11(4):e043852.
– reference: Gunn AJ, Bennet L, Gunning MI, Gluckman PD, Gunn TR. Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheep. Pediatr Res. 1999;46(3):274–80.
– reference: Wu YW, Mathur AM, Chang T, McKinstry RC, Mulkey SB, Mayock DE. High-dose erythropoietin and hypothermia for hypoxic-Ischemic encephalopathy: a phase II trial. Pediatrics. 2016;137(6):e20160191.
– reference: de Vries LS, Groenendaal F. Patterns of neonatal hypoxic-ischaemic brain injury. Neuroradiology. 2010;52(6):555–66.
– reference: Trivedi SB, Vesoulis ZA, Rao R, Liao SM, Shimony JS, McKinstry RC. A validated clinical MRI injury scoring system in neonatal hypoxic-ischemic encephalopathy. Pediatr Radiol. 2017;47(11):1491–9.
– reference: Rogers EE, Bonifacio SL, Glass HC, Juul SE, Chang T, Mayock DE. Erythropoietin and hypothermia for hypoxic-ischemic encephalopathy. Pediatr Neurol. 2014;51(5):657–62.
– reference: Juul SE, Pet GC. Erythropoietin and neonatal neuroprotection. Clin Perinato. 2015;42(3):469–81.
– reference: Wisnowski JL, Wintermark P, Bonifacio SL, Smyser CD, Barkovich AJ, Edwards AD. Neuroimaging in the term newborn with neonatal encephalopathy. Semin Fetal Neonatal Med. 2021;26(5):101304.
– reference: Li Y, Wisnowski JL, Chalak L, Mathur AM, McKinstry RC, Licona G. Mild hypoxic-ischemic encephalopathy (HIE): timing and pattern of MRI brain injury. Pediatr Res. 2022;92(6):1731–6.
– reference: Cowan F, Rutherford M, Groenendaal F, Eken P, Mercuri E, Bydder GM. Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet. 2003;361(9359):736–42.
SSID ssj0012937
Score 2.452616
Snippet Abstract Introduction: Erythropoietin (Epo) is a putative neuroprotective therapy that did not improve overall outcomes in a phase 3 randomized controlled...
Erythropoietin (Epo) is a putative neuroprotective therapy that did not improve overall outcomes in a phase 3 randomized controlled trial for neonates with...
SourceID pubmed
karger
SourceType Index Database
Enrichment Source
Publisher
StartPage 285
SubjectTerms Brain Injuries - drug therapy
Epoetin Alfa
Erythropoietin - therapeutic use
Female
Humans
Hypothermia, Induced - methods
Hypoxia-Ischemia, Brain - drug therapy
Infant, Newborn
Magnetic Resonance Imaging
Male
Neurodevelopmental Consequences of Perinatal Brain Injuries: Research Article
Neuroprotection - drug effects
Neuroprotective Agents - therapeutic use
Treatment Outcome
Title Brain Injury Outcomes after Adjuvant Erythropoietin Neuroprotection for Moderate or Severe Neonatal Hypoxic-Ischemic Encephalopathy: A Report from the HEAL Trial
URI https://karger.com/doi/10.1159/000534618
https://www.ncbi.nlm.nih.gov/pubmed/37906983
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1dS8MwFA06RXwRv51OuQ--BtqmbRrfplamuCmo4NtImgS_2IZ24H6O_9SbpA4UfCmlaZs2N-GeJPeeQ8ixMtxIligaZ9qTaqdUapbS2IjC0Y2wpHD5zv1B3ntIrx6zx2a9w-XCvLr4Z0-NOucWQIfrpedYmsfFIlnCeRRzwXt9Suf7Bei0fGI04y6PKM8bDqFfj66SFcZFlAtHEbgcKvoDJr1TuVgnaw0ahG4w3wZZMKNNstJv9ru3yNepU3CAy9EL_jrcTGv8YvMBXtgbuvpliji4hvJ9FtQOnl3-Mni-jYZ_AVsdEJaClzxDWAl4fmew-xq8zS2cY-292WT8-VzRS5zoulB5KF0m45N8Gzu54tkJdCHAdHC5KICIEXpl9xruXd_dJg8X5f1ZjzaiCrTC4VlTYayouI0LrZWIJDoxySTXMeOJdMNZaB6ZzBax1NKL3BWZ5YkVUsSyYrZiO6Q1Go_MHoFI84TpXJmc21SllYpSG-dKI-ZTic5Mm2yHVh5OAnPGMBiiTTp_rp8PylA0nGjbJrvBJvPiH7Pt__PCA7KaINYIMXYd0qrfp-YQsUKtjnw3wePgtv8NiT-7Hg
linkProvider Karger AG
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1db9MwFL2Cgba9ID4GFAbcB14tJXFix7wVyJRCWx7opL1VdmxrG6ittlSiP4d_yrUdKjGJtyhO4sTX1j2xfc4BeG-cdJoXhuWVjaLaJdOWlyx3qg5yI7yoA995NhftefnloroY5jsCF-ZH2P8cpVH32gKUcKP1HC9FXt-HB1IJFVTyZ4zt1wsoaUViNJeBRyTEoCH0z63HcMilyoQKEoEPU0V3wGRMKmeP4dGABnGcwvcE7rnVUzicDevdz-D3x-DggJPVNX06ftv29MbuFqOxN47t9ZZwcI_NzS65HVwF_jJGvY1Bf4FaHQmWYrQ8I1iJdPzdUfd1dFmYOKfa291m_euqYxP60Q1b5bEJTMZL_XMd7Ip3H3CMCaZj4KIgIUZsm_EUF6HvnsD5WbP41LLBVIF1NDx7ppxXnfR5ba1RmaYkprmWNuey0GE4KyszV_k611ZHk7u68rLwSqtcd9x3_DkcrNYr9xIws7LgVhgnpC9N2Zms9LkwljCfKWzlRnCSWnm5ScoZyxSIEZzeOf953qSi5cb6EbxIMdkX_w3bq_888B0ctYvZdDmdzL--huOCcEfab3cKB_3N1r0h3NCbt7HL_AEmRb0K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Injury+Outcomes+after+Adjuvant+Erythropoietin+Neuroprotection+for+Moderate+or+Severe+Neonatal+Hypoxic-Ischemic+Encephalopathy%3A+A+Report+from+the+HEAL+Trial&rft.jtitle=Developmental+neuroscience&rft.au=Wisnowski%2C+Jessica+L.&rft.au=Monsell%2C+Sarah+E.&rft.au=Bluml%2C+Stefan&rft.au=Goodman%2C+Amy+M.&rft.date=2024-10-01&rft.issn=0378-5866&rft.eissn=1421-9859&rft.volume=46&rft.issue=5&rft.spage=285&rft.epage=296&rft_id=info:doi/10.1159%2F000534618&rft_id=info%3Apmid%2F37906983&rft.externalDocID=534618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5866&client=summon