GZK neutrinos after the Fermi-LAT diffuse photon flux measurement

Cosmogenic neutrinos originate from photo-hadronic interactions of cosmic ray protons with the cosmic microwave background (CMB). The neutrino production rate can be constrained through the accompanying electrons, positrons and gamma-rays that quickly cascade on the CMB and intergalactic magnetic fi...

Full description

Saved in:
Bibliographic Details
Published inAstroparticle physics Vol. 34; no. 2; pp. 106 - 115
Main Authors Ahlers, M., Anchordoqui, L.A., Gonzalez–Garcia, M.C., Halzen, F., Sarkar, S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2010
Subjects
Online AccessGet full text
ISSN0927-6505
1873-2852
DOI10.1016/j.astropartphys.2010.06.003

Cover

Loading…
Abstract Cosmogenic neutrinos originate from photo-hadronic interactions of cosmic ray protons with the cosmic microwave background (CMB). The neutrino production rate can be constrained through the accompanying electrons, positrons and gamma-rays that quickly cascade on the CMB and intergalactic magnetic fields to lower energies and generate a γ-ray background in the GeV–TeV region. Bethe–Heitler pair production by protons also contributes to the cascade and can tighten the neutrino constraints in models where extragalactic cosmic rays begin to dominate over the galactic component at a relatively low “crossover” energy. We investigate this issue in the light of the recent Fermi-LAT measurements of the diffuse extragalactic γ-ray background and illustrate by a fit to the HiRes spectrum how the prediction of the cosmogenic neutrino flux in all-proton models varies with the crossover energy. The neutrino flux is required to be smaller when the gamma-ray bound is applied, nevertheless such models are still consistent with HiRes and Fermi-LAT if one properly takes into account the energy uncertainty of cosmic ray measurements. The presently allowed flux is within reach of the IceCube neutrino telescope and other dedicated radio experiments.
AbstractList Cosmogenic neutrinos originate from photo-hadronic interactions of cosmic ray protons with the cosmic microwave background (CMB). The neutrino production rate can be constrained through the accompanying electrons, positrons and gamma-rays that quickly cascade on the CMB and intergalactic magnetic fields to lower energies and generate a gamma -ray background in the GeV-TeV region. Bethe-Heitler pair production by protons also contributes to the cascade and can tighten the neutrino constraints in models where extragalactic cosmic rays begin to dominate over the galactic component at a relatively low "crossover" energy. We investigate this issue in the light of the recent Fermi-LAT measurements of the diffuse extragalactic gamma -ray background and illustrate by a fit to the HiRes spectrum how the prediction of the cosmogenic neutrino flux in all-proton models varies with the crossover energy. The neutrino flux is required to be smaller when the gamma-ray bound is applied, nevertheless such models are still consistent with HiRes and Fermi-LAT if one properly takes into account the energy uncertainty of cosmic ray measurements. The presently allowed flux is within reach of the IceCube neutrino telescope and other dedicated radio experiments.
Cosmogenic neutrinos originate from photo-hadronic interactions of cosmic ray protons with the cosmic microwave background (CMB). The neutrino production rate can be constrained through the accompanying electrons, positrons and gamma-rays that quickly cascade on the CMB and intergalactic magnetic fields to lower energies and generate a γ-ray background in the GeV–TeV region. Bethe–Heitler pair production by protons also contributes to the cascade and can tighten the neutrino constraints in models where extragalactic cosmic rays begin to dominate over the galactic component at a relatively low “crossover” energy. We investigate this issue in the light of the recent Fermi-LAT measurements of the diffuse extragalactic γ-ray background and illustrate by a fit to the HiRes spectrum how the prediction of the cosmogenic neutrino flux in all-proton models varies with the crossover energy. The neutrino flux is required to be smaller when the gamma-ray bound is applied, nevertheless such models are still consistent with HiRes and Fermi-LAT if one properly takes into account the energy uncertainty of cosmic ray measurements. The presently allowed flux is within reach of the IceCube neutrino telescope and other dedicated radio experiments.
Author Gonzalez–Garcia, M.C.
Sarkar, S.
Anchordoqui, L.A.
Halzen, F.
Ahlers, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Ahlers
  fullname: Ahlers, M.
  email: ahlers@insti.physics.sunysb.edu
  organization: C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA
– sequence: 2
  givenname: L.A.
  surname: Anchordoqui
  fullname: Anchordoqui, L.A.
  email: doqui@gravity.phys.uwm.edu
  organization: Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
– sequence: 3
  givenname: M.C.
  surname: Gonzalez–Garcia
  fullname: Gonzalez–Garcia, M.C.
  email: concha@insti.physics.sunysb.edu
  organization: C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA
– sequence: 4
  givenname: F.
  surname: Halzen
  fullname: Halzen, F.
  email: halzen@icecube.wisc.edu
  organization: Department of Physics, University of Wisconsin, Madison, WI 53706, USA
– sequence: 5
  givenname: S.
  surname: Sarkar
  fullname: Sarkar, S.
  email: s.sarkar@physics.ox.ac.uk
  organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK
BookMark eNqNkDFPwzAQRi1UJErhP0RiYEo5J07iiKlCLSAqscDCYrnOWXWV2MF2EP33pCoLTJ1uuO-94V2SiXUWCbmhMKdAy7vdXIboXS997Lf7MM9g_EA5B8jPyJTyKk8zXmQTMoU6q9KygOKCXIawA6AMcjYli8ePl8TiEL2xLiRSR_RJ3GKyQt-ZdL14Sxqj9RAw6bcuOpvodvhOOpRh8NihjVfkXMs24PXvnZH31fLt4Sldvz4-PyzWqWJZEdN6o2RdgapoU5UNK2sErHXNmGY1g4Kzqsgp41wx3GQb5Kre0EYCxZHJqG7yGbk9envvPgcMUXQmKGxbadENQfCqzPKKcxiX98el8i4Ej1r03nTS7wUFcegmduJPN3HoJqAUY7eRXvyjlYkyGmejl6Y90bE8OnAM8mXQi6AMWoWN8aiiaJw5yfMDoFyXcQ
CitedBy_id crossref_primary_10_1103_PhysRevD_93_082003
crossref_primary_10_1051_0004_6361_201117673
crossref_primary_10_1103_PhysRevD_88_112008
crossref_primary_10_1140_epjc_s10052_022_10228_w
crossref_primary_10_1088_1475_7516_2013_06_030
crossref_primary_10_1051_epjconf_20135301009
crossref_primary_10_1016_j_astropartphys_2011_10_011
crossref_primary_10_1016_j_nuclphysbps_2011_04_115
crossref_primary_10_1088_1475_7516_2010_10_013
crossref_primary_10_1142_S0218271822300038
crossref_primary_10_1051_epjconf_20135301003
crossref_primary_10_1016_j_astropartphys_2011_10_003
crossref_primary_10_1007_s11467_013_0299_7
crossref_primary_10_1051_epjconf_201716501057
crossref_primary_10_1142_S021773231230042X
crossref_primary_10_1016_j_phpro_2014_12_080
crossref_primary_10_1016_j_physletb_2022_137358
crossref_primary_10_1016_j_nima_2011_12_080
crossref_primary_10_1088_1475_7516_2012_01_044
crossref_primary_10_1016_j_asr_2017_05_030
crossref_primary_10_1103_PhysRevD_87_037302
crossref_primary_10_1142_S0218271819300076
crossref_primary_10_1017_S1743921312016754
crossref_primary_10_1103_PhysRevD_82_103012
crossref_primary_10_1016_j_asr_2022_01_030
crossref_primary_10_1103_PhysRevD_82_123005
crossref_primary_10_1016_j_icarus_2012_05_028
crossref_primary_10_3847_0004_637X_823_2_89
crossref_primary_10_1051_epjconf_201921003002
crossref_primary_10_1103_PhysRevD_86_023003
crossref_primary_10_1134_S1063779618040342
crossref_primary_10_1088_1475_7516_2019_10_022
crossref_primary_10_1088_1475_7516_2012_08_030
crossref_primary_10_1051_epjconf_20135301012
crossref_primary_10_1088_1475_7516_2015_06_029
crossref_primary_10_1088_1475_7516_2013_11_062
crossref_primary_10_1093_mnras_stv893
crossref_primary_10_1103_PhysRevD_105_123019
crossref_primary_10_1103_PhysRevLett_111_021103
crossref_primary_10_1088_1742_6596_409_1_012014
crossref_primary_10_1016_j_astropartphys_2019_04_004
crossref_primary_10_1103_PhysRevD_84_063006
crossref_primary_10_1088_2041_8205_755_1_L4
crossref_primary_10_1134_S0021364017090028
crossref_primary_10_1088_1742_6596_337_1_012050
crossref_primary_10_1103_PhysRevD_85_063002
crossref_primary_10_1088_1475_7516_2024_01_058
crossref_primary_10_1088_0034_4885_78_12_126901
crossref_primary_10_1016_j_nima_2010_11_014
crossref_primary_10_1134_S0021364018110097
crossref_primary_10_1103_PhysRevD_88_063524
crossref_primary_10_1016_j_nuclphysbps_2017_06_031
crossref_primary_10_1103_PhysRevD_94_023007
crossref_primary_10_1088_1475_7516_2015_03_038
crossref_primary_10_1088_0004_637X_736_1_40
crossref_primary_10_1093_ptep_ptx021
crossref_primary_10_1016_j_astropartphys_2020_102549
crossref_primary_10_1103_PhysRevD_85_123003
crossref_primary_10_1016_j_nuclphysbps_2013_10_058
crossref_primary_10_1016_j_nuclphysbps_2018_07_026
crossref_primary_10_1016_j_nima_2014_05_015
crossref_primary_10_1016_j_nuclphysbps_2012_09_039
crossref_primary_10_1051_epjconf_201611611001
crossref_primary_10_1103_PhysRevD_101_083024
crossref_primary_10_1103_PhysRevD_104_015018
crossref_primary_10_1103_PhysRevD_84_085006
crossref_primary_10_1088_1674_1137_43_4_045101
crossref_primary_10_1007_s13538_013_0122_5
crossref_primary_10_1016_j_astropartphys_2014_07_007
crossref_primary_10_1088_1475_7516_2023_01_041
crossref_primary_10_1103_PhysRevD_92_063011
crossref_primary_10_1016_j_astropartphys_2017_03_008
crossref_primary_10_1103_PhysRevD_88_043009
crossref_primary_10_1103_PhysRevD_98_062003
crossref_primary_10_1016_j_astropartphys_2010_09_002
crossref_primary_10_1002_asna_201412058
crossref_primary_10_1017_S1743921312016729
crossref_primary_10_1088_1475_7516_2012_01_054
crossref_primary_10_1016_j_astropartphys_2015_04_002
crossref_primary_10_1088_1742_6596_409_1_012115
crossref_primary_10_1016_j_astropartphys_2016_08_007
crossref_primary_10_3847_1538_4357_ad372a
crossref_primary_10_1093_mnras_stt697
crossref_primary_10_1016_j_astropartphys_2015_04_006
crossref_primary_10_1016_j_nima_2012_01_007
crossref_primary_10_1016_j_ppnp_2018_05_001
crossref_primary_10_1016_j_astropartphys_2011_11_010
crossref_primary_10_1103_PhysRevD_84_085019
crossref_primary_10_1103_PhysRevD_84_122005
crossref_primary_10_3389_fspas_2019_00032
crossref_primary_10_1051_epjconf_201920804003
crossref_primary_10_1103_PhysRevLett_117_241101
crossref_primary_10_1142_S0218271816300287
crossref_primary_10_1088_1748_0221_16_08_P08035
crossref_primary_10_1103_PhysRevD_95_063005
crossref_primary_10_1103_PhysRevD_94_063002
crossref_primary_10_1016_j_physletb_2023_137791
crossref_primary_10_1093_ptep_ptx115
crossref_primary_10_1016_j_nuclphysbps_2013_04_035
crossref_primary_10_3847_0004_637X_825_2_122
crossref_primary_10_1016_j_astropartphys_2013_01_011
crossref_primary_10_1016_j_asr_2020_04_041
crossref_primary_10_3390_universe7070223
crossref_primary_10_1088_1742_6596_718_2_022008
crossref_primary_10_1134_S1063778818030146
crossref_primary_10_1051_epjconf_20135305003
crossref_primary_10_1016_j_physletb_2010_11_019
crossref_primary_10_1103_PhysRevD_92_123001
crossref_primary_10_1016_j_astropartphys_2010_11_004
crossref_primary_10_1103_PhysRevD_91_092008
crossref_primary_10_1016_j_astropartphys_2013_11_006
crossref_primary_10_1016_j_nuclphysbps_2019_07_021
crossref_primary_10_1088_0004_637X_737_2_80
crossref_primary_10_1103_PhysRevD_94_043008
crossref_primary_10_1103_PhysRevD_95_023004
crossref_primary_10_1088_1475_7516_2012_10_043
crossref_primary_10_1140_epjp_i2017_11513_x
crossref_primary_10_1088_1475_7516_2020_01_012
crossref_primary_10_1016_j_physrep_2020_05_002
crossref_primary_10_1016_j_nuclphysbps_2013_04_032
crossref_primary_10_1016_j_nuclphysbps_2013_04_033
crossref_primary_10_1103_PhysRevD_84_105007
crossref_primary_10_1016_j_cpc_2022_108422
crossref_primary_10_1016_j_crhy_2014_02_013
crossref_primary_10_1155_2013_708680
crossref_primary_10_1016_j_crhy_2014_02_014
crossref_primary_10_1103_PhysRevD_86_083010
crossref_primary_10_1016_j_jheap_2014_01_001
crossref_primary_10_1088_1475_7516_2021_06_007
crossref_primary_10_1155_2013_680584
crossref_primary_10_1103_PhysRevD_102_023036
crossref_primary_10_1016_j_astropartphys_2011_05_008
crossref_primary_10_1103_PhysRevD_83_092003
crossref_primary_10_1016_j_physrep_2019_01_002
crossref_primary_10_1088_1475_7516_2019_10_075
crossref_primary_10_1002_andp_202100309
crossref_primary_10_1016_j_jheap_2022_08_001
crossref_primary_10_1088_1361_6471_abbd48
crossref_primary_10_1088_1475_7516_2013_01_028
crossref_primary_10_1007_JHEP05_2016_085
crossref_primary_10_3847_2041_8213_aa6af0
crossref_primary_10_1016_j_nima_2012_11_129
crossref_primary_10_1103_PhysRevD_87_063011
crossref_primary_10_1103_PhysRevD_88_121301
crossref_primary_10_1088_1742_6596_1690_1_012017
crossref_primary_10_1088_0954_3899_40_5_055202
crossref_primary_10_1103_PhysRevD_90_065035
crossref_primary_10_1088_0004_637X_736_2_112
crossref_primary_10_1103_PhysRevD_90_123006
crossref_primary_10_1016_j_asr_2016_04_030
crossref_primary_10_1051_epjconf_201713506002
crossref_primary_10_1088_0954_3899_41_7_075202
crossref_primary_10_1103_PhysRevD_98_123009
crossref_primary_10_1103_PhysRevD_100_043507
crossref_primary_10_1016_j_nuclphysbps_2013_04_092
crossref_primary_10_1088_1475_7516_2013_01_036
crossref_primary_10_1103_PhysRevD_102_083014
crossref_primary_10_1016_j_nuclphysbps_2013_04_096
crossref_primary_10_1088_0004_637X_755_2_164
crossref_primary_10_1016_j_nima_2012_12_059
crossref_primary_10_1016_j_nuclphysbps_2011_03_016
ContentType Journal Article
Copyright 2010 Elsevier B.V.
Copyright_xml – notice: 2010 Elsevier B.V.
DBID AAYXX
CITATION
7TG
KL.
DOI 10.1016/j.astropartphys.2010.06.003
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1873-2852
EndPage 115
ExternalDocumentID 10_1016_j_astropartphys_2010_06_003
S0927650510001155
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
KOM
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SSQ
SSZ
T5K
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TG
KL.
ID FETCH-LOGICAL-c425t-9bca970c71d76d469e0e9f944f49405847531488c4eb2be8c9b1da01e70c21fd3
IEDL.DBID AIKHN
ISSN 0927-6505
IngestDate Fri Jul 11 12:41:05 EDT 2025
Tue Jul 01 03:27:09 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Fri Feb 23 02:27:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Diffuse gamma-ray flux
Cosmogenic neutrinos
Low crossover model
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-9bca970c71d76d469e0e9f944f49405847531488c4eb2be8c9b1da01e70c21fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 876237880
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_876237880
crossref_primary_10_1016_j_astropartphys_2010_06_003
crossref_citationtrail_10_1016_j_astropartphys_2010_06_003
elsevier_sciencedirect_doi_10_1016_j_astropartphys_2010_06_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Astroparticle physics
PublicationYear 2010
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lee (bib28) 1998; 58
M. Ahlers, et al., in preparation.
Zatsepin, Kuzmin (bib3) 1966; 4
Demidov, Kalashev (bib29) 2009; 108
L.A. Anchordoqui, T. Montaruli, See Fig. 13 for an updated analysis of
Fodor, Katz, Ringwald, Tu (bib14) 2003; 0311
Abdo (bib21) 2010; 104
Berezinsky, Gazizov, Grigorieva (bib13) 2006; 74
Abraham (bib34) 2009; 79
Sarkar (bib55) 2004; 35
J. Linsley, in: Proceedings of ICRC 1963, Jaipur, India, pp. 77–99.
Abraham (bib18) 2010; 104
Achterberg (bib42) 2006; 26
,
Protheroe, Biermann (bib54) 1996; 6
Abraham (bib6) 2008; 101
Achterberg (bib35) 2007; 76
Amsler (bib23) 2008; 667
Schlickeiser (bib56) 2002
Aynutdinov (bib37) 2006; 25
Hooper, Taylor, Sarkar, Ave, Busca, Olinto, Watson, Yamamoto, Allard (bib15) 2005; 23
Ahlers, Anchordoqui, Sarkar (bib24) 2009; 79
Protheroe, Stanev (bib33) 1993; 264
Anchordoqui, Goldberg, Hooper, Sarkar, Taylor (bib16) 2007; 76
Hill, Schramm (bib11) 1985; 31
Blumenthal (bib25) 1970; 1
Wibig, Wolfendale (bib12) 2005; 31
Penzias, Wilson (bib1) 1965; 142
Abraham (bib17) 2010; 685
Dolag, Grasso, Springel, Tkachev (bib32) 2005; 0501
Greisen (bib2) 1966; 16
[hep-ph].
Halzen, Hooper (bib41) 2006; 97
Strong, Moskalenko, Reimer (bib45) 2004; 613
Kelner, Aharonian (bib58) 2008; 78
K. Martens, HiRes Collaboration
[astro-ph].
Bhattacharjee, Sigl (bib52) 2000; 327
A.A. Abdo et al. [Fermi-LAT Collaboration]
T. Wibig
[astro-ph.HE].
Franceschini, Rodighiero, Vaccari (bib48) 2008; 487
Clark, Brown, Alexander (bib53) 1970; 228
Ulrich, Engel, Muller, Schussler, Unger (bib20) 2009; 196
Blumenthal, Gould (bib27) 1970; 42
Aliu (bib50) 2008; 320
Beresinsky, Zatsepin (bib4) 1969; 28
Hill, Schramm (bib9) 1985; 31
Sreekumar (bib44) 1998; 494
Ackermann (bib36) 2008; 675
Stecker (bib7) 1979; 228
V. Berezinsky, A. Gazizov, M. Kachelriess, S. Ostapchenko
Wdowczyk, Tkaczyk, Wolfendale (bib31) 1972; 5
Ahrens (bib43) 2004; 20
Kronberg (bib30) 1994; 57
Kalashev, Semikoz, Sigl (bib57) 2009; 79
Abbasi (bib5) 2008; 100
Kravchenko (bib39) 2006; 73
Yoshida, Teshima, Protheroe, Johnson, Engel, Seckel, Stanev (bib8) 1993; 89
Barwick (bib40) 2006; 96
Mücke, Engel, Rachen, Protheroe, Stanev (bib26) 2000; 124
Aharonian (bib49) 2006; 440
References_xml – volume: 4
  start-page: 78
  year: 1966
  ident: bib3
  publication-title: JETP Lett.
– reference: [astro-ph.HE].
– volume: 35
  start-page: 351
  year: 2004
  ident: bib55
  publication-title: Acta Phys. Polon. B
– volume: 320
  start-page: 1752
  year: 2008
  ident: bib50
  publication-title: Science
– year: 2002
  ident: bib56
  article-title: Cosmic Ray Astrophysics
– volume: 104
  start-page: 091101
  year: 2010
  ident: bib18
  publication-title: Phys. Rev. Lett.
– volume: 487
  start-page: 837
  year: 2008
  ident: bib48
  publication-title: Astron. Astrophys.
– volume: 79
  start-page: 063005
  year: 2009
  ident: bib57
  publication-title: Phys. Rev. D
– volume: 25
  start-page: 140
  year: 2006
  ident: bib37
  publication-title: Astropart. Phys.
– reference: [astro-ph].
– volume: 6
  start-page: 45
  year: 1996
  ident: bib54
  publication-title: Astropart. Phys.
– volume: 73
  start-page: 082002
  year: 2006
  ident: bib39
  publication-title: Phys. Rev. D
– volume: 20
  start-page: 507
  year: 2004
  ident: bib43
  publication-title: Astropart. Phys.
– volume: 5
  start-page: 1419
  year: 1972
  end-page: 1432
  ident: bib31
  publication-title: J. Phys. A
– volume: 28
  start-page: 423
  year: 1969
  ident: bib4
  publication-title: Phys. Lett. B
– volume: 0501
  start-page: 009
  year: 2005
  ident: bib32
  publication-title: JCAP
– volume: 96
  start-page: 171101
  year: 2006
  ident: bib40
  publication-title: Phys. Rev. Lett.
– volume: 108
  start-page: 764
  year: 2009
  ident: bib29
  publication-title: J. Exp. Theor. Phys.
– volume: 196
  start-page: 335
  year: 2009
  ident: bib20
  publication-title: Nucl. Phys. Proc. Suppl.
– volume: 228
  start-page: 847
  year: 1970
  ident: bib53
  publication-title: Nature
– volume: 101
  start-page: 061101
  year: 2008
  ident: bib6
  publication-title: Phys. Rev. Lett.
– volume: 675
  start-page: 1014
  year: 2008
  ident: bib36
  publication-title: Astrophys. J.
– volume: 76
  start-page: 042008
  year: 2007
  ident: bib35
  publication-title: Phys. Rev. D
– volume: 327
  start-page: 109
  year: 2000
  ident: bib52
  publication-title: Phys. Rept.
– volume: 142
  start-page: 419
  year: 1965
  ident: bib1
  publication-title: Astrophys. J.
– volume: 1
  start-page: 1596
  year: 1970
  ident: bib25
  publication-title: Phys. Rev. D
– volume: 79
  start-page: 102001
  year: 2009
  ident: bib34
  publication-title: Phys. Rev. D
– volume: 124
  start-page: 290
  year: 2000
  ident: bib26
  publication-title: Comput. Phys. Commun.
– volume: 42
  start-page: 237
  year: 1970
  ident: bib27
  publication-title: Rev. Mod. Phys.
– volume: 58
  start-page: 043004
  year: 1998
  ident: bib28
  publication-title: Phys. Rev. D
– volume: 494
  start-page: 523
  year: 1998
  ident: bib44
  publication-title: Astrophys. J.
– reference: T. Wibig,
– volume: 79
  start-page: 083009
  year: 2009
  ident: bib24
  publication-title: Phys. Rev. D
– volume: 78
  start-page: 034013
  year: 2008
  ident: bib58
  publication-title: Phys. Rev. D
– volume: 16
  start-page: 748
  year: 1966
  ident: bib2
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 123008
  year: 2007
  ident: bib16
  publication-title: Phys. Rev. D
– volume: 26
  start-page: 155
  year: 2006
  ident: bib42
  publication-title: Astropart. Phys.
– reference: ,
– reference: K. Martens, HiRes Collaboration,
– reference: J. Linsley, in: Proceedings of ICRC 1963, Jaipur, India, pp. 77–99.
– reference: V. Berezinsky, A. Gazizov, M. Kachelriess, S. Ostapchenko,
– volume: 613
  start-page: 956
  year: 2004
  ident: bib45
  publication-title: Astrophys. J.
– reference: L.A. Anchordoqui, T. Montaruli, See Fig. 13 for an updated analysis of
– volume: 31
  start-page: 255
  year: 2005
  ident: bib12
  publication-title: J. Phys. G
– volume: 667
  start-page: 1
  year: 2008
  ident: bib23
  publication-title: Phys. Lett. B
– volume: 264
  start-page: 191
  year: 1993
  ident: bib33
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 440
  start-page: 1018
  year: 2006
  ident: bib49
  publication-title: Nature
– volume: 31
  start-page: 564
  year: 1985
  ident: bib9
  publication-title: Phys. Rev. D
– volume: 685
  start-page: 239
  year: 2010
  ident: bib17
  publication-title: Phys. Lett. B
– volume: 89
  start-page: 833
  year: 1993
  ident: bib8
  publication-title: Prog. Theor. Phys.
– volume: 74
  start-page: 043005
  year: 2006
  ident: bib13
  publication-title: Phys. Rev. D
– volume: 0311
  start-page: 015
  year: 2003
  ident: bib14
  publication-title: JCAP
– volume: 104
  start-page: 101101
  year: 2010
  ident: bib21
  publication-title: Phys. Rev. Lett.
– volume: 100
  start-page: 101101
  year: 2008
  ident: bib5
  publication-title: Phys. Rev. Lett.
– reference: A.A. Abdo et al. [Fermi-LAT Collaboration],
– volume: 97
  start-page: 099901
  year: 2006
  ident: bib41
  publication-title: Phys. Rev. Lett.
– volume: 57
  start-page: 325
  year: 1994
  ident: bib30
  publication-title: Rept. Prog. Phys.
– reference: [hep-ph].
– volume: 23
  start-page: 11
  year: 2005
  ident: bib15
  publication-title: Astropart. Phys.
– reference: M. Ahlers, et al., in preparation.
– volume: 228
  start-page: 919
  year: 1979
  ident: bib7
  publication-title: Astrophys. J.
– volume: 31
  start-page: 564
  year: 1985
  ident: bib11
  publication-title: Phys. Rev. D
SSID ssj0014034
Score 2.4436445
Snippet Cosmogenic neutrinos originate from photo-hadronic interactions of cosmic ray protons with the cosmic microwave background (CMB). The neutrino production rate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106
SubjectTerms Cosmogenic neutrinos
Diffuse gamma-ray flux
Low crossover model
Title GZK neutrinos after the Fermi-LAT diffuse photon flux measurement
URI https://dx.doi.org/10.1016/j.astropartphys.2010.06.003
https://www.proquest.com/docview/876237880
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mRPFFdCqbHyOg-FbXruna-CCU4ZxORXAD8SWkaYqT2Y21A5_82730w6EgCL6V0EvLJXf3u9zlDuAk8IQUkXTQybE6BrVFaOAQM4R0PIHaMYqy_il3953-iN48OU8V6JZ3YXRaZaH7c52eaetipFVwszUbj1uPJmu7iC8cK8c1zgqstm3Wwa296l8P-vdfwQRqZsFl_b6hCdbheJnmJZJ0ju7pPNUnCUWql45P2L8Zqh8qO7NDvS3YLAAk8fN_3IaKimtQ9_X8-noCOSXZc35ikdRg7SF_2gH_6nlAYqXL78fThGTdwQniP9LTCTHGrT8kul3KIlFk9jJFTEiiyeKdvC1PEXdh1LscdvtG0UHBkCiLqcECKZhrStcK3U6InrAyFYsYpRFliNTQMqEIoghLig52oDzJAisUpqWQpm1Fob0H1XgaqzoQtHCeQG-EImChKLUBNUN0rF1TuR51ArcB5yW7uCzKi-suFxNe5pG98m-85prXPMuqsxtAv4hneZWNv5FdlOvCv20ajvbgbxOQcjU5ipWOlYhYTRcJ10ZCl9o39__7jQPYyDMOdF7aIVTT-UIdIZBJgyasnH1YzWK7fgLM1vVT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED904seL-InzM6D4Vtdu6dr6IAxxTt2G4AbDl5CmKU60G2sHPvm3e9cPZYIw8C2EJC1J7u53yS93AGe-K5UMlY1OjlU3eE0GBlZ5hlS2K1E7hmGaP6XTrbf6_H5gDxbgungLQ7TKXPdnOj3V1nlNJZ_Nyng4rDyZXtVBfGFbGa6xF2GJo_iSdF58fvM8KB5dGkMKWxvUfAVOf0heMk4m6JxOEjpHyIledDtR-8tM_VLYqRVqbsB6Dh9ZI_vDTVjQ0RbsNWh8epzAzllazs4r4i1YfsxK29C4fX5gkabg-9EoZmlucIbojzWJDmO0Gz1GyVKmsWbjlxEiQha-TT_Y-88Z4g70mze965aR508wFEpiYni-kp5jKscKnHqAfrA2tRd6nIfcQ5yGdgkFEAVYcXSvfe0qz7cCaVoa-1StMKjtQikaRXoPGNo3V6IvwhGucJRZn5sButWOqR2X275ThstiuoTKg4tTjos3UbDIXsXMXAuaa5Fy6mpl4N-dx1mMjfm6XRXrIma2jEBrMN8ArFhNgUJFNyUy0qNpLMhEUKB9c_-_3ziB1Vav0xbtu-7DAaxl3ANiqB1CKZlM9RFCmsQ_TrfsF9E59hc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GZK+neutrinos+after+the+Fermi-LAT+diffuse+photon+flux+measurement&rft.jtitle=Astroparticle+physics&rft.au=Ahlers%2C+M.&rft.au=Anchordoqui%2C+L.A.&rft.au=Gonzalez%E2%80%93Garcia%2C+M.C.&rft.au=Halzen%2C+F.&rft.date=2010-09-01&rft.pub=Elsevier+B.V&rft.issn=0927-6505&rft.eissn=1873-2852&rft.volume=34&rft.issue=2&rft.spage=106&rft.epage=115&rft_id=info:doi/10.1016%2Fj.astropartphys.2010.06.003&rft.externalDocID=S0927650510001155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-6505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-6505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-6505&client=summon