GZK neutrinos after the Fermi-LAT diffuse photon flux measurement
Cosmogenic neutrinos originate from photo-hadronic interactions of cosmic ray protons with the cosmic microwave background (CMB). The neutrino production rate can be constrained through the accompanying electrons, positrons and gamma-rays that quickly cascade on the CMB and intergalactic magnetic fi...
Saved in:
Published in | Astroparticle physics Vol. 34; no. 2; pp. 106 - 115 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0927-6505 1873-2852 |
DOI | 10.1016/j.astropartphys.2010.06.003 |
Cover
Loading…
Abstract | Cosmogenic neutrinos originate from photo-hadronic interactions of cosmic ray protons with the cosmic microwave background (CMB). The neutrino production rate can be constrained through the accompanying electrons, positrons and gamma-rays that quickly cascade on the CMB and intergalactic magnetic fields to lower energies and generate a
γ-ray background in the GeV–TeV region. Bethe–Heitler pair production by protons also contributes to the cascade and can tighten the neutrino constraints in models where extragalactic cosmic rays begin to dominate over the galactic component at a relatively low “crossover” energy. We investigate this issue in the light of the recent Fermi-LAT measurements of the diffuse extragalactic
γ-ray background and illustrate by a fit to the HiRes spectrum how the prediction of the cosmogenic neutrino flux in all-proton models varies with the crossover energy. The neutrino flux is required to be smaller when the gamma-ray bound is applied, nevertheless such models are still consistent with HiRes and Fermi-LAT if one properly takes into account the energy uncertainty of cosmic ray measurements. The presently allowed flux is within reach of the IceCube neutrino telescope and other dedicated radio experiments. |
---|---|
AbstractList | Cosmogenic neutrinos originate from photo-hadronic interactions of cosmic ray protons with the cosmic microwave background (CMB). The neutrino production rate can be constrained through the accompanying electrons, positrons and gamma-rays that quickly cascade on the CMB and intergalactic magnetic fields to lower energies and generate a gamma -ray background in the GeV-TeV region. Bethe-Heitler pair production by protons also contributes to the cascade and can tighten the neutrino constraints in models where extragalactic cosmic rays begin to dominate over the galactic component at a relatively low "crossover" energy. We investigate this issue in the light of the recent Fermi-LAT measurements of the diffuse extragalactic gamma -ray background and illustrate by a fit to the HiRes spectrum how the prediction of the cosmogenic neutrino flux in all-proton models varies with the crossover energy. The neutrino flux is required to be smaller when the gamma-ray bound is applied, nevertheless such models are still consistent with HiRes and Fermi-LAT if one properly takes into account the energy uncertainty of cosmic ray measurements. The presently allowed flux is within reach of the IceCube neutrino telescope and other dedicated radio experiments. Cosmogenic neutrinos originate from photo-hadronic interactions of cosmic ray protons with the cosmic microwave background (CMB). The neutrino production rate can be constrained through the accompanying electrons, positrons and gamma-rays that quickly cascade on the CMB and intergalactic magnetic fields to lower energies and generate a γ-ray background in the GeV–TeV region. Bethe–Heitler pair production by protons also contributes to the cascade and can tighten the neutrino constraints in models where extragalactic cosmic rays begin to dominate over the galactic component at a relatively low “crossover” energy. We investigate this issue in the light of the recent Fermi-LAT measurements of the diffuse extragalactic γ-ray background and illustrate by a fit to the HiRes spectrum how the prediction of the cosmogenic neutrino flux in all-proton models varies with the crossover energy. The neutrino flux is required to be smaller when the gamma-ray bound is applied, nevertheless such models are still consistent with HiRes and Fermi-LAT if one properly takes into account the energy uncertainty of cosmic ray measurements. The presently allowed flux is within reach of the IceCube neutrino telescope and other dedicated radio experiments. |
Author | Gonzalez–Garcia, M.C. Sarkar, S. Anchordoqui, L.A. Halzen, F. Ahlers, M. |
Author_xml | – sequence: 1 givenname: M. surname: Ahlers fullname: Ahlers, M. email: ahlers@insti.physics.sunysb.edu organization: C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA – sequence: 2 givenname: L.A. surname: Anchordoqui fullname: Anchordoqui, L.A. email: doqui@gravity.phys.uwm.edu organization: Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA – sequence: 3 givenname: M.C. surname: Gonzalez–Garcia fullname: Gonzalez–Garcia, M.C. email: concha@insti.physics.sunysb.edu organization: C.N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA – sequence: 4 givenname: F. surname: Halzen fullname: Halzen, F. email: halzen@icecube.wisc.edu organization: Department of Physics, University of Wisconsin, Madison, WI 53706, USA – sequence: 5 givenname: S. surname: Sarkar fullname: Sarkar, S. email: s.sarkar@physics.ox.ac.uk organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK |
BookMark | eNqNkDFPwzAQRi1UJErhP0RiYEo5J07iiKlCLSAqscDCYrnOWXWV2MF2EP33pCoLTJ1uuO-94V2SiXUWCbmhMKdAy7vdXIboXS997Lf7MM9g_EA5B8jPyJTyKk8zXmQTMoU6q9KygOKCXIawA6AMcjYli8ePl8TiEL2xLiRSR_RJ3GKyQt-ZdL14Sxqj9RAw6bcuOpvodvhOOpRh8NihjVfkXMs24PXvnZH31fLt4Sldvz4-PyzWqWJZEdN6o2RdgapoU5UNK2sErHXNmGY1g4Kzqsgp41wx3GQb5Kre0EYCxZHJqG7yGbk9envvPgcMUXQmKGxbadENQfCqzPKKcxiX98el8i4Ej1r03nTS7wUFcegmduJPN3HoJqAUY7eRXvyjlYkyGmejl6Y90bE8OnAM8mXQi6AMWoWN8aiiaJw5yfMDoFyXcQ |
CitedBy_id | crossref_primary_10_1103_PhysRevD_93_082003 crossref_primary_10_1051_0004_6361_201117673 crossref_primary_10_1103_PhysRevD_88_112008 crossref_primary_10_1140_epjc_s10052_022_10228_w crossref_primary_10_1088_1475_7516_2013_06_030 crossref_primary_10_1051_epjconf_20135301009 crossref_primary_10_1016_j_astropartphys_2011_10_011 crossref_primary_10_1016_j_nuclphysbps_2011_04_115 crossref_primary_10_1088_1475_7516_2010_10_013 crossref_primary_10_1142_S0218271822300038 crossref_primary_10_1051_epjconf_20135301003 crossref_primary_10_1016_j_astropartphys_2011_10_003 crossref_primary_10_1007_s11467_013_0299_7 crossref_primary_10_1051_epjconf_201716501057 crossref_primary_10_1142_S021773231230042X crossref_primary_10_1016_j_phpro_2014_12_080 crossref_primary_10_1016_j_physletb_2022_137358 crossref_primary_10_1016_j_nima_2011_12_080 crossref_primary_10_1088_1475_7516_2012_01_044 crossref_primary_10_1016_j_asr_2017_05_030 crossref_primary_10_1103_PhysRevD_87_037302 crossref_primary_10_1142_S0218271819300076 crossref_primary_10_1017_S1743921312016754 crossref_primary_10_1103_PhysRevD_82_103012 crossref_primary_10_1016_j_asr_2022_01_030 crossref_primary_10_1103_PhysRevD_82_123005 crossref_primary_10_1016_j_icarus_2012_05_028 crossref_primary_10_3847_0004_637X_823_2_89 crossref_primary_10_1051_epjconf_201921003002 crossref_primary_10_1103_PhysRevD_86_023003 crossref_primary_10_1134_S1063779618040342 crossref_primary_10_1088_1475_7516_2019_10_022 crossref_primary_10_1088_1475_7516_2012_08_030 crossref_primary_10_1051_epjconf_20135301012 crossref_primary_10_1088_1475_7516_2015_06_029 crossref_primary_10_1088_1475_7516_2013_11_062 crossref_primary_10_1093_mnras_stv893 crossref_primary_10_1103_PhysRevD_105_123019 crossref_primary_10_1103_PhysRevLett_111_021103 crossref_primary_10_1088_1742_6596_409_1_012014 crossref_primary_10_1016_j_astropartphys_2019_04_004 crossref_primary_10_1103_PhysRevD_84_063006 crossref_primary_10_1088_2041_8205_755_1_L4 crossref_primary_10_1134_S0021364017090028 crossref_primary_10_1088_1742_6596_337_1_012050 crossref_primary_10_1103_PhysRevD_85_063002 crossref_primary_10_1088_1475_7516_2024_01_058 crossref_primary_10_1088_0034_4885_78_12_126901 crossref_primary_10_1016_j_nima_2010_11_014 crossref_primary_10_1134_S0021364018110097 crossref_primary_10_1103_PhysRevD_88_063524 crossref_primary_10_1016_j_nuclphysbps_2017_06_031 crossref_primary_10_1103_PhysRevD_94_023007 crossref_primary_10_1088_1475_7516_2015_03_038 crossref_primary_10_1088_0004_637X_736_1_40 crossref_primary_10_1093_ptep_ptx021 crossref_primary_10_1016_j_astropartphys_2020_102549 crossref_primary_10_1103_PhysRevD_85_123003 crossref_primary_10_1016_j_nuclphysbps_2013_10_058 crossref_primary_10_1016_j_nuclphysbps_2018_07_026 crossref_primary_10_1016_j_nima_2014_05_015 crossref_primary_10_1016_j_nuclphysbps_2012_09_039 crossref_primary_10_1051_epjconf_201611611001 crossref_primary_10_1103_PhysRevD_101_083024 crossref_primary_10_1103_PhysRevD_104_015018 crossref_primary_10_1103_PhysRevD_84_085006 crossref_primary_10_1088_1674_1137_43_4_045101 crossref_primary_10_1007_s13538_013_0122_5 crossref_primary_10_1016_j_astropartphys_2014_07_007 crossref_primary_10_1088_1475_7516_2023_01_041 crossref_primary_10_1103_PhysRevD_92_063011 crossref_primary_10_1016_j_astropartphys_2017_03_008 crossref_primary_10_1103_PhysRevD_88_043009 crossref_primary_10_1103_PhysRevD_98_062003 crossref_primary_10_1016_j_astropartphys_2010_09_002 crossref_primary_10_1002_asna_201412058 crossref_primary_10_1017_S1743921312016729 crossref_primary_10_1088_1475_7516_2012_01_054 crossref_primary_10_1016_j_astropartphys_2015_04_002 crossref_primary_10_1088_1742_6596_409_1_012115 crossref_primary_10_1016_j_astropartphys_2016_08_007 crossref_primary_10_3847_1538_4357_ad372a crossref_primary_10_1093_mnras_stt697 crossref_primary_10_1016_j_astropartphys_2015_04_006 crossref_primary_10_1016_j_nima_2012_01_007 crossref_primary_10_1016_j_ppnp_2018_05_001 crossref_primary_10_1016_j_astropartphys_2011_11_010 crossref_primary_10_1103_PhysRevD_84_085019 crossref_primary_10_1103_PhysRevD_84_122005 crossref_primary_10_3389_fspas_2019_00032 crossref_primary_10_1051_epjconf_201920804003 crossref_primary_10_1103_PhysRevLett_117_241101 crossref_primary_10_1142_S0218271816300287 crossref_primary_10_1088_1748_0221_16_08_P08035 crossref_primary_10_1103_PhysRevD_95_063005 crossref_primary_10_1103_PhysRevD_94_063002 crossref_primary_10_1016_j_physletb_2023_137791 crossref_primary_10_1093_ptep_ptx115 crossref_primary_10_1016_j_nuclphysbps_2013_04_035 crossref_primary_10_3847_0004_637X_825_2_122 crossref_primary_10_1016_j_astropartphys_2013_01_011 crossref_primary_10_1016_j_asr_2020_04_041 crossref_primary_10_3390_universe7070223 crossref_primary_10_1088_1742_6596_718_2_022008 crossref_primary_10_1134_S1063778818030146 crossref_primary_10_1051_epjconf_20135305003 crossref_primary_10_1016_j_physletb_2010_11_019 crossref_primary_10_1103_PhysRevD_92_123001 crossref_primary_10_1016_j_astropartphys_2010_11_004 crossref_primary_10_1103_PhysRevD_91_092008 crossref_primary_10_1016_j_astropartphys_2013_11_006 crossref_primary_10_1016_j_nuclphysbps_2019_07_021 crossref_primary_10_1088_0004_637X_737_2_80 crossref_primary_10_1103_PhysRevD_94_043008 crossref_primary_10_1103_PhysRevD_95_023004 crossref_primary_10_1088_1475_7516_2012_10_043 crossref_primary_10_1140_epjp_i2017_11513_x crossref_primary_10_1088_1475_7516_2020_01_012 crossref_primary_10_1016_j_physrep_2020_05_002 crossref_primary_10_1016_j_nuclphysbps_2013_04_032 crossref_primary_10_1016_j_nuclphysbps_2013_04_033 crossref_primary_10_1103_PhysRevD_84_105007 crossref_primary_10_1016_j_cpc_2022_108422 crossref_primary_10_1016_j_crhy_2014_02_013 crossref_primary_10_1155_2013_708680 crossref_primary_10_1016_j_crhy_2014_02_014 crossref_primary_10_1103_PhysRevD_86_083010 crossref_primary_10_1016_j_jheap_2014_01_001 crossref_primary_10_1088_1475_7516_2021_06_007 crossref_primary_10_1155_2013_680584 crossref_primary_10_1103_PhysRevD_102_023036 crossref_primary_10_1016_j_astropartphys_2011_05_008 crossref_primary_10_1103_PhysRevD_83_092003 crossref_primary_10_1016_j_physrep_2019_01_002 crossref_primary_10_1088_1475_7516_2019_10_075 crossref_primary_10_1002_andp_202100309 crossref_primary_10_1016_j_jheap_2022_08_001 crossref_primary_10_1088_1361_6471_abbd48 crossref_primary_10_1088_1475_7516_2013_01_028 crossref_primary_10_1007_JHEP05_2016_085 crossref_primary_10_3847_2041_8213_aa6af0 crossref_primary_10_1016_j_nima_2012_11_129 crossref_primary_10_1103_PhysRevD_87_063011 crossref_primary_10_1103_PhysRevD_88_121301 crossref_primary_10_1088_1742_6596_1690_1_012017 crossref_primary_10_1088_0954_3899_40_5_055202 crossref_primary_10_1103_PhysRevD_90_065035 crossref_primary_10_1088_0004_637X_736_2_112 crossref_primary_10_1103_PhysRevD_90_123006 crossref_primary_10_1016_j_asr_2016_04_030 crossref_primary_10_1051_epjconf_201713506002 crossref_primary_10_1088_0954_3899_41_7_075202 crossref_primary_10_1103_PhysRevD_98_123009 crossref_primary_10_1103_PhysRevD_100_043507 crossref_primary_10_1016_j_nuclphysbps_2013_04_092 crossref_primary_10_1088_1475_7516_2013_01_036 crossref_primary_10_1103_PhysRevD_102_083014 crossref_primary_10_1016_j_nuclphysbps_2013_04_096 crossref_primary_10_1088_0004_637X_755_2_164 crossref_primary_10_1016_j_nima_2012_12_059 crossref_primary_10_1016_j_nuclphysbps_2011_03_016 |
ContentType | Journal Article |
Copyright | 2010 Elsevier B.V. |
Copyright_xml | – notice: 2010 Elsevier B.V. |
DBID | AAYXX CITATION 7TG KL. |
DOI | 10.1016/j.astropartphys.2010.06.003 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1873-2852 |
EndPage | 115 |
ExternalDocumentID | 10_1016_j_astropartphys_2010_06_003 S0927650510001155 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W KOM LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SHN SPC SPCBC SPD SSQ SSZ T5K WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TG KL. |
ID | FETCH-LOGICAL-c425t-9bca970c71d76d469e0e9f944f49405847531488c4eb2be8c9b1da01e70c21fd3 |
IEDL.DBID | AIKHN |
ISSN | 0927-6505 |
IngestDate | Fri Jul 11 12:41:05 EDT 2025 Tue Jul 01 03:27:09 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Fri Feb 23 02:27:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Diffuse gamma-ray flux Cosmogenic neutrinos Low crossover model |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-9bca970c71d76d469e0e9f944f49405847531488c4eb2be8c9b1da01e70c21fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 876237880 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_876237880 crossref_primary_10_1016_j_astropartphys_2010_06_003 crossref_citationtrail_10_1016_j_astropartphys_2010_06_003 elsevier_sciencedirect_doi_10_1016_j_astropartphys_2010_06_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Astroparticle physics |
PublicationYear | 2010 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lee (bib28) 1998; 58 M. Ahlers, et al., in preparation. Zatsepin, Kuzmin (bib3) 1966; 4 Demidov, Kalashev (bib29) 2009; 108 L.A. Anchordoqui, T. Montaruli, See Fig. 13 for an updated analysis of Fodor, Katz, Ringwald, Tu (bib14) 2003; 0311 Abdo (bib21) 2010; 104 Berezinsky, Gazizov, Grigorieva (bib13) 2006; 74 Abraham (bib34) 2009; 79 Sarkar (bib55) 2004; 35 J. Linsley, in: Proceedings of ICRC 1963, Jaipur, India, pp. 77–99. Abraham (bib18) 2010; 104 Achterberg (bib42) 2006; 26 , Protheroe, Biermann (bib54) 1996; 6 Abraham (bib6) 2008; 101 Achterberg (bib35) 2007; 76 Amsler (bib23) 2008; 667 Schlickeiser (bib56) 2002 Aynutdinov (bib37) 2006; 25 Hooper, Taylor, Sarkar, Ave, Busca, Olinto, Watson, Yamamoto, Allard (bib15) 2005; 23 Ahlers, Anchordoqui, Sarkar (bib24) 2009; 79 Protheroe, Stanev (bib33) 1993; 264 Anchordoqui, Goldberg, Hooper, Sarkar, Taylor (bib16) 2007; 76 Hill, Schramm (bib11) 1985; 31 Blumenthal (bib25) 1970; 1 Wibig, Wolfendale (bib12) 2005; 31 Penzias, Wilson (bib1) 1965; 142 Abraham (bib17) 2010; 685 Dolag, Grasso, Springel, Tkachev (bib32) 2005; 0501 Greisen (bib2) 1966; 16 [hep-ph]. Halzen, Hooper (bib41) 2006; 97 Strong, Moskalenko, Reimer (bib45) 2004; 613 Kelner, Aharonian (bib58) 2008; 78 K. Martens, HiRes Collaboration [astro-ph]. Bhattacharjee, Sigl (bib52) 2000; 327 A.A. Abdo et al. [Fermi-LAT Collaboration] T. Wibig [astro-ph.HE]. Franceschini, Rodighiero, Vaccari (bib48) 2008; 487 Clark, Brown, Alexander (bib53) 1970; 228 Ulrich, Engel, Muller, Schussler, Unger (bib20) 2009; 196 Blumenthal, Gould (bib27) 1970; 42 Aliu (bib50) 2008; 320 Beresinsky, Zatsepin (bib4) 1969; 28 Hill, Schramm (bib9) 1985; 31 Sreekumar (bib44) 1998; 494 Ackermann (bib36) 2008; 675 Stecker (bib7) 1979; 228 V. Berezinsky, A. Gazizov, M. Kachelriess, S. Ostapchenko Wdowczyk, Tkaczyk, Wolfendale (bib31) 1972; 5 Ahrens (bib43) 2004; 20 Kronberg (bib30) 1994; 57 Kalashev, Semikoz, Sigl (bib57) 2009; 79 Abbasi (bib5) 2008; 100 Kravchenko (bib39) 2006; 73 Yoshida, Teshima, Protheroe, Johnson, Engel, Seckel, Stanev (bib8) 1993; 89 Barwick (bib40) 2006; 96 Mücke, Engel, Rachen, Protheroe, Stanev (bib26) 2000; 124 Aharonian (bib49) 2006; 440 |
References_xml | – volume: 4 start-page: 78 year: 1966 ident: bib3 publication-title: JETP Lett. – reference: [astro-ph.HE]. – volume: 35 start-page: 351 year: 2004 ident: bib55 publication-title: Acta Phys. Polon. B – volume: 320 start-page: 1752 year: 2008 ident: bib50 publication-title: Science – year: 2002 ident: bib56 article-title: Cosmic Ray Astrophysics – volume: 104 start-page: 091101 year: 2010 ident: bib18 publication-title: Phys. Rev. Lett. – volume: 487 start-page: 837 year: 2008 ident: bib48 publication-title: Astron. Astrophys. – volume: 79 start-page: 063005 year: 2009 ident: bib57 publication-title: Phys. Rev. D – volume: 25 start-page: 140 year: 2006 ident: bib37 publication-title: Astropart. Phys. – reference: [astro-ph]. – volume: 6 start-page: 45 year: 1996 ident: bib54 publication-title: Astropart. Phys. – volume: 73 start-page: 082002 year: 2006 ident: bib39 publication-title: Phys. Rev. D – volume: 20 start-page: 507 year: 2004 ident: bib43 publication-title: Astropart. Phys. – volume: 5 start-page: 1419 year: 1972 end-page: 1432 ident: bib31 publication-title: J. Phys. A – volume: 28 start-page: 423 year: 1969 ident: bib4 publication-title: Phys. Lett. B – volume: 0501 start-page: 009 year: 2005 ident: bib32 publication-title: JCAP – volume: 96 start-page: 171101 year: 2006 ident: bib40 publication-title: Phys. Rev. Lett. – volume: 108 start-page: 764 year: 2009 ident: bib29 publication-title: J. Exp. Theor. Phys. – volume: 196 start-page: 335 year: 2009 ident: bib20 publication-title: Nucl. Phys. Proc. Suppl. – volume: 228 start-page: 847 year: 1970 ident: bib53 publication-title: Nature – volume: 101 start-page: 061101 year: 2008 ident: bib6 publication-title: Phys. Rev. Lett. – volume: 675 start-page: 1014 year: 2008 ident: bib36 publication-title: Astrophys. J. – volume: 76 start-page: 042008 year: 2007 ident: bib35 publication-title: Phys. Rev. D – volume: 327 start-page: 109 year: 2000 ident: bib52 publication-title: Phys. Rept. – volume: 142 start-page: 419 year: 1965 ident: bib1 publication-title: Astrophys. J. – volume: 1 start-page: 1596 year: 1970 ident: bib25 publication-title: Phys. Rev. D – volume: 79 start-page: 102001 year: 2009 ident: bib34 publication-title: Phys. Rev. D – volume: 124 start-page: 290 year: 2000 ident: bib26 publication-title: Comput. Phys. Commun. – volume: 42 start-page: 237 year: 1970 ident: bib27 publication-title: Rev. Mod. Phys. – volume: 58 start-page: 043004 year: 1998 ident: bib28 publication-title: Phys. Rev. D – volume: 494 start-page: 523 year: 1998 ident: bib44 publication-title: Astrophys. J. – reference: T. Wibig, – volume: 79 start-page: 083009 year: 2009 ident: bib24 publication-title: Phys. Rev. D – volume: 78 start-page: 034013 year: 2008 ident: bib58 publication-title: Phys. Rev. D – volume: 16 start-page: 748 year: 1966 ident: bib2 publication-title: Phys. Rev. Lett. – volume: 76 start-page: 123008 year: 2007 ident: bib16 publication-title: Phys. Rev. D – volume: 26 start-page: 155 year: 2006 ident: bib42 publication-title: Astropart. Phys. – reference: , – reference: K. Martens, HiRes Collaboration, – reference: J. Linsley, in: Proceedings of ICRC 1963, Jaipur, India, pp. 77–99. – reference: V. Berezinsky, A. Gazizov, M. Kachelriess, S. Ostapchenko, – volume: 613 start-page: 956 year: 2004 ident: bib45 publication-title: Astrophys. J. – reference: L.A. Anchordoqui, T. Montaruli, See Fig. 13 for an updated analysis of – volume: 31 start-page: 255 year: 2005 ident: bib12 publication-title: J. Phys. G – volume: 667 start-page: 1 year: 2008 ident: bib23 publication-title: Phys. Lett. B – volume: 264 start-page: 191 year: 1993 ident: bib33 publication-title: Mon. Not. R. Astron. Soc. – volume: 440 start-page: 1018 year: 2006 ident: bib49 publication-title: Nature – volume: 31 start-page: 564 year: 1985 ident: bib9 publication-title: Phys. Rev. D – volume: 685 start-page: 239 year: 2010 ident: bib17 publication-title: Phys. Lett. B – volume: 89 start-page: 833 year: 1993 ident: bib8 publication-title: Prog. Theor. Phys. – volume: 74 start-page: 043005 year: 2006 ident: bib13 publication-title: Phys. Rev. D – volume: 0311 start-page: 015 year: 2003 ident: bib14 publication-title: JCAP – volume: 104 start-page: 101101 year: 2010 ident: bib21 publication-title: Phys. Rev. Lett. – volume: 100 start-page: 101101 year: 2008 ident: bib5 publication-title: Phys. Rev. Lett. – reference: A.A. Abdo et al. [Fermi-LAT Collaboration], – volume: 97 start-page: 099901 year: 2006 ident: bib41 publication-title: Phys. Rev. Lett. – volume: 57 start-page: 325 year: 1994 ident: bib30 publication-title: Rept. Prog. Phys. – reference: [hep-ph]. – volume: 23 start-page: 11 year: 2005 ident: bib15 publication-title: Astropart. Phys. – reference: M. Ahlers, et al., in preparation. – volume: 228 start-page: 919 year: 1979 ident: bib7 publication-title: Astrophys. J. – volume: 31 start-page: 564 year: 1985 ident: bib11 publication-title: Phys. Rev. D |
SSID | ssj0014034 |
Score | 2.4436445 |
Snippet | Cosmogenic neutrinos originate from photo-hadronic interactions of cosmic ray protons with the cosmic microwave background (CMB). The neutrino production rate... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106 |
SubjectTerms | Cosmogenic neutrinos Diffuse gamma-ray flux Low crossover model |
Title | GZK neutrinos after the Fermi-LAT diffuse photon flux measurement |
URI | https://dx.doi.org/10.1016/j.astropartphys.2010.06.003 https://www.proquest.com/docview/876237880 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mRPFFdCqbHyOg-FbXruna-CCU4ZxORXAD8SWkaYqT2Y21A5_82730w6EgCL6V0EvLJXf3u9zlDuAk8IQUkXTQybE6BrVFaOAQM4R0PIHaMYqy_il3953-iN48OU8V6JZ3YXRaZaH7c52eaetipFVwszUbj1uPJmu7iC8cK8c1zgqstm3Wwa296l8P-vdfwQRqZsFl_b6hCdbheJnmJZJ0ju7pPNUnCUWql45P2L8Zqh8qO7NDvS3YLAAk8fN_3IaKimtQ9_X8-noCOSXZc35ikdRg7SF_2gH_6nlAYqXL78fThGTdwQniP9LTCTHGrT8kul3KIlFk9jJFTEiiyeKdvC1PEXdh1LscdvtG0UHBkCiLqcECKZhrStcK3U6InrAyFYsYpRFliNTQMqEIoghLig52oDzJAisUpqWQpm1Fob0H1XgaqzoQtHCeQG-EImChKLUBNUN0rF1TuR51ArcB5yW7uCzKi-suFxNe5pG98m-85prXPMuqsxtAv4hneZWNv5FdlOvCv20ajvbgbxOQcjU5ipWOlYhYTRcJ10ZCl9o39__7jQPYyDMOdF7aIVTT-UIdIZBJgyasnH1YzWK7fgLM1vVT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED904seL-InzM6D4Vtdu6dr6IAxxTt2G4AbDl5CmKU60G2sHPvm3e9cPZYIw8C2EJC1J7u53yS93AGe-K5UMlY1OjlU3eE0GBlZ5hlS2K1E7hmGaP6XTrbf6_H5gDxbgungLQ7TKXPdnOj3V1nlNJZ_Nyng4rDyZXtVBfGFbGa6xF2GJo_iSdF58fvM8KB5dGkMKWxvUfAVOf0heMk4m6JxOEjpHyIledDtR-8tM_VLYqRVqbsB6Dh9ZI_vDTVjQ0RbsNWh8epzAzllazs4r4i1YfsxK29C4fX5gkabg-9EoZmlucIbojzWJDmO0Gz1GyVKmsWbjlxEiQha-TT_Y-88Z4g70mze965aR508wFEpiYni-kp5jKscKnHqAfrA2tRd6nIfcQ5yGdgkFEAVYcXSvfe0qz7cCaVoa-1StMKjtQikaRXoPGNo3V6IvwhGucJRZn5sButWOqR2X275ThstiuoTKg4tTjos3UbDIXsXMXAuaa5Fy6mpl4N-dx1mMjfm6XRXrIma2jEBrMN8ArFhNgUJFNyUy0qNpLMhEUKB9c_-_3ziB1Vav0xbtu-7DAaxl3ANiqB1CKZlM9RFCmsQ_TrfsF9E59hc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GZK+neutrinos+after+the+Fermi-LAT+diffuse+photon+flux+measurement&rft.jtitle=Astroparticle+physics&rft.au=Ahlers%2C+M.&rft.au=Anchordoqui%2C+L.A.&rft.au=Gonzalez%E2%80%93Garcia%2C+M.C.&rft.au=Halzen%2C+F.&rft.date=2010-09-01&rft.pub=Elsevier+B.V&rft.issn=0927-6505&rft.eissn=1873-2852&rft.volume=34&rft.issue=2&rft.spage=106&rft.epage=115&rft_id=info:doi/10.1016%2Fj.astropartphys.2010.06.003&rft.externalDocID=S0927650510001155 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-6505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-6505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-6505&client=summon |