Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas
•There were no clear latitudinal or climatic trends in cyanobacterial biomass.•Phosphorus was the main driver of cyanobacterial biomass throughout the Americas.•Nitrogen was most relevant in shallow lakes at high total phosphorus and high pH.•Temperature was not a significant factor in predicting cy...
Saved in:
Published in | Harmful algae Vol. 121; p. 102367 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •There were no clear latitudinal or climatic trends in cyanobacterial biomass.•Phosphorus was the main driver of cyanobacterial biomass throughout the Americas.•Nitrogen was most relevant in shallow lakes at high total phosphorus and high pH.•Temperature was not a significant factor in predicting cyanobacterial biomass.•Cyanobacteria management should focus on eutrophication and consider lake depth.
Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical – and more amenable to controls – than global external forces. |
---|---|
AbstractList | Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical - and more amenable to controls - than global external forces. •There were no clear latitudinal or climatic trends in cyanobacterial biomass.•Phosphorus was the main driver of cyanobacterial biomass throughout the Americas.•Nitrogen was most relevant in shallow lakes at high total phosphorus and high pH.•Temperature was not a significant factor in predicting cyanobacterial biomass.•Cyanobacteria management should focus on eutrophication and consider lake depth. Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical – and more amenable to controls – than global external forces. Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water man-agement. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of tem-perature gradients, since local factors are more critical - and more amenable to controls - than global external forces. Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical - and more amenable to controls - than global external forces.Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical - and more amenable to controls - than global external forces. |
ArticleNumber | 102367 |
Author | Becker, Vanessa Huszar, Vera Ortega, Laura Aubriot, Luis Somma, Andrea Palacio, Hilda Haakonsson, Signe Salazar, Anthony Cremella, Bruno Aguilera, Anabella Ferragut, Carla Rodrigues, Luzia Cleide Sampaio da Silva, Lúcia Helena Bonilla, Sylvia Almanza, Viviana Izaguirre, Irina O'Farrell, Inés Hernandez, Esnedy Antoniades, Dermot Santana, Lucineide Maria Santos, Juliana |
Author_xml | – sequence: 1 givenname: Sylvia orcidid: 0000-0002-1772-9899 surname: Bonilla fullname: Bonilla, Sylvia email: sbon@fcien.edu.uy organization: Phytoplankton Physiology and Ecology Group, Sección Limnología, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay – sequence: 2 givenname: Anabella surname: Aguilera fullname: Aguilera, Anabella organization: Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31, Kalmar, Sweden – sequence: 3 givenname: Luis orcidid: 0000-0001-9673-6853 surname: Aubriot fullname: Aubriot, Luis organization: Phytoplankton Physiology and Ecology Group, Sección Limnología, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay – sequence: 4 givenname: Vera surname: Huszar fullname: Huszar, Vera organization: Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil – sequence: 5 givenname: Viviana surname: Almanza fullname: Almanza, Viviana organization: Phytoplankton and Phytobenthos Laboratory, EULA-Chile Center, University of Concepción, 160-C, Concepción, Chile – sequence: 6 givenname: Signe surname: Haakonsson fullname: Haakonsson, Signe organization: Phytoplankton Physiology and Ecology Group, Sección Limnología, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay – sequence: 7 givenname: Irina surname: Izaguirre fullname: Izaguirre, Irina organization: Departamento de Ecología, Genética y Evolución, IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina – sequence: 8 givenname: Inés surname: O'Farrell fullname: O'Farrell, Inés organization: Departamento de Ecología, Genética y Evolución, IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina – sequence: 9 givenname: Anthony orcidid: 0000-0002-9277-1499 surname: Salazar fullname: Salazar, Anthony organization: Laboratorio de Vigilancia de la Calidad del Agua-AUTODEMA-Gobierno Regional de Arequipa, 04001, Peru – sequence: 10 givenname: Vanessa surname: Becker fullname: Becker, Vanessa organization: Laboratório de Recursos Hídricos e Saneamento Ambiental, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, Brazil – sequence: 11 givenname: Bruno orcidid: 0000-0001-7010-6386 surname: Cremella fullname: Cremella, Bruno organization: Laboratory of Environmental Analysis, Université de Sherbrooke, J1K2R1, Sherbrooke, Canada – sequence: 12 givenname: Carla orcidid: 0000-0002-4313-1436 surname: Ferragut fullname: Ferragut, Carla organization: Núcleo de Conservação e Biodiversidade, Instituto de Pesquisas Ambientais, 04301-902, São Paulo, Brazil – sequence: 13 givenname: Esnedy surname: Hernandez fullname: Hernandez, Esnedy organization: Grupo de Investigación en Ecología Aplicada, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, 050010, Medellín, Colombia – sequence: 14 givenname: Hilda surname: Palacio fullname: Palacio, Hilda organization: Universidad CES, 050021, Medellín, Colombia – sequence: 15 givenname: Luzia Cleide surname: Rodrigues fullname: Rodrigues, Luzia Cleide organization: Núcleo de Pesquisas em Limnologia e Aquicultura (Nupélia), Centro de Ciências Biológicas (CCB), Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brazil – sequence: 16 givenname: Lúcia Helena orcidid: 0000-0002-9533-3603 surname: Sampaio da Silva fullname: Sampaio da Silva, Lúcia Helena organization: Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil – sequence: 17 givenname: Lucineide Maria orcidid: 0000-0002-3809-1564 surname: Santana fullname: Santana, Lucineide Maria organization: Núcleo de Conservação e Biodiversidade, Instituto de Pesquisas Ambientais, 04301-902, São Paulo, Brazil – sequence: 18 givenname: Juliana surname: Santos fullname: Santos, Juliana organization: Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil – sequence: 19 givenname: Andrea orcidid: 0000-0001-6212-0946 surname: Somma fullname: Somma, Andrea organization: Phytoplankton Physiology and Ecology Group, Sección Limnología, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay – sequence: 20 givenname: Laura orcidid: 0000-0002-8031-8865 surname: Ortega fullname: Ortega, Laura organization: Núcleo de Pesquisas em Limnologia e Aquicultura (Nupélia), Centro de Ciências Biológicas (CCB), Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brazil – sequence: 21 givenname: Dermot surname: Antoniades fullname: Antoniades, Dermot organization: Département de Géographie, Université Laval, G1V0A6, Quebec, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36639186$$D View this record in MEDLINE/PubMed https://hal.science/hal-04882850$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-118841$$DView record from Swedish Publication Index |
BookMark | eNp9kUtv1DAUhS1URB_wA9ggL2GRwY_YccRqVChFGsEGWCFZjnNDPST2YDuD5t_X05RKsOjCuvbVd-6VzzlHJz54QOglJStKqHy7Xd2YccUIY-XNuGyeoDOqGlXRuiEn5S6kqlql-Ck6T2lLCKOEkGfolEvJW6rkGfrxec7Rgc8JG99jHzLOMO0gmjxHwKacfAP4FxxwH90eYsJDiNgejA-dsRmiMyPuXJhMStj5O3o9lbY16Tl6OpgxwYv7eoG-XX34enldbb58_HS53lS2ZiJXrVHQ9g0TXHVWDqSjQBRhYjA1l4wRIhXnchBQSmfKB22tJO_EQEGKthf8AlXL3PQHdnOnd9FNJh50ME6_d9_XOsSfevSzplSpmhb-zcIX-_6Br9cbfeyRWimmBNkf2dcLu4vh9wwp68klC-NoPIQ5adZI0TRc1Kqgr-7RuZugf5j81-0C0AWwMaQUYXhAKNHHRPX2bv0xUb0kWjTNfxrrssku-ByNGx9VvluUUKzfO4g62ZK0hd5FsFn3wT2ivgX1q7ih |
CitedBy_id | crossref_primary_10_1002_wat2_1689 crossref_primary_10_1016_j_jenvman_2023_119510 crossref_primary_10_2174_0126661217305048240902060516 crossref_primary_10_1007_s10750_024_05664_6 crossref_primary_10_1016_j_heliyon_2023_e20458 crossref_primary_10_1016_j_jenvman_2024_121433 crossref_primary_10_1016_j_jenvman_2024_123478 crossref_primary_10_1016_j_watres_2023_120980 crossref_primary_10_1016_j_envpol_2024_123401 crossref_primary_10_1007_s40726_024_00322_w crossref_primary_10_1016_j_hal_2024_102787 crossref_primary_10_1016_j_jhazmat_2024_135273 crossref_primary_10_1016_j_watres_2024_121517 crossref_primary_10_1016_j_scitotenv_2023_165306 crossref_primary_10_3390_w16060833 crossref_primary_10_1029_2024EF004493 crossref_primary_10_1016_j_cscee_2024_101027 crossref_primary_10_1016_j_ecolind_2024_111929 crossref_primary_10_1039_D3EM00572K crossref_primary_10_1016_j_ecolind_2024_112838 crossref_primary_10_1007_s10811_025_03481_5 crossref_primary_10_1111_gcb_16587 crossref_primary_10_26848_rbgf_v18_1_p633_645 crossref_primary_10_5194_esd_15_653_2024 crossref_primary_10_1007_s12237_023_01244_4 crossref_primary_10_1016_j_jece_2025_116101 crossref_primary_10_1016_j_watres_2023_120579 crossref_primary_10_1016_j_hal_2024_102679 crossref_primary_10_3389_fmicb_2023_1219261 crossref_primary_10_3390_w16060888 crossref_primary_10_1016_j_jhydrol_2024_132072 crossref_primary_10_1016_j_micres_2023_127566 crossref_primary_10_3390_w15173019 crossref_primary_10_1007_s10750_024_05496_4 crossref_primary_10_1016_j_hal_2023_102429 crossref_primary_10_1016_j_algal_2025_103932 crossref_primary_10_1016_j_algal_2025_103997 crossref_primary_10_1016_j_envpol_2023_122878 crossref_primary_10_1016_j_scitotenv_2023_165312 crossref_primary_10_3390_w15203569 crossref_primary_10_1016_j_chemosphere_2024_142815 crossref_primary_10_1016_j_jhydrol_2023_129869 |
Cites_doi | 10.1016/j.ecohyd.2019.03.002 10.1002/lno.10246 10.1073/pnas.0805108105 10.1111/j.1365-2486.2011.02488.x 10.1128/aem.36.4.572-576.1978 10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2 10.1007/s10750-009-9751-7 10.1111/j.1365-2486.2007.01510.x 10.1139/as-2020-0033 10.1016/j.hal.2019.03.012 10.4319/lo.2013.58.5.1736 10.1007/s10452-008-9180-0 10.1002/iroh.19840690602 10.1111/j.1440-1770.2008.00379.x 10.1007/s10750-005-4429-2 10.1139/f01-143 10.1111/j.1365-2427.2005.01415.x 10.1021/acs.est.9b05549 10.1007/s10750-009-9729-5 10.1016/S0065-2504(08)60149-X 10.1016/j.watres.2011.11.052 10.1111/gcb.14396 10.1007/s10452-015-9558-8 10.1038/nclimate1581 10.1088/1748-9326/ac0564 10.1127/0941-2948/2010/0430 10.1080/00288330.1987.9516235 10.1088/1748-9326/9/10/105001 10.1038/s41545-019-0039-9 10.1016/j.jhydrol.2004.03.028 10.4319/lo.2014.59.1.0099 10.1016/j.limno.2010.12.003 10.1021/acs.est.6b02204 10.1127/1612-166X/2014/0065-0048 10.1046/j.1365-2427.1998.00308.x 10.1007/s10750-015-2578-5 10.1590/S1519-69842011000400003 10.1126/science.1128845 10.1111/j.1365-2427.2012.02866.x 10.1139/cjfas-2014-0168 10.1016/S0269-7491(02)00304-4 10.1007/s10750-014-2007-1 10.1016/j.hal.2019.01.004 10.4081/jlimnol.2014.844 10.3389/fmicb.2019.01064 10.1016/j.scitotenv.2016.03.094 10.1016/j.watres.2020.115959 10.1016/j.watres.2022.118728 10.4319/lo.1977.22.2.0361 10.5268/IW-6.2.998 10.1038/s41586-019-1648-7 10.1016/j.hal.2021.102036 10.1007/s10021-010-9367-9 10.1139/f97-202 10.1111/ele.12420 10.1126/science.195.4275.260 10.1007/s10452-015-9524-5 10.1016/j.hal.2018.11.003 10.4319/lo.1992.37.5.0936 10.3390/w12041191 10.1002/sim.1545 10.1016/j.hal.2020.101859 10.1016/j.hal.2016.01.010 10.1126/science.1155398 10.1021/acs.est.6b02575 10.1201/9781003081449-1 10.1371/journal.pone.0096065 10.1002/eap.2102 10.1016/j.hal.2019.03.001 10.1111/fwb.13043 10.1641/B580408 10.1111/1365-2664.12059 10.1126/science.221.4611.669 10.1038/ncomms3934 10.1038/s41586-018-0123-1 10.1038/nclimate1728 10.1371/journal.pone.0038757 10.1007/s10750-017-3110-x 10.1038/nature22333 10.1139/f74-096 10.1007/s00442-011-2186-7 10.1016/j.hal.2016.10.001 10.3390/w13182463 10.1016/j.hal.2015.09.009 10.1111/fwb.13066 10.1038/s41579-018-0040-1 10.4319/lo.2009.54.6_part_2.2460 10.1111/fwb.13791 10.1021/acs.est.7b04992 10.1016/j.hal.2016.01.003 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC ADTPV AOWAS D92 |
DOI | 10.1016/j.hal.2022.102367 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) SwePub SwePub Articles SWEPUB Linnéuniversitetet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Environmental Sciences Ecology |
EISSN | 1878-1470 |
ExternalDocumentID | oai_DiVA_org_lnu_118841 oai_HAL_hal_04882850v1 36639186 10_1016_j_hal_2022_102367 S1568988322001950 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSZ T5K UHS UNMZH ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 1XC ADTPV AOWAS D92 |
ID | FETCH-LOGICAL-c425t-9a8e9d72538bc6f0b1e08025fa436220068336f5e833ba187c4863b5f1e659d53 |
IEDL.DBID | .~1 |
ISSN | 1568-9883 1878-1470 |
IngestDate | Thu Aug 21 06:41:28 EDT 2025 Fri May 09 12:21:59 EDT 2025 Tue Aug 05 09:49:59 EDT 2025 Wed Feb 19 02:25:23 EST 2025 Tue Jul 01 04:21:30 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Fri Feb 23 02:37:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Climate change Blooms Freshwater Global gradients Eutrophication |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-9a8e9d72538bc6f0b1e08025fa436220068336f5e833ba187c4863b5f1e659d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7010-6386 0000-0002-3809-1564 0000-0002-9277-1499 0000-0002-8031-8865 0000-0002-4313-1436 0000-0002-1772-9899 0000-0001-9673-6853 0000-0002-9533-3603 0000-0001-6212-0946 |
PMID | 36639186 |
PQID | 2765773548 |
PQPubID | 23479 |
ParticipantIDs | swepub_primary_oai_DiVA_org_lnu_118841 hal_primary_oai_HAL_hal_04882850v1 proquest_miscellaneous_2765773548 pubmed_primary_36639186 crossref_primary_10_1016_j_hal_2022_102367 crossref_citationtrail_10_1016_j_hal_2022_102367 elsevier_sciencedirect_doi_10_1016_j_hal_2022_102367 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 20230101 2023-01 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Harmful algae |
PublicationTitleAlternate | Harmful Algae |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Konopka, Brock (bib0042) 1978; 36 Lürling, Eshetu, Faassen, Kosten, Huszar (bib0048) 2013; 58 Beaulieu, Pick, Palmer, Watson, Winter, Zurawell, Gregory-Eaves (bib0005) 2014; 71 Scheffer (bib0078) 1998 Downing, Watson, McCauley (bib0022) 2001; 58 Taranu, Gregory-Eaves, Leavitt, Bunting, Buchaca, Catalan, Domaizon, Guilizzoni, Lami, Mcgowan, Moorhouse, Morabito, Pick, Stevenson, Thompson, Vinebrooke (bib0091) 2015; 18 Bullerjahn, McKay, Davis, Baker, Boyer, D'Anglada, Doucette, Ho, Irwin, Kling, Kudela, Kurmayer, Michalak, Ortiz, Otten, Paerl, Qin, Sohngen, Stumpf, Visser, Wilhelm (bib0010) 2016; 54 Robarts, Zohary (bib0074) 1987; 21 Castro Medeiros, Mattos, Lürling, Becker (bib0014) 2015; 49 Kolzau, Wiedner, Rücker, Köhler, Köhler, Dolman (bib0041) 2014; 9 McClain, Naiman (bib0050) 2008; 58 Harrison, Donaldson, Correa-Cano, Evans, Fisher, Goodwin, Robinson, Hodgson, Inger (bib0028) 2018; 2018 Dolman, Rücker, Pick, Fastner, Rohrlack, Mischke, Wiedner (bib0020) 2012; 7 Davis, Koop (bib0019) 2006; 559 Smith (bib0087) 1983; 221 Reinl, Brookes, Carey, Harris, Ibelings, Morales-Williams, De Senerpont Domis, Atkins, Isles, Mesman, North, Rudstam, Stelzer, Venkiteswaran, Yokota, Zhan (bib0069) 2021; 66 Oki, Kanae (bib0059) 2006; 313 Beaulieu, Pick, Gregory-Eaves (bib0004) 2013; 58 Newell, Davis, Johengen, Gossiaux, Burtner, Palladino, McCarthy (bib0057) 2019; 81 Przytulska, Bartosiewicz, Vincent (bib0066) 2017; 62 Gobler, Burkholder, Davis, Harke, Johengen, Stow, Van de Waal (bib0027) 2016; 54 Raven, Gobler, Hansen (bib0067) 2020; 91 Paerl, Gardner, Havens, Joyner, McCarthy, Newell, Qin, Scott (bib0060) 2016; 54 Glibert, Maranger, Sobota, Bouwman (bib0026) 2014; 9 Mowe, Mitrovic, Lim, Furey, Yeo (bib0053) 2015; 74 Havens, James, East, Smith (bib0029) 2003; 122 Loewen, Wyatt, Mortimer, Vinebrooke, Zurawell (bib0047) 2020; 30 Schindler, Hecky, Findlay, Stainton, Parker, Paterson, Beaty, Lyng, Kasian (bib0083) 2008; 105 Mellios, Moe, Laspidou (bib0051) 2020; 12 Brasil, Attayde, Vasconcelos, Dantas, Huszar (bib0009) 2016; 770 Yang, Lv, Yang, Liu, Yu, Chen (bib0098) 2016; 557-558 Paerl, Scott, McCarthy, Newell, Gardner, Havens, Hoffman, Wilhelm, Wurtsbaugh (bib0062) 2016; 50 Izaguirre, Sánchez, Schiaffino, O'Farrell, Huber, Ferrer, Zunino, Lagomarsino, Mancini (bib0036) 2015; 752 Schindler, Kalff, Welch, Brunkskill, Kling, Kritsch (bib0084) 1974; 31 Downing, McCauley (bib0021) 1992; 37 Rigosi, Carey, Ibelings, Brookes (bib0073) 2014; 59 Jöhnk, Huisman, Sharples, Sommeijer, Visser, Stroom, Jo (bib0040) 2008; 14 Posch, Köster, Salcher, Pernthaler (bib0065) 2012; 2 Vollenweider, Kerekes (bib0094) 1982 Krausfeldt, Farmer, Castro Gonzalez, Zepernick, Campagna, Wilhelm (bib0044) 2019; 10 Scheffer, Hosper, Meijer (bib0079) 1993; 8 Wilson, Agnew (bib0096) 1992; 23 Jeppesen, Meerhoff, Davidson, Trolle, Søndergaard, Lauridsen, Beklioǧlu, Brucet, Volta, González-Bergonzoni, Nielsen (bib0038) 2014; 73 Molot, Higgins, Schiff, Venkiteswaran, Paterson, Baulch (bib0052) 2021; 16 Schindler (bib0081) 1977; 195 Sivarajah, Simmatis, Favot, Palmer, Smol (bib0086) 2021; 105 Carlson (bib0012) 1977; 22 (bib0034) 2019 Fastner, Abella, Litt, Morabito, Vörös, Pálffy, Straile, Kümmerlin, Matthews, Phillips, Chorus (bib0023) 2016; 50 Teixeira de Oliveira, Rocha, Peret (bib0092) 2011; 71 Huisman, Codd, Paerl, Ibelings, Verspagen, Visser (bib0033) 2018; 16 Caraco, Miller (bib0011) 1998; 55 Batista, Giani (bib0003) 2019; 19 Ndlela, Oberholster, Van Wyk, Cheng (bib0056) 2016; 60 Izaguirre, Saad (bib0035) 2014; 65 Wagner, Adrian (bib0095) 2009; 54 Rubel, Kottek (bib0077) 2010; 19 Boretti, Rosa (bib0008) 2019; 2 Davies (bib0018) 1987; 74 Richardson, Miller, Maberly, Taylor, Globevnik, Hunter, Jeppesen, Mischke, Moe, Pasztaleniec, Søndergaard, Carvalho (bib0072) 2018; 24 Aubriot, Bonilla (bib101) 2018; 63 Bonilla, González-Piana, Soares, Huszar, Becker, Somma, Marinho, Kokociński, Dokulil, Antoniades, Aubriot (bib0007) 2016; 75 Ho, Michalak, Pahlevan (bib0031) 2019; 574 Munoz, Cirés, de Pedro, Á. Colina, Velásquez-Figueroa, Carmona-Jiménez, Caro-Borrero, Salazar, Santa María Fuster, Contreras, Perona, Quesada, Casas (bib0055) 2020 Rousso, Bertone, Stewart, Hamilton (bib0076) 2020; 182 Paerl, Huisman (bib0061) 2008; 320 Becker, Huszar, Crossetti (bib0006) 2009; 628 Huber, Wagner, Gerten, Adrian (bib0032) 2012; 169 O'Farrell, Motta, Forastier, Polla, Otaño, Meichtry, Devercelli, Lombardo (bib0058) 2019; 83 Abell, Özkundakci, Hamilton (bib0001) 2010; 13 Scheffer, Rinaldi, Gragnani, Mur, van Nes (bib0080) 1997; 78 Jeppesen, Søndergaard, Jensen, Havens, Anneville, Carvalho, Coveney, Deneke, Dokulil, Foy, Gerdeaux, Hampton, Hilt, Kangur, Köhler, Lammens, Lauridsen, Manca, Miracle, Moss, Nõges, Persson, Phillips, Portielje, Romo, Schelske, Straile, Tatrai, Willén, Winder (bib0039) 2005; 50 Lehner, Döll (bib0046) 2004; 296 Chorus, I., & M. Welker. 2021. Toxic Cyanobacteria in Water, 1st ed. I. Chorus and M. Welker [eds.]. CRC Press, on behalf of the World Health Organization, Geneva, CH. Shapiro (bib0085) 1984; 69 Smith, Wood, McBride, Atalah, Hamilton, Abell (bib0088) 2016; 6 Till.., Y., & Matei, A. (2012). Sampling: Survey Sampling. 2016. URL https://CRAN. R-project. org/package= sampling. R package version, 2, 163. n.d. Kosten, Huszar, Bécares, Costa, van Donk, Hansson, Jeppesen, Kruk, Lacerot, Mazzeo, De Meester, Moss, Lürling, Nõges, Romo, Scheffer (bib0043) 2012; 18 Chorus, Fastner, Welker (bib0016) 2021; 13 Muggeo (bib0054) 2003; 22 Giani, Taranu, von Rückert, Gregory-Eaves (bib0024) 2020; 97 Rejmánková, Komárek, Dix, Komárková, Girón (bib0070) 2011; 41 James, Havens, Zhu, Qin (bib0037) 2009; 627 Søndergaard, Lauridsen, Johansson, Jeppesen (bib0090) 2017; 795 Zhou, Leavitt, Zhang, Qin (bib0099) 2022; 221 Winder (bib0097) 2012; 2 Rodell, Famiglietti, Wiese, Reager, Beaudoing, Landerer, Lo (bib0075) 2018; 557 Glibert (bib0025) 2020; 91 Reynolds (bib0071) 2006 (bib0015) 2018 Ayala-Borda, Lovejoy, Power, Rautio (bib0002) 2021 Carvalho, Mcdonald, de Hoyos, Mischke, Phillips, Borics, Poikane, Skjelbred, Solheim, Van Wichelen, Cardoso (bib0013) 2013; 50 Ma, Qin, Paerl, Brookes, Hall, Shi, Zhou, Guo, Li, Xu, Wu, Long (bib0049) 2016; 61 Wang, Xiao, Wan, Zhou, Wang, Song, Zhou (bib102) 2018; 52 Latrubesse, Arima, Dunne, Park, Baker, d'Horta, Wight, Wittmann, Zuanon, Baker, Ribas (bib0045) 2017; 546 Zhu, Shi, Van Dam, Kong, Yu, Qin (bib0100) 2020; 54 Havens, Phlips, Cichra, Li (bib0030) 1998; 39 Peñuelas, Poulter, Sardans, Ciais, Van Der Velde, Bopp, Boucher, Godderis, Hinsinger, Llusia, Nardin, Vicca, Obersteiner, Janssens (bib0063) 2013; 4 Reichwaldt, Ghadouani (bib0068) 2011; 46 Soares, Marinho, Huszar, Branco, Azevedo (bib0089) 2008; 13 Schindler, Carpenter, Chapra, Hecky, Orihel (bib0082) 2016; 50 Phillips, Pietiläinen, Carvalho, Solimini, Solheim, Cardoso (bib0064) 2008; 42 Jeppesen (10.1016/j.hal.2022.102367_bib0038) 2014; 73 Krausfeldt (10.1016/j.hal.2022.102367_bib0044) 2019; 10 Zhu (10.1016/j.hal.2022.102367_bib0100) 2020; 54 Huisman (10.1016/j.hal.2022.102367_bib0033) 2018; 16 Ndlela (10.1016/j.hal.2022.102367_bib0056) 2016; 60 Castro Medeiros (10.1016/j.hal.2022.102367_bib0014) 2015; 49 Paerl (10.1016/j.hal.2022.102367_bib0060) 2016; 54 Rigosi (10.1016/j.hal.2022.102367_bib0073) 2014; 59 Davies (10.1016/j.hal.2022.102367_bib0018) 1987; 74 Richardson (10.1016/j.hal.2022.102367_bib0072) 2018; 24 Havens (10.1016/j.hal.2022.102367_bib0030) 1998; 39 Schindler (10.1016/j.hal.2022.102367_bib0083) 2008; 105 Scheffer (10.1016/j.hal.2022.102367_bib0080) 1997; 78 Downing (10.1016/j.hal.2022.102367_bib0021) 1992; 37 Rousso (10.1016/j.hal.2022.102367_bib0076) 2020; 182 Dolman (10.1016/j.hal.2022.102367_bib0020) 2012; 7 Jeppesen (10.1016/j.hal.2022.102367_bib0039) 2005; 50 Boretti (10.1016/j.hal.2022.102367_bib0008) 2019; 2 Harrison (10.1016/j.hal.2022.102367_bib0028) 2018; 2018 Phillips (10.1016/j.hal.2022.102367_bib0064) 2008; 42 Bonilla (10.1016/j.hal.2022.102367_bib0007) 2016; 75 Havens (10.1016/j.hal.2022.102367_bib0029) 2003; 122 Chorus (10.1016/j.hal.2022.102367_bib0016) 2021; 13 Izaguirre (10.1016/j.hal.2022.102367_bib0036) 2015; 752 Robarts (10.1016/j.hal.2022.102367_bib0074) 1987; 21 Carvalho (10.1016/j.hal.2022.102367_bib0013) 2013; 50 Yang (10.1016/j.hal.2022.102367_bib0098) 2016; 557-558 Davis (10.1016/j.hal.2022.102367_bib0019) 2006; 559 Caraco (10.1016/j.hal.2022.102367_bib0011) 1998; 55 Glibert (10.1016/j.hal.2022.102367_bib0026) 2014; 9 Reichwaldt (10.1016/j.hal.2022.102367_bib0068) 2011; 46 Newell (10.1016/j.hal.2022.102367_bib0057) 2019; 81 Scheffer (10.1016/j.hal.2022.102367_bib0078) 1998 (10.1016/j.hal.2022.102367_bib0015) 2018 Izaguirre (10.1016/j.hal.2022.102367_bib0035) 2014; 65 10.1016/j.hal.2022.102367_bib0017 O'Farrell (10.1016/j.hal.2022.102367_bib0058) 2019; 83 Søndergaard (10.1016/j.hal.2022.102367_bib0090) 2017; 795 Lürling (10.1016/j.hal.2022.102367_bib0048) 2013; 58 Raven (10.1016/j.hal.2022.102367_bib0067) 2020; 91 10.1016/j.hal.2022.102367_bib0093 Taranu (10.1016/j.hal.2022.102367_bib0091) 2015; 18 Molot (10.1016/j.hal.2022.102367_bib0052) 2021; 16 Ma (10.1016/j.hal.2022.102367_bib0049) 2016; 61 Reynolds (10.1016/j.hal.2022.102367_bib0071) 2006 Mowe (10.1016/j.hal.2022.102367_bib0053) 2015; 74 Kolzau (10.1016/j.hal.2022.102367_bib0041) 2014; 9 Rejmánková (10.1016/j.hal.2022.102367_bib0070) 2011; 41 Posch (10.1016/j.hal.2022.102367_bib0065) 2012; 2 Schindler (10.1016/j.hal.2022.102367_bib0084) 1974; 31 Beaulieu (10.1016/j.hal.2022.102367_bib0004) 2013; 58 Downing (10.1016/j.hal.2022.102367_bib0022) 2001; 58 McClain (10.1016/j.hal.2022.102367_bib0050) 2008; 58 Przytulska (10.1016/j.hal.2022.102367_bib0066) 2017; 62 Shapiro (10.1016/j.hal.2022.102367_bib0085) 1984; 69 Aubriot (10.1016/j.hal.2022.102367_bib101) 2018; 63 Fastner (10.1016/j.hal.2022.102367_bib0023) 2016; 50 Konopka (10.1016/j.hal.2022.102367_bib0042) 1978; 36 Becker (10.1016/j.hal.2022.102367_bib0006) 2009; 628 Oki (10.1016/j.hal.2022.102367_bib0059) 2006; 313 Glibert (10.1016/j.hal.2022.102367_bib0025) 2020; 91 Vollenweider (10.1016/j.hal.2022.102367_bib0094) 1982 Rubel (10.1016/j.hal.2022.102367_bib0077) 2010; 19 Reinl (10.1016/j.hal.2022.102367_bib0069) 2021; 66 (10.1016/j.hal.2022.102367_bib0034) 2019 Carlson (10.1016/j.hal.2022.102367_bib0012) 1977; 22 Zhou (10.1016/j.hal.2022.102367_bib0099) 2022; 221 Schindler (10.1016/j.hal.2022.102367_bib0081) 1977; 195 Bullerjahn (10.1016/j.hal.2022.102367_bib0010) 2016; 54 Munoz (10.1016/j.hal.2022.102367_bib0055) 2020 Loewen (10.1016/j.hal.2022.102367_bib0047) 2020; 30 Mellios (10.1016/j.hal.2022.102367_bib0051) 2020; 12 Ho (10.1016/j.hal.2022.102367_bib0031) 2019; 574 Abell (10.1016/j.hal.2022.102367_bib0001) 2010; 13 Teixeira de Oliveira (10.1016/j.hal.2022.102367_bib0092) 2011; 71 Paerl (10.1016/j.hal.2022.102367_bib0061) 2008; 320 James (10.1016/j.hal.2022.102367_bib0037) 2009; 627 Wilson (10.1016/j.hal.2022.102367_bib0096) 1992; 23 Muggeo (10.1016/j.hal.2022.102367_bib0054) 2003; 22 Gobler (10.1016/j.hal.2022.102367_bib0027) 2016; 54 Lehner (10.1016/j.hal.2022.102367_bib0046) 2004; 296 Paerl (10.1016/j.hal.2022.102367_bib0062) 2016; 50 Wagner (10.1016/j.hal.2022.102367_bib0095) 2009; 54 Huber (10.1016/j.hal.2022.102367_bib0032) 2012; 169 Scheffer (10.1016/j.hal.2022.102367_bib0079) 1993; 8 Winder (10.1016/j.hal.2022.102367_bib0097) 2012; 2 Kosten (10.1016/j.hal.2022.102367_bib0043) 2012; 18 Ayala-Borda (10.1016/j.hal.2022.102367_bib0002) 2021 Soares (10.1016/j.hal.2022.102367_bib0089) 2008; 13 Smith (10.1016/j.hal.2022.102367_bib0087) 1983; 221 Batista (10.1016/j.hal.2022.102367_bib0003) 2019; 19 Giani (10.1016/j.hal.2022.102367_bib0024) 2020; 97 Latrubesse (10.1016/j.hal.2022.102367_bib0045) 2017; 546 Brasil (10.1016/j.hal.2022.102367_bib0009) 2016; 770 Beaulieu (10.1016/j.hal.2022.102367_bib0005) 2014; 71 Sivarajah (10.1016/j.hal.2022.102367_bib0086) 2021; 105 Peñuelas (10.1016/j.hal.2022.102367_bib0063) 2013; 4 Schindler (10.1016/j.hal.2022.102367_bib0082) 2016; 50 Wang (10.1016/j.hal.2022.102367_bib102) 2018; 52 Smith (10.1016/j.hal.2022.102367_bib0088) 2016; 6 Jöhnk (10.1016/j.hal.2022.102367_bib0040) 2008; 14 Rodell (10.1016/j.hal.2022.102367_bib0075) 2018; 557 |
References_xml | – volume: 52 start-page: 5653 year: 2018 end-page: 5661 ident: bib102 article-title: Mutual dependence of nitrogen and phosphorus as key nutrient elements: One facilitates Dolichospermum flos-aquae to overcome the limitations of the other publication-title: Environ. Sci. Technol. – volume: 182 year: 2020 ident: bib0076 article-title: A systematic literature review of forecasting and predictive models for Cyanobacteria blooms in freshwater lakes publication-title: Water Res. – start-page: 761 year: 2020 ident: bib0055 article-title: Overview of toxic Cyanobacteria and cyanotoxins in Ibero-American freshwaters: challenges for risk management and opportunities for removal by advanced technologies publication-title: Sci. Total Environ. – volume: 627 start-page: 211 year: 2009 end-page: 231 ident: bib0037 article-title: Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P.R. China and Lake Okeechobee, USA) publication-title: Hydrobiologia – volume: 50 start-page: 1747 year: 2005 end-page: 1771 ident: bib0039 article-title: Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies publication-title: Freshw. Biol. – volume: 66 start-page: 1846 year: 2021 end-page: 1859 ident: bib0069 article-title: Cyanobacterial blooms in oligotrophic lakes: shifting the high-nutrient paradigm publication-title: Freshw. Biol. – volume: 39 start-page: 547 year: 1998 end-page: 556 ident: bib0030 article-title: Light availability as a possible regulator of Cyanobacteria species composition in a shallow subtropical lake publication-title: Freshw. Biol. – volume: 54 start-page: 87 year: 2016 end-page: 97 ident: bib0027 article-title: The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms publication-title: Harmful Algae – volume: 557 start-page: 651 year: 2018 end-page: 659 ident: bib0075 article-title: Emerging trends in global freshwater availability publication-title: Nature – volume: 7 year: 2012 ident: bib0020 article-title: Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus publication-title: PLoS ONE – volume: 75 year: 2016 ident: bib0007 article-title: The success of the cyanobacterium publication-title: J. Limnol. – year: 2006 ident: bib0071 article-title: The Ecology of Phytoplankton – reference: Chorus, I., & M. Welker. 2021. Toxic Cyanobacteria in Water, 1st ed. I. Chorus and M. Welker [eds.]. CRC Press, on behalf of the World Health Organization, Geneva, CH. – volume: 54 start-page: 213 year: 2016 end-page: 222 ident: bib0060 article-title: Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients publication-title: Harmful Algae – volume: 169 start-page: 245 year: 2012 end-page: 256 ident: bib0032 article-title: To bloom or not to bloom: contrasting responses of Cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers publication-title: Oecologia – volume: 19 start-page: 566 year: 2019 end-page: 576 ident: bib0003 article-title: Spatiotemporal variability of cyanobacterial community in a Brazilian oligomesotrophic reservoir: the picocyanobacterial dominance publication-title: Ecohydrol. Hydrobiol. – year: 1982 ident: bib0094 article-title: Eutrophication of Waters, Monitoring, Assessment and Control – volume: 97 year: 2020 ident: bib0024 article-title: Comparing key drivers of Cyanobacteria biomass in temperate and tropical systems publication-title: Harmful Algae – volume: 74 start-page: 33 year: 1987 end-page: 43 ident: bib0018 article-title: Hypothesis testing when a nuisance parameter is present only under the alternative publication-title: Biometrika – volume: 559 start-page: 23 year: 2006 end-page: 76 ident: bib0019 article-title: Eutrophication in Australian rivers, reservoirs and estuaries – a southern hemisphere perspective on the science and its implications publication-title: Hydrobiologia – volume: 19 start-page: 135 year: 2010 end-page: 141 ident: bib0077 article-title: Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification publication-title: Meteorol. Zeitschrift – volume: 8 start-page: 275 year: 1993 end-page: 279 ident: bib0079 article-title: Alternative equilibria in shallow lakes publication-title: TREE – volume: 41 start-page: 296 year: 2011 end-page: 302 ident: bib0070 article-title: Cyanobacterial blooms in lake Atitlan, Guatemala publication-title: Limnologica. – volume: 71 start-page: 587 year: 2011 end-page: 600 ident: bib0092 article-title: Structure of the phytoplankton community in the Cachoeira Dourada reservoir (GO/MG) publication-title: Brazil. Brazilian J. Biol. – volume: 23 start-page: 263 year: 1992 end-page: 336 ident: bib0096 article-title: Positive-feedback switches in plant communities publication-title: Adv. Ecol. Res. – volume: 60 start-page: 11 year: 2016 end-page: 26 ident: bib0056 article-title: An overview of cyanobacterial bloom occurrences and research in Africa over the last decade publication-title: Harmful Algae – volume: 9 year: 2014 ident: bib0026 article-title: The Haber Bosch-harmful algal bloom (HB-HAB) link publication-title: Environ. Res. Lett. – volume: 752 start-page: 47 year: 2015 end-page: 64 ident: bib0036 article-title: Which environmental factors trigger the dominance of phytoplankton species across a moisture gradient of shallow lakes? publication-title: Hydrobiologia – volume: 13 start-page: 1 year: 2021 end-page: 41 ident: bib0016 article-title: Cyanobacteria and cyanotoxins in a changing environment: concepts, controversies, challenges publication-title: Water – volume: 9 year: 2014 ident: bib0041 article-title: Seasonal patterns of nitrogen and phosphorus limitation in four German Lakes and the predictability of limitation status from ambient nutrient concentrations publication-title: PLoS ONE – year: 1998 ident: bib0078 article-title: Ecology of Shallow Lakes – volume: 628 start-page: 137 year: 2009 end-page: 151 ident: bib0006 article-title: Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir publication-title: Hydrobiologia – volume: 50 start-page: 367 year: 2016 end-page: 383 ident: bib0023 article-title: Combating cyanobacterial proliferation by avoiding or treating inflows with high P load—experiences from eight case studies publication-title: Aquat. Ecol. – volume: 18 start-page: 375 year: 2015 end-page: 384 ident: bib0091 article-title: Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene publication-title: Ecol. Lett. – volume: 50 start-page: 10805 year: 2016 end-page: 10813 ident: bib0062 article-title: It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems publication-title: Environ. Sci. Technol. – volume: 63 start-page: 318 year: 2018 end-page: 329 ident: bib101 article-title: Regulation of phosphate uptake reveals cyanobacterial bloom resilience to shifting N: P ratios publication-title: Freshw. Biol. – volume: 2 year: 2019 ident: bib0008 article-title: Reassessing the projections of the world water development report publication-title: npj Clean Water – volume: 221 start-page: 669 year: 1983 end-page: 671 ident: bib0087 article-title: Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton publication-title: Science – volume: 21 start-page: 391 year: 1987 end-page: 399 ident: bib0074 article-title: Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming Cyanobacteria publication-title: New Zeal. J. Mar. Freshw. Res. – volume: 320 start-page: 57 year: 2008 end-page: 58 ident: bib0061 article-title: Blooms like it hot publication-title: Science – year: 2018 ident: bib0015 article-title: Gridded Population of the World, Version 3 (GPWv3): Population Count Grid – volume: 91 year: 2020 ident: bib0025 article-title: Harmful algae at the complex nexus of eutrophication and climate change publication-title: Harmful Algae – volume: 18 start-page: 118 year: 2012 end-page: 126 ident: bib0043 article-title: Warmer climates boost cyanobacterial dominance in shallow lakes publication-title: Glob. Chang. Biol. – year: 2021 ident: bib0002 article-title: Evidence of eutrophication in Arctic lakes publication-title: Arct. Sci. – volume: 54 start-page: 2460 year: 2009 end-page: 2468 ident: bib0095 article-title: Cyanobacteria dominance: quantifying the effects of climate change publication-title: Limnol. Oceanogr. – volume: 296 start-page: 1 year: 2004 end-page: 22 ident: bib0046 article-title: Development and validation of a global database of lakes, reservoirs and wetlands publication-title: J. Hydrol. – volume: 12 year: 2020 ident: bib0051 article-title: Machine learning approaches for predicting health risk of cyanobacterial blooms in Northern European Lakes publication-title: Water – volume: 58 start-page: 325 year: 2008 end-page: 338 ident: bib0050 article-title: Andean influences on the biogeochemistry and ecology of the Amazon River publication-title: Bioscience – volume: 2018 start-page: 1 year: 2018 end-page: 32 ident: bib0028 article-title: A brief introduction to mixed effects modelling and multi-model inference in ecology publication-title: PeerJ – volume: 36 start-page: 572 year: 1978 end-page: 576 ident: bib0042 article-title: Effect of temperature on blue-green algae (Cyanobacteria) in Lake Mendota publication-title: Appl. Environ. Microbiol. – volume: 50 start-page: 315 year: 2013 end-page: 323 ident: bib0013 article-title: Sustaining recreational quality of European lakes: minimizing the health risks from algal blooms through phosphorus control publication-title: J. Appl. Ecol. – volume: 795 start-page: 35 year: 2017 end-page: 48 ident: bib0090 article-title: Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover publication-title: Hydrobiologia – volume: 6 start-page: 273 year: 2016 end-page: 283 ident: bib0088 article-title: Phosphorus and nitrogen loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand publication-title: Inl. Waters – volume: 54 start-page: 223 year: 2016 end-page: 238 ident: bib0010 article-title: Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study publication-title: Harmful Algae – volume: 58 start-page: 1905 year: 2001 end-page: 1908 ident: bib0022 article-title: Predicting Cyanobacteria dominance in lakes publication-title: Can. J. Fish. Aquat. Sci. – volume: 62 start-page: 1986 year: 2017 end-page: 1996 ident: bib0066 article-title: Increased risk of cyanobacterial blooms in northern high-latitude lakes through climate warming and phosphorus enrichment publication-title: Freshw. Biol. – volume: 195 start-page: 260 year: 1977 end-page: 262 ident: bib0081 article-title: Evolution of phosphorus limitation in lakes publication-title: Science – volume: 65 start-page: 309 year: 2014 end-page: 319 ident: bib0035 article-title: Phytoplankton from natural water bodies of the Patagonian Plateau publication-title: Adv. Limnol. – volume: 13 start-page: 257 year: 2008 end-page: 269 ident: bib0089 article-title: The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil publication-title: Lakes Reserv. Res. Manag. – volume: 2 start-page: 771 year: 2012 end-page: 772 ident: bib0097 article-title: Lake warming mimics fertilization publication-title: Nat. Clim. Chang. – volume: 105 year: 2021 ident: bib0086 article-title: Eutrophication and climatic changes lead to unprecedented cyanobacterial blooms in a Canadian sub-Arctic landscape publication-title: Harmful Algae – volume: 557-558 start-page: 445 year: 2016 end-page: 452 ident: bib0098 article-title: Decline in water level boosts Cyanobacteria dominance in subtropical reservoirs publication-title: Sci. Total Environ. – volume: 81 start-page: 86 year: 2019 end-page: 93 ident: bib0057 article-title: Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie publication-title: Harmful Algae – volume: 46 start-page: 1372 year: 2011 end-page: 1393 ident: bib0068 article-title: Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate : between simplistic scenarios and complex dynamics publication-title: Water Res. – volume: 37 start-page: 936 year: 1992 end-page: 945 ident: bib0021 article-title: The nitrogen : phosphorus relationship in lakes publication-title: Limnol. Oceanogr. – reference: Till.., Y., & Matei, A. (2012). Sampling: Survey Sampling. 2016. URL https://CRAN. R-project. org/package= sampling. R package version, 2, 163. n.d. – volume: 16 start-page: 471 year: 2018 end-page: 483 ident: bib0033 article-title: Cyanobacterial blooms publication-title: Nat. Rev. Microbiol. – volume: 71 start-page: 1830 year: 2014 end-page: 1839 ident: bib0005 article-title: Comparing predictive cyanobacterial models from temperate regions publication-title: Can. J. Fish. Aquat. Sci. – volume: 30 start-page: 1 year: 2020 end-page: 15 ident: bib0047 article-title: Multiscale drivers of phytoplankton communities in north-temperate lakes publication-title: Ecol. Appl. – volume: 14 start-page: 495 year: 2008 end-page: 512 ident: bib0040 article-title: Summer heatwaves promote blooms of harmful Cyanobacteria publication-title: Glob. Chang. Biol. – volume: 24 start-page: 5044 year: 2018 end-page: 5055 ident: bib0072 article-title: Effects of multiple stressors on Cyanobacteria abundance vary with lake type publication-title: Glob. Chang. Biol. – volume: 574 start-page: 667 year: 2019 end-page: 670 ident: bib0031 article-title: Widespread global increase in intense lake phytoplankton blooms since the 1980s publication-title: Nature – volume: 2 start-page: 809 year: 2012 end-page: 813 ident: bib0065 article-title: Harmful filamentous Cyanobacteria favoured by reduced water turnover with lake warming publication-title: Nat. Clim. Chang. – volume: 58 start-page: 552 year: 2013 end-page: 559 ident: bib0048 article-title: Comparison of cyanobacterial and green algal growth rates at different temperatures publication-title: Freshw. Biol. – volume: 55 start-page: 54 year: 1998 end-page: 62 ident: bib0011 article-title: Effects of CO publication-title: Can. J. Fish. Aquat. Sci. – volume: 69 start-page: 765 year: 1984 end-page: 780 ident: bib0085 article-title: Blue-green dominance in Lakes: the role and management significance of pH and CO2 publication-title: Int. Rev. der Gesamten Hydrobiol. Hydrogr. – volume: 313 start-page: 1068 year: 2006 end-page: 1072 ident: bib0059 article-title: Global hydrological cycles and world water resources publication-title: Science – volume: 122 start-page: 379 year: 2003 end-page: 390 ident: bib0029 article-title: N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution publication-title: Environ. Pollut. – volume: 4 year: 2013 ident: bib0063 article-title: Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe publication-title: Nat. Commun. – volume: 770 start-page: 145 year: 2016 end-page: 164 ident: bib0009 article-title: Drought-induced water-level reduction favors Cyanobacteria blooms in tropical shallow lakes publication-title: Hydrobiologia – volume: 546 start-page: 363 year: 2017 end-page: 369 ident: bib0045 article-title: Damming the rivers of the Amazon basin publication-title: Nature – volume: 13 start-page: 966 year: 2010 end-page: 977 ident: bib0001 article-title: Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control publication-title: Ecosystems – volume: 50 start-page: 8923 year: 2016 end-page: 8929 ident: bib0082 article-title: Reducing phosphorus to curb lake eutrophication is a success publication-title: Environ. Sci. Technol. – volume: 42 start-page: 213 year: 2008 end-page: 226 ident: bib0064 article-title: Chlorophyll-nutrient relationships of different lake types using a large European dataset publication-title: Aquat. Ecol. – volume: 105 start-page: 11254 year: 2008 end-page: 11258 ident: bib0083 article-title: Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 22 start-page: 361 year: 1977 end-page: 369 ident: bib0012 article-title: A trophic state index for lakes publication-title: Limnol. Oceanogr. – volume: 78 start-page: 272 year: 1997 end-page: 282 ident: bib0080 article-title: On the dominance of filamentous Cyanobacteria in shallow, turbid lakes publication-title: Ecology – volume: 74 start-page: 205 year: 2015 end-page: 224 ident: bib0053 article-title: Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors publication-title: J. Limnol. – volume: 49 start-page: 293 year: 2015 end-page: 307 ident: bib0014 article-title: Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake publication-title: Aquat. Ecol. – volume: 59 start-page: 99 year: 2014 end-page: 114 ident: bib0073 article-title: The interaction between climate warming and eutrophication to promote Cyanobacteria is dependent on trophic state and varies among taxa publication-title: Limnol. Oceanogr. – volume: 83 start-page: 1 year: 2019 end-page: 13 ident: bib0058 article-title: Ecological meta-analysis of bloom-forming planktonic Cyanobacteria in Argentina publication-title: Harmful Algae – volume: 58 start-page: 1736 year: 2013 end-page: 1746 ident: bib0004 article-title: Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set publication-title: Limnol. Oceanogr. – volume: 16 year: 2021 ident: bib0052 article-title: Phosphorus-only fertilization rapidly initiates large nitrogen-fixing Cyanobacteria blooms in two oligotrophic lakes publication-title: Environ. Res. Lett. – volume: 221 year: 2022 ident: bib0099 article-title: Anthropogenic eutrophication of shallow lakes: is it occasional? publication-title: Water Res. – volume: 61 start-page: 711 year: 2016 end-page: 722 ident: bib0049 article-title: The persistence of cyanobacterial ( publication-title: China. Limnol. Oceanogr. – volume: 31 start-page: 647 year: 1974 end-page: 662 ident: bib0084 article-title: Eutrophication in the high arctic: Meretta Lake, Cornwallis Island (75 N lat) publication-title: J. Fish. Board Canada – volume: 54 start-page: 6194 year: 2020 end-page: 6201 ident: bib0100 article-title: Algal accumulation decreases sediment nitrogen removal by uncoupling nitrification-denitrification in shallow eutrophic lakes publication-title: Environ. Sci. Technol. – year: 2019 ident: bib0034 publication-title: Water Quality in the Americas. Risks and Opportunities – volume: 73 start-page: 88 year: 2014 end-page: 111 ident: bib0038 article-title: Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes publication-title: J. Limnol. – volume: 10 start-page: 1 year: 2019 end-page: 12 ident: bib0044 article-title: Urea is both a carbon and nitrogen source for Microcystis aeruginosa: tracking 13C incorporation at bloom pH conditions publication-title: Front. Microbiol. – volume: 22 start-page: 3055 year: 2003 end-page: 3071 ident: bib0054 article-title: Estimating regression models with unknown break-points publication-title: Stat. Med. – volume: 91 year: 2020 ident: bib0067 article-title: Dynamic CO publication-title: Harmful Algae – volume: 19 start-page: 566 year: 2019 ident: 10.1016/j.hal.2022.102367_bib0003 article-title: Spatiotemporal variability of cyanobacterial community in a Brazilian oligomesotrophic reservoir: the picocyanobacterial dominance publication-title: Ecohydrol. Hydrobiol. doi: 10.1016/j.ecohyd.2019.03.002 – volume: 61 start-page: 711 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0049 article-title: The persistence of cyanobacterial (Microcystis spp.) blooms throughout winter in Lake Taihu publication-title: China. Limnol. Oceanogr. doi: 10.1002/lno.10246 – volume: 8 start-page: 275 year: 1993 ident: 10.1016/j.hal.2022.102367_bib0079 article-title: Alternative equilibria in shallow lakes publication-title: TREE – volume: 105 start-page: 11254 year: 2008 ident: 10.1016/j.hal.2022.102367_bib0083 article-title: Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0805108105 – volume: 18 start-page: 118 year: 2012 ident: 10.1016/j.hal.2022.102367_bib0043 article-title: Warmer climates boost cyanobacterial dominance in shallow lakes publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2011.02488.x – volume: 36 start-page: 572 year: 1978 ident: 10.1016/j.hal.2022.102367_bib0042 article-title: Effect of temperature on blue-green algae (Cyanobacteria) in Lake Mendota publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.36.4.572-576.1978 – volume: 78 start-page: 272 year: 1997 ident: 10.1016/j.hal.2022.102367_bib0080 article-title: On the dominance of filamentous Cyanobacteria in shallow, turbid lakes publication-title: Ecology doi: 10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2 – volume: 628 start-page: 137 year: 2009 ident: 10.1016/j.hal.2022.102367_bib0006 article-title: Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir publication-title: Hydrobiologia doi: 10.1007/s10750-009-9751-7 – volume: 14 start-page: 495 year: 2008 ident: 10.1016/j.hal.2022.102367_bib0040 article-title: Summer heatwaves promote blooms of harmful Cyanobacteria publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2007.01510.x – year: 2021 ident: 10.1016/j.hal.2022.102367_bib0002 article-title: Evidence of eutrophication in Arctic lakes publication-title: Arct. Sci. doi: 10.1139/as-2020-0033 – volume: 91 year: 2020 ident: 10.1016/j.hal.2022.102367_bib0067 article-title: Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: theoretical and observed effects on harmful algal blooms publication-title: Harmful Algae doi: 10.1016/j.hal.2019.03.012 – volume: 58 start-page: 1736 year: 2013 ident: 10.1016/j.hal.2022.102367_bib0004 article-title: Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2013.58.5.1736 – volume: 42 start-page: 213 year: 2008 ident: 10.1016/j.hal.2022.102367_bib0064 article-title: Chlorophyll-nutrient relationships of different lake types using a large European dataset publication-title: Aquat. Ecol. doi: 10.1007/s10452-008-9180-0 – volume: 69 start-page: 765 year: 1984 ident: 10.1016/j.hal.2022.102367_bib0085 article-title: Blue-green dominance in Lakes: the role and management significance of pH and CO2 publication-title: Int. Rev. der Gesamten Hydrobiol. Hydrogr. doi: 10.1002/iroh.19840690602 – volume: 13 start-page: 257 year: 2008 ident: 10.1016/j.hal.2022.102367_bib0089 article-title: The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil publication-title: Lakes Reserv. Res. Manag. doi: 10.1111/j.1440-1770.2008.00379.x – volume: 559 start-page: 23 year: 2006 ident: 10.1016/j.hal.2022.102367_bib0019 article-title: Eutrophication in Australian rivers, reservoirs and estuaries – a southern hemisphere perspective on the science and its implications publication-title: Hydrobiologia doi: 10.1007/s10750-005-4429-2 – volume: 58 start-page: 1905 year: 2001 ident: 10.1016/j.hal.2022.102367_bib0022 article-title: Predicting Cyanobacteria dominance in lakes publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f01-143 – volume: 50 start-page: 1747 year: 2005 ident: 10.1016/j.hal.2022.102367_bib0039 article-title: Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies publication-title: Freshw. Biol. doi: 10.1111/j.1365-2427.2005.01415.x – volume: 54 start-page: 6194 year: 2020 ident: 10.1016/j.hal.2022.102367_bib0100 article-title: Algal accumulation decreases sediment nitrogen removal by uncoupling nitrification-denitrification in shallow eutrophic lakes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05549 – volume: 627 start-page: 211 year: 2009 ident: 10.1016/j.hal.2022.102367_bib0037 article-title: Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P.R. China and Lake Okeechobee, USA) publication-title: Hydrobiologia doi: 10.1007/s10750-009-9729-5 – volume: 23 start-page: 263 year: 1992 ident: 10.1016/j.hal.2022.102367_bib0096 article-title: Positive-feedback switches in plant communities publication-title: Adv. Ecol. Res. doi: 10.1016/S0065-2504(08)60149-X – year: 2006 ident: 10.1016/j.hal.2022.102367_bib0071 – start-page: 761 year: 2020 ident: 10.1016/j.hal.2022.102367_bib0055 article-title: Overview of toxic Cyanobacteria and cyanotoxins in Ibero-American freshwaters: challenges for risk management and opportunities for removal by advanced technologies publication-title: Sci. Total Environ. – volume: 46 start-page: 1372 year: 2011 ident: 10.1016/j.hal.2022.102367_bib0068 article-title: Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate : between simplistic scenarios and complex dynamics publication-title: Water Res. doi: 10.1016/j.watres.2011.11.052 – volume: 74 start-page: 33 year: 1987 ident: 10.1016/j.hal.2022.102367_bib0018 article-title: Hypothesis testing when a nuisance parameter is present only under the alternative publication-title: Biometrika – volume: 24 start-page: 5044 year: 2018 ident: 10.1016/j.hal.2022.102367_bib0072 article-title: Effects of multiple stressors on Cyanobacteria abundance vary with lake type publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14396 – volume: 50 start-page: 367 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0023 article-title: Combating cyanobacterial proliferation by avoiding or treating inflows with high P load—experiences from eight case studies publication-title: Aquat. Ecol. doi: 10.1007/s10452-015-9558-8 – volume: 2 start-page: 809 year: 2012 ident: 10.1016/j.hal.2022.102367_bib0065 article-title: Harmful filamentous Cyanobacteria favoured by reduced water turnover with lake warming publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1581 – volume: 16 year: 2021 ident: 10.1016/j.hal.2022.102367_bib0052 article-title: Phosphorus-only fertilization rapidly initiates large nitrogen-fixing Cyanobacteria blooms in two oligotrophic lakes publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac0564 – volume: 19 start-page: 135 year: 2010 ident: 10.1016/j.hal.2022.102367_bib0077 article-title: Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification publication-title: Meteorol. Zeitschrift doi: 10.1127/0941-2948/2010/0430 – volume: 21 start-page: 391 year: 1987 ident: 10.1016/j.hal.2022.102367_bib0074 article-title: Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming Cyanobacteria publication-title: New Zeal. J. Mar. Freshw. Res. doi: 10.1080/00288330.1987.9516235 – volume: 9 year: 2014 ident: 10.1016/j.hal.2022.102367_bib0026 article-title: The Haber Bosch-harmful algal bloom (HB-HAB) link publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/10/105001 – volume: 2 year: 2019 ident: 10.1016/j.hal.2022.102367_bib0008 article-title: Reassessing the projections of the world water development report publication-title: npj Clean Water doi: 10.1038/s41545-019-0039-9 – volume: 296 start-page: 1 year: 2004 ident: 10.1016/j.hal.2022.102367_bib0046 article-title: Development and validation of a global database of lakes, reservoirs and wetlands publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.03.028 – volume: 59 start-page: 99 year: 2014 ident: 10.1016/j.hal.2022.102367_bib0073 article-title: The interaction between climate warming and eutrophication to promote Cyanobacteria is dependent on trophic state and varies among taxa publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2014.59.1.0099 – volume: 41 start-page: 296 year: 2011 ident: 10.1016/j.hal.2022.102367_bib0070 article-title: Cyanobacterial blooms in lake Atitlan, Guatemala publication-title: Limnologica. doi: 10.1016/j.limno.2010.12.003 – volume: 50 start-page: 8923 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0082 article-title: Reducing phosphorus to curb lake eutrophication is a success publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02204 – volume: 65 start-page: 309 year: 2014 ident: 10.1016/j.hal.2022.102367_bib0035 article-title: Phytoplankton from natural water bodies of the Patagonian Plateau publication-title: Adv. Limnol. doi: 10.1127/1612-166X/2014/0065-0048 – volume: 39 start-page: 547 year: 1998 ident: 10.1016/j.hal.2022.102367_bib0030 article-title: Light availability as a possible regulator of Cyanobacteria species composition in a shallow subtropical lake publication-title: Freshw. Biol. doi: 10.1046/j.1365-2427.1998.00308.x – volume: 770 start-page: 145 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0009 article-title: Drought-induced water-level reduction favors Cyanobacteria blooms in tropical shallow lakes publication-title: Hydrobiologia doi: 10.1007/s10750-015-2578-5 – volume: 71 start-page: 587 year: 2011 ident: 10.1016/j.hal.2022.102367_bib0092 article-title: Structure of the phytoplankton community in the Cachoeira Dourada reservoir (GO/MG) publication-title: Brazil. Brazilian J. Biol. doi: 10.1590/S1519-69842011000400003 – volume: 313 start-page: 1068 year: 2006 ident: 10.1016/j.hal.2022.102367_bib0059 article-title: Global hydrological cycles and world water resources publication-title: Science doi: 10.1126/science.1128845 – volume: 58 start-page: 552 year: 2013 ident: 10.1016/j.hal.2022.102367_bib0048 article-title: Comparison of cyanobacterial and green algal growth rates at different temperatures publication-title: Freshw. Biol. doi: 10.1111/j.1365-2427.2012.02866.x – volume: 71 start-page: 1830 year: 2014 ident: 10.1016/j.hal.2022.102367_bib0005 article-title: Comparing predictive cyanobacterial models from temperate regions publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/cjfas-2014-0168 – volume: 122 start-page: 379 year: 2003 ident: 10.1016/j.hal.2022.102367_bib0029 article-title: N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(02)00304-4 – volume: 752 start-page: 47 year: 2015 ident: 10.1016/j.hal.2022.102367_bib0036 article-title: Which environmental factors trigger the dominance of phytoplankton species across a moisture gradient of shallow lakes? publication-title: Hydrobiologia doi: 10.1007/s10750-014-2007-1 – volume: 83 start-page: 1 year: 2019 ident: 10.1016/j.hal.2022.102367_bib0058 article-title: Ecological meta-analysis of bloom-forming planktonic Cyanobacteria in Argentina publication-title: Harmful Algae doi: 10.1016/j.hal.2019.01.004 – volume: 73 start-page: 88 year: 2014 ident: 10.1016/j.hal.2022.102367_bib0038 article-title: Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes publication-title: J. Limnol. doi: 10.4081/jlimnol.2014.844 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.hal.2022.102367_bib0044 article-title: Urea is both a carbon and nitrogen source for Microcystis aeruginosa: tracking 13C incorporation at bloom pH conditions publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01064 – volume: 557-558 start-page: 445 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0098 article-title: Decline in water level boosts Cyanobacteria dominance in subtropical reservoirs publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.03.094 – volume: 182 year: 2020 ident: 10.1016/j.hal.2022.102367_bib0076 article-title: A systematic literature review of forecasting and predictive models for Cyanobacteria blooms in freshwater lakes publication-title: Water Res. doi: 10.1016/j.watres.2020.115959 – volume: 221 year: 2022 ident: 10.1016/j.hal.2022.102367_bib0099 article-title: Anthropogenic eutrophication of shallow lakes: is it occasional? publication-title: Water Res. doi: 10.1016/j.watres.2022.118728 – volume: 22 start-page: 361 year: 1977 ident: 10.1016/j.hal.2022.102367_bib0012 article-title: A trophic state index for lakes publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1977.22.2.0361 – volume: 6 start-page: 273 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0088 article-title: Phosphorus and nitrogen loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand publication-title: Inl. Waters doi: 10.5268/IW-6.2.998 – volume: 574 start-page: 667 year: 2019 ident: 10.1016/j.hal.2022.102367_bib0031 article-title: Widespread global increase in intense lake phytoplankton blooms since the 1980s publication-title: Nature doi: 10.1038/s41586-019-1648-7 – volume: 105 year: 2021 ident: 10.1016/j.hal.2022.102367_bib0086 article-title: Eutrophication and climatic changes lead to unprecedented cyanobacterial blooms in a Canadian sub-Arctic landscape publication-title: Harmful Algae doi: 10.1016/j.hal.2021.102036 – volume: 74 start-page: 205 year: 2015 ident: 10.1016/j.hal.2022.102367_bib0053 article-title: Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors publication-title: J. Limnol. – volume: 13 start-page: 966 year: 2010 ident: 10.1016/j.hal.2022.102367_bib0001 article-title: Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control publication-title: Ecosystems doi: 10.1007/s10021-010-9367-9 – volume: 75 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0007 article-title: The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature publication-title: J. Limnol. – volume: 55 start-page: 54 year: 1998 ident: 10.1016/j.hal.2022.102367_bib0011 article-title: Effects of CO2 on competition between a cyanobacterium and eukaryotic phytoplankton publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/f97-202 – year: 1998 ident: 10.1016/j.hal.2022.102367_bib0078 – volume: 18 start-page: 375 year: 2015 ident: 10.1016/j.hal.2022.102367_bib0091 article-title: Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene publication-title: Ecol. Lett. doi: 10.1111/ele.12420 – year: 2018 ident: 10.1016/j.hal.2022.102367_bib0015 – volume: 195 start-page: 260 year: 1977 ident: 10.1016/j.hal.2022.102367_bib0081 article-title: Evolution of phosphorus limitation in lakes publication-title: Science doi: 10.1126/science.195.4275.260 – volume: 49 start-page: 293 year: 2015 ident: 10.1016/j.hal.2022.102367_bib0014 article-title: Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake publication-title: Aquat. Ecol. doi: 10.1007/s10452-015-9524-5 – volume: 81 start-page: 86 year: 2019 ident: 10.1016/j.hal.2022.102367_bib0057 article-title: Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie publication-title: Harmful Algae doi: 10.1016/j.hal.2018.11.003 – volume: 37 start-page: 936 year: 1992 ident: 10.1016/j.hal.2022.102367_bib0021 article-title: The nitrogen : phosphorus relationship in lakes publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1992.37.5.0936 – volume: 12 year: 2020 ident: 10.1016/j.hal.2022.102367_bib0051 article-title: Machine learning approaches for predicting health risk of cyanobacterial blooms in Northern European Lakes publication-title: Water doi: 10.3390/w12041191 – volume: 22 start-page: 3055 year: 2003 ident: 10.1016/j.hal.2022.102367_bib0054 article-title: Estimating regression models with unknown break-points publication-title: Stat. Med. doi: 10.1002/sim.1545 – volume: 97 year: 2020 ident: 10.1016/j.hal.2022.102367_bib0024 article-title: Comparing key drivers of Cyanobacteria biomass in temperate and tropical systems publication-title: Harmful Algae doi: 10.1016/j.hal.2020.101859 – volume: 54 start-page: 87 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0027 article-title: The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms publication-title: Harmful Algae doi: 10.1016/j.hal.2016.01.010 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.hal.2022.102367_bib0028 article-title: A brief introduction to mixed effects modelling and multi-model inference in ecology publication-title: PeerJ – volume: 320 start-page: 57 year: 2008 ident: 10.1016/j.hal.2022.102367_bib0061 article-title: Blooms like it hot publication-title: Science doi: 10.1126/science.1155398 – volume: 50 start-page: 10805 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0062 article-title: It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02575 – ident: 10.1016/j.hal.2022.102367_bib0017 doi: 10.1201/9781003081449-1 – year: 1982 ident: 10.1016/j.hal.2022.102367_bib0094 – volume: 9 year: 2014 ident: 10.1016/j.hal.2022.102367_bib0041 article-title: Seasonal patterns of nitrogen and phosphorus limitation in four German Lakes and the predictability of limitation status from ambient nutrient concentrations publication-title: PLoS ONE doi: 10.1371/journal.pone.0096065 – volume: 30 start-page: 1 year: 2020 ident: 10.1016/j.hal.2022.102367_bib0047 article-title: Multiscale drivers of phytoplankton communities in north-temperate lakes publication-title: Ecol. Appl. doi: 10.1002/eap.2102 – volume: 91 year: 2020 ident: 10.1016/j.hal.2022.102367_bib0025 article-title: Harmful algae at the complex nexus of eutrophication and climate change publication-title: Harmful Algae doi: 10.1016/j.hal.2019.03.001 – volume: 62 start-page: 1986 year: 2017 ident: 10.1016/j.hal.2022.102367_bib0066 article-title: Increased risk of cyanobacterial blooms in northern high-latitude lakes through climate warming and phosphorus enrichment publication-title: Freshw. Biol. doi: 10.1111/fwb.13043 – volume: 58 start-page: 325 year: 2008 ident: 10.1016/j.hal.2022.102367_bib0050 article-title: Andean influences on the biogeochemistry and ecology of the Amazon River publication-title: Bioscience doi: 10.1641/B580408 – volume: 50 start-page: 315 year: 2013 ident: 10.1016/j.hal.2022.102367_bib0013 article-title: Sustaining recreational quality of European lakes: minimizing the health risks from algal blooms through phosphorus control publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.12059 – volume: 221 start-page: 669 year: 1983 ident: 10.1016/j.hal.2022.102367_bib0087 article-title: Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton publication-title: Science doi: 10.1126/science.221.4611.669 – volume: 4 year: 2013 ident: 10.1016/j.hal.2022.102367_bib0063 article-title: Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe publication-title: Nat. Commun. doi: 10.1038/ncomms3934 – volume: 557 start-page: 651 year: 2018 ident: 10.1016/j.hal.2022.102367_bib0075 article-title: Emerging trends in global freshwater availability publication-title: Nature doi: 10.1038/s41586-018-0123-1 – year: 2019 ident: 10.1016/j.hal.2022.102367_bib0034 – ident: 10.1016/j.hal.2022.102367_bib0093 – volume: 2 start-page: 771 year: 2012 ident: 10.1016/j.hal.2022.102367_bib0097 article-title: Lake warming mimics fertilization publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1728 – volume: 7 year: 2012 ident: 10.1016/j.hal.2022.102367_bib0020 article-title: Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus publication-title: PLoS ONE doi: 10.1371/journal.pone.0038757 – volume: 795 start-page: 35 year: 2017 ident: 10.1016/j.hal.2022.102367_bib0090 article-title: Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover publication-title: Hydrobiologia doi: 10.1007/s10750-017-3110-x – volume: 546 start-page: 363 year: 2017 ident: 10.1016/j.hal.2022.102367_bib0045 article-title: Damming the rivers of the Amazon basin publication-title: Nature doi: 10.1038/nature22333 – volume: 31 start-page: 647 year: 1974 ident: 10.1016/j.hal.2022.102367_bib0084 article-title: Eutrophication in the high arctic: Meretta Lake, Cornwallis Island (75 N lat) publication-title: J. Fish. Board Canada doi: 10.1139/f74-096 – volume: 169 start-page: 245 year: 2012 ident: 10.1016/j.hal.2022.102367_bib0032 article-title: To bloom or not to bloom: contrasting responses of Cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers publication-title: Oecologia doi: 10.1007/s00442-011-2186-7 – volume: 60 start-page: 11 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0056 article-title: An overview of cyanobacterial bloom occurrences and research in Africa over the last decade publication-title: Harmful Algae doi: 10.1016/j.hal.2016.10.001 – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.hal.2022.102367_bib0016 article-title: Cyanobacteria and cyanotoxins in a changing environment: concepts, controversies, challenges publication-title: Water doi: 10.3390/w13182463 – volume: 54 start-page: 213 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0060 article-title: Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients publication-title: Harmful Algae doi: 10.1016/j.hal.2015.09.009 – volume: 63 start-page: 318 year: 2018 ident: 10.1016/j.hal.2022.102367_bib101 article-title: Regulation of phosphate uptake reveals cyanobacterial bloom resilience to shifting N: P ratios publication-title: Freshw. Biol. doi: 10.1111/fwb.13066 – volume: 16 start-page: 471 year: 2018 ident: 10.1016/j.hal.2022.102367_bib0033 article-title: Cyanobacterial blooms publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0040-1 – volume: 54 start-page: 2460 year: 2009 ident: 10.1016/j.hal.2022.102367_bib0095 article-title: Cyanobacteria dominance: quantifying the effects of climate change publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2009.54.6_part_2.2460 – volume: 66 start-page: 1846 year: 2021 ident: 10.1016/j.hal.2022.102367_bib0069 article-title: Cyanobacterial blooms in oligotrophic lakes: shifting the high-nutrient paradigm publication-title: Freshw. Biol. doi: 10.1111/fwb.13791 – volume: 52 start-page: 5653 year: 2018 ident: 10.1016/j.hal.2022.102367_bib102 article-title: Mutual dependence of nitrogen and phosphorus as key nutrient elements: One facilitates Dolichospermum flos-aquae to overcome the limitations of the other publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04992 – volume: 54 start-page: 223 year: 2016 ident: 10.1016/j.hal.2022.102367_bib0010 article-title: Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study publication-title: Harmful Algae doi: 10.1016/j.hal.2016.01.003 |
SSID | ssj0021000 |
Score | 2.5362692 |
Snippet | •There were no clear latitudinal or climatic trends in cyanobacterial biomass.•Phosphorus was the main driver of cyanobacterial biomass throughout the... Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are... Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water man-agement. Studies have suggested that blooms are... |
SourceID | swepub hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102367 |
SubjectTerms | Biodiversity and Ecology Biomass Blooms Climate change Cyanobacteria Ecology Ekologi Environmental Sciences Eutrophication Freshwater Global gradients Lakes Nitrogen Nutrients Phosphorus |
Title | Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas |
URI | https://dx.doi.org/10.1016/j.hal.2022.102367 https://www.ncbi.nlm.nih.gov/pubmed/36639186 https://www.proquest.com/docview/2765773548 https://hal.science/hal-04882850 https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-118841 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VwoELKs8uhcogxAEpbB5-5bgsVAuUFQKKekCyHMehiyqn2u4i9cJvZ8ZJViqgHjisIkUTbzKex2d7_BngmbNNrpwrE10rnmDGT5PSSZ84DJO1zVxjI7v-h7mcHfF3x-J4C6bDXhgqq-xjfxfTY7Tu74x7bY7PFovxZxx56FKTRcZdbzRu51yRlb_8tSnzyGn-OnKmSnRslB5WNmON14ml1Yc8jwQG8aj5f-amaydUJPk3Av2DXjSmpIMduNVjSTbpXvc2bPlwB268ahHvXdyFb3Mi2qc6CWZDzUK7YsRD1ZMoM4s_BH8MnZjVy1idwRDAMndhA_p45HDGxml7PuJrtghRul_gOb8HRwdvvkxnSX-WQuLQK1dJabUva5VjfKucbNIq87TLVjSWYwqjeQVdFLIRHi-VzbRyXMuiEk3mpShrUdyH7dAGvwusthgjnKplhWBMO48Qw6NYlrpScsn1CNJBi8b1RON03sWpGSrKfhhUqCHFm07xI3ixeeSsY9m4SpgPXWMumYrBLHDVY0_pztA80WrPJodRiqJYrkX6MxvBk6GXDfoZLZ7Y4Nv1ucmVFEoVgr7vQdf9m7YKhG1lpuUInnf2cOlfXi--Tky7_G5OwxoHXFrz7OH_fcIe3KTT7rsZoEewvVqu_WPERKtqPxr9PlyfTD8dfqTr2_ez-W8cKwlP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VLRJcKp5ly8sgxAEp2rzsOMelUKV0uxda1AOS5TgOXVQ51XYXqf-eGcdZqYB64BBFSmwnHntmPtvjzwDvjG7Twpgykk2RR-jx46g0wkYGzWSjE9Nqz65_PBfVaf7ljJ9twf6wF4bCKoPt7226t9bhySRIc3K5WEy-4shDlpJ6pN_1huP2bWKn4iPYnh4eVfPNuIumsD1tqkDdxgzD4qYP8zrXtACRpp7DwJ82_0_3dOec4iT_BqF_MIx6r3TwAHYCnGTT_o8fwpZ1j-Duxw4h3_Vj-D4nrn0KlWDaNcx1K0ZUVIFHmWm8EP8x1GPWLH2ABkMMy8y1dqjmnsYZC6cd-gix2cL51GGN5-oJnB58PtmvonCcQmRQMVdRqaUtmyJFE1cb0cZ1YmmjLW91jl6MphZklomWW7zVOpGFyaXIat4mVvCy4dlTGLnO2WfAGo1mwhSNqBGPSWMRZVhMlsSmFLnI5RjiQYrKBK5xOvLiQg1BZT8VClSR4FUv-DF82GS57Ik2bkucD02jbvQWhY7gtmxv6clQPDFrV9OZT0WGLJU8_pWM4c3QygpVjdZPtLPd-kqlheBFkXGq327f_JuyMkRuZSLFGN73_eHGVz4tvk1Vt_yhLtwax1xS5sne_1XhNdyrTo5nanY4P3oO9_FN1k8IvYDRarm2LxEirepXQQV-A-N8Cms |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nutrients+and+not+temperature+are+the+key+drivers+for+cyanobacterial+biomass+in+the+Americas&rft.jtitle=Harmful+algae&rft.au=Bonilla%2C+Sylvia&rft.au=Aguilera%2C+Anabella&rft.au=Aubriot%2C+Luis&rft.au=Huszar%2C+Vera&rft.date=2023&rft.issn=1878-1470&rft.volume=121&rft_id=info:doi/10.1016%2Fj.hal.2022.102367&rft.externalDocID=oai_DiVA_org_lnu_118841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-9883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-9883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-9883&client=summon |