Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas

•There were no clear latitudinal or climatic trends in cyanobacterial biomass.•Phosphorus was the main driver of cyanobacterial biomass throughout the Americas.•Nitrogen was most relevant in shallow lakes at high total phosphorus and high pH.•Temperature was not a significant factor in predicting cy...

Full description

Saved in:
Bibliographic Details
Published inHarmful algae Vol. 121; p. 102367
Main Authors Bonilla, Sylvia, Aguilera, Anabella, Aubriot, Luis, Huszar, Vera, Almanza, Viviana, Haakonsson, Signe, Izaguirre, Irina, O'Farrell, Inés, Salazar, Anthony, Becker, Vanessa, Cremella, Bruno, Ferragut, Carla, Hernandez, Esnedy, Palacio, Hilda, Rodrigues, Luzia Cleide, Sampaio da Silva, Lúcia Helena, Santana, Lucineide Maria, Santos, Juliana, Somma, Andrea, Ortega, Laura, Antoniades, Dermot
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •There were no clear latitudinal or climatic trends in cyanobacterial biomass.•Phosphorus was the main driver of cyanobacterial biomass throughout the Americas.•Nitrogen was most relevant in shallow lakes at high total phosphorus and high pH.•Temperature was not a significant factor in predicting cyanobacterial biomass.•Cyanobacteria management should focus on eutrophication and consider lake depth. Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical – and more amenable to controls – than global external forces.
AbstractList Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical - and more amenable to controls - than global external forces.
•There were no clear latitudinal or climatic trends in cyanobacterial biomass.•Phosphorus was the main driver of cyanobacterial biomass throughout the Americas.•Nitrogen was most relevant in shallow lakes at high total phosphorus and high pH.•Temperature was not a significant factor in predicting cyanobacterial biomass.•Cyanobacteria management should focus on eutrophication and consider lake depth. Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical – and more amenable to controls – than global external forces.
Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water man-agement. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (&lt; 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of tem-perature gradients, since local factors are more critical - and more amenable to controls - than global external forces.
Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical - and more amenable to controls - than global external forces.Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical - and more amenable to controls - than global external forces.
ArticleNumber 102367
Author Becker, Vanessa
Huszar, Vera
Ortega, Laura
Aubriot, Luis
Somma, Andrea
Palacio, Hilda
Haakonsson, Signe
Salazar, Anthony
Cremella, Bruno
Aguilera, Anabella
Ferragut, Carla
Rodrigues, Luzia Cleide
Sampaio da Silva, Lúcia Helena
Bonilla, Sylvia
Almanza, Viviana
Izaguirre, Irina
O'Farrell, Inés
Hernandez, Esnedy
Antoniades, Dermot
Santana, Lucineide Maria
Santos, Juliana
Author_xml – sequence: 1
  givenname: Sylvia
  orcidid: 0000-0002-1772-9899
  surname: Bonilla
  fullname: Bonilla, Sylvia
  email: sbon@fcien.edu.uy
  organization: Phytoplankton Physiology and Ecology Group, Sección Limnología, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
– sequence: 2
  givenname: Anabella
  surname: Aguilera
  fullname: Aguilera, Anabella
  organization: Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31, Kalmar, Sweden
– sequence: 3
  givenname: Luis
  orcidid: 0000-0001-9673-6853
  surname: Aubriot
  fullname: Aubriot, Luis
  organization: Phytoplankton Physiology and Ecology Group, Sección Limnología, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
– sequence: 4
  givenname: Vera
  surname: Huszar
  fullname: Huszar, Vera
  organization: Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil
– sequence: 5
  givenname: Viviana
  surname: Almanza
  fullname: Almanza, Viviana
  organization: Phytoplankton and Phytobenthos Laboratory, EULA-Chile Center, University of Concepción, 160-C, Concepción, Chile
– sequence: 6
  givenname: Signe
  surname: Haakonsson
  fullname: Haakonsson, Signe
  organization: Phytoplankton Physiology and Ecology Group, Sección Limnología, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
– sequence: 7
  givenname: Irina
  surname: Izaguirre
  fullname: Izaguirre, Irina
  organization: Departamento de Ecología, Genética y Evolución, IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
– sequence: 8
  givenname: Inés
  surname: O'Farrell
  fullname: O'Farrell, Inés
  organization: Departamento de Ecología, Genética y Evolución, IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
– sequence: 9
  givenname: Anthony
  orcidid: 0000-0002-9277-1499
  surname: Salazar
  fullname: Salazar, Anthony
  organization: Laboratorio de Vigilancia de la Calidad del Agua-AUTODEMA-Gobierno Regional de Arequipa, 04001, Peru
– sequence: 10
  givenname: Vanessa
  surname: Becker
  fullname: Becker, Vanessa
  organization: Laboratório de Recursos Hídricos e Saneamento Ambiental, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, Brazil
– sequence: 11
  givenname: Bruno
  orcidid: 0000-0001-7010-6386
  surname: Cremella
  fullname: Cremella, Bruno
  organization: Laboratory of Environmental Analysis, Université de Sherbrooke, J1K2R1, Sherbrooke, Canada
– sequence: 12
  givenname: Carla
  orcidid: 0000-0002-4313-1436
  surname: Ferragut
  fullname: Ferragut, Carla
  organization: Núcleo de Conservação e Biodiversidade, Instituto de Pesquisas Ambientais, 04301-902, São Paulo, Brazil
– sequence: 13
  givenname: Esnedy
  surname: Hernandez
  fullname: Hernandez, Esnedy
  organization: Grupo de Investigación en Ecología Aplicada, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, 050010, Medellín, Colombia
– sequence: 14
  givenname: Hilda
  surname: Palacio
  fullname: Palacio, Hilda
  organization: Universidad CES, 050021, Medellín, Colombia
– sequence: 15
  givenname: Luzia Cleide
  surname: Rodrigues
  fullname: Rodrigues, Luzia Cleide
  organization: Núcleo de Pesquisas em Limnologia e Aquicultura (Nupélia), Centro de Ciências Biológicas (CCB), Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brazil
– sequence: 16
  givenname: Lúcia Helena
  orcidid: 0000-0002-9533-3603
  surname: Sampaio da Silva
  fullname: Sampaio da Silva, Lúcia Helena
  organization: Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil
– sequence: 17
  givenname: Lucineide Maria
  orcidid: 0000-0002-3809-1564
  surname: Santana
  fullname: Santana, Lucineide Maria
  organization: Núcleo de Conservação e Biodiversidade, Instituto de Pesquisas Ambientais, 04301-902, São Paulo, Brazil
– sequence: 18
  givenname: Juliana
  surname: Santos
  fullname: Santos, Juliana
  organization: Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil
– sequence: 19
  givenname: Andrea
  orcidid: 0000-0001-6212-0946
  surname: Somma
  fullname: Somma, Andrea
  organization: Phytoplankton Physiology and Ecology Group, Sección Limnología, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
– sequence: 20
  givenname: Laura
  orcidid: 0000-0002-8031-8865
  surname: Ortega
  fullname: Ortega, Laura
  organization: Núcleo de Pesquisas em Limnologia e Aquicultura (Nupélia), Centro de Ciências Biológicas (CCB), Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brazil
– sequence: 21
  givenname: Dermot
  surname: Antoniades
  fullname: Antoniades, Dermot
  organization: Département de Géographie, Université Laval, G1V0A6, Quebec, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36639186$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04882850$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-118841$$DView record from Swedish Publication Index
BookMark eNp9kUtv1DAUhS1URB_wA9ggL2GRwY_YccRqVChFGsEGWCFZjnNDPST2YDuD5t_X05RKsOjCuvbVd-6VzzlHJz54QOglJStKqHy7Xd2YccUIY-XNuGyeoDOqGlXRuiEn5S6kqlql-Ck6T2lLCKOEkGfolEvJW6rkGfrxec7Rgc8JG99jHzLOMO0gmjxHwKacfAP4FxxwH90eYsJDiNgejA-dsRmiMyPuXJhMStj5O3o9lbY16Tl6OpgxwYv7eoG-XX34enldbb58_HS53lS2ZiJXrVHQ9g0TXHVWDqSjQBRhYjA1l4wRIhXnchBQSmfKB22tJO_EQEGKthf8AlXL3PQHdnOnd9FNJh50ME6_d9_XOsSfevSzplSpmhb-zcIX-_6Br9cbfeyRWimmBNkf2dcLu4vh9wwp68klC-NoPIQ5adZI0TRc1Kqgr-7RuZugf5j81-0C0AWwMaQUYXhAKNHHRPX2bv0xUb0kWjTNfxrrssku-ByNGx9VvluUUKzfO4g62ZK0hd5FsFn3wT2ivgX1q7ih
CitedBy_id crossref_primary_10_1002_wat2_1689
crossref_primary_10_1016_j_jenvman_2023_119510
crossref_primary_10_2174_0126661217305048240902060516
crossref_primary_10_1007_s10750_024_05664_6
crossref_primary_10_1016_j_heliyon_2023_e20458
crossref_primary_10_1016_j_jenvman_2024_121433
crossref_primary_10_1016_j_jenvman_2024_123478
crossref_primary_10_1016_j_watres_2023_120980
crossref_primary_10_1016_j_envpol_2024_123401
crossref_primary_10_1007_s40726_024_00322_w
crossref_primary_10_1016_j_hal_2024_102787
crossref_primary_10_1016_j_jhazmat_2024_135273
crossref_primary_10_1016_j_watres_2024_121517
crossref_primary_10_1016_j_scitotenv_2023_165306
crossref_primary_10_3390_w16060833
crossref_primary_10_1029_2024EF004493
crossref_primary_10_1016_j_cscee_2024_101027
crossref_primary_10_1016_j_ecolind_2024_111929
crossref_primary_10_1039_D3EM00572K
crossref_primary_10_1016_j_ecolind_2024_112838
crossref_primary_10_1007_s10811_025_03481_5
crossref_primary_10_1111_gcb_16587
crossref_primary_10_26848_rbgf_v18_1_p633_645
crossref_primary_10_5194_esd_15_653_2024
crossref_primary_10_1007_s12237_023_01244_4
crossref_primary_10_1016_j_jece_2025_116101
crossref_primary_10_1016_j_watres_2023_120579
crossref_primary_10_1016_j_hal_2024_102679
crossref_primary_10_3389_fmicb_2023_1219261
crossref_primary_10_3390_w16060888
crossref_primary_10_1016_j_jhydrol_2024_132072
crossref_primary_10_1016_j_micres_2023_127566
crossref_primary_10_3390_w15173019
crossref_primary_10_1007_s10750_024_05496_4
crossref_primary_10_1016_j_hal_2023_102429
crossref_primary_10_1016_j_algal_2025_103932
crossref_primary_10_1016_j_algal_2025_103997
crossref_primary_10_1016_j_envpol_2023_122878
crossref_primary_10_1016_j_scitotenv_2023_165312
crossref_primary_10_3390_w15203569
crossref_primary_10_1016_j_chemosphere_2024_142815
crossref_primary_10_1016_j_jhydrol_2023_129869
Cites_doi 10.1016/j.ecohyd.2019.03.002
10.1002/lno.10246
10.1073/pnas.0805108105
10.1111/j.1365-2486.2011.02488.x
10.1128/aem.36.4.572-576.1978
10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2
10.1007/s10750-009-9751-7
10.1111/j.1365-2486.2007.01510.x
10.1139/as-2020-0033
10.1016/j.hal.2019.03.012
10.4319/lo.2013.58.5.1736
10.1007/s10452-008-9180-0
10.1002/iroh.19840690602
10.1111/j.1440-1770.2008.00379.x
10.1007/s10750-005-4429-2
10.1139/f01-143
10.1111/j.1365-2427.2005.01415.x
10.1021/acs.est.9b05549
10.1007/s10750-009-9729-5
10.1016/S0065-2504(08)60149-X
10.1016/j.watres.2011.11.052
10.1111/gcb.14396
10.1007/s10452-015-9558-8
10.1038/nclimate1581
10.1088/1748-9326/ac0564
10.1127/0941-2948/2010/0430
10.1080/00288330.1987.9516235
10.1088/1748-9326/9/10/105001
10.1038/s41545-019-0039-9
10.1016/j.jhydrol.2004.03.028
10.4319/lo.2014.59.1.0099
10.1016/j.limno.2010.12.003
10.1021/acs.est.6b02204
10.1127/1612-166X/2014/0065-0048
10.1046/j.1365-2427.1998.00308.x
10.1007/s10750-015-2578-5
10.1590/S1519-69842011000400003
10.1126/science.1128845
10.1111/j.1365-2427.2012.02866.x
10.1139/cjfas-2014-0168
10.1016/S0269-7491(02)00304-4
10.1007/s10750-014-2007-1
10.1016/j.hal.2019.01.004
10.4081/jlimnol.2014.844
10.3389/fmicb.2019.01064
10.1016/j.scitotenv.2016.03.094
10.1016/j.watres.2020.115959
10.1016/j.watres.2022.118728
10.4319/lo.1977.22.2.0361
10.5268/IW-6.2.998
10.1038/s41586-019-1648-7
10.1016/j.hal.2021.102036
10.1007/s10021-010-9367-9
10.1139/f97-202
10.1111/ele.12420
10.1126/science.195.4275.260
10.1007/s10452-015-9524-5
10.1016/j.hal.2018.11.003
10.4319/lo.1992.37.5.0936
10.3390/w12041191
10.1002/sim.1545
10.1016/j.hal.2020.101859
10.1016/j.hal.2016.01.010
10.1126/science.1155398
10.1021/acs.est.6b02575
10.1201/9781003081449-1
10.1371/journal.pone.0096065
10.1002/eap.2102
10.1016/j.hal.2019.03.001
10.1111/fwb.13043
10.1641/B580408
10.1111/1365-2664.12059
10.1126/science.221.4611.669
10.1038/ncomms3934
10.1038/s41586-018-0123-1
10.1038/nclimate1728
10.1371/journal.pone.0038757
10.1007/s10750-017-3110-x
10.1038/nature22333
10.1139/f74-096
10.1007/s00442-011-2186-7
10.1016/j.hal.2016.10.001
10.3390/w13182463
10.1016/j.hal.2015.09.009
10.1111/fwb.13066
10.1038/s41579-018-0040-1
10.4319/lo.2009.54.6_part_2.2460
10.1111/fwb.13791
10.1021/acs.est.7b04992
10.1016/j.hal.2016.01.003
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
ADTPV
AOWAS
D92
DOI 10.1016/j.hal.2022.102367
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
SWEPUB Linnéuniversitetet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Environmental Sciences
Ecology
EISSN 1878-1470
ExternalDocumentID oai_DiVA_org_lnu_118841
oai_HAL_hal_04882850v1
36639186
10_1016_j_hal_2022_102367
S1568988322001950
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
UHS
UNMZH
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
1XC
ADTPV
AOWAS
D92
ID FETCH-LOGICAL-c425t-9a8e9d72538bc6f0b1e08025fa436220068336f5e833ba187c4863b5f1e659d53
IEDL.DBID .~1
ISSN 1568-9883
1878-1470
IngestDate Thu Aug 21 06:41:28 EDT 2025
Fri May 09 12:21:59 EDT 2025
Tue Aug 05 09:49:59 EDT 2025
Wed Feb 19 02:25:23 EST 2025
Tue Jul 01 04:21:30 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Fri Feb 23 02:37:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Climate change
Blooms
Freshwater
Global gradients
Eutrophication
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-9a8e9d72538bc6f0b1e08025fa436220068336f5e833ba187c4863b5f1e659d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7010-6386
0000-0002-3809-1564
0000-0002-9277-1499
0000-0002-8031-8865
0000-0002-4313-1436
0000-0002-1772-9899
0000-0001-9673-6853
0000-0002-9533-3603
0000-0001-6212-0946
PMID 36639186
PQID 2765773548
PQPubID 23479
ParticipantIDs swepub_primary_oai_DiVA_org_lnu_118841
hal_primary_oai_HAL_hal_04882850v1
proquest_miscellaneous_2765773548
pubmed_primary_36639186
crossref_primary_10_1016_j_hal_2022_102367
crossref_citationtrail_10_1016_j_hal_2022_102367
elsevier_sciencedirect_doi_10_1016_j_hal_2022_102367
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
2023-01
2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Harmful algae
PublicationTitleAlternate Harmful Algae
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Konopka, Brock (bib0042) 1978; 36
Lürling, Eshetu, Faassen, Kosten, Huszar (bib0048) 2013; 58
Beaulieu, Pick, Palmer, Watson, Winter, Zurawell, Gregory-Eaves (bib0005) 2014; 71
Scheffer (bib0078) 1998
Downing, Watson, McCauley (bib0022) 2001; 58
Taranu, Gregory-Eaves, Leavitt, Bunting, Buchaca, Catalan, Domaizon, Guilizzoni, Lami, Mcgowan, Moorhouse, Morabito, Pick, Stevenson, Thompson, Vinebrooke (bib0091) 2015; 18
Bullerjahn, McKay, Davis, Baker, Boyer, D'Anglada, Doucette, Ho, Irwin, Kling, Kudela, Kurmayer, Michalak, Ortiz, Otten, Paerl, Qin, Sohngen, Stumpf, Visser, Wilhelm (bib0010) 2016; 54
Robarts, Zohary (bib0074) 1987; 21
Castro Medeiros, Mattos, Lürling, Becker (bib0014) 2015; 49
Kolzau, Wiedner, Rücker, Köhler, Köhler, Dolman (bib0041) 2014; 9
McClain, Naiman (bib0050) 2008; 58
Harrison, Donaldson, Correa-Cano, Evans, Fisher, Goodwin, Robinson, Hodgson, Inger (bib0028) 2018; 2018
Dolman, Rücker, Pick, Fastner, Rohrlack, Mischke, Wiedner (bib0020) 2012; 7
Davis, Koop (bib0019) 2006; 559
Smith (bib0087) 1983; 221
Reinl, Brookes, Carey, Harris, Ibelings, Morales-Williams, De Senerpont Domis, Atkins, Isles, Mesman, North, Rudstam, Stelzer, Venkiteswaran, Yokota, Zhan (bib0069) 2021; 66
Oki, Kanae (bib0059) 2006; 313
Beaulieu, Pick, Gregory-Eaves (bib0004) 2013; 58
Newell, Davis, Johengen, Gossiaux, Burtner, Palladino, McCarthy (bib0057) 2019; 81
Przytulska, Bartosiewicz, Vincent (bib0066) 2017; 62
Gobler, Burkholder, Davis, Harke, Johengen, Stow, Van de Waal (bib0027) 2016; 54
Raven, Gobler, Hansen (bib0067) 2020; 91
Paerl, Gardner, Havens, Joyner, McCarthy, Newell, Qin, Scott (bib0060) 2016; 54
Glibert, Maranger, Sobota, Bouwman (bib0026) 2014; 9
Mowe, Mitrovic, Lim, Furey, Yeo (bib0053) 2015; 74
Havens, James, East, Smith (bib0029) 2003; 122
Loewen, Wyatt, Mortimer, Vinebrooke, Zurawell (bib0047) 2020; 30
Schindler, Hecky, Findlay, Stainton, Parker, Paterson, Beaty, Lyng, Kasian (bib0083) 2008; 105
Mellios, Moe, Laspidou (bib0051) 2020; 12
Brasil, Attayde, Vasconcelos, Dantas, Huszar (bib0009) 2016; 770
Yang, Lv, Yang, Liu, Yu, Chen (bib0098) 2016; 557-558
Paerl, Scott, McCarthy, Newell, Gardner, Havens, Hoffman, Wilhelm, Wurtsbaugh (bib0062) 2016; 50
Izaguirre, Sánchez, Schiaffino, O'Farrell, Huber, Ferrer, Zunino, Lagomarsino, Mancini (bib0036) 2015; 752
Schindler, Kalff, Welch, Brunkskill, Kling, Kritsch (bib0084) 1974; 31
Downing, McCauley (bib0021) 1992; 37
Rigosi, Carey, Ibelings, Brookes (bib0073) 2014; 59
Jöhnk, Huisman, Sharples, Sommeijer, Visser, Stroom, Jo (bib0040) 2008; 14
Posch, Köster, Salcher, Pernthaler (bib0065) 2012; 2
Vollenweider, Kerekes (bib0094) 1982
Krausfeldt, Farmer, Castro Gonzalez, Zepernick, Campagna, Wilhelm (bib0044) 2019; 10
Scheffer, Hosper, Meijer (bib0079) 1993; 8
Wilson, Agnew (bib0096) 1992; 23
Jeppesen, Meerhoff, Davidson, Trolle, Søndergaard, Lauridsen, Beklioǧlu, Brucet, Volta, González-Bergonzoni, Nielsen (bib0038) 2014; 73
Molot, Higgins, Schiff, Venkiteswaran, Paterson, Baulch (bib0052) 2021; 16
Schindler (bib0081) 1977; 195
Sivarajah, Simmatis, Favot, Palmer, Smol (bib0086) 2021; 105
Carlson (bib0012) 1977; 22
(bib0034) 2019
Fastner, Abella, Litt, Morabito, Vörös, Pálffy, Straile, Kümmerlin, Matthews, Phillips, Chorus (bib0023) 2016; 50
Teixeira de Oliveira, Rocha, Peret (bib0092) 2011; 71
Huisman, Codd, Paerl, Ibelings, Verspagen, Visser (bib0033) 2018; 16
Caraco, Miller (bib0011) 1998; 55
Batista, Giani (bib0003) 2019; 19
Ndlela, Oberholster, Van Wyk, Cheng (bib0056) 2016; 60
Izaguirre, Saad (bib0035) 2014; 65
Wagner, Adrian (bib0095) 2009; 54
Rubel, Kottek (bib0077) 2010; 19
Boretti, Rosa (bib0008) 2019; 2
Davies (bib0018) 1987; 74
Richardson, Miller, Maberly, Taylor, Globevnik, Hunter, Jeppesen, Mischke, Moe, Pasztaleniec, Søndergaard, Carvalho (bib0072) 2018; 24
Aubriot, Bonilla (bib101) 2018; 63
Bonilla, González-Piana, Soares, Huszar, Becker, Somma, Marinho, Kokociński, Dokulil, Antoniades, Aubriot (bib0007) 2016; 75
Ho, Michalak, Pahlevan (bib0031) 2019; 574
Munoz, Cirés, de Pedro, Á. Colina, Velásquez-Figueroa, Carmona-Jiménez, Caro-Borrero, Salazar, Santa María Fuster, Contreras, Perona, Quesada, Casas (bib0055) 2020
Rousso, Bertone, Stewart, Hamilton (bib0076) 2020; 182
Paerl, Huisman (bib0061) 2008; 320
Becker, Huszar, Crossetti (bib0006) 2009; 628
Huber, Wagner, Gerten, Adrian (bib0032) 2012; 169
O'Farrell, Motta, Forastier, Polla, Otaño, Meichtry, Devercelli, Lombardo (bib0058) 2019; 83
Abell, Özkundakci, Hamilton (bib0001) 2010; 13
Scheffer, Rinaldi, Gragnani, Mur, van Nes (bib0080) 1997; 78
Jeppesen, Søndergaard, Jensen, Havens, Anneville, Carvalho, Coveney, Deneke, Dokulil, Foy, Gerdeaux, Hampton, Hilt, Kangur, Köhler, Lammens, Lauridsen, Manca, Miracle, Moss, Nõges, Persson, Phillips, Portielje, Romo, Schelske, Straile, Tatrai, Willén, Winder (bib0039) 2005; 50
Lehner, Döll (bib0046) 2004; 296
Chorus, I., & M. Welker. 2021. Toxic Cyanobacteria in Water, 1st ed. I. Chorus and M. Welker [eds.]. CRC Press, on behalf of the World Health Organization, Geneva, CH.
Shapiro (bib0085) 1984; 69
Smith, Wood, McBride, Atalah, Hamilton, Abell (bib0088) 2016; 6
Till.., Y., & Matei, A. (2012). Sampling: Survey Sampling. 2016. URL https://CRAN. R-project. org/package= sampling. R package version, 2, 163. n.d.
Kosten, Huszar, Bécares, Costa, van Donk, Hansson, Jeppesen, Kruk, Lacerot, Mazzeo, De Meester, Moss, Lürling, Nõges, Romo, Scheffer (bib0043) 2012; 18
Chorus, Fastner, Welker (bib0016) 2021; 13
Muggeo (bib0054) 2003; 22
Giani, Taranu, von Rückert, Gregory-Eaves (bib0024) 2020; 97
Rejmánková, Komárek, Dix, Komárková, Girón (bib0070) 2011; 41
James, Havens, Zhu, Qin (bib0037) 2009; 627
Søndergaard, Lauridsen, Johansson, Jeppesen (bib0090) 2017; 795
Zhou, Leavitt, Zhang, Qin (bib0099) 2022; 221
Winder (bib0097) 2012; 2
Rodell, Famiglietti, Wiese, Reager, Beaudoing, Landerer, Lo (bib0075) 2018; 557
Glibert (bib0025) 2020; 91
Reynolds (bib0071) 2006
(bib0015) 2018
Ayala-Borda, Lovejoy, Power, Rautio (bib0002) 2021
Carvalho, Mcdonald, de Hoyos, Mischke, Phillips, Borics, Poikane, Skjelbred, Solheim, Van Wichelen, Cardoso (bib0013) 2013; 50
Ma, Qin, Paerl, Brookes, Hall, Shi, Zhou, Guo, Li, Xu, Wu, Long (bib0049) 2016; 61
Wang, Xiao, Wan, Zhou, Wang, Song, Zhou (bib102) 2018; 52
Latrubesse, Arima, Dunne, Park, Baker, d'Horta, Wight, Wittmann, Zuanon, Baker, Ribas (bib0045) 2017; 546
Zhu, Shi, Van Dam, Kong, Yu, Qin (bib0100) 2020; 54
Havens, Phlips, Cichra, Li (bib0030) 1998; 39
Peñuelas, Poulter, Sardans, Ciais, Van Der Velde, Bopp, Boucher, Godderis, Hinsinger, Llusia, Nardin, Vicca, Obersteiner, Janssens (bib0063) 2013; 4
Reichwaldt, Ghadouani (bib0068) 2011; 46
Soares, Marinho, Huszar, Branco, Azevedo (bib0089) 2008; 13
Schindler, Carpenter, Chapra, Hecky, Orihel (bib0082) 2016; 50
Phillips, Pietiläinen, Carvalho, Solimini, Solheim, Cardoso (bib0064) 2008; 42
Jeppesen (10.1016/j.hal.2022.102367_bib0038) 2014; 73
Krausfeldt (10.1016/j.hal.2022.102367_bib0044) 2019; 10
Zhu (10.1016/j.hal.2022.102367_bib0100) 2020; 54
Huisman (10.1016/j.hal.2022.102367_bib0033) 2018; 16
Ndlela (10.1016/j.hal.2022.102367_bib0056) 2016; 60
Castro Medeiros (10.1016/j.hal.2022.102367_bib0014) 2015; 49
Paerl (10.1016/j.hal.2022.102367_bib0060) 2016; 54
Rigosi (10.1016/j.hal.2022.102367_bib0073) 2014; 59
Davies (10.1016/j.hal.2022.102367_bib0018) 1987; 74
Richardson (10.1016/j.hal.2022.102367_bib0072) 2018; 24
Havens (10.1016/j.hal.2022.102367_bib0030) 1998; 39
Schindler (10.1016/j.hal.2022.102367_bib0083) 2008; 105
Scheffer (10.1016/j.hal.2022.102367_bib0080) 1997; 78
Downing (10.1016/j.hal.2022.102367_bib0021) 1992; 37
Rousso (10.1016/j.hal.2022.102367_bib0076) 2020; 182
Dolman (10.1016/j.hal.2022.102367_bib0020) 2012; 7
Jeppesen (10.1016/j.hal.2022.102367_bib0039) 2005; 50
Boretti (10.1016/j.hal.2022.102367_bib0008) 2019; 2
Harrison (10.1016/j.hal.2022.102367_bib0028) 2018; 2018
Phillips (10.1016/j.hal.2022.102367_bib0064) 2008; 42
Bonilla (10.1016/j.hal.2022.102367_bib0007) 2016; 75
Havens (10.1016/j.hal.2022.102367_bib0029) 2003; 122
Chorus (10.1016/j.hal.2022.102367_bib0016) 2021; 13
Izaguirre (10.1016/j.hal.2022.102367_bib0036) 2015; 752
Robarts (10.1016/j.hal.2022.102367_bib0074) 1987; 21
Carvalho (10.1016/j.hal.2022.102367_bib0013) 2013; 50
Yang (10.1016/j.hal.2022.102367_bib0098) 2016; 557-558
Davis (10.1016/j.hal.2022.102367_bib0019) 2006; 559
Caraco (10.1016/j.hal.2022.102367_bib0011) 1998; 55
Glibert (10.1016/j.hal.2022.102367_bib0026) 2014; 9
Reichwaldt (10.1016/j.hal.2022.102367_bib0068) 2011; 46
Newell (10.1016/j.hal.2022.102367_bib0057) 2019; 81
Scheffer (10.1016/j.hal.2022.102367_bib0078) 1998
(10.1016/j.hal.2022.102367_bib0015) 2018
Izaguirre (10.1016/j.hal.2022.102367_bib0035) 2014; 65
10.1016/j.hal.2022.102367_bib0017
O'Farrell (10.1016/j.hal.2022.102367_bib0058) 2019; 83
Søndergaard (10.1016/j.hal.2022.102367_bib0090) 2017; 795
Lürling (10.1016/j.hal.2022.102367_bib0048) 2013; 58
Raven (10.1016/j.hal.2022.102367_bib0067) 2020; 91
10.1016/j.hal.2022.102367_bib0093
Taranu (10.1016/j.hal.2022.102367_bib0091) 2015; 18
Molot (10.1016/j.hal.2022.102367_bib0052) 2021; 16
Ma (10.1016/j.hal.2022.102367_bib0049) 2016; 61
Reynolds (10.1016/j.hal.2022.102367_bib0071) 2006
Mowe (10.1016/j.hal.2022.102367_bib0053) 2015; 74
Kolzau (10.1016/j.hal.2022.102367_bib0041) 2014; 9
Rejmánková (10.1016/j.hal.2022.102367_bib0070) 2011; 41
Posch (10.1016/j.hal.2022.102367_bib0065) 2012; 2
Schindler (10.1016/j.hal.2022.102367_bib0084) 1974; 31
Beaulieu (10.1016/j.hal.2022.102367_bib0004) 2013; 58
Downing (10.1016/j.hal.2022.102367_bib0022) 2001; 58
McClain (10.1016/j.hal.2022.102367_bib0050) 2008; 58
Przytulska (10.1016/j.hal.2022.102367_bib0066) 2017; 62
Shapiro (10.1016/j.hal.2022.102367_bib0085) 1984; 69
Aubriot (10.1016/j.hal.2022.102367_bib101) 2018; 63
Fastner (10.1016/j.hal.2022.102367_bib0023) 2016; 50
Konopka (10.1016/j.hal.2022.102367_bib0042) 1978; 36
Becker (10.1016/j.hal.2022.102367_bib0006) 2009; 628
Oki (10.1016/j.hal.2022.102367_bib0059) 2006; 313
Glibert (10.1016/j.hal.2022.102367_bib0025) 2020; 91
Vollenweider (10.1016/j.hal.2022.102367_bib0094) 1982
Rubel (10.1016/j.hal.2022.102367_bib0077) 2010; 19
Reinl (10.1016/j.hal.2022.102367_bib0069) 2021; 66
(10.1016/j.hal.2022.102367_bib0034) 2019
Carlson (10.1016/j.hal.2022.102367_bib0012) 1977; 22
Zhou (10.1016/j.hal.2022.102367_bib0099) 2022; 221
Schindler (10.1016/j.hal.2022.102367_bib0081) 1977; 195
Bullerjahn (10.1016/j.hal.2022.102367_bib0010) 2016; 54
Munoz (10.1016/j.hal.2022.102367_bib0055) 2020
Loewen (10.1016/j.hal.2022.102367_bib0047) 2020; 30
Mellios (10.1016/j.hal.2022.102367_bib0051) 2020; 12
Ho (10.1016/j.hal.2022.102367_bib0031) 2019; 574
Abell (10.1016/j.hal.2022.102367_bib0001) 2010; 13
Teixeira de Oliveira (10.1016/j.hal.2022.102367_bib0092) 2011; 71
Paerl (10.1016/j.hal.2022.102367_bib0061) 2008; 320
James (10.1016/j.hal.2022.102367_bib0037) 2009; 627
Wilson (10.1016/j.hal.2022.102367_bib0096) 1992; 23
Muggeo (10.1016/j.hal.2022.102367_bib0054) 2003; 22
Gobler (10.1016/j.hal.2022.102367_bib0027) 2016; 54
Lehner (10.1016/j.hal.2022.102367_bib0046) 2004; 296
Paerl (10.1016/j.hal.2022.102367_bib0062) 2016; 50
Wagner (10.1016/j.hal.2022.102367_bib0095) 2009; 54
Huber (10.1016/j.hal.2022.102367_bib0032) 2012; 169
Scheffer (10.1016/j.hal.2022.102367_bib0079) 1993; 8
Winder (10.1016/j.hal.2022.102367_bib0097) 2012; 2
Kosten (10.1016/j.hal.2022.102367_bib0043) 2012; 18
Ayala-Borda (10.1016/j.hal.2022.102367_bib0002) 2021
Soares (10.1016/j.hal.2022.102367_bib0089) 2008; 13
Smith (10.1016/j.hal.2022.102367_bib0087) 1983; 221
Batista (10.1016/j.hal.2022.102367_bib0003) 2019; 19
Giani (10.1016/j.hal.2022.102367_bib0024) 2020; 97
Latrubesse (10.1016/j.hal.2022.102367_bib0045) 2017; 546
Brasil (10.1016/j.hal.2022.102367_bib0009) 2016; 770
Beaulieu (10.1016/j.hal.2022.102367_bib0005) 2014; 71
Sivarajah (10.1016/j.hal.2022.102367_bib0086) 2021; 105
Peñuelas (10.1016/j.hal.2022.102367_bib0063) 2013; 4
Schindler (10.1016/j.hal.2022.102367_bib0082) 2016; 50
Wang (10.1016/j.hal.2022.102367_bib102) 2018; 52
Smith (10.1016/j.hal.2022.102367_bib0088) 2016; 6
Jöhnk (10.1016/j.hal.2022.102367_bib0040) 2008; 14
Rodell (10.1016/j.hal.2022.102367_bib0075) 2018; 557
References_xml – volume: 52
  start-page: 5653
  year: 2018
  end-page: 5661
  ident: bib102
  article-title: Mutual dependence of nitrogen and phosphorus as key nutrient elements: One facilitates Dolichospermum flos-aquae to overcome the limitations of the other
  publication-title: Environ. Sci. Technol.
– volume: 182
  year: 2020
  ident: bib0076
  article-title: A systematic literature review of forecasting and predictive models for Cyanobacteria blooms in freshwater lakes
  publication-title: Water Res.
– start-page: 761
  year: 2020
  ident: bib0055
  article-title: Overview of toxic Cyanobacteria and cyanotoxins in Ibero-American freshwaters: challenges for risk management and opportunities for removal by advanced technologies
  publication-title: Sci. Total Environ.
– volume: 627
  start-page: 211
  year: 2009
  end-page: 231
  ident: bib0037
  article-title: Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P.R. China and Lake Okeechobee, USA)
  publication-title: Hydrobiologia
– volume: 50
  start-page: 1747
  year: 2005
  end-page: 1771
  ident: bib0039
  article-title: Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies
  publication-title: Freshw. Biol.
– volume: 66
  start-page: 1846
  year: 2021
  end-page: 1859
  ident: bib0069
  article-title: Cyanobacterial blooms in oligotrophic lakes: shifting the high-nutrient paradigm
  publication-title: Freshw. Biol.
– volume: 39
  start-page: 547
  year: 1998
  end-page: 556
  ident: bib0030
  article-title: Light availability as a possible regulator of Cyanobacteria species composition in a shallow subtropical lake
  publication-title: Freshw. Biol.
– volume: 54
  start-page: 87
  year: 2016
  end-page: 97
  ident: bib0027
  article-title: The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms
  publication-title: Harmful Algae
– volume: 557
  start-page: 651
  year: 2018
  end-page: 659
  ident: bib0075
  article-title: Emerging trends in global freshwater availability
  publication-title: Nature
– volume: 7
  year: 2012
  ident: bib0020
  article-title: Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus
  publication-title: PLoS ONE
– volume: 75
  year: 2016
  ident: bib0007
  article-title: The success of the cyanobacterium
  publication-title: J. Limnol.
– year: 2006
  ident: bib0071
  article-title: The Ecology of Phytoplankton
– reference: Chorus, I., & M. Welker. 2021. Toxic Cyanobacteria in Water, 1st ed. I. Chorus and M. Welker [eds.]. CRC Press, on behalf of the World Health Organization, Geneva, CH.
– volume: 54
  start-page: 213
  year: 2016
  end-page: 222
  ident: bib0060
  article-title: Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients
  publication-title: Harmful Algae
– volume: 169
  start-page: 245
  year: 2012
  end-page: 256
  ident: bib0032
  article-title: To bloom or not to bloom: contrasting responses of Cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers
  publication-title: Oecologia
– volume: 19
  start-page: 566
  year: 2019
  end-page: 576
  ident: bib0003
  article-title: Spatiotemporal variability of cyanobacterial community in a Brazilian oligomesotrophic reservoir: the picocyanobacterial dominance
  publication-title: Ecohydrol. Hydrobiol.
– year: 1982
  ident: bib0094
  article-title: Eutrophication of Waters, Monitoring, Assessment and Control
– volume: 97
  year: 2020
  ident: bib0024
  article-title: Comparing key drivers of Cyanobacteria biomass in temperate and tropical systems
  publication-title: Harmful Algae
– volume: 74
  start-page: 33
  year: 1987
  end-page: 43
  ident: bib0018
  article-title: Hypothesis testing when a nuisance parameter is present only under the alternative
  publication-title: Biometrika
– volume: 559
  start-page: 23
  year: 2006
  end-page: 76
  ident: bib0019
  article-title: Eutrophication in Australian rivers, reservoirs and estuaries – a southern hemisphere perspective on the science and its implications
  publication-title: Hydrobiologia
– volume: 19
  start-page: 135
  year: 2010
  end-page: 141
  ident: bib0077
  article-title: Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification
  publication-title: Meteorol. Zeitschrift
– volume: 8
  start-page: 275
  year: 1993
  end-page: 279
  ident: bib0079
  article-title: Alternative equilibria in shallow lakes
  publication-title: TREE
– volume: 41
  start-page: 296
  year: 2011
  end-page: 302
  ident: bib0070
  article-title: Cyanobacterial blooms in lake Atitlan, Guatemala
  publication-title: Limnologica.
– volume: 71
  start-page: 587
  year: 2011
  end-page: 600
  ident: bib0092
  article-title: Structure of the phytoplankton community in the Cachoeira Dourada reservoir (GO/MG)
  publication-title: Brazil. Brazilian J. Biol.
– volume: 23
  start-page: 263
  year: 1992
  end-page: 336
  ident: bib0096
  article-title: Positive-feedback switches in plant communities
  publication-title: Adv. Ecol. Res.
– volume: 60
  start-page: 11
  year: 2016
  end-page: 26
  ident: bib0056
  article-title: An overview of cyanobacterial bloom occurrences and research in Africa over the last decade
  publication-title: Harmful Algae
– volume: 9
  year: 2014
  ident: bib0026
  article-title: The Haber Bosch-harmful algal bloom (HB-HAB) link
  publication-title: Environ. Res. Lett.
– volume: 752
  start-page: 47
  year: 2015
  end-page: 64
  ident: bib0036
  article-title: Which environmental factors trigger the dominance of phytoplankton species across a moisture gradient of shallow lakes?
  publication-title: Hydrobiologia
– volume: 13
  start-page: 1
  year: 2021
  end-page: 41
  ident: bib0016
  article-title: Cyanobacteria and cyanotoxins in a changing environment: concepts, controversies, challenges
  publication-title: Water
– volume: 9
  year: 2014
  ident: bib0041
  article-title: Seasonal patterns of nitrogen and phosphorus limitation in four German Lakes and the predictability of limitation status from ambient nutrient concentrations
  publication-title: PLoS ONE
– year: 1998
  ident: bib0078
  article-title: Ecology of Shallow Lakes
– volume: 628
  start-page: 137
  year: 2009
  end-page: 151
  ident: bib0006
  article-title: Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir
  publication-title: Hydrobiologia
– volume: 50
  start-page: 367
  year: 2016
  end-page: 383
  ident: bib0023
  article-title: Combating cyanobacterial proliferation by avoiding or treating inflows with high P load—experiences from eight case studies
  publication-title: Aquat. Ecol.
– volume: 18
  start-page: 375
  year: 2015
  end-page: 384
  ident: bib0091
  article-title: Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene
  publication-title: Ecol. Lett.
– volume: 50
  start-page: 10805
  year: 2016
  end-page: 10813
  ident: bib0062
  article-title: It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems
  publication-title: Environ. Sci. Technol.
– volume: 63
  start-page: 318
  year: 2018
  end-page: 329
  ident: bib101
  article-title: Regulation of phosphate uptake reveals cyanobacterial bloom resilience to shifting N: P ratios
  publication-title: Freshw. Biol.
– volume: 2
  year: 2019
  ident: bib0008
  article-title: Reassessing the projections of the world water development report
  publication-title: npj Clean Water
– volume: 221
  start-page: 669
  year: 1983
  end-page: 671
  ident: bib0087
  article-title: Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton
  publication-title: Science
– volume: 21
  start-page: 391
  year: 1987
  end-page: 399
  ident: bib0074
  article-title: Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming Cyanobacteria
  publication-title: New Zeal. J. Mar. Freshw. Res.
– volume: 320
  start-page: 57
  year: 2008
  end-page: 58
  ident: bib0061
  article-title: Blooms like it hot
  publication-title: Science
– year: 2018
  ident: bib0015
  article-title: Gridded Population of the World, Version 3 (GPWv3): Population Count Grid
– volume: 91
  year: 2020
  ident: bib0025
  article-title: Harmful algae at the complex nexus of eutrophication and climate change
  publication-title: Harmful Algae
– volume: 18
  start-page: 118
  year: 2012
  end-page: 126
  ident: bib0043
  article-title: Warmer climates boost cyanobacterial dominance in shallow lakes
  publication-title: Glob. Chang. Biol.
– year: 2021
  ident: bib0002
  article-title: Evidence of eutrophication in Arctic lakes
  publication-title: Arct. Sci.
– volume: 54
  start-page: 2460
  year: 2009
  end-page: 2468
  ident: bib0095
  article-title: Cyanobacteria dominance: quantifying the effects of climate change
  publication-title: Limnol. Oceanogr.
– volume: 296
  start-page: 1
  year: 2004
  end-page: 22
  ident: bib0046
  article-title: Development and validation of a global database of lakes, reservoirs and wetlands
  publication-title: J. Hydrol.
– volume: 12
  year: 2020
  ident: bib0051
  article-title: Machine learning approaches for predicting health risk of cyanobacterial blooms in Northern European Lakes
  publication-title: Water
– volume: 58
  start-page: 325
  year: 2008
  end-page: 338
  ident: bib0050
  article-title: Andean influences on the biogeochemistry and ecology of the Amazon River
  publication-title: Bioscience
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 32
  ident: bib0028
  article-title: A brief introduction to mixed effects modelling and multi-model inference in ecology
  publication-title: PeerJ
– volume: 36
  start-page: 572
  year: 1978
  end-page: 576
  ident: bib0042
  article-title: Effect of temperature on blue-green algae (Cyanobacteria) in Lake Mendota
  publication-title: Appl. Environ. Microbiol.
– volume: 50
  start-page: 315
  year: 2013
  end-page: 323
  ident: bib0013
  article-title: Sustaining recreational quality of European lakes: minimizing the health risks from algal blooms through phosphorus control
  publication-title: J. Appl. Ecol.
– volume: 795
  start-page: 35
  year: 2017
  end-page: 48
  ident: bib0090
  article-title: Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover
  publication-title: Hydrobiologia
– volume: 6
  start-page: 273
  year: 2016
  end-page: 283
  ident: bib0088
  article-title: Phosphorus and nitrogen loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand
  publication-title: Inl. Waters
– volume: 54
  start-page: 223
  year: 2016
  end-page: 238
  ident: bib0010
  article-title: Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study
  publication-title: Harmful Algae
– volume: 58
  start-page: 1905
  year: 2001
  end-page: 1908
  ident: bib0022
  article-title: Predicting Cyanobacteria dominance in lakes
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 62
  start-page: 1986
  year: 2017
  end-page: 1996
  ident: bib0066
  article-title: Increased risk of cyanobacterial blooms in northern high-latitude lakes through climate warming and phosphorus enrichment
  publication-title: Freshw. Biol.
– volume: 195
  start-page: 260
  year: 1977
  end-page: 262
  ident: bib0081
  article-title: Evolution of phosphorus limitation in lakes
  publication-title: Science
– volume: 65
  start-page: 309
  year: 2014
  end-page: 319
  ident: bib0035
  article-title: Phytoplankton from natural water bodies of the Patagonian Plateau
  publication-title: Adv. Limnol.
– volume: 13
  start-page: 257
  year: 2008
  end-page: 269
  ident: bib0089
  article-title: The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil
  publication-title: Lakes Reserv. Res. Manag.
– volume: 2
  start-page: 771
  year: 2012
  end-page: 772
  ident: bib0097
  article-title: Lake warming mimics fertilization
  publication-title: Nat. Clim. Chang.
– volume: 105
  year: 2021
  ident: bib0086
  article-title: Eutrophication and climatic changes lead to unprecedented cyanobacterial blooms in a Canadian sub-Arctic landscape
  publication-title: Harmful Algae
– volume: 557-558
  start-page: 445
  year: 2016
  end-page: 452
  ident: bib0098
  article-title: Decline in water level boosts Cyanobacteria dominance in subtropical reservoirs
  publication-title: Sci. Total Environ.
– volume: 81
  start-page: 86
  year: 2019
  end-page: 93
  ident: bib0057
  article-title: Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie
  publication-title: Harmful Algae
– volume: 46
  start-page: 1372
  year: 2011
  end-page: 1393
  ident: bib0068
  article-title: Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate : between simplistic scenarios and complex dynamics
  publication-title: Water Res.
– volume: 37
  start-page: 936
  year: 1992
  end-page: 945
  ident: bib0021
  article-title: The nitrogen : phosphorus relationship in lakes
  publication-title: Limnol. Oceanogr.
– reference: Till.., Y., & Matei, A. (2012). Sampling: Survey Sampling. 2016. URL https://CRAN. R-project. org/package= sampling. R package version, 2, 163. n.d.
– volume: 16
  start-page: 471
  year: 2018
  end-page: 483
  ident: bib0033
  article-title: Cyanobacterial blooms
  publication-title: Nat. Rev. Microbiol.
– volume: 71
  start-page: 1830
  year: 2014
  end-page: 1839
  ident: bib0005
  article-title: Comparing predictive cyanobacterial models from temperate regions
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 30
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib0047
  article-title: Multiscale drivers of phytoplankton communities in north-temperate lakes
  publication-title: Ecol. Appl.
– volume: 14
  start-page: 495
  year: 2008
  end-page: 512
  ident: bib0040
  article-title: Summer heatwaves promote blooms of harmful Cyanobacteria
  publication-title: Glob. Chang. Biol.
– volume: 24
  start-page: 5044
  year: 2018
  end-page: 5055
  ident: bib0072
  article-title: Effects of multiple stressors on Cyanobacteria abundance vary with lake type
  publication-title: Glob. Chang. Biol.
– volume: 574
  start-page: 667
  year: 2019
  end-page: 670
  ident: bib0031
  article-title: Widespread global increase in intense lake phytoplankton blooms since the 1980s
  publication-title: Nature
– volume: 2
  start-page: 809
  year: 2012
  end-page: 813
  ident: bib0065
  article-title: Harmful filamentous Cyanobacteria favoured by reduced water turnover with lake warming
  publication-title: Nat. Clim. Chang.
– volume: 58
  start-page: 552
  year: 2013
  end-page: 559
  ident: bib0048
  article-title: Comparison of cyanobacterial and green algal growth rates at different temperatures
  publication-title: Freshw. Biol.
– volume: 55
  start-page: 54
  year: 1998
  end-page: 62
  ident: bib0011
  article-title: Effects of CO
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 69
  start-page: 765
  year: 1984
  end-page: 780
  ident: bib0085
  article-title: Blue-green dominance in Lakes: the role and management significance of pH and CO2
  publication-title: Int. Rev. der Gesamten Hydrobiol. Hydrogr.
– volume: 313
  start-page: 1068
  year: 2006
  end-page: 1072
  ident: bib0059
  article-title: Global hydrological cycles and world water resources
  publication-title: Science
– volume: 122
  start-page: 379
  year: 2003
  end-page: 390
  ident: bib0029
  article-title: N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution
  publication-title: Environ. Pollut.
– volume: 4
  year: 2013
  ident: bib0063
  article-title: Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe
  publication-title: Nat. Commun.
– volume: 770
  start-page: 145
  year: 2016
  end-page: 164
  ident: bib0009
  article-title: Drought-induced water-level reduction favors Cyanobacteria blooms in tropical shallow lakes
  publication-title: Hydrobiologia
– volume: 546
  start-page: 363
  year: 2017
  end-page: 369
  ident: bib0045
  article-title: Damming the rivers of the Amazon basin
  publication-title: Nature
– volume: 13
  start-page: 966
  year: 2010
  end-page: 977
  ident: bib0001
  article-title: Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control
  publication-title: Ecosystems
– volume: 50
  start-page: 8923
  year: 2016
  end-page: 8929
  ident: bib0082
  article-title: Reducing phosphorus to curb lake eutrophication is a success
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 213
  year: 2008
  end-page: 226
  ident: bib0064
  article-title: Chlorophyll-nutrient relationships of different lake types using a large European dataset
  publication-title: Aquat. Ecol.
– volume: 105
  start-page: 11254
  year: 2008
  end-page: 11258
  ident: bib0083
  article-title: Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 22
  start-page: 361
  year: 1977
  end-page: 369
  ident: bib0012
  article-title: A trophic state index for lakes
  publication-title: Limnol. Oceanogr.
– volume: 78
  start-page: 272
  year: 1997
  end-page: 282
  ident: bib0080
  article-title: On the dominance of filamentous Cyanobacteria in shallow, turbid lakes
  publication-title: Ecology
– volume: 74
  start-page: 205
  year: 2015
  end-page: 224
  ident: bib0053
  article-title: Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors
  publication-title: J. Limnol.
– volume: 49
  start-page: 293
  year: 2015
  end-page: 307
  ident: bib0014
  article-title: Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake
  publication-title: Aquat. Ecol.
– volume: 59
  start-page: 99
  year: 2014
  end-page: 114
  ident: bib0073
  article-title: The interaction between climate warming and eutrophication to promote Cyanobacteria is dependent on trophic state and varies among taxa
  publication-title: Limnol. Oceanogr.
– volume: 83
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib0058
  article-title: Ecological meta-analysis of bloom-forming planktonic Cyanobacteria in Argentina
  publication-title: Harmful Algae
– volume: 58
  start-page: 1736
  year: 2013
  end-page: 1746
  ident: bib0004
  article-title: Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set
  publication-title: Limnol. Oceanogr.
– volume: 16
  year: 2021
  ident: bib0052
  article-title: Phosphorus-only fertilization rapidly initiates large nitrogen-fixing Cyanobacteria blooms in two oligotrophic lakes
  publication-title: Environ. Res. Lett.
– volume: 221
  year: 2022
  ident: bib0099
  article-title: Anthropogenic eutrophication of shallow lakes: is it occasional?
  publication-title: Water Res.
– volume: 61
  start-page: 711
  year: 2016
  end-page: 722
  ident: bib0049
  article-title: The persistence of cyanobacterial (
  publication-title: China. Limnol. Oceanogr.
– volume: 31
  start-page: 647
  year: 1974
  end-page: 662
  ident: bib0084
  article-title: Eutrophication in the high arctic: Meretta Lake, Cornwallis Island (75 N lat)
  publication-title: J. Fish. Board Canada
– volume: 54
  start-page: 6194
  year: 2020
  end-page: 6201
  ident: bib0100
  article-title: Algal accumulation decreases sediment nitrogen removal by uncoupling nitrification-denitrification in shallow eutrophic lakes
  publication-title: Environ. Sci. Technol.
– year: 2019
  ident: bib0034
  publication-title: Water Quality in the Americas. Risks and Opportunities
– volume: 73
  start-page: 88
  year: 2014
  end-page: 111
  ident: bib0038
  article-title: Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes
  publication-title: J. Limnol.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0044
  article-title: Urea is both a carbon and nitrogen source for Microcystis aeruginosa: tracking 13C incorporation at bloom pH conditions
  publication-title: Front. Microbiol.
– volume: 22
  start-page: 3055
  year: 2003
  end-page: 3071
  ident: bib0054
  article-title: Estimating regression models with unknown break-points
  publication-title: Stat. Med.
– volume: 91
  year: 2020
  ident: bib0067
  article-title: Dynamic CO
  publication-title: Harmful Algae
– volume: 19
  start-page: 566
  year: 2019
  ident: 10.1016/j.hal.2022.102367_bib0003
  article-title: Spatiotemporal variability of cyanobacterial community in a Brazilian oligomesotrophic reservoir: the picocyanobacterial dominance
  publication-title: Ecohydrol. Hydrobiol.
  doi: 10.1016/j.ecohyd.2019.03.002
– volume: 61
  start-page: 711
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0049
  article-title: The persistence of cyanobacterial (Microcystis spp.) blooms throughout winter in Lake Taihu
  publication-title: China. Limnol. Oceanogr.
  doi: 10.1002/lno.10246
– volume: 8
  start-page: 275
  year: 1993
  ident: 10.1016/j.hal.2022.102367_bib0079
  article-title: Alternative equilibria in shallow lakes
  publication-title: TREE
– volume: 105
  start-page: 11254
  year: 2008
  ident: 10.1016/j.hal.2022.102367_bib0083
  article-title: Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0805108105
– volume: 18
  start-page: 118
  year: 2012
  ident: 10.1016/j.hal.2022.102367_bib0043
  article-title: Warmer climates boost cyanobacterial dominance in shallow lakes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02488.x
– volume: 36
  start-page: 572
  year: 1978
  ident: 10.1016/j.hal.2022.102367_bib0042
  article-title: Effect of temperature on blue-green algae (Cyanobacteria) in Lake Mendota
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.36.4.572-576.1978
– volume: 78
  start-page: 272
  year: 1997
  ident: 10.1016/j.hal.2022.102367_bib0080
  article-title: On the dominance of filamentous Cyanobacteria in shallow, turbid lakes
  publication-title: Ecology
  doi: 10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2
– volume: 628
  start-page: 137
  year: 2009
  ident: 10.1016/j.hal.2022.102367_bib0006
  article-title: Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-009-9751-7
– volume: 14
  start-page: 495
  year: 2008
  ident: 10.1016/j.hal.2022.102367_bib0040
  article-title: Summer heatwaves promote blooms of harmful Cyanobacteria
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2007.01510.x
– year: 2021
  ident: 10.1016/j.hal.2022.102367_bib0002
  article-title: Evidence of eutrophication in Arctic lakes
  publication-title: Arct. Sci.
  doi: 10.1139/as-2020-0033
– volume: 91
  year: 2020
  ident: 10.1016/j.hal.2022.102367_bib0067
  article-title: Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: theoretical and observed effects on harmful algal blooms
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2019.03.012
– volume: 58
  start-page: 1736
  year: 2013
  ident: 10.1016/j.hal.2022.102367_bib0004
  article-title: Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2013.58.5.1736
– volume: 42
  start-page: 213
  year: 2008
  ident: 10.1016/j.hal.2022.102367_bib0064
  article-title: Chlorophyll-nutrient relationships of different lake types using a large European dataset
  publication-title: Aquat. Ecol.
  doi: 10.1007/s10452-008-9180-0
– volume: 69
  start-page: 765
  year: 1984
  ident: 10.1016/j.hal.2022.102367_bib0085
  article-title: Blue-green dominance in Lakes: the role and management significance of pH and CO2
  publication-title: Int. Rev. der Gesamten Hydrobiol. Hydrogr.
  doi: 10.1002/iroh.19840690602
– volume: 13
  start-page: 257
  year: 2008
  ident: 10.1016/j.hal.2022.102367_bib0089
  article-title: The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil
  publication-title: Lakes Reserv. Res. Manag.
  doi: 10.1111/j.1440-1770.2008.00379.x
– volume: 559
  start-page: 23
  year: 2006
  ident: 10.1016/j.hal.2022.102367_bib0019
  article-title: Eutrophication in Australian rivers, reservoirs and estuaries – a southern hemisphere perspective on the science and its implications
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-005-4429-2
– volume: 58
  start-page: 1905
  year: 2001
  ident: 10.1016/j.hal.2022.102367_bib0022
  article-title: Predicting Cyanobacteria dominance in lakes
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f01-143
– volume: 50
  start-page: 1747
  year: 2005
  ident: 10.1016/j.hal.2022.102367_bib0039
  article-title: Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies
  publication-title: Freshw. Biol.
  doi: 10.1111/j.1365-2427.2005.01415.x
– volume: 54
  start-page: 6194
  year: 2020
  ident: 10.1016/j.hal.2022.102367_bib0100
  article-title: Algal accumulation decreases sediment nitrogen removal by uncoupling nitrification-denitrification in shallow eutrophic lakes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b05549
– volume: 627
  start-page: 211
  year: 2009
  ident: 10.1016/j.hal.2022.102367_bib0037
  article-title: Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, P.R. China and Lake Okeechobee, USA)
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-009-9729-5
– volume: 23
  start-page: 263
  year: 1992
  ident: 10.1016/j.hal.2022.102367_bib0096
  article-title: Positive-feedback switches in plant communities
  publication-title: Adv. Ecol. Res.
  doi: 10.1016/S0065-2504(08)60149-X
– year: 2006
  ident: 10.1016/j.hal.2022.102367_bib0071
– start-page: 761
  year: 2020
  ident: 10.1016/j.hal.2022.102367_bib0055
  article-title: Overview of toxic Cyanobacteria and cyanotoxins in Ibero-American freshwaters: challenges for risk management and opportunities for removal by advanced technologies
  publication-title: Sci. Total Environ.
– volume: 46
  start-page: 1372
  year: 2011
  ident: 10.1016/j.hal.2022.102367_bib0068
  article-title: Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate : between simplistic scenarios and complex dynamics
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.11.052
– volume: 74
  start-page: 33
  year: 1987
  ident: 10.1016/j.hal.2022.102367_bib0018
  article-title: Hypothesis testing when a nuisance parameter is present only under the alternative
  publication-title: Biometrika
– volume: 24
  start-page: 5044
  year: 2018
  ident: 10.1016/j.hal.2022.102367_bib0072
  article-title: Effects of multiple stressors on Cyanobacteria abundance vary with lake type
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14396
– volume: 50
  start-page: 367
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0023
  article-title: Combating cyanobacterial proliferation by avoiding or treating inflows with high P load—experiences from eight case studies
  publication-title: Aquat. Ecol.
  doi: 10.1007/s10452-015-9558-8
– volume: 2
  start-page: 809
  year: 2012
  ident: 10.1016/j.hal.2022.102367_bib0065
  article-title: Harmful filamentous Cyanobacteria favoured by reduced water turnover with lake warming
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1581
– volume: 16
  year: 2021
  ident: 10.1016/j.hal.2022.102367_bib0052
  article-title: Phosphorus-only fertilization rapidly initiates large nitrogen-fixing Cyanobacteria blooms in two oligotrophic lakes
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac0564
– volume: 19
  start-page: 135
  year: 2010
  ident: 10.1016/j.hal.2022.102367_bib0077
  article-title: Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification
  publication-title: Meteorol. Zeitschrift
  doi: 10.1127/0941-2948/2010/0430
– volume: 21
  start-page: 391
  year: 1987
  ident: 10.1016/j.hal.2022.102367_bib0074
  article-title: Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming Cyanobacteria
  publication-title: New Zeal. J. Mar. Freshw. Res.
  doi: 10.1080/00288330.1987.9516235
– volume: 9
  year: 2014
  ident: 10.1016/j.hal.2022.102367_bib0026
  article-title: The Haber Bosch-harmful algal bloom (HB-HAB) link
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/10/105001
– volume: 2
  year: 2019
  ident: 10.1016/j.hal.2022.102367_bib0008
  article-title: Reassessing the projections of the world water development report
  publication-title: npj Clean Water
  doi: 10.1038/s41545-019-0039-9
– volume: 296
  start-page: 1
  year: 2004
  ident: 10.1016/j.hal.2022.102367_bib0046
  article-title: Development and validation of a global database of lakes, reservoirs and wetlands
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.03.028
– volume: 59
  start-page: 99
  year: 2014
  ident: 10.1016/j.hal.2022.102367_bib0073
  article-title: The interaction between climate warming and eutrophication to promote Cyanobacteria is dependent on trophic state and varies among taxa
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2014.59.1.0099
– volume: 41
  start-page: 296
  year: 2011
  ident: 10.1016/j.hal.2022.102367_bib0070
  article-title: Cyanobacterial blooms in lake Atitlan, Guatemala
  publication-title: Limnologica.
  doi: 10.1016/j.limno.2010.12.003
– volume: 50
  start-page: 8923
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0082
  article-title: Reducing phosphorus to curb lake eutrophication is a success
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02204
– volume: 65
  start-page: 309
  year: 2014
  ident: 10.1016/j.hal.2022.102367_bib0035
  article-title: Phytoplankton from natural water bodies of the Patagonian Plateau
  publication-title: Adv. Limnol.
  doi: 10.1127/1612-166X/2014/0065-0048
– volume: 39
  start-page: 547
  year: 1998
  ident: 10.1016/j.hal.2022.102367_bib0030
  article-title: Light availability as a possible regulator of Cyanobacteria species composition in a shallow subtropical lake
  publication-title: Freshw. Biol.
  doi: 10.1046/j.1365-2427.1998.00308.x
– volume: 770
  start-page: 145
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0009
  article-title: Drought-induced water-level reduction favors Cyanobacteria blooms in tropical shallow lakes
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-015-2578-5
– volume: 71
  start-page: 587
  year: 2011
  ident: 10.1016/j.hal.2022.102367_bib0092
  article-title: Structure of the phytoplankton community in the Cachoeira Dourada reservoir (GO/MG)
  publication-title: Brazil. Brazilian J. Biol.
  doi: 10.1590/S1519-69842011000400003
– volume: 313
  start-page: 1068
  year: 2006
  ident: 10.1016/j.hal.2022.102367_bib0059
  article-title: Global hydrological cycles and world water resources
  publication-title: Science
  doi: 10.1126/science.1128845
– volume: 58
  start-page: 552
  year: 2013
  ident: 10.1016/j.hal.2022.102367_bib0048
  article-title: Comparison of cyanobacterial and green algal growth rates at different temperatures
  publication-title: Freshw. Biol.
  doi: 10.1111/j.1365-2427.2012.02866.x
– volume: 71
  start-page: 1830
  year: 2014
  ident: 10.1016/j.hal.2022.102367_bib0005
  article-title: Comparing predictive cyanobacterial models from temperate regions
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/cjfas-2014-0168
– volume: 122
  start-page: 379
  year: 2003
  ident: 10.1016/j.hal.2022.102367_bib0029
  article-title: N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(02)00304-4
– volume: 752
  start-page: 47
  year: 2015
  ident: 10.1016/j.hal.2022.102367_bib0036
  article-title: Which environmental factors trigger the dominance of phytoplankton species across a moisture gradient of shallow lakes?
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-014-2007-1
– volume: 83
  start-page: 1
  year: 2019
  ident: 10.1016/j.hal.2022.102367_bib0058
  article-title: Ecological meta-analysis of bloom-forming planktonic Cyanobacteria in Argentina
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2019.01.004
– volume: 73
  start-page: 88
  year: 2014
  ident: 10.1016/j.hal.2022.102367_bib0038
  article-title: Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes
  publication-title: J. Limnol.
  doi: 10.4081/jlimnol.2014.844
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.hal.2022.102367_bib0044
  article-title: Urea is both a carbon and nitrogen source for Microcystis aeruginosa: tracking 13C incorporation at bloom pH conditions
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01064
– volume: 557-558
  start-page: 445
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0098
  article-title: Decline in water level boosts Cyanobacteria dominance in subtropical reservoirs
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.03.094
– volume: 182
  year: 2020
  ident: 10.1016/j.hal.2022.102367_bib0076
  article-title: A systematic literature review of forecasting and predictive models for Cyanobacteria blooms in freshwater lakes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115959
– volume: 221
  year: 2022
  ident: 10.1016/j.hal.2022.102367_bib0099
  article-title: Anthropogenic eutrophication of shallow lakes: is it occasional?
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118728
– volume: 22
  start-page: 361
  year: 1977
  ident: 10.1016/j.hal.2022.102367_bib0012
  article-title: A trophic state index for lakes
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1977.22.2.0361
– volume: 6
  start-page: 273
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0088
  article-title: Phosphorus and nitrogen loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand
  publication-title: Inl. Waters
  doi: 10.5268/IW-6.2.998
– volume: 574
  start-page: 667
  year: 2019
  ident: 10.1016/j.hal.2022.102367_bib0031
  article-title: Widespread global increase in intense lake phytoplankton blooms since the 1980s
  publication-title: Nature
  doi: 10.1038/s41586-019-1648-7
– volume: 105
  year: 2021
  ident: 10.1016/j.hal.2022.102367_bib0086
  article-title: Eutrophication and climatic changes lead to unprecedented cyanobacterial blooms in a Canadian sub-Arctic landscape
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2021.102036
– volume: 74
  start-page: 205
  year: 2015
  ident: 10.1016/j.hal.2022.102367_bib0053
  article-title: Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors
  publication-title: J. Limnol.
– volume: 13
  start-page: 966
  year: 2010
  ident: 10.1016/j.hal.2022.102367_bib0001
  article-title: Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control
  publication-title: Ecosystems
  doi: 10.1007/s10021-010-9367-9
– volume: 75
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0007
  article-title: The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature
  publication-title: J. Limnol.
– volume: 55
  start-page: 54
  year: 1998
  ident: 10.1016/j.hal.2022.102367_bib0011
  article-title: Effects of CO2 on competition between a cyanobacterium and eukaryotic phytoplankton
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f97-202
– year: 1998
  ident: 10.1016/j.hal.2022.102367_bib0078
– volume: 18
  start-page: 375
  year: 2015
  ident: 10.1016/j.hal.2022.102367_bib0091
  article-title: Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12420
– year: 2018
  ident: 10.1016/j.hal.2022.102367_bib0015
– volume: 195
  start-page: 260
  year: 1977
  ident: 10.1016/j.hal.2022.102367_bib0081
  article-title: Evolution of phosphorus limitation in lakes
  publication-title: Science
  doi: 10.1126/science.195.4275.260
– volume: 49
  start-page: 293
  year: 2015
  ident: 10.1016/j.hal.2022.102367_bib0014
  article-title: Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake
  publication-title: Aquat. Ecol.
  doi: 10.1007/s10452-015-9524-5
– volume: 81
  start-page: 86
  year: 2019
  ident: 10.1016/j.hal.2022.102367_bib0057
  article-title: Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2018.11.003
– volume: 37
  start-page: 936
  year: 1992
  ident: 10.1016/j.hal.2022.102367_bib0021
  article-title: The nitrogen : phosphorus relationship in lakes
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1992.37.5.0936
– volume: 12
  year: 2020
  ident: 10.1016/j.hal.2022.102367_bib0051
  article-title: Machine learning approaches for predicting health risk of cyanobacterial blooms in Northern European Lakes
  publication-title: Water
  doi: 10.3390/w12041191
– volume: 22
  start-page: 3055
  year: 2003
  ident: 10.1016/j.hal.2022.102367_bib0054
  article-title: Estimating regression models with unknown break-points
  publication-title: Stat. Med.
  doi: 10.1002/sim.1545
– volume: 97
  year: 2020
  ident: 10.1016/j.hal.2022.102367_bib0024
  article-title: Comparing key drivers of Cyanobacteria biomass in temperate and tropical systems
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2020.101859
– volume: 54
  start-page: 87
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0027
  article-title: The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2016.01.010
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.hal.2022.102367_bib0028
  article-title: A brief introduction to mixed effects modelling and multi-model inference in ecology
  publication-title: PeerJ
– volume: 320
  start-page: 57
  year: 2008
  ident: 10.1016/j.hal.2022.102367_bib0061
  article-title: Blooms like it hot
  publication-title: Science
  doi: 10.1126/science.1155398
– volume: 50
  start-page: 10805
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0062
  article-title: It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02575
– ident: 10.1016/j.hal.2022.102367_bib0017
  doi: 10.1201/9781003081449-1
– year: 1982
  ident: 10.1016/j.hal.2022.102367_bib0094
– volume: 9
  year: 2014
  ident: 10.1016/j.hal.2022.102367_bib0041
  article-title: Seasonal patterns of nitrogen and phosphorus limitation in four German Lakes and the predictability of limitation status from ambient nutrient concentrations
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0096065
– volume: 30
  start-page: 1
  year: 2020
  ident: 10.1016/j.hal.2022.102367_bib0047
  article-title: Multiscale drivers of phytoplankton communities in north-temperate lakes
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.2102
– volume: 91
  year: 2020
  ident: 10.1016/j.hal.2022.102367_bib0025
  article-title: Harmful algae at the complex nexus of eutrophication and climate change
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2019.03.001
– volume: 62
  start-page: 1986
  year: 2017
  ident: 10.1016/j.hal.2022.102367_bib0066
  article-title: Increased risk of cyanobacterial blooms in northern high-latitude lakes through climate warming and phosphorus enrichment
  publication-title: Freshw. Biol.
  doi: 10.1111/fwb.13043
– volume: 58
  start-page: 325
  year: 2008
  ident: 10.1016/j.hal.2022.102367_bib0050
  article-title: Andean influences on the biogeochemistry and ecology of the Amazon River
  publication-title: Bioscience
  doi: 10.1641/B580408
– volume: 50
  start-page: 315
  year: 2013
  ident: 10.1016/j.hal.2022.102367_bib0013
  article-title: Sustaining recreational quality of European lakes: minimizing the health risks from algal blooms through phosphorus control
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.12059
– volume: 221
  start-page: 669
  year: 1983
  ident: 10.1016/j.hal.2022.102367_bib0087
  article-title: Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton
  publication-title: Science
  doi: 10.1126/science.221.4611.669
– volume: 4
  year: 2013
  ident: 10.1016/j.hal.2022.102367_bib0063
  article-title: Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3934
– volume: 557
  start-page: 651
  year: 2018
  ident: 10.1016/j.hal.2022.102367_bib0075
  article-title: Emerging trends in global freshwater availability
  publication-title: Nature
  doi: 10.1038/s41586-018-0123-1
– year: 2019
  ident: 10.1016/j.hal.2022.102367_bib0034
– ident: 10.1016/j.hal.2022.102367_bib0093
– volume: 2
  start-page: 771
  year: 2012
  ident: 10.1016/j.hal.2022.102367_bib0097
  article-title: Lake warming mimics fertilization
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1728
– volume: 7
  year: 2012
  ident: 10.1016/j.hal.2022.102367_bib0020
  article-title: Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0038757
– volume: 795
  start-page: 35
  year: 2017
  ident: 10.1016/j.hal.2022.102367_bib0090
  article-title: Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-017-3110-x
– volume: 546
  start-page: 363
  year: 2017
  ident: 10.1016/j.hal.2022.102367_bib0045
  article-title: Damming the rivers of the Amazon basin
  publication-title: Nature
  doi: 10.1038/nature22333
– volume: 31
  start-page: 647
  year: 1974
  ident: 10.1016/j.hal.2022.102367_bib0084
  article-title: Eutrophication in the high arctic: Meretta Lake, Cornwallis Island (75 N lat)
  publication-title: J. Fish. Board Canada
  doi: 10.1139/f74-096
– volume: 169
  start-page: 245
  year: 2012
  ident: 10.1016/j.hal.2022.102367_bib0032
  article-title: To bloom or not to bloom: contrasting responses of Cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers
  publication-title: Oecologia
  doi: 10.1007/s00442-011-2186-7
– volume: 60
  start-page: 11
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0056
  article-title: An overview of cyanobacterial bloom occurrences and research in Africa over the last decade
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2016.10.001
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.hal.2022.102367_bib0016
  article-title: Cyanobacteria and cyanotoxins in a changing environment: concepts, controversies, challenges
  publication-title: Water
  doi: 10.3390/w13182463
– volume: 54
  start-page: 213
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0060
  article-title: Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2015.09.009
– volume: 63
  start-page: 318
  year: 2018
  ident: 10.1016/j.hal.2022.102367_bib101
  article-title: Regulation of phosphate uptake reveals cyanobacterial bloom resilience to shifting N: P ratios
  publication-title: Freshw. Biol.
  doi: 10.1111/fwb.13066
– volume: 16
  start-page: 471
  year: 2018
  ident: 10.1016/j.hal.2022.102367_bib0033
  article-title: Cyanobacterial blooms
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0040-1
– volume: 54
  start-page: 2460
  year: 2009
  ident: 10.1016/j.hal.2022.102367_bib0095
  article-title: Cyanobacteria dominance: quantifying the effects of climate change
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2009.54.6_part_2.2460
– volume: 66
  start-page: 1846
  year: 2021
  ident: 10.1016/j.hal.2022.102367_bib0069
  article-title: Cyanobacterial blooms in oligotrophic lakes: shifting the high-nutrient paradigm
  publication-title: Freshw. Biol.
  doi: 10.1111/fwb.13791
– volume: 52
  start-page: 5653
  year: 2018
  ident: 10.1016/j.hal.2022.102367_bib102
  article-title: Mutual dependence of nitrogen and phosphorus as key nutrient elements: One facilitates Dolichospermum flos-aquae to overcome the limitations of the other
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04992
– volume: 54
  start-page: 223
  year: 2016
  ident: 10.1016/j.hal.2022.102367_bib0010
  article-title: Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2016.01.003
SSID ssj0021000
Score 2.5362692
Snippet •There were no clear latitudinal or climatic trends in cyanobacterial biomass.•Phosphorus was the main driver of cyanobacterial biomass throughout the...
Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are...
Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water man-agement. Studies have suggested that blooms are...
SourceID swepub
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102367
SubjectTerms Biodiversity and Ecology
Biomass
Blooms
Climate change
Cyanobacteria
Ecology
Ekologi
Environmental Sciences
Eutrophication
Freshwater
Global gradients
Lakes
Nitrogen
Nutrients
Phosphorus
Title Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas
URI https://dx.doi.org/10.1016/j.hal.2022.102367
https://www.ncbi.nlm.nih.gov/pubmed/36639186
https://www.proquest.com/docview/2765773548
https://hal.science/hal-04882850
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-118841
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VwoELKs8uhcogxAEpbB5-5bgsVAuUFQKKekCyHMehiyqn2u4i9cJvZ8ZJViqgHjisIkUTbzKex2d7_BngmbNNrpwrE10rnmDGT5PSSZ84DJO1zVxjI7v-h7mcHfF3x-J4C6bDXhgqq-xjfxfTY7Tu74x7bY7PFovxZxx56FKTRcZdbzRu51yRlb_8tSnzyGn-OnKmSnRslB5WNmON14ml1Yc8jwQG8aj5f-amaydUJPk3Av2DXjSmpIMduNVjSTbpXvc2bPlwB268ahHvXdyFb3Mi2qc6CWZDzUK7YsRD1ZMoM4s_BH8MnZjVy1idwRDAMndhA_p45HDGxml7PuJrtghRul_gOb8HRwdvvkxnSX-WQuLQK1dJabUva5VjfKucbNIq87TLVjSWYwqjeQVdFLIRHi-VzbRyXMuiEk3mpShrUdyH7dAGvwusthgjnKplhWBMO48Qw6NYlrpScsn1CNJBi8b1RON03sWpGSrKfhhUqCHFm07xI3ixeeSsY9m4SpgPXWMumYrBLHDVY0_pztA80WrPJodRiqJYrkX6MxvBk6GXDfoZLZ7Y4Nv1ucmVFEoVgr7vQdf9m7YKhG1lpuUInnf2cOlfXi--Tky7_G5OwxoHXFrz7OH_fcIe3KTT7rsZoEewvVqu_WPERKtqPxr9PlyfTD8dfqTr2_ez-W8cKwlP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VLRJcKp5ly8sgxAEp2rzsOMelUKV0uxda1AOS5TgOXVQ51XYXqf-eGcdZqYB64BBFSmwnHntmPtvjzwDvjG7Twpgykk2RR-jx46g0wkYGzWSjE9Nqz65_PBfVaf7ljJ9twf6wF4bCKoPt7226t9bhySRIc3K5WEy-4shDlpJ6pN_1huP2bWKn4iPYnh4eVfPNuIumsD1tqkDdxgzD4qYP8zrXtACRpp7DwJ82_0_3dOec4iT_BqF_MIx6r3TwAHYCnGTT_o8fwpZ1j-Duxw4h3_Vj-D4nrn0KlWDaNcx1K0ZUVIFHmWm8EP8x1GPWLH2ABkMMy8y1dqjmnsYZC6cd-gix2cL51GGN5-oJnB58PtmvonCcQmRQMVdRqaUtmyJFE1cb0cZ1YmmjLW91jl6MphZklomWW7zVOpGFyaXIat4mVvCy4dlTGLnO2WfAGo1mwhSNqBGPSWMRZVhMlsSmFLnI5RjiQYrKBK5xOvLiQg1BZT8VClSR4FUv-DF82GS57Ik2bkucD02jbvQWhY7gtmxv6clQPDFrV9OZT0WGLJU8_pWM4c3QygpVjdZPtLPd-kqlheBFkXGq327f_JuyMkRuZSLFGN73_eHGVz4tvk1Vt_yhLtwax1xS5sne_1XhNdyrTo5nanY4P3oO9_FN1k8IvYDRarm2LxEirepXQQV-A-N8Cms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nutrients+and+not+temperature+are+the+key+drivers+for+cyanobacterial+biomass+in+the+Americas&rft.jtitle=Harmful+algae&rft.au=Bonilla%2C+Sylvia&rft.au=Aguilera%2C+Anabella&rft.au=Aubriot%2C+Luis&rft.au=Huszar%2C+Vera&rft.date=2023&rft.issn=1878-1470&rft.volume=121&rft_id=info:doi/10.1016%2Fj.hal.2022.102367&rft.externalDocID=oai_DiVA_org_lnu_118841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-9883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-9883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-9883&client=summon