Spin-flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers

We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin-flip dipole moment perpendicular to the monolayer plane, gives a...

Full description

Saved in:
Bibliographic Details
Published in2d materials Vol. 3; no. 3; p. 35009
Main Authors Slobodeniuk, A O, Basko, D M
Format Journal Article
LanguageEnglish
Published IOP Publishing 12.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin-flip dipole moment perpendicular to the monolayer plane, gives a rate about 100-1000 times smaller than that of bright excitons. However, we find that this mechanism also introduces an energy splitting due to a local field effect, and the whole oscillator strength is contained in the higher-energy component, while the lowest-energy state remains dark and needs an extrinsic spin-flip mechanism for the decay. Rashba effect due to a perpendicular electric field or a dielectric substrate, gives a negligible radiative decay rate (about 107 times slower than that of bright excitons). Spin flip due to Zeeman effect in a sufficiently strong in-plane magnetic field can give a decay rate comparable to that due to the intrinsic interband spin-flip dipole.
Bibliography:2DM-100450.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2053-1583
2053-1583
DOI:10.1088/2053-1583/3/3/035009