Spin-flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers
We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin-flip dipole moment perpendicular to the monolayer plane, gives a...
Saved in:
Published in | 2d materials Vol. 3; no. 3; p. 35009 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
12.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin-flip dipole moment perpendicular to the monolayer plane, gives a rate about 100-1000 times smaller than that of bright excitons. However, we find that this mechanism also introduces an energy splitting due to a local field effect, and the whole oscillator strength is contained in the higher-energy component, while the lowest-energy state remains dark and needs an extrinsic spin-flip mechanism for the decay. Rashba effect due to a perpendicular electric field or a dielectric substrate, gives a negligible radiative decay rate (about 107 times slower than that of bright excitons). Spin flip due to Zeeman effect in a sufficiently strong in-plane magnetic field can give a decay rate comparable to that due to the intrinsic interband spin-flip dipole. |
---|---|
AbstractList | We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin-flip dipole moment perpendicular to the monolayer plane, gives a rate about 100-1000 times smaller than that of bright excitons. However, we find that this mechanism also introduces an energy splitting due to a local field effect, and the whole oscillator strength is contained in the higher-energy component, while the lowest-energy state remains dark and needs an extrinsic spin-flip mechanism for the decay. Rashba effect due to a perpendicular electric field or a dielectric substrate, gives a negligible radiative decay rate (about 107 times slower than that of bright excitons). Spin flip due to Zeeman effect in a sufficiently strong in-plane magnetic field can give a decay rate comparable to that due to the intrinsic interband spin-flip dipole. We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin-flip dipole moment perpendicular to the monolayer plane, gives a rate about 100-1000 times smaller than that of bright excitons. However, we find that this mechanism also introduces an energy splitting due to a local field effect, and the whole oscillator strength is contained in the higher-energy component, while the lowest-energy state remains dark and needs an extrinsic spin-flip mechanism for the decay. Rashba effect due to a perpendicular electric field or a dielectric substrate, gives a negligible radiative decay rate (about 10 super(7) times slower than that of bright excitons). Spin flip due to Zeeman effect in a sufficiently strong in-plane magnetic field can give a decay rate comparable to that due to the intrinsic interband spin-flip dipole. |
Author | Slobodeniuk, A O Basko, D M |
Author_xml | – sequence: 1 givenname: A O surname: Slobodeniuk fullname: Slobodeniuk, A O email: artur.slobodeniuk@lncmi.cnrs.fr organization: Laboratoire National des Champs Magnétiques Intenses , CNRS-UJF-UPS-INSA, 25 rue des Martyrs, B.P. 166, F-38042 Grenoble, France – sequence: 2 givenname: D M surname: Basko fullname: Basko, D M email: denis.basko@lpmmc.cnrs.fr organization: Universitè de Grenoble-Alpes and CNRS Laboratoire de Physique et Modélisation des Milieux Condensés, 25 rue des Martyrs, F-38042 Grenoble, France |
BackLink | https://hal.science/hal-01998360$$DView record in HAL |
BookMark | eNqFkU9v1DAQxS1UJErpN-jBRziE-l8Sh1tVUVppJQ5tz9asPQEXrx3s7Kr77XEUQIgDaA4ePb03Gv_mNTmJKSIhF5y950zrS8Fa2fBWy8ulmGwZG16Q09_yyR_9K3JeyhNjjPedVLw7Jfl-8rEZg5_olJPFUrBQiI5mcB5mf0Dq0MKRppE6yN-oj3OGA4SAR4rP1s8plirSqsbiZ58i3eEMgTpvv0Kw6QtG75DuUkwBjpjLG_JyhFDw_Od7Rh5vPj5c3zabz5_urq82jVWinZthYC1D3fedgy0oFEoC7zqnNVdKCaHBChR6qxw4IXsmBuWYHDkObtxutZZn5N06t65hpux3kI8mgTe3VxuzaIwPg5YdO_Dqfbt6K4Tveyyz2fliMQSImPbFcK0VZ5L3qlo_rFabUykZR1MhwPLxisAHw5lZ7mIW6GaBbpZa71LD6q_wr8X-E2NrzKfJPKV9jhXcvyM_AM6MoTw |
CitedBy_id | crossref_primary_10_1103_PhysRevB_95_035311 crossref_primary_10_1103_PhysRevB_95_235408 crossref_primary_10_1103_RevModPhys_90_021001 crossref_primary_10_1021_acsphotonics_8b01349 crossref_primary_10_1088_0256_307X_41_8_087101 crossref_primary_10_1021_acs_jpcc_4c00516 crossref_primary_10_1088_2053_1583_aa8aa0 crossref_primary_10_1038_ncomms15053 crossref_primary_10_3390_nano10040762 crossref_primary_10_1103_PhysRevB_101_115307 crossref_primary_10_1103_PhysRevB_96_241403 crossref_primary_10_1021_acs_nanolett_0c05021 crossref_primary_10_1103_PhysRevB_106_085414 crossref_primary_10_1021_acs_jpclett_1c00799 crossref_primary_10_3367_UFNe_2017_07_038172 crossref_primary_10_1021_acsnano_3c09974 crossref_primary_10_3390_ma13245736 crossref_primary_10_1021_acs_jpcc_2c05113 crossref_primary_10_1103_PhysRevB_110_205417 crossref_primary_10_1103_PhysRevB_96_085302 crossref_primary_10_1021_acsnano_0c04397 crossref_primary_10_1103_PhysRevB_94_205423 crossref_primary_10_1021_acsnano_1c02204 crossref_primary_10_1021_acs_nanolett_5c00456 crossref_primary_10_1002_adma_201904306 crossref_primary_10_1103_PhysRevLett_119_137401 crossref_primary_10_1515_nanoph_2021_0383 crossref_primary_10_1002_pssb_201800682 crossref_primary_10_1515_nanoph_2024_0385 crossref_primary_10_1088_2053_1583_ab5614 crossref_primary_10_1103_PhysRevB_109_195418 crossref_primary_10_1103_PhysRevB_101_245412 crossref_primary_10_1103_PhysRevB_98_155417 crossref_primary_10_1103_PhysRevB_96_155423 crossref_primary_10_1021_acs_jpclett_9b01068 crossref_primary_10_1039_D0NR04243A crossref_primary_10_1088_2053_1583_aaf9bb crossref_primary_10_1515_nanoph_2020_0054 crossref_primary_10_1038_s41467_020_17608_4 crossref_primary_10_1038_s41565_017_0003_0 crossref_primary_10_1038_s42005_021_00563_x crossref_primary_10_1002_adom_202101801 crossref_primary_10_1021_acs_nanolett_9b05138 crossref_primary_10_1038_s41467_019_12129_1 crossref_primary_10_1021_acsnano_8b05880 crossref_primary_10_1021_acs_nanolett_8b02774 crossref_primary_10_1039_D1MH01186C crossref_primary_10_1088_2053_1583_aae14b crossref_primary_10_1021_acs_jpcc_3c01019 crossref_primary_10_1021_acs_nanolett_1c04360 crossref_primary_10_1038_s42005_021_00692_3 crossref_primary_10_1002_pssr_202100263 crossref_primary_10_1038_nnano_2017_106 crossref_primary_10_1088_1361_648X_aac61a crossref_primary_10_1103_PhysRevB_94_155432 crossref_primary_10_1103_PhysRevLett_123_096803 crossref_primary_10_1063_1_4995517 crossref_primary_10_1103_PhysRevB_106_235304 crossref_primary_10_1103_PhysRevLett_119_047401 crossref_primary_10_1088_2053_1583_aa9811 crossref_primary_10_1364_OL_44_004139 crossref_primary_10_1515_nanoph_2016_0165 crossref_primary_10_1063_1_5093664 crossref_primary_10_1103_PhysRevLett_129_076801 crossref_primary_10_1103_PhysRevLett_134_026901 crossref_primary_10_3390_nano13071207 crossref_primary_10_1103_PhysRevB_107_075430 crossref_primary_10_1002_lpor_202300185 crossref_primary_10_1103_PhysRevB_105_085302 crossref_primary_10_1038_srep45998 crossref_primary_10_1103_PhysRevB_101_075426 crossref_primary_10_1002_adom_201900978 crossref_primary_10_1063_5_0181003 crossref_primary_10_1103_PhysRevB_100_161304 crossref_primary_10_1103_PhysRevB_98_195302 crossref_primary_10_1038_s41467_023_39339_y crossref_primary_10_3390_nano13233028 crossref_primary_10_1088_1361_6463_ac4ec3 crossref_primary_10_1088_2053_1583_aa5521 crossref_primary_10_1021_acsnano_1c10391 |
Cites_doi | 10.1039/C5NR01536G 10.1088/0022-3719/17/33/015 10.1021/acs.nanolett.5b00626 10.1103/PhysRevB.88.045416 10.1103/PhysRevB.60.14311 10.1103/PhysRevB.88.195420 10.1103/PhysRevB.92.075445 10.1038/ncomms4876 10.1103/PhysRevLett.113.026803 10.1103/PhysRevLett.108.196802 10.1016/0038-1098(91)90761-J 10.1093/nsr/nwu078 10.1103/PhysRevB.93.121107 10.1063/1.1712084 10.1038/ncomms10110 10.1103/PhysRevB.88.075409 10.1103/PhysRevB.41.7536 10.1038/ncomms1882 10.1021/nl2043612 10.1038/nnano.2012.96 10.1103/PhysRevB.88.245436 10.1038/nnano.2012.95 10.1103/PhysRevB.88.085433 10.1103/PhysRevB.86.115409 10.1038/nnano.2015.67 10.1103/PhysRevLett.111.216805 10.1038/ncomms10643 10.1103/PhysRevB.37.6429 10.1103/PhysRevB.86.081301 10.1103/PhysRevB.90.075413 10.1103/PhysRevLett.115.257403 10.1021/acs.nanolett.5b03740 10.1103/PhysRevB.87.245421 10.1021/nl503799t 10.1038/nnano.2015.60 10.1038/nnano.2013.277 10.1103/PhysRevLett.111.026601 10.1007/978-3-662-12869-5 10.1103/PhysRevB.8.3719 10.1103/PhysRevB.92.125431 10.1038/srep09218 10.1073/pnas.0502848102 10.1038/nnano.2013.151 10.1038/ncomms9315 10.1103/PhysRevLett.105.136805 10.1103/PhysRevB.93.075411 10.1103/PhysRevB.89.201302 10.1002/smll.201102654 10.1103/PhysRevB.53.15834 10.1038/nphys3324 10.1103/PhysRevLett.116.127402 10.1016/j.ssc.2012.02.005 10.1038/nphys3674 10.1063/1.368677 10.1103/PhysRevB.77.235406 10.1103/PhysRevB.84.153402 10.1103/PhysRevB.93.045407 10.1021/nn403159y 10.1103/PhysRevB.79.115409 10.1038/nature13734 10.1103/PhysRevLett.113.076802 10.1021/nl903868w 10.1103/PhysRevB.88.045318 10.1126/science.aac7820 |
ContentType | Journal Article |
Copyright | 2016 IOP Publishing Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 IOP Publishing Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SP 7SR 7U5 8FD JG9 L7M 1XC |
DOI | 10.1088/2053-1583/3/3/035009 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Spin-flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers |
EISSN | 2053-1583 |
EndPage | 035009 |
ExternalDocumentID | oai_HAL_hal_01998360v1 10_1088_2053_1583_3_3_035009 tdmaa36e6 |
GrantInformation_xml | – fundername: European Commission grantid: 604391 funderid: http://dx.doi.org/10.13039/501100000780 |
GroupedDBID | 5VS AAGCD AAJIO AALHV AATNI ABHWH ABVAM ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT CEBXE CJUJL CRLBU EBS EJD IIPPG IJHAN IOP IZVLO KOT N5L PJBAE RIN ROL RPA AAYXX ABJNI ADEQX CITATION 7SP 7SR 7U5 8FD JG9 L7M 1XC |
ID | FETCH-LOGICAL-c425t-99050e8776daba4e243a166d881444228ac2e28b4dad2370294d03f1e9dfbb883 |
IEDL.DBID | IOP |
ISSN | 2053-1583 |
IngestDate | Fri May 09 12:18:38 EDT 2025 Fri Jul 11 02:14:17 EDT 2025 Tue Jul 01 02:03:52 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Aug 21 03:33:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-99050e8776daba4e243a166d881444228ac2e28b4dad2370294d03f1e9dfbb883 |
Notes | 2DM-100450.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1884103174 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | iop_journals_10_1088_2053_1583_3_3_035009 proquest_miscellaneous_1884103174 crossref_citationtrail_10_1088_2053_1583_3_3_035009 hal_primary_oai_HAL_hal_01998360v1 crossref_primary_10_1088_2053_1583_3_3_035009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-12 |
PublicationDateYYYYMMDD | 2016-08-12 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-12 day: 12 |
PublicationDecade | 2010 |
PublicationTitle | 2d materials |
PublicationTitleAbbrev | TDM |
PublicationTitleAlternate | 2D Mater |
PublicationYear | 2016 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 46 48 49 Pekar S (72) 1946; 16 50 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 Smoleński T (36) 2015; 6 60 Jakubczyk T (71) 2016 63 20 64 21 65 22 23 Kormányos A (47) 2014; 4 67 24 68 25 69 26 27 28 29 Agranovich V M (38) 1966; 3 Slobodeniuk A O (66) 2016 73 30 74 31 32 33 34 35 Agranovich V M (37) 1966; 3 39 Bychkov Yu A (45) 1984; 17 Abrikosov A A (61) 1965 Yu H (62) 2014; 5 Kormányos A (51) 2015; 2 Selig M (70) 2016 40 41 42 43 |
References_xml | – ident: 28 doi: 10.1039/C5NR01536G – volume: 17 start-page: 6039 issn: 0022-3719 year: 1984 ident: 45 publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/17/33/015 – ident: 33 doi: 10.1021/acs.nanolett.5b00626 – ident: 25 doi: 10.1103/PhysRevB.88.045416 – volume: 6 year: 2015 ident: 36 publication-title: Phys. Rev. – ident: 53 doi: 10.1103/PhysRevB.60.14311 – ident: 57 doi: 10.1103/PhysRevB.88.195420 – ident: 42 doi: 10.1103/PhysRevB.92.075445 – volume: 5 start-page: 3876 year: 2014 ident: 62 publication-title: Nat. Commun. doi: 10.1038/ncomms4876 – ident: 12 doi: 10.1103/PhysRevLett.113.026803 – ident: 15 doi: 10.1103/PhysRevLett.108.196802 – ident: 40 doi: 10.1016/0038-1098(91)90761-J – ident: 63 doi: 10.1093/nsr/nwu078 – year: 2016 ident: 71 – ident: 48 doi: 10.1103/PhysRevB.93.121107 – volume: 3 start-page: 345 year: 1966 ident: 37 publication-title: Pis’ma ZhETF – ident: 73 doi: 10.1063/1.1712084 – ident: 30 doi: 10.1038/ncomms10110 – ident: 58 doi: 10.1103/PhysRevB.88.075409 – ident: 39 doi: 10.1103/PhysRevB.41.7536 – ident: 17 doi: 10.1038/ncomms1882 – ident: 5 doi: 10.1021/nl2043612 – ident: 19 doi: 10.1038/nnano.2012.96 – ident: 27 doi: 10.1103/PhysRevB.88.245436 – ident: 18 doi: 10.1038/nnano.2012.95 – ident: 26 doi: 10.1103/PhysRevB.88.085433 – ident: 7 doi: 10.1103/PhysRevB.86.115409 – volume: 3 start-page: 223 issn: 0021-3640 year: 1966 ident: 38 publication-title: JETP Lett. – ident: 34 doi: 10.1038/nnano.2015.67 – ident: 9 doi: 10.1103/PhysRevLett.111.216805 – ident: 60 doi: 10.1038/ncomms10643 – year: 2016 ident: 70 – ident: 50 doi: 10.1103/PhysRevB.37.6429 – ident: 20 doi: 10.1103/PhysRevB.86.081301 – volume: 16 start-page: 341 year: 1946 ident: 72 publication-title: Zh. Eksp. Teor. Fiz. – ident: 22 doi: 10.1103/PhysRevB.90.075413 – ident: 31 doi: 10.1103/PhysRevLett.115.257403 – ident: 29 doi: 10.1021/acs.nanolett.5b03740 – ident: 49 doi: 10.1103/PhysRevB.87.245421 – ident: 43 doi: 10.1021/nl503799t – ident: 35 doi: 10.1038/nnano.2015.60 – ident: 6 doi: 10.1038/nnano.2013.277 – volume: 2 issn: 2053-1583 year: 2015 ident: 51 publication-title: 2D Mater. – ident: 59 doi: 10.1103/PhysRevLett.111.026601 – ident: 74 doi: 10.1007/978-3-662-12869-5 – ident: 52 doi: 10.1103/PhysRevB.8.3719 – ident: 46 doi: 10.1103/PhysRevB.92.125431 – ident: 13 doi: 10.1038/srep09218 – ident: 3 doi: 10.1073/pnas.0502848102 – ident: 21 doi: 10.1038/nnano.2013.151 – ident: 67 doi: 10.1038/ncomms9315 – ident: 2 doi: 10.1103/PhysRevLett.105.136805 – year: 2016 ident: 66 – ident: 68 doi: 10.1103/PhysRevB.93.075411 – volume: 4 year: 2014 ident: 47 publication-title: Phys. Rev. – ident: 41 doi: 10.1103/PhysRevB.89.201302 – ident: 4 doi: 10.1002/smll.201102654 – ident: 65 doi: 10.1103/PhysRevB.53.15834 – ident: 32 doi: 10.1038/nphys3324 – ident: 69 doi: 10.1103/PhysRevLett.116.127402 – ident: 56 doi: 10.1016/j.ssc.2012.02.005 – ident: 24 doi: 10.1038/nphys3674 – ident: 64 doi: 10.1063/1.368677 – ident: 16 doi: 10.1103/PhysRevB.77.235406 – ident: 55 doi: 10.1103/PhysRevB.84.153402 – ident: 44 doi: 10.1103/PhysRevB.93.045407 – ident: 14 doi: 10.1021/nn403159y – ident: 54 doi: 10.1103/PhysRevB.79.115409 – ident: 11 doi: 10.1038/nature13734 – ident: 10 doi: 10.1103/PhysRevLett.113.076802 – year: 1965 ident: 61 publication-title: Quantum Field Theoretical Methods in Statistical Physics – ident: 1 doi: 10.1021/nl903868w – ident: 8 doi: 10.1103/PhysRevB.88.045318 – ident: 23 doi: 10.1126/science.aac7820 |
SSID | ssj0001763416 |
Score | 2.380207 |
Snippet | We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves... |
SourceID | hal proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35009 |
SubjectTerms | Condensed Matter Decay Decay rate decay rate of dark excitons Electric fields Electron spin electronic and optical properties Electronics Excitons Materials Science Mesoscopic Systems and Quantum Hall Effect Monolayers Physics Quantum Physics transition metal dichalcogenide monolayers Transition metals |
Title | Spin-flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers |
URI | https://iopscience.iop.org/article/10.1088/2053-1583/3/3/035009 https://www.proquest.com/docview/1884103174 https://hal.science/hal-01998360 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS-QwNKx68aIuKo5fZBcvHjK2TZqmx0GUUXZXQQVvNU1SHBzbMtMRx1_ve23HRUVEJJcS8tL2Je8reR-E7GUydoHVKWhuVjMhDGfadx6LM-6LlMeZjjE4-e8_2b8Sp9fhdVvntI6FKcqW9XfhsUkU3KCwdYhTYK6HnPmh4gfY8GYMA_gWuJISSxicnJ3_P2QB6gGNYxYy9wHwK5E0d4sOkXPw8nfcuRY5x8vkZvaxjafJXXdSpV3z9CaP4zf-ZoUsteoo7TXDf5IfLl8lo4tykLNsOChp2cQRuDHVuaUjTGSA_JFaZ_SUFhm1enRHB3hC_IBVWabUPRpgEvkYOmmFgrD2CaP3DrR8atFJf2gK2LUD6yiQAFjWqPSvkavjo8vDPmtrMzADVF4xEGKh51QUSVhoLVwguPaltEqBhYZpxbQJXKBSYbUNeOQFsbAez3wX2yxNleLrZD4vcrdBqM0Co0FzCY2SIuYAEFoTh2C6RjqyIe8QPluexLSJy7F-xjCpL9CVShCHCeIwwdbgsEPYC1TZJO74ZPxvQMDLUMy63e_9SbDPwzhELr0Hv0P2YR2TlszHn0z4a7Z9EiBZvIfRuSsmAKWUwOoakdj8wnxbZBGUNYnn2X6wTear0cTtgEJUpbv1pn8GYun-3A |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3bbtMw1FqHhHjhIkB0MDCIFx7cJfElzuM0qDoYYxJM2pvl-KJV65KoTSfG1--cJi0ChCaE_BJZPpZz7HOzz4WQt1EVIfO2BM3NWyaE48ymIWFF5KkoeRFtgcHJn4_V5FR8PJNnW-RgEwtTNz3rH8Fnlyi4Q2HvEKfBXJecpVLzPWz4MpYUe42PA3JHcsUxgf7hl5OfFy1AQaB1rMPm_jLBL2JpcI5OkQNYwB8ceiV2xg-IXy-48za5GC3bcuR-_JbL8T__6CG536uldL8DeUS2QvWYzL8204rF2bShTRdPEBbUVp7OMaEB8knqg7PXtI7U2_kFneJN8RVWZ7mm4bsDZlEtoJO2KBBXvmH0MoC2Tz06689cDad36gMFUgALG5X_J-R0_OHbwYT1NRqYA2pvGQgzmQSd5wo23IqQCW5TpbzWYKlhejHrspDpUnjrM54nWSF8wmMaCh_LUmv-lGxXdRWeEepj5ixoMNJpJQoOANK7QoIJm9vcSz4kfL1FxvUJzLGOxsysHtK1NohHg3g02Do8DgnbQDVdAo9bxr8BBGyGYvbtyf6Rwb4E4xG5Sq7SIXkHe2l6cl_cMuHr9REyQLr4HmOrUC8BSmuBVTZysfMP870id0_ej83R4fGn5-Qe6G8Kr7jT7AXZbufLsAs6Ulu-XNHADdQKBE8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-flip+processes+and+radiative+decay+of+dark+intravalley+excitons+in+transition+metal+dichalcogenide+monolayers&rft.jtitle=2d+materials&rft.au=Slobodeniuk%2C+A+O&rft.au=Basko%2C+D+M&rft.date=2016-08-12&rft.pub=IOP+Publishing&rft.eissn=2053-1583&rft.volume=3&rft.issue=3&rft_id=info:doi/10.1088%2F2053-1583%2F3%2F3%2F035009&rft.externalDocID=tdmaa36e6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2053-1583&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2053-1583&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2053-1583&client=summon |