Spin-flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers

We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin-flip dipole moment perpendicular to the monolayer plane, gives a...

Full description

Saved in:
Bibliographic Details
Published in2d materials Vol. 3; no. 3; p. 35009
Main Authors Slobodeniuk, A O, Basko, D M
Format Journal Article
LanguageEnglish
Published IOP Publishing 12.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin-flip dipole moment perpendicular to the monolayer plane, gives a rate about 100-1000 times smaller than that of bright excitons. However, we find that this mechanism also introduces an energy splitting due to a local field effect, and the whole oscillator strength is contained in the higher-energy component, while the lowest-energy state remains dark and needs an extrinsic spin-flip mechanism for the decay. Rashba effect due to a perpendicular electric field or a dielectric substrate, gives a negligible radiative decay rate (about 107 times slower than that of bright excitons). Spin flip due to Zeeman effect in a sufficiently strong in-plane magnetic field can give a decay rate comparable to that due to the intrinsic interband spin-flip dipole.
AbstractList We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin-flip dipole moment perpendicular to the monolayer plane, gives a rate about 100-1000 times smaller than that of bright excitons. However, we find that this mechanism also introduces an energy splitting due to a local field effect, and the whole oscillator strength is contained in the higher-energy component, while the lowest-energy state remains dark and needs an extrinsic spin-flip mechanism for the decay. Rashba effect due to a perpendicular electric field or a dielectric substrate, gives a negligible radiative decay rate (about 107 times slower than that of bright excitons). Spin flip due to Zeeman effect in a sufficiently strong in-plane magnetic field can give a decay rate comparable to that due to the intrinsic interband spin-flip dipole.
We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin-flip dipole moment perpendicular to the monolayer plane, gives a rate about 100-1000 times smaller than that of bright excitons. However, we find that this mechanism also introduces an energy splitting due to a local field effect, and the whole oscillator strength is contained in the higher-energy component, while the lowest-energy state remains dark and needs an extrinsic spin-flip mechanism for the decay. Rashba effect due to a perpendicular electric field or a dielectric substrate, gives a negligible radiative decay rate (about 10 super(7) times slower than that of bright excitons). Spin flip due to Zeeman effect in a sufficiently strong in-plane magnetic field can give a decay rate comparable to that due to the intrinsic interband spin-flip dipole.
Author Slobodeniuk, A O
Basko, D M
Author_xml – sequence: 1
  givenname: A O
  surname: Slobodeniuk
  fullname: Slobodeniuk, A O
  email: artur.slobodeniuk@lncmi.cnrs.fr
  organization: Laboratoire National des Champs Magnétiques Intenses , CNRS-UJF-UPS-INSA, 25 rue des Martyrs, B.P. 166, F-38042 Grenoble, France
– sequence: 2
  givenname: D M
  surname: Basko
  fullname: Basko, D M
  email: denis.basko@lpmmc.cnrs.fr
  organization: Universitè de Grenoble-Alpes and CNRS Laboratoire de Physique et Modélisation des Milieux Condensés, 25 rue des Martyrs, F-38042 Grenoble, France
BackLink https://hal.science/hal-01998360$$DView record in HAL
BookMark eNqFkU9v1DAQxS1UJErpN-jBRziE-l8Sh1tVUVppJQ5tz9asPQEXrx3s7Kr77XEUQIgDaA4ePb03Gv_mNTmJKSIhF5y950zrS8Fa2fBWy8ulmGwZG16Q09_yyR_9K3JeyhNjjPedVLw7Jfl-8rEZg5_olJPFUrBQiI5mcB5mf0Dq0MKRppE6yN-oj3OGA4SAR4rP1s8plirSqsbiZ58i3eEMgTpvv0Kw6QtG75DuUkwBjpjLG_JyhFDw_Od7Rh5vPj5c3zabz5_urq82jVWinZthYC1D3fedgy0oFEoC7zqnNVdKCaHBChR6qxw4IXsmBuWYHDkObtxutZZn5N06t65hpux3kI8mgTe3VxuzaIwPg5YdO_Dqfbt6K4Tveyyz2fliMQSImPbFcK0VZ5L3qlo_rFabUykZR1MhwPLxisAHw5lZ7mIW6GaBbpZa71LD6q_wr8X-E2NrzKfJPKV9jhXcvyM_AM6MoTw
CitedBy_id crossref_primary_10_1103_PhysRevB_95_035311
crossref_primary_10_1103_PhysRevB_95_235408
crossref_primary_10_1103_RevModPhys_90_021001
crossref_primary_10_1021_acsphotonics_8b01349
crossref_primary_10_1088_0256_307X_41_8_087101
crossref_primary_10_1021_acs_jpcc_4c00516
crossref_primary_10_1088_2053_1583_aa8aa0
crossref_primary_10_1038_ncomms15053
crossref_primary_10_3390_nano10040762
crossref_primary_10_1103_PhysRevB_101_115307
crossref_primary_10_1103_PhysRevB_96_241403
crossref_primary_10_1021_acs_nanolett_0c05021
crossref_primary_10_1103_PhysRevB_106_085414
crossref_primary_10_1021_acs_jpclett_1c00799
crossref_primary_10_3367_UFNe_2017_07_038172
crossref_primary_10_1021_acsnano_3c09974
crossref_primary_10_3390_ma13245736
crossref_primary_10_1021_acs_jpcc_2c05113
crossref_primary_10_1103_PhysRevB_110_205417
crossref_primary_10_1103_PhysRevB_96_085302
crossref_primary_10_1021_acsnano_0c04397
crossref_primary_10_1103_PhysRevB_94_205423
crossref_primary_10_1021_acsnano_1c02204
crossref_primary_10_1021_acs_nanolett_5c00456
crossref_primary_10_1002_adma_201904306
crossref_primary_10_1103_PhysRevLett_119_137401
crossref_primary_10_1515_nanoph_2021_0383
crossref_primary_10_1002_pssb_201800682
crossref_primary_10_1515_nanoph_2024_0385
crossref_primary_10_1088_2053_1583_ab5614
crossref_primary_10_1103_PhysRevB_109_195418
crossref_primary_10_1103_PhysRevB_101_245412
crossref_primary_10_1103_PhysRevB_98_155417
crossref_primary_10_1103_PhysRevB_96_155423
crossref_primary_10_1021_acs_jpclett_9b01068
crossref_primary_10_1039_D0NR04243A
crossref_primary_10_1088_2053_1583_aaf9bb
crossref_primary_10_1515_nanoph_2020_0054
crossref_primary_10_1038_s41467_020_17608_4
crossref_primary_10_1038_s41565_017_0003_0
crossref_primary_10_1038_s42005_021_00563_x
crossref_primary_10_1002_adom_202101801
crossref_primary_10_1021_acs_nanolett_9b05138
crossref_primary_10_1038_s41467_019_12129_1
crossref_primary_10_1021_acsnano_8b05880
crossref_primary_10_1021_acs_nanolett_8b02774
crossref_primary_10_1039_D1MH01186C
crossref_primary_10_1088_2053_1583_aae14b
crossref_primary_10_1021_acs_jpcc_3c01019
crossref_primary_10_1021_acs_nanolett_1c04360
crossref_primary_10_1038_s42005_021_00692_3
crossref_primary_10_1002_pssr_202100263
crossref_primary_10_1038_nnano_2017_106
crossref_primary_10_1088_1361_648X_aac61a
crossref_primary_10_1103_PhysRevB_94_155432
crossref_primary_10_1103_PhysRevLett_123_096803
crossref_primary_10_1063_1_4995517
crossref_primary_10_1103_PhysRevB_106_235304
crossref_primary_10_1103_PhysRevLett_119_047401
crossref_primary_10_1088_2053_1583_aa9811
crossref_primary_10_1364_OL_44_004139
crossref_primary_10_1515_nanoph_2016_0165
crossref_primary_10_1063_1_5093664
crossref_primary_10_1103_PhysRevLett_129_076801
crossref_primary_10_1103_PhysRevLett_134_026901
crossref_primary_10_3390_nano13071207
crossref_primary_10_1103_PhysRevB_107_075430
crossref_primary_10_1002_lpor_202300185
crossref_primary_10_1103_PhysRevB_105_085302
crossref_primary_10_1038_srep45998
crossref_primary_10_1103_PhysRevB_101_075426
crossref_primary_10_1002_adom_201900978
crossref_primary_10_1063_5_0181003
crossref_primary_10_1103_PhysRevB_100_161304
crossref_primary_10_1103_PhysRevB_98_195302
crossref_primary_10_1038_s41467_023_39339_y
crossref_primary_10_3390_nano13233028
crossref_primary_10_1088_1361_6463_ac4ec3
crossref_primary_10_1088_2053_1583_aa5521
crossref_primary_10_1021_acsnano_1c10391
Cites_doi 10.1039/C5NR01536G
10.1088/0022-3719/17/33/015
10.1021/acs.nanolett.5b00626
10.1103/PhysRevB.88.045416
10.1103/PhysRevB.60.14311
10.1103/PhysRevB.88.195420
10.1103/PhysRevB.92.075445
10.1038/ncomms4876
10.1103/PhysRevLett.113.026803
10.1103/PhysRevLett.108.196802
10.1016/0038-1098(91)90761-J
10.1093/nsr/nwu078
10.1103/PhysRevB.93.121107
10.1063/1.1712084
10.1038/ncomms10110
10.1103/PhysRevB.88.075409
10.1103/PhysRevB.41.7536
10.1038/ncomms1882
10.1021/nl2043612
10.1038/nnano.2012.96
10.1103/PhysRevB.88.245436
10.1038/nnano.2012.95
10.1103/PhysRevB.88.085433
10.1103/PhysRevB.86.115409
10.1038/nnano.2015.67
10.1103/PhysRevLett.111.216805
10.1038/ncomms10643
10.1103/PhysRevB.37.6429
10.1103/PhysRevB.86.081301
10.1103/PhysRevB.90.075413
10.1103/PhysRevLett.115.257403
10.1021/acs.nanolett.5b03740
10.1103/PhysRevB.87.245421
10.1021/nl503799t
10.1038/nnano.2015.60
10.1038/nnano.2013.277
10.1103/PhysRevLett.111.026601
10.1007/978-3-662-12869-5
10.1103/PhysRevB.8.3719
10.1103/PhysRevB.92.125431
10.1038/srep09218
10.1073/pnas.0502848102
10.1038/nnano.2013.151
10.1038/ncomms9315
10.1103/PhysRevLett.105.136805
10.1103/PhysRevB.93.075411
10.1103/PhysRevB.89.201302
10.1002/smll.201102654
10.1103/PhysRevB.53.15834
10.1038/nphys3324
10.1103/PhysRevLett.116.127402
10.1016/j.ssc.2012.02.005
10.1038/nphys3674
10.1063/1.368677
10.1103/PhysRevB.77.235406
10.1103/PhysRevB.84.153402
10.1103/PhysRevB.93.045407
10.1021/nn403159y
10.1103/PhysRevB.79.115409
10.1038/nature13734
10.1103/PhysRevLett.113.076802
10.1021/nl903868w
10.1103/PhysRevB.88.045318
10.1126/science.aac7820
ContentType Journal Article
Copyright 2016 IOP Publishing Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 IOP Publishing Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SP
7SR
7U5
8FD
JG9
L7M
1XC
DOI 10.1088/2053-1583/3/3/035009
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Spin-flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers
EISSN 2053-1583
EndPage 035009
ExternalDocumentID oai_HAL_hal_01998360v1
10_1088_2053_1583_3_3_035009
tdmaa36e6
GrantInformation_xml – fundername: European Commission
  grantid: 604391
  funderid: http://dx.doi.org/10.13039/501100000780
GroupedDBID 5VS
AAGCD
AAJIO
AALHV
AATNI
ABHWH
ABVAM
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
CEBXE
CJUJL
CRLBU
EBS
EJD
IIPPG
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
ROL
RPA
AAYXX
ABJNI
ADEQX
CITATION
7SP
7SR
7U5
8FD
JG9
L7M
1XC
ID FETCH-LOGICAL-c425t-99050e8776daba4e243a166d881444228ac2e28b4dad2370294d03f1e9dfbb883
IEDL.DBID IOP
ISSN 2053-1583
IngestDate Fri May 09 12:18:38 EDT 2025
Fri Jul 11 02:14:17 EDT 2025
Tue Jul 01 02:03:52 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Aug 21 03:33:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-99050e8776daba4e243a166d881444228ac2e28b4dad2370294d03f1e9dfbb883
Notes 2DM-100450.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1884103174
PQPubID 23500
PageCount 17
ParticipantIDs iop_journals_10_1088_2053_1583_3_3_035009
proquest_miscellaneous_1884103174
crossref_citationtrail_10_1088_2053_1583_3_3_035009
hal_primary_oai_HAL_hal_01998360v1
crossref_primary_10_1088_2053_1583_3_3_035009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-12
PublicationDateYYYYMMDD 2016-08-12
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-12
  day: 12
PublicationDecade 2010
PublicationTitle 2d materials
PublicationTitleAbbrev TDM
PublicationTitleAlternate 2D Mater
PublicationYear 2016
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
46
48
49
Pekar S (72) 1946; 16
50
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
Smoleński T (36) 2015; 6
60
Jakubczyk T (71) 2016
63
20
64
21
65
22
23
Kormányos A (47) 2014; 4
67
24
68
25
69
26
27
28
29
Agranovich V M (38) 1966; 3
Slobodeniuk A O (66) 2016
73
30
74
31
32
33
34
35
Agranovich V M (37) 1966; 3
39
Bychkov Yu A (45) 1984; 17
Abrikosov A A (61) 1965
Yu H (62) 2014; 5
Kormányos A (51) 2015; 2
Selig M (70) 2016
40
41
42
43
References_xml – ident: 28
  doi: 10.1039/C5NR01536G
– volume: 17
  start-page: 6039
  issn: 0022-3719
  year: 1984
  ident: 45
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/17/33/015
– ident: 33
  doi: 10.1021/acs.nanolett.5b00626
– ident: 25
  doi: 10.1103/PhysRevB.88.045416
– volume: 6
  year: 2015
  ident: 36
  publication-title: Phys. Rev.
– ident: 53
  doi: 10.1103/PhysRevB.60.14311
– ident: 57
  doi: 10.1103/PhysRevB.88.195420
– ident: 42
  doi: 10.1103/PhysRevB.92.075445
– volume: 5
  start-page: 3876
  year: 2014
  ident: 62
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4876
– ident: 12
  doi: 10.1103/PhysRevLett.113.026803
– ident: 15
  doi: 10.1103/PhysRevLett.108.196802
– ident: 40
  doi: 10.1016/0038-1098(91)90761-J
– ident: 63
  doi: 10.1093/nsr/nwu078
– year: 2016
  ident: 71
– ident: 48
  doi: 10.1103/PhysRevB.93.121107
– volume: 3
  start-page: 345
  year: 1966
  ident: 37
  publication-title: Pis’ma ZhETF
– ident: 73
  doi: 10.1063/1.1712084
– ident: 30
  doi: 10.1038/ncomms10110
– ident: 58
  doi: 10.1103/PhysRevB.88.075409
– ident: 39
  doi: 10.1103/PhysRevB.41.7536
– ident: 17
  doi: 10.1038/ncomms1882
– ident: 5
  doi: 10.1021/nl2043612
– ident: 19
  doi: 10.1038/nnano.2012.96
– ident: 27
  doi: 10.1103/PhysRevB.88.245436
– ident: 18
  doi: 10.1038/nnano.2012.95
– ident: 26
  doi: 10.1103/PhysRevB.88.085433
– ident: 7
  doi: 10.1103/PhysRevB.86.115409
– volume: 3
  start-page: 223
  issn: 0021-3640
  year: 1966
  ident: 38
  publication-title: JETP Lett.
– ident: 34
  doi: 10.1038/nnano.2015.67
– ident: 9
  doi: 10.1103/PhysRevLett.111.216805
– ident: 60
  doi: 10.1038/ncomms10643
– year: 2016
  ident: 70
– ident: 50
  doi: 10.1103/PhysRevB.37.6429
– ident: 20
  doi: 10.1103/PhysRevB.86.081301
– volume: 16
  start-page: 341
  year: 1946
  ident: 72
  publication-title: Zh. Eksp. Teor. Fiz.
– ident: 22
  doi: 10.1103/PhysRevB.90.075413
– ident: 31
  doi: 10.1103/PhysRevLett.115.257403
– ident: 29
  doi: 10.1021/acs.nanolett.5b03740
– ident: 49
  doi: 10.1103/PhysRevB.87.245421
– ident: 43
  doi: 10.1021/nl503799t
– ident: 35
  doi: 10.1038/nnano.2015.60
– ident: 6
  doi: 10.1038/nnano.2013.277
– volume: 2
  issn: 2053-1583
  year: 2015
  ident: 51
  publication-title: 2D Mater.
– ident: 59
  doi: 10.1103/PhysRevLett.111.026601
– ident: 74
  doi: 10.1007/978-3-662-12869-5
– ident: 52
  doi: 10.1103/PhysRevB.8.3719
– ident: 46
  doi: 10.1103/PhysRevB.92.125431
– ident: 13
  doi: 10.1038/srep09218
– ident: 3
  doi: 10.1073/pnas.0502848102
– ident: 21
  doi: 10.1038/nnano.2013.151
– ident: 67
  doi: 10.1038/ncomms9315
– ident: 2
  doi: 10.1103/PhysRevLett.105.136805
– year: 2016
  ident: 66
– ident: 68
  doi: 10.1103/PhysRevB.93.075411
– volume: 4
  year: 2014
  ident: 47
  publication-title: Phys. Rev.
– ident: 41
  doi: 10.1103/PhysRevB.89.201302
– ident: 4
  doi: 10.1002/smll.201102654
– ident: 65
  doi: 10.1103/PhysRevB.53.15834
– ident: 32
  doi: 10.1038/nphys3324
– ident: 69
  doi: 10.1103/PhysRevLett.116.127402
– ident: 56
  doi: 10.1016/j.ssc.2012.02.005
– ident: 24
  doi: 10.1038/nphys3674
– ident: 64
  doi: 10.1063/1.368677
– ident: 16
  doi: 10.1103/PhysRevB.77.235406
– ident: 55
  doi: 10.1103/PhysRevB.84.153402
– ident: 44
  doi: 10.1103/PhysRevB.93.045407
– ident: 14
  doi: 10.1021/nn403159y
– ident: 54
  doi: 10.1103/PhysRevB.79.115409
– ident: 11
  doi: 10.1038/nature13734
– ident: 10
  doi: 10.1103/PhysRevLett.113.076802
– year: 1965
  ident: 61
  publication-title: Quantum Field Theoretical Methods in Statistical Physics
– ident: 1
  doi: 10.1021/nl903868w
– ident: 8
  doi: 10.1103/PhysRevB.88.045318
– ident: 23
  doi: 10.1126/science.aac7820
SSID ssj0001763416
Score 2.380207
Snippet We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves...
SourceID hal
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35009
SubjectTerms Condensed Matter
Decay
Decay rate
decay rate of dark excitons
Electric fields
Electron spin
electronic and optical properties
Electronics
Excitons
Materials Science
Mesoscopic Systems and Quantum Hall Effect
Monolayers
Physics
Quantum Physics
transition metal dichalcogenide monolayers
Transition metals
Title Spin-flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers
URI https://iopscience.iop.org/article/10.1088/2053-1583/3/3/035009
https://www.proquest.com/docview/1884103174
https://hal.science/hal-01998360
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS-QwNKx68aIuKo5fZBcvHjK2TZqmx0GUUXZXQQVvNU1SHBzbMtMRx1_ve23HRUVEJJcS8tL2Je8reR-E7GUydoHVKWhuVjMhDGfadx6LM-6LlMeZjjE4-e8_2b8Sp9fhdVvntI6FKcqW9XfhsUkU3KCwdYhTYK6HnPmh4gfY8GYMA_gWuJISSxicnJ3_P2QB6gGNYxYy9wHwK5E0d4sOkXPw8nfcuRY5x8vkZvaxjafJXXdSpV3z9CaP4zf-ZoUsteoo7TXDf5IfLl8lo4tykLNsOChp2cQRuDHVuaUjTGSA_JFaZ_SUFhm1enRHB3hC_IBVWabUPRpgEvkYOmmFgrD2CaP3DrR8atFJf2gK2LUD6yiQAFjWqPSvkavjo8vDPmtrMzADVF4xEGKh51QUSVhoLVwguPaltEqBhYZpxbQJXKBSYbUNeOQFsbAez3wX2yxNleLrZD4vcrdBqM0Co0FzCY2SIuYAEFoTh2C6RjqyIe8QPluexLSJy7F-xjCpL9CVShCHCeIwwdbgsEPYC1TZJO74ZPxvQMDLUMy63e_9SbDPwzhELr0Hv0P2YR2TlszHn0z4a7Z9EiBZvIfRuSsmAKWUwOoakdj8wnxbZBGUNYnn2X6wTear0cTtgEJUpbv1pn8GYun-3A
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3bbtMw1FqHhHjhIkB0MDCIFx7cJfElzuM0qDoYYxJM2pvl-KJV65KoTSfG1--cJi0ChCaE_BJZPpZz7HOzz4WQt1EVIfO2BM3NWyaE48ymIWFF5KkoeRFtgcHJn4_V5FR8PJNnW-RgEwtTNz3rH8Fnlyi4Q2HvEKfBXJecpVLzPWz4MpYUe42PA3JHcsUxgf7hl5OfFy1AQaB1rMPm_jLBL2JpcI5OkQNYwB8ceiV2xg-IXy-48za5GC3bcuR-_JbL8T__6CG536uldL8DeUS2QvWYzL8204rF2bShTRdPEBbUVp7OMaEB8knqg7PXtI7U2_kFneJN8RVWZ7mm4bsDZlEtoJO2KBBXvmH0MoC2Tz06689cDad36gMFUgALG5X_J-R0_OHbwYT1NRqYA2pvGQgzmQSd5wo23IqQCW5TpbzWYKlhejHrspDpUnjrM54nWSF8wmMaCh_LUmv-lGxXdRWeEepj5ixoMNJpJQoOANK7QoIJm9vcSz4kfL1FxvUJzLGOxsysHtK1NohHg3g02Do8DgnbQDVdAo9bxr8BBGyGYvbtyf6Rwb4E4xG5Sq7SIXkHe2l6cl_cMuHr9REyQLr4HmOrUC8BSmuBVTZysfMP870id0_ej83R4fGn5-Qe6G8Kr7jT7AXZbufLsAs6Ulu-XNHADdQKBE8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-flip+processes+and+radiative+decay+of+dark+intravalley+excitons+in+transition+metal+dichalcogenide+monolayers&rft.jtitle=2d+materials&rft.au=Slobodeniuk%2C+A+O&rft.au=Basko%2C+D+M&rft.date=2016-08-12&rft.pub=IOP+Publishing&rft.eissn=2053-1583&rft.volume=3&rft.issue=3&rft_id=info:doi/10.1088%2F2053-1583%2F3%2F3%2F035009&rft.externalDocID=tdmaa36e6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2053-1583&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2053-1583&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2053-1583&client=summon