Navigating the complexity of exposure to multiclass organic pollutants in respirable size-resolved particles and implications for oxidative potential
[Display omitted] •Pollutants in 9–10 µm fractions markedly enhance the formation of oxidation.•Benzo[g,h,i]perylene was the primary contributor to oxidation among mixtures.•Particle size and components are key drivers influencing oxidative potential.•Elevated mass concentrations do not necessarily...
Saved in:
Published in | Environment international Vol. 202; p. 109646 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.08.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Pollutants in 9–10 µm fractions markedly enhance the formation of oxidation.•Benzo[g,h,i]perylene was the primary contributor to oxidation among mixtures.•Particle size and components are key drivers influencing oxidative potential.•Elevated mass concentrations do not necessarily indicate severe oxidative toxicity.
Chronic exposure to inhalable atmospheric particulate matter is linked to millions of annual premature deaths globally. Yet the sources and factors driving oxidative potential (OP) remain poorly understood, especially regarding the coexistence of multi-organic pollutants. This longitudinal study examined the size-distribution, respiratory deposition efficiency and daily exposure of 41 chemicals covering polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), and phthalates (PAEs), as well as the dithiothreitol-based OP in size-fractioned PM10 from distinct waste recycling plants in Guangzhou, South China. From September to December 2020, five parallel samples were successively collected within each of the four plants using an eight-stage cascade sampler. The particle size-dependent correlations were explored between co-existing pollutants and acellular OP, with a weighted quantile sum regression model to rank the relative contribution ratios. The ∑8PAE levels in PM10 were 100 and 1000 times higher than those of ∑16PAH and ∑17BFR respectively, aligning with the exposure outcomes of dermal contact and inhalation pathways. Compounds in the coarse fractions of PM9.0–10 primarily deposited in the upper respiratory tract, while 37%–73% in pulmonary alveoli were attributed to finer PM2.1. The high-molecular-weight PAHs and BFRs in PM9.0–10 were more effective in enhancing OP generation than PAEs, with benzo[g,h,i]perylene identified as the most potent oxidizing agent with the highest weight (22%). The findings underscore that elevated pollution burden doses may not necessarily represent severe oxidative toxicity, and the targeted prevention strategies are warranted to mitigate oxidative toxicity from respirable particle. |
---|---|
AbstractList | [Display omitted]
•Pollutants in 9–10 µm fractions markedly enhance the formation of oxidation.•Benzo[g,h,i]perylene was the primary contributor to oxidation among mixtures.•Particle size and components are key drivers influencing oxidative potential.•Elevated mass concentrations do not necessarily indicate severe oxidative toxicity.
Chronic exposure to inhalable atmospheric particulate matter is linked to millions of annual premature deaths globally. Yet the sources and factors driving oxidative potential (OP) remain poorly understood, especially regarding the coexistence of multi-organic pollutants. This longitudinal study examined the size-distribution, respiratory deposition efficiency and daily exposure of 41 chemicals covering polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), and phthalates (PAEs), as well as the dithiothreitol-based OP in size-fractioned PM10 from distinct waste recycling plants in Guangzhou, South China. From September to December 2020, five parallel samples were successively collected within each of the four plants using an eight-stage cascade sampler. The particle size-dependent correlations were explored between co-existing pollutants and acellular OP, with a weighted quantile sum regression model to rank the relative contribution ratios. The ∑8PAE levels in PM10 were 100 and 1000 times higher than those of ∑16PAH and ∑17BFR respectively, aligning with the exposure outcomes of dermal contact and inhalation pathways. Compounds in the coarse fractions of PM9.0–10 primarily deposited in the upper respiratory tract, while 37%–73% in pulmonary alveoli were attributed to finer PM2.1. The high-molecular-weight PAHs and BFRs in PM9.0–10 were more effective in enhancing OP generation than PAEs, with benzo[g,h,i]perylene identified as the most potent oxidizing agent with the highest weight (22%). The findings underscore that elevated pollution burden doses may not necessarily represent severe oxidative toxicity, and the targeted prevention strategies are warranted to mitigate oxidative toxicity from respirable particle. Chronic exposure to inhalable atmospheric particulate matter is linked to millions of annual premature deaths globally. Yet the sources and factors driving oxidative potential (OP) remain poorly understood, especially regarding the coexistence of multi-organic pollutants. This longitudinal study examined the size-distribution, respiratory deposition efficiency and daily exposure of 41 chemicals covering polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), and phthalates (PAEs), as well as the dithiothreitol-based OP in size-fractioned PM10 from distinct waste recycling plants in Guangzhou, South China. From September to December 2020, five parallel samples were successively collected within each of the four plants using an eight-stage cascade sampler. The particle size-dependent correlations were explored between co-existing pollutants and acellular OP, with a weighted quantile sum regression model to rank the relative contribution ratios. The ∑8PAE levels in PM10 were 100 and 1000 times higher than those of ∑16PAH and ∑17BFR respectively, aligning with the exposure outcomes of dermal contact and inhalation pathways. Compounds in the coarse fractions of PM9.0-10 primarily deposited in the upper respiratory tract, while 37%-73% in pulmonary alveoli were attributed to finer PM2.1. The high-molecular-weight PAHs and BFRs in PM9.0-10 were more effective in enhancing OP generation than PAEs, with benzo[g,h,i]perylene identified as the most potent oxidizing agent with the highest weight (22%). The findings underscore that elevated pollution burden doses may not necessarily represent severe oxidative toxicity, and the targeted prevention strategies are warranted to mitigate oxidative toxicity from respirable particle.Chronic exposure to inhalable atmospheric particulate matter is linked to millions of annual premature deaths globally. Yet the sources and factors driving oxidative potential (OP) remain poorly understood, especially regarding the coexistence of multi-organic pollutants. This longitudinal study examined the size-distribution, respiratory deposition efficiency and daily exposure of 41 chemicals covering polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), and phthalates (PAEs), as well as the dithiothreitol-based OP in size-fractioned PM10 from distinct waste recycling plants in Guangzhou, South China. From September to December 2020, five parallel samples were successively collected within each of the four plants using an eight-stage cascade sampler. The particle size-dependent correlations were explored between co-existing pollutants and acellular OP, with a weighted quantile sum regression model to rank the relative contribution ratios. The ∑8PAE levels in PM10 were 100 and 1000 times higher than those of ∑16PAH and ∑17BFR respectively, aligning with the exposure outcomes of dermal contact and inhalation pathways. Compounds in the coarse fractions of PM9.0-10 primarily deposited in the upper respiratory tract, while 37%-73% in pulmonary alveoli were attributed to finer PM2.1. The high-molecular-weight PAHs and BFRs in PM9.0-10 were more effective in enhancing OP generation than PAEs, with benzo[g,h,i]perylene identified as the most potent oxidizing agent with the highest weight (22%). The findings underscore that elevated pollution burden doses may not necessarily represent severe oxidative toxicity, and the targeted prevention strategies are warranted to mitigate oxidative toxicity from respirable particle. Chronic exposure to inhalable atmospheric particulate matter is linked to millions of annual premature deaths globally. Yet the sources and factors driving oxidative potential (OP) remain poorly understood, especially regarding the coexistence of multi-organic pollutants. This longitudinal study examined the size-distribution, respiratory deposition efficiency and daily exposure of 41 chemicals covering polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), and phthalates (PAEs), as well as the dithiothreitol-based OP in size-fractioned PM10 from distinct waste recycling plants in Guangzhou, South China. From September to December 2020, five parallel samples were successively collected within each of the four plants using an eight-stage cascade sampler. The particle size-dependent correlations were explored between co-existing pollutants and acellular OP, with a weighted quantile sum regression model to rank the relative contribution ratios. The ∑8PAE levels in PM10 were 100 and 1000 times higher than those of ∑16PAH and ∑17BFR respectively, aligning with the exposure outcomes of dermal contact and inhalation pathways. Compounds in the coarse fractions of PM9.0–10 primarily deposited in the upper respiratory tract, while 37%–73% in pulmonary alveoli were attributed to finer PM2.1. The high-molecular-weight PAHs and BFRs in PM9.0–10 were more effective in enhancing OP generation than PAEs, with benzo[g,h,i]perylene identified as the most potent oxidizing agent with the highest weight (22%). The findings underscore that elevated pollution burden doses may not necessarily represent severe oxidative toxicity, and the targeted prevention strategies are warranted to mitigate oxidative toxicity from respirable particle. Chronic exposure to inhalable atmospheric particulate matter is linked to millions of annual premature deaths globally. Yet the sources and factors driving oxidative potential (OP) remain poorly understood, especially regarding the coexistence of multi-organic pollutants. This longitudinal study examined the size-distribution, respiratory deposition efficiency and daily exposure of 41 chemicals covering polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), and phthalates (PAEs), as well as the dithiothreitol-based OP in size-fractioned PM from distinct waste recycling plants in Guangzhou, South China. From September to December 2020, five parallel samples were successively collected within each of the four plants using an eight-stage cascade sampler. The particle size-dependent correlations were explored between co-existing pollutants and acellular OP, with a weighted quantile sum regression model to rank the relative contribution ratios. The ∑ PAE levels in PM were 100 and 1000 times higher than those of ∑ PAH and ∑ BFR respectively, aligning with the exposure outcomes of dermal contact and inhalation pathways. Compounds in the coarse fractions of PM primarily deposited in the upper respiratory tract, while 37%-73% in pulmonary alveoli were attributed to finer PM . The high-molecular-weight PAHs and BFRs in PM were more effective in enhancing OP generation than PAEs, with benzo[g,h,i]perylene identified as the most potent oxidizing agent with the highest weight (22%). The findings underscore that elevated pollution burden doses may not necessarily represent severe oxidative toxicity, and the targeted prevention strategies are warranted to mitigate oxidative toxicity from respirable particle. |
ArticleNumber | 109646 |
Author | Luan, Yu-Ling Shen, Hui-Min Zhang, Ying-Jie Guo, Ying Xu, Ting-Ting |
Author_xml | – sequence: 1 givenname: Ying-Jie surname: Zhang fullname: Zhang, Ying-Jie – sequence: 2 givenname: Ting-Ting surname: Xu fullname: Xu, Ting-Ting – sequence: 3 givenname: Yu-Ling surname: Luan fullname: Luan, Yu-Ling – sequence: 4 givenname: Hui-Min surname: Shen fullname: Shen, Hui-Min – sequence: 5 givenname: Ying surname: Guo fullname: Guo, Ying email: yingguo2004@jnu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40578116$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UcuO1DAQjNAi9gF_gJCPXDLYju0kFyS0WmClFVzgbHWczuCRxw62M5rlP_hfPGTYIyerW_VwV11XFz54rKrXjG4YZerdboP-YH3ecMplWfVKqGfVFevaplatpBfVVYHRWjBOL6vrlHaUUi46-aK6FFS2HWPqqvr9BQ52C9n6Lck_kJiwnx0ebX4kYSJ4nENaIpIcyH5x2RoHKZEQt-CtIXNwbsngcyLWk4hpthEGhyTZX1iXObgDjmSGeGJiIuBHYouBNcUx-ESmEEk42rGMByx6GX224F5WzydwCV-d35vq-8e7b7ef64evn-5vPzzURnCZ656xrqFS8a5vRcvV2MtB9MDGlgpp-AScD0rKgSODXgwgWkTBBTbQKjFO0NxU96vuGGCn52j3EB91AKv_Lsqd-vx3Tbt-MhMrERYv0dBhVJ1isqOSCgAcitbbVWuO4eeCKeu9TQadA49hSbrhXPTiFHuBvjlDl2GP45Pxv1oKQKwAE0NKEacnCKP61L7e6bV9fWpfr-0X2vuVhiWzg8Wok7HoDY42osnlKPt_gT_lUrw7 |
Cites_doi | 10.1016/j.chemosphere.2009.02.068 10.1016/j.scitotenv.2017.10.189 10.1021/acs.est.0c08528 10.1016/j.envpol.2020.114386 10.1016/j.ecoenv.2014.06.015 10.1016/j.envpol.2021.117411 10.1016/j.scitotenv.2022.156595 10.1016/j.scitotenv.2019.133902 10.1016/j.taap.2022.115925 10.1016/j.jhazmat.2023.130872 10.1016/j.toxlet.2016.05.023 10.1016/j.apr.2022.101565 10.1016/0041-008X(84)90052-8 10.1016/j.scitotenv.2021.146814 10.1016/j.chemosphere.2020.127385 10.1021/acs.est.8b03761 10.1016/j.neuro.2007.10.002 10.1021/acs.est.7b03583 10.1021/acs.est.1c03749 10.5194/acp-16-3865-2016 10.1016/j.envint.2021.106405 10.1016/j.envpol.2020.114661 10.1016/j.envint.2013.07.019 10.1002/etc.5860 10.1289/ehp.834765 10.1016/j.atmosres.2014.11.013 10.1021/es102874d 10.1016/j.envpol.2018.12.094 10.1021/acs.estlett.2c00193 10.1016/j.scitotenv.2019.07.113 10.1016/j.jes.2024.04.023 10.1016/j.chemosphere.2019.125600 10.5194/acp-12-9321-2012 10.1021/acs.est.7b06686 10.1016/j.jhazmat.2018.07.109 10.1016/j.envint.2018.05.024 10.1186/1743-8977-4-5 10.1016/j.chemosphere.2022.133909 10.1021/acs.est.8b03430 10.1016/j.atmosenv.2015.12.030 10.3390/atmos11090917 10.1016/j.atmosenv.2013.11.068 10.1289/EHP12196 10.1038/s41586-020-2902-8 10.1016/j.ijheh.2021.113710 10.1016/j.envint.2020.106215 10.2172/885731 10.1016/j.envint.2015.07.015 10.1016/j.scitotenv.2021.152004 10.1021/acs.est.8b01689 10.1016/j.jes.2024.10.012 10.1016/j.buildenv.2024.111791 10.1021/es2028229 10.1056/EVIDra2200068 10.1016/j.envint.2021.106743 10.1016/j.jes.2019.09.007 10.1016/j.envint.2022.107557 10.1016/j.jhazmat.2005.05.019 |
ContentType | Journal Article |
Copyright | 2025 Copyright © 2025. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2025 – notice: Copyright © 2025. Published by Elsevier Ltd. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.envint.2025.109646 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health Environmental Sciences |
EISSN | 1873-6750 |
ExternalDocumentID | oai_doaj_org_article_089fcf1002974430bd6861580504aaeb 40578116 10_1016_j_envint_2025_109646 S0160412025003976 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEGFY AEIPS AEKER AENEX AEUPX AFJKZ AFPKN AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SCC SDF SDG SDP SEN SES SEW SSJ SSZ T5K TN5 WUQ XPP ~02 ~G- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 AGRNS BNPGV SSH |
ID | FETCH-LOGICAL-c425t-9118305628974726d95b49a1d7045c2fa22b655b2e1a94ba47ee424e3a764dfa3 |
IEDL.DBID | DOA |
ISSN | 0160-4120 1873-6750 |
IngestDate | Wed Aug 27 01:30:50 EDT 2025 Fri Jul 11 16:57:54 EDT 2025 Thu Aug 28 04:48:33 EDT 2025 Wed Aug 27 16:26:42 EDT 2025 Sat Aug 30 17:13:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Organic pollutants Respiratory deposition Oxidative potential Exposure assessment Size-fractioned PM10 Size-fractioned PM |
Language | English |
License | This is an open access article under the CC BY-NC license. Copyright © 2025. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-9118305628974726d95b49a1d7045c2fa22b655b2e1a94ba47ee424e3a764dfa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/089fcf1002974430bd6861580504aaeb |
PMID | 40578116 |
PQID | 3224947811 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_089fcf1002974430bd6861580504aaeb proquest_miscellaneous_3224947811 pubmed_primary_40578116 crossref_primary_10_1016_j_envint_2025_109646 elsevier_sciencedirect_doi_10_1016_j_envint_2025_109646 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environment international |
PublicationTitleAlternate | Environ Int |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Charrier, Anastasio (b0040) 2012; 12 Leggett, R.W., 2003. Dosimetric Significance of the ICRP's Updated Guidance and Models, 1989-2003, and Implications for U.S. Federal Guidance. Zaragoza-Ojeda, Torres-Flores, Rodríguez-Leviz, Arenas-Huertero (b0265) 2022; 439 Ma, Cheng, Tang, Fan, Li, He, Zhao, Xu (b0180) 2025; 151 Cao, Zhao, Meng, Liu, Wu, Fan, Wang, Jie, Miao, Xu, Shen, Bu (b0035) 2018; 359 Kim, Jahan, Kabir, Brown (b0125) 2013; 60 Yang, Chien, Chao, Lin (b0245) 2005; 125 Andersen, Krais, Eriksson, Jakobsson, Londahl, Nielsen, Lindh, Pagels, Gudmundsson, Wierzbicka (b0015) 2018; 52 Zhang, Xu, Ye, Lin, Wang, Guo (b0300) 2022; 9 Fu, Xia, Sun, Yu (b0065) 2012; 30 Gungormus, Tuncel, Hakan Tecer, Sofuoglu (b0075) 2014; 108 Kramer, Dorn, Perez, Roper, Titaley, Cayton, Cook, Cheong, Massey Simonich (b0130) 2021; 285 Lin, Yu (b0170) 2011; 45 Jiang, Yuan, Lin, Ma, Yu (b0105) 2019; 696 McWhinney, Gao, Zhou, Abbatt (b0185) 2011; 45 Zhang, Wang, Ji, Jiao, Zou, Liu, Shan, Bai, Sun (b0270) 2014; 85 He, He, Wang, Xia, Xu, Zhang, Chen (b0085) 2008; 29 Li, Xie, Bao, Wu, Zeng (b0160) 2021; 781 Lyu, Guo, Cheng, Li (b0175) 2018; 52 Lao, Xie, Wu, Bao, Tao, Zeng (b0140) 2018; 52 Fang, Verma, Bates, Abrams, Klein, Strickland, Sarnat, Chang, Mulholland, Tolbert, Russell, Weber (b0060) 2016; 16 Keswani, Akselrod, Anenberg (b0115) 2022; 1 Zhang, Wu, Xu, Hu, Xu, Liu, Cai, Xia, Wu, Xu, Yu, Cao (b0305) 2022; 170 Kuang, Li, Li, Ma, An, Fan (b0135) 2022; 842 Cao, Wang, Shi, Zhao, Chen, Li, Li, Wang, Bao, Cui (b0030) 2020; 263 Huang, Wu, Bao, Wang, Muir, Zeng (b0100) 2018; 118 Ntziachristos, Froines, Cho, Sioutas (b0210) 2007; 4 Li, Wang, Li, Wai, Li, Tong (b0155) 2016; 128 Zhang (b0285) 2023 Abdallah, Pawar, Harrad (b0005) 2015; 84 Fan, Chen, Wang, Zhang, Zhao, Huang, Wei, Hu, Cao (b0055) 2022; 808 Duan, Zhao, Wang, Chen, Cao (b0050) 2015 Wang, Shi, Zhang, Tong, Li, Zheng, Xiao (b0235) 2024; 43 Zhang, Wu, Wang, Liu, Zeng, Guo (b0295) 2021; 156 Schuetzle (b0220) 1983; 47 Yang, Liu, Zheng, Jin, Zhao, Wu, Xu (b0250) 2017; 51 Daellenbach, Uzu, Jiang, Cassagnes, Leni, Vlachou, Stefenelli, Canonaco, Weber, Segers, Kuenen, Schaap, Favez, Albinet, Aksoyoglu, Dommen, Baltensperger, Geiser, El Haddad, Jaffrezo, Prevot (b0045) 2020; 587 Olkowska, Grzinic (b0215) 2022; 295 Yao, Li, Pan, Duan, Duan, Li, Sun (b0255) 2021; 146 Meng, Liu, Shen, Del Rosario, Lakey, Shiraiwa, Su, Weichenthal, Zhu, Oroumiyeh, Paulson, Jerrett, Ritz (b0190) 2023; 131 Abrams, Weber, Klein, Sarnat, Chang, Strickland, Verma, Fang, Bates, Mulholland, Russell, Tolbert (b0010) 2017; 125 Guascito, Lionetto, Mazzotta, Conte, Giordano, Caricato, De Bartolomeo, Dinoi, Cesari, Merico, Mazzotta, Contini (b0070) 2023; 448 Molina, Toro, Manzano, Canepari, Massimi, Leiva-Guzmán (b0195) 2020; 11 Hou, Yin, Li, Huang, Wan, Hu, Xu, Cheng, Wang, Yu, Yuan (b0090) 2019; 691 Hu, Ma, Zhang, Liu, Song, Cao, Macdonald, Nikolaev, Li, Li (b0095) 2021; 55 Johnson-Restrepo, Kannan (b0110) 2009; 76 Sun, Wolff, Kanapilly, Mcclellan (b0225) 1984; 73 Voliotis, Bezantakos, Besis, Shao, Samara (b0230) 2021; 234 Niu, Chuang, Wang, Ho, Li, Qu, Chow, Watson, Sun, Lee, Cao, Ho (b0205) 2020; 263 Xu, Zhang, Yi, Bai, Guo (b0240) 2025; 155 Khan, Gurjar, Sahu (b0120) 2022; 13 Bates, Fang, Verma, Zeng, Weber, Tolbert, Abrams, Sarnat, Klein, Mulholland, Russell (b0025) 2019; 53 Zaragoza-Ojeda, Eguia-Aguilar, Perezpena-Diazconti, Arenas-Huertero (b0260) 2016; 256 Zhen, Li, Tang, Wang, Liu, Zhong, Tian (b0310) 2021; 55 Zhang, Yang, Zhou, Zhang, Xing, Wei, Hu, Zhao, Toriba, Hayakawa, Tang (b0275) 2020; 88 Guo, Li, Lyu, Cheng, Xv, Li (b0080) 2019; 246 Liao, Liu, Zhang, Shi, Wang, Cai, Zou, Lu, Sun, Wang, Huang, Zhao (b0165) 2018; 616–617 Bahrami, Haghighat, Zhu (b0020) 2024; 262 Li, Wang (b0150) 2015; 154 Zhang, Huang, Lv, Ma, Guo, Zeng (b0290) 2021; 149 Montalbano, Albano, Anzalone, Moscato, Gagliardo, Di Sano, Bonanno, Ruggieri, Cibella, Profita (b0200) 2020; 245 Zhuang, Pan, Mengqiu, Hong, Zhu, Wu, Chang, Wang, Zhao (b0315) 2020; 258 Zhang, Xu, Zhang, Wan, Zhao (b0280) 2024; 480 Jiang (10.1016/j.envint.2025.109646_b0105) 2019; 696 Daellenbach (10.1016/j.envint.2025.109646_b0045) 2020; 587 Li (10.1016/j.envint.2025.109646_b0155) 2016; 128 Zaragoza-Ojeda (10.1016/j.envint.2025.109646_b0260) 2016; 256 Meng (10.1016/j.envint.2025.109646_b0190) 2023; 131 Hu (10.1016/j.envint.2025.109646_b0095) 2021; 55 Fang (10.1016/j.envint.2025.109646_b0060) 2016; 16 Li (10.1016/j.envint.2025.109646_b0150) 2015; 154 Duan (10.1016/j.envint.2025.109646_b0050) 2015 Lin (10.1016/j.envint.2025.109646_b0170) 2011; 45 McWhinney (10.1016/j.envint.2025.109646_b0185) 2011; 45 Yang (10.1016/j.envint.2025.109646_b0250) 2017; 51 Andersen (10.1016/j.envint.2025.109646_b0015) 2018; 52 Gungormus (10.1016/j.envint.2025.109646_b0075) 2014; 108 Ntziachristos (10.1016/j.envint.2025.109646_b0210) 2007; 4 Sun (10.1016/j.envint.2025.109646_b0225) 1984; 73 Yang (10.1016/j.envint.2025.109646_b0245) 2005; 125 Zhuang (10.1016/j.envint.2025.109646_b0315) 2020; 258 He (10.1016/j.envint.2025.109646_b0085) 2008; 29 Abdallah (10.1016/j.envint.2025.109646_b0005) 2015; 84 Zhang (10.1016/j.envint.2025.109646_b0290) 2021; 149 Zhen (10.1016/j.envint.2025.109646_b0310) 2021; 55 Zhang (10.1016/j.envint.2025.109646_b0270) 2014; 85 Zhang (10.1016/j.envint.2025.109646_b0285) 2023 Olkowska (10.1016/j.envint.2025.109646_b0215) 2022; 295 Hou (10.1016/j.envint.2025.109646_b0090) 2019; 691 Ma (10.1016/j.envint.2025.109646_b0180) 2025; 151 Huang (10.1016/j.envint.2025.109646_b0100) 2018; 118 Liao (10.1016/j.envint.2025.109646_b0165) 2018; 616–617 Kramer (10.1016/j.envint.2025.109646_b0130) 2021; 285 10.1016/j.envint.2025.109646_b0145 Montalbano (10.1016/j.envint.2025.109646_b0200) 2020; 245 Niu (10.1016/j.envint.2025.109646_b0205) 2020; 263 Fan (10.1016/j.envint.2025.109646_b0055) 2022; 808 Keswani (10.1016/j.envint.2025.109646_b0115) 2022; 1 Kim (10.1016/j.envint.2025.109646_b0125) 2013; 60 Johnson-Restrepo (10.1016/j.envint.2025.109646_b0110) 2009; 76 Abrams (10.1016/j.envint.2025.109646_b0010) 2017; 125 Lao (10.1016/j.envint.2025.109646_b0140) 2018; 52 Guascito (10.1016/j.envint.2025.109646_b0070) 2023; 448 Molina (10.1016/j.envint.2025.109646_b0195) 2020; 11 Zhang (10.1016/j.envint.2025.109646_b0300) 2022; 9 Lyu (10.1016/j.envint.2025.109646_b0175) 2018; 52 Guo (10.1016/j.envint.2025.109646_b0080) 2019; 246 Voliotis (10.1016/j.envint.2025.109646_b0230) 2021; 234 Xu (10.1016/j.envint.2025.109646_b0240) 2025; 155 Zhang (10.1016/j.envint.2025.109646_b0295) 2021; 156 Schuetzle (10.1016/j.envint.2025.109646_b0220) 1983; 47 Kuang (10.1016/j.envint.2025.109646_b0135) 2022; 842 Zhang (10.1016/j.envint.2025.109646_b0280) 2024; 480 Zaragoza-Ojeda (10.1016/j.envint.2025.109646_b0265) 2022; 439 Zhang (10.1016/j.envint.2025.109646_b0305) 2022; 170 Fu (10.1016/j.envint.2025.109646_b0065) 2012; 30 Wang (10.1016/j.envint.2025.109646_b0235) 2024; 43 Bahrami (10.1016/j.envint.2025.109646_b0020) 2024; 262 Li (10.1016/j.envint.2025.109646_b0160) 2021; 781 Cao (10.1016/j.envint.2025.109646_b0030) 2020; 263 Zhang (10.1016/j.envint.2025.109646_b0275) 2020; 88 Yao (10.1016/j.envint.2025.109646_b0255) 2021; 146 Bates (10.1016/j.envint.2025.109646_b0025) 2019; 53 Charrier (10.1016/j.envint.2025.109646_b0040) 2012; 12 Khan (10.1016/j.envint.2025.109646_b0120) 2022; 13 Cao (10.1016/j.envint.2025.109646_b0035) 2018; 359 |
References_xml | – volume: 842 year: 2022 ident: b0135 article-title: Four-year population exposure study: Implications for the effectiveness of e-waste control and biomarkers of e-waste pollution publication-title: Sci. Total Environ. – volume: 295 year: 2022 ident: b0215 article-title: Skin models for dermal exposure assessment of phthalates publication-title: Chemosphere – volume: 118 start-page: 70 year: 2018 end-page: 77 ident: b0100 article-title: Characteristics and potential health risk of rural Tibetans' exposure to polycyclic aromatic hydrocarbons during summer period publication-title: Environ. Int. – volume: 808 year: 2022 ident: b0055 article-title: Identifying dermal exposure as the dominant pathway of children's exposure to flame retardants in kindergartens publication-title: Sci. Total Environ. – volume: 128 start-page: 165 year: 2016 end-page: 174 ident: b0155 article-title: Gas-particle partitioning and precipitation scavenging of polycyclic aromatic hydrocarbons (PAHs) in the free troposphere in southern China publication-title: Atmos. Environ. – volume: 448 year: 2023 ident: b0070 article-title: Characterisation of the correlations between oxidative potential and in vitro biological effects of PM(10) at three sites in the central Mediterranean publication-title: J. Hazard. Mater. – reference: Leggett, R.W., 2003. Dosimetric Significance of the ICRP's Updated Guidance and Models, 1989-2003, and Implications for U.S. Federal Guidance. – volume: 258 year: 2020 ident: b0315 article-title: BDE-47 induced apoptosis in zebrafish embryos through mitochondrial ROS-mediated JNK signaling publication-title: Chemosphere – volume: 359 start-page: 491 year: 2018 end-page: 499 ident: b0035 article-title: Amplification effect of haze on human exposure to halogenated flame retardants in atmospheric particulate matter and the corresponding mechanism publication-title: J. Hazard. Mater. – volume: 154 start-page: 138 year: 2015 end-page: 145 ident: b0150 article-title: Airborne particulate endocrine disrupting compounds in China: compositions, size distributions and seasonal variations of phthalate esters and bisphenol A publication-title: Atmos. Res. – volume: 9 start-page: 420 year: 2022 end-page: 425 ident: b0300 article-title: Widespread N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone in size-fractioned atmospheric particles and dust of different indoor environments publication-title: Environ. Sci. Technol. Lett. – volume: 125 year: 2017 ident: b0010 article-title: Associations between ambient fine particulate oxidative potential and cardiorespiratory emergency department visits publication-title: Environ. Health Perspect. – volume: 84 start-page: 64 year: 2015 end-page: 70 ident: b0005 article-title: Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants publication-title: Environ. Int. – volume: 262 year: 2024 ident: b0020 article-title: Indoor environment gas-particle partitioning models of SVOCs and impact of particle properties on the partitioning: a review publication-title: Build. Environ. – volume: 52 start-page: 8330 year: 2018 end-page: 8338 ident: b0140 article-title: Importance of dermal absorption of polycyclic aromatic hydrocarbons derived from barbecue fumes publication-title: Environ. Sci. Technol. – volume: 4 start-page: 5 year: 2007 ident: b0210 article-title: Relationship between redox activity and chemical speciation of size-fractionated particulate matter publication-title: Part. Fibre Toxicol. – volume: 1 year: 2022 ident: b0115 article-title: Health and clinical impacts of air pollution and linkages with climate change publication-title: NEJM Evid. – volume: 45 start-page: 2131 year: 2011 end-page: 2136 ident: b0185 article-title: Evaluation of the effects of ozone oxidation on redox-cycling activity of two-stroke engine exhaust particles publication-title: Environ. Sci. Technol. – volume: 245 year: 2020 ident: b0200 article-title: Cytotoxic and genotoxic effects of the flame retardants (PBDE-47, PBDE-99 and PBDE-209) in human bronchial epithelial cells publication-title: Chemosphere – volume: 146 year: 2021 ident: b0255 article-title: Exposure to organophosphate ester flame retardants and plasticizers during pregnancy: thyroid endocrine disruption and mediation role of oxidative stress publication-title: Environ. Int. – volume: 156 year: 2021 ident: b0295 article-title: DNA oxidative damage in pregnant women upon exposure to conventional and alternative phthalates publication-title: Environ. Int. – volume: 696 year: 2019 ident: b0105 article-title: Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: a review publication-title: Sci. Total Environ. – volume: 16 start-page: 3865 year: 2016 end-page: 3879 ident: b0060 article-title: Oxidative potential of ambient water-soluble PM publication-title: Atmos. Chem. Phys. – volume: 52 start-page: 6592 year: 2018 end-page: 6600 ident: b0175 article-title: Particle size distributions of oxidative potential of lung-deposited particles: assessing contributions from quinones and water-soluble metals publication-title: Environ. Sci. Technol. – volume: 45 start-page: 10362 year: 2011 end-page: 10368 ident: b0170 article-title: Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols publication-title: Environ. Sci. Technol. – volume: 155 start-page: 454 year: 2025 end-page: 465 ident: b0240 article-title: Exposure to plasticizers in city waste recycling: Focused on the size-fractioned particulate-bound phthalates and bisphenols publication-title: J. Environ. Sci. (China) – volume: 263 year: 2020 ident: b0030 article-title: Size-distribution-based assessment of human inhalation and dermal exposure to airborne parent, oxygenated and chlorinated PAHs during a regional heavy haze episode publication-title: Environ. Pollut. – volume: 263 year: 2020 ident: b0205 article-title: Cytotoxicity of PM(2.5) vehicular emissions in the Shing Mun Tunnel, Hong Kong publication-title: Environ. Pollut. – volume: 85 start-page: 139 year: 2014 end-page: 146 ident: b0270 article-title: Phthalate esters (PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin, China publication-title: Atmos. Environ. – volume: 13 year: 2022 ident: b0120 article-title: Deposition modeling of ambient particulate matter in the human respiratory tract publication-title: Atmos. Pollut. Res. – volume: 11 start-page: 917 year: 2020 ident: b0195 article-title: Airborne aerosols and human health: leapfrogging from mass concentration to oxidative potential publication-title: Atmos. – volume: 234 year: 2021 ident: b0230 article-title: Mass dose rates of particle-bound organic pollutants in the human respiratory tract: Implications for inhalation exposure and risk estimations publication-title: Int. J. Hyg. Environ. Health – volume: 131 year: 2023 ident: b0190 article-title: Fine particulate matter metal composition, oxidative potential, and adverse birth outcomes in Los Angeles publication-title: Environ. Health Perspect. – volume: 55 start-page: 15236 year: 2021 end-page: 15245 ident: b0095 article-title: Approach to predicting the size-dependent inhalation intake of particulate novel brominated flame retardants publication-title: Environ. Sci. Technol. – volume: 246 start-page: 704 year: 2019 end-page: 709 ident: b0080 article-title: Size-resolved particle oxidative potential in the office, laboratory, and home: evidence for the importance of water-soluble transition metals publication-title: Environ. Pollut. – start-page: 15 year: 2015 end-page: 21 ident: b0050 article-title: 2-Inhalation Rates, Highlights of the Chinese Exposure Factors Handbook (Adults) – volume: 108 start-page: 106 year: 2014 end-page: 113 ident: b0075 article-title: Inhalation and dermal exposure to atmospheric polycyclic aromatic hydrocarbons and associated carcinogenic risks in a relatively small city publication-title: Ecotoxicol. Environ. Saf. – volume: 170 year: 2022 ident: b0305 article-title: Distribution of flame retardants among indoor dust, airborne particles and vapour phase from Beijing: spatial–temporal variation and human exposure characteristics publication-title: Environ. Int. – volume: 29 start-page: 124 year: 2008 end-page: 129 ident: b0085 article-title: PBDE-47-induced oxidative stress, DNA damage and apoptosis in primary cultured rat hippocampal neurons publication-title: Neurotoxicology – volume: 480 year: 2024 ident: b0280 article-title: Tetrabromobisphenol a biotransformation in aged soil: Mechanism analysis induced by root exudates during rhizoremediation of Helianthus annus publication-title: J. Hazard. Mater. – volume: 76 start-page: 542 year: 2009 end-page: 548 ident: b0110 article-title: An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States publication-title: Chemosphere – volume: 43 start-page: 1364 year: 2024 end-page: 1377 ident: b0235 article-title: Size distributions and health risks of particulate polycyclic aromatic hydrocarbons in the atmosphere at coastal areas in Ningbo, China publication-title: Environ. Toxicol. Chem. – volume: 30 start-page: 1 year: 2012 end-page: 41 ident: b0065 article-title: Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage publication-title: J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. – volume: 616–617 start-page: 1288 year: 2018 end-page: 1297 ident: b0165 article-title: Associations of urinary phthalate metabolites with residential characteristics, lifestyles, and dietary habits among young children in Shanghai, China publication-title: Sci. Total Environ. – volume: 52 start-page: 12792 year: 2018 end-page: 12800 ident: b0015 article-title: Inhalation and dermal uptake of particle and gas-phase phthalates-a human exposure study publication-title: Environ. Sci. Technol. – volume: 285 year: 2021 ident: b0130 article-title: Assessing the oxidative potential of PAHs in ambient PM publication-title: Environ. Pollut. – volume: 73 start-page: 48 year: 1984 end-page: 59 ident: b0225 article-title: Lung retention and metabolic fate of inhaled benzo(a)pyrene associated with diesel exhaust particles publication-title: Toxicol. Appl. Pharm. – volume: 88 start-page: 370 year: 2020 end-page: 384 ident: b0275 article-title: Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: a review publication-title: J. Environ. Sci. (China) – volume: 53 start-page: 4003 year: 2019 end-page: 4019 ident: b0025 article-title: Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects publication-title: Environ. Sci. Technol. – volume: 691 start-page: 378 year: 2019 end-page: 392 ident: b0090 article-title: Effect of exposure to phthalates on association of polycyclic aromatic hydrocarbons with 8-hydroxy-2′-deoxyguanosine publication-title: Sci. Total Environ. – volume: 149 year: 2021 ident: b0290 article-title: Polycyclic aromatic hydrocarbon exposure, oxidative potential in dust, and their relationships to oxidative stress in human body: a case study in the indoor environment of Guangzhou, South China publication-title: Environ. Int. – volume: 47 start-page: 65 year: 1983 end-page: 80 ident: b0220 article-title: Sampling of vehicle emissions for chemical analysis and biological testing publication-title: Environ. Health Perspect. – volume: 781 year: 2021 ident: b0160 article-title: Emissions of polycyclic aromatic hydrocarbons from primitive e-waste recycling: Particle size dependence and potential health risk publication-title: Sci. Total Environ. – volume: 151 start-page: 608 year: 2025 end-page: 615 ident: b0180 article-title: Investigation of oxidative potential of fresh and O publication-title: J. Environ. Sci. (China) – volume: 256 start-page: 64 year: 2016 end-page: 76 ident: b0260 article-title: Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line publication-title: Toxicol. Lett. – volume: 439 year: 2022 ident: b0265 article-title: Benzo[ghi]perylene induces cellular dormancy signaling and endoplasmic reticulum stress in NL-20 human bronchial epithelial cells publication-title: Toxicol. Appl. Pharm. – volume: 60 start-page: 71 year: 2013 end-page: 80 ident: b0125 article-title: A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects publication-title: Environ. Int. – volume: 12 start-page: 11317 year: 2012 end-page: 11350 ident: b0040 article-title: On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals publication-title: Atmos. Chem. Phys. – volume: 55 start-page: 7376 year: 2021 end-page: 7385 ident: b0310 article-title: Decabromodiphenyl ether versus decabromodiphenyl ethane: source, fate, and influencing factors in a coastal sea nearing source region publication-title: Environ. Sci. Technol. – volume: 51 start-page: 12329 year: 2017 end-page: 12336 ident: b0250 article-title: Pivotal roles of metal oxides in the formation of environmentally persistent free radicals publication-title: Environ. Sci. Technol. – year: 2023 ident: b0285 article-title: Associations between environmental typical organic pollutants, particle-bound oxidative potential and biomarkers of oxidative damage in human body – volume: 587 start-page: 414 year: 2020 end-page: 419 ident: b0045 article-title: Sources of particulate-matter air pollution and its oxidative potential in Europe publication-title: Nature – volume: 125 start-page: 154 year: 2005 end-page: 159 ident: b0245 article-title: Particle size distribution of polycyclic aromatic hydrocarbons in motorcycle exhaust emissions publication-title: J. Hazard. Mater. – volume: 30 start-page: 1 year: 2012 ident: 10.1016/j.envint.2025.109646_b0065 article-title: Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage publication-title: J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. – volume: 76 start-page: 542 year: 2009 ident: 10.1016/j.envint.2025.109646_b0110 article-title: An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.02.068 – volume: 616–617 start-page: 1288 year: 2018 ident: 10.1016/j.envint.2025.109646_b0165 article-title: Associations of urinary phthalate metabolites with residential characteristics, lifestyles, and dietary habits among young children in Shanghai, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.189 – volume: 55 start-page: 7376 year: 2021 ident: 10.1016/j.envint.2025.109646_b0310 article-title: Decabromodiphenyl ether versus decabromodiphenyl ethane: source, fate, and influencing factors in a coastal sea nearing source region publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c08528 – volume: 263 year: 2020 ident: 10.1016/j.envint.2025.109646_b0205 article-title: Cytotoxicity of PM(2.5) vehicular emissions in the Shing Mun Tunnel, Hong Kong publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114386 – volume: 108 start-page: 106 year: 2014 ident: 10.1016/j.envint.2025.109646_b0075 article-title: Inhalation and dermal exposure to atmospheric polycyclic aromatic hydrocarbons and associated carcinogenic risks in a relatively small city publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2014.06.015 – volume: 285 year: 2021 ident: 10.1016/j.envint.2025.109646_b0130 article-title: Assessing the oxidative potential of PAHs in ambient PM2.5 using the DTT consumption assay publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117411 – volume: 842 year: 2022 ident: 10.1016/j.envint.2025.109646_b0135 article-title: Four-year population exposure study: Implications for the effectiveness of e-waste control and biomarkers of e-waste pollution publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.156595 – volume: 696 year: 2019 ident: 10.1016/j.envint.2025.109646_b0105 article-title: Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133902 – volume: 439 year: 2022 ident: 10.1016/j.envint.2025.109646_b0265 article-title: Benzo[ghi]perylene induces cellular dormancy signaling and endoplasmic reticulum stress in NL-20 human bronchial epithelial cells publication-title: Toxicol. Appl. Pharm. doi: 10.1016/j.taap.2022.115925 – volume: 480 year: 2024 ident: 10.1016/j.envint.2025.109646_b0280 article-title: Tetrabromobisphenol a biotransformation in aged soil: Mechanism analysis induced by root exudates during rhizoremediation of Helianthus annus publication-title: J. Hazard. Mater. – volume: 448 year: 2023 ident: 10.1016/j.envint.2025.109646_b0070 article-title: Characterisation of the correlations between oxidative potential and in vitro biological effects of PM(10) at three sites in the central Mediterranean publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.130872 – volume: 256 start-page: 64 year: 2016 ident: 10.1016/j.envint.2025.109646_b0260 article-title: Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2016.05.023 – volume: 13 year: 2022 ident: 10.1016/j.envint.2025.109646_b0120 article-title: Deposition modeling of ambient particulate matter in the human respiratory tract publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2022.101565 – volume: 73 start-page: 48 year: 1984 ident: 10.1016/j.envint.2025.109646_b0225 article-title: Lung retention and metabolic fate of inhaled benzo(a)pyrene associated with diesel exhaust particles publication-title: Toxicol. Appl. Pharm. doi: 10.1016/0041-008X(84)90052-8 – volume: 781 year: 2021 ident: 10.1016/j.envint.2025.109646_b0160 article-title: Emissions of polycyclic aromatic hydrocarbons from primitive e-waste recycling: Particle size dependence and potential health risk publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146814 – volume: 258 year: 2020 ident: 10.1016/j.envint.2025.109646_b0315 article-title: BDE-47 induced apoptosis in zebrafish embryos through mitochondrial ROS-mediated JNK signaling publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127385 – volume: 52 start-page: 12792 year: 2018 ident: 10.1016/j.envint.2025.109646_b0015 article-title: Inhalation and dermal uptake of particle and gas-phase phthalates-a human exposure study publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03761 – volume: 29 start-page: 124 year: 2008 ident: 10.1016/j.envint.2025.109646_b0085 article-title: PBDE-47-induced oxidative stress, DNA damage and apoptosis in primary cultured rat hippocampal neurons publication-title: Neurotoxicology doi: 10.1016/j.neuro.2007.10.002 – volume: 51 start-page: 12329 year: 2017 ident: 10.1016/j.envint.2025.109646_b0250 article-title: Pivotal roles of metal oxides in the formation of environmentally persistent free radicals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03583 – volume: 55 start-page: 15236 year: 2021 ident: 10.1016/j.envint.2025.109646_b0095 article-title: Approach to predicting the size-dependent inhalation intake of particulate novel brominated flame retardants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c03749 – volume: 16 start-page: 3865 year: 2016 ident: 10.1016/j.envint.2025.109646_b0060 article-title: Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-3865-2016 – volume: 149 year: 2021 ident: 10.1016/j.envint.2025.109646_b0290 article-title: Polycyclic aromatic hydrocarbon exposure, oxidative potential in dust, and their relationships to oxidative stress in human body: a case study in the indoor environment of Guangzhou, South China publication-title: Environ. Int. doi: 10.1016/j.envint.2021.106405 – volume: 263 year: 2020 ident: 10.1016/j.envint.2025.109646_b0030 article-title: Size-distribution-based assessment of human inhalation and dermal exposure to airborne parent, oxygenated and chlorinated PAHs during a regional heavy haze episode publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114661 – volume: 60 start-page: 71 year: 2013 ident: 10.1016/j.envint.2025.109646_b0125 article-title: A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects publication-title: Environ. Int. doi: 10.1016/j.envint.2013.07.019 – volume: 43 start-page: 1364 year: 2024 ident: 10.1016/j.envint.2025.109646_b0235 article-title: Size distributions and health risks of particulate polycyclic aromatic hydrocarbons in the atmosphere at coastal areas in Ningbo, China publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5860 – volume: 47 start-page: 65 year: 1983 ident: 10.1016/j.envint.2025.109646_b0220 article-title: Sampling of vehicle emissions for chemical analysis and biological testing publication-title: Environ. Health Perspect. doi: 10.1289/ehp.834765 – volume: 154 start-page: 138 year: 2015 ident: 10.1016/j.envint.2025.109646_b0150 article-title: Airborne particulate endocrine disrupting compounds in China: compositions, size distributions and seasonal variations of phthalate esters and bisphenol A publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2014.11.013 – volume: 45 start-page: 2131 year: 2011 ident: 10.1016/j.envint.2025.109646_b0185 article-title: Evaluation of the effects of ozone oxidation on redox-cycling activity of two-stroke engine exhaust particles publication-title: Environ. Sci. Technol. doi: 10.1021/es102874d – volume: 246 start-page: 704 year: 2019 ident: 10.1016/j.envint.2025.109646_b0080 article-title: Size-resolved particle oxidative potential in the office, laboratory, and home: evidence for the importance of water-soluble transition metals publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.12.094 – volume: 9 start-page: 420 year: 2022 ident: 10.1016/j.envint.2025.109646_b0300 article-title: Widespread N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone in size-fractioned atmospheric particles and dust of different indoor environments publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.2c00193 – volume: 691 start-page: 378 year: 2019 ident: 10.1016/j.envint.2025.109646_b0090 article-title: Effect of exposure to phthalates on association of polycyclic aromatic hydrocarbons with 8-hydroxy-2′-deoxyguanosine publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.113 – volume: 151 start-page: 608 year: 2025 ident: 10.1016/j.envint.2025.109646_b0180 article-title: Investigation of oxidative potential of fresh and O3-aging PM2.5 from various emission sources across urban and rural regions publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2024.04.023 – start-page: 15 year: 2015 ident: 10.1016/j.envint.2025.109646_b0050 – volume: 245 year: 2020 ident: 10.1016/j.envint.2025.109646_b0200 article-title: Cytotoxic and genotoxic effects of the flame retardants (PBDE-47, PBDE-99 and PBDE-209) in human bronchial epithelial cells publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125600 – volume: 12 start-page: 11317 year: 2012 ident: 10.1016/j.envint.2025.109646_b0040 article-title: On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-9321-2012 – volume: 52 start-page: 6592 year: 2018 ident: 10.1016/j.envint.2025.109646_b0175 article-title: Particle size distributions of oxidative potential of lung-deposited particles: assessing contributions from quinones and water-soluble metals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b06686 – volume: 359 start-page: 491 year: 2018 ident: 10.1016/j.envint.2025.109646_b0035 article-title: Amplification effect of haze on human exposure to halogenated flame retardants in atmospheric particulate matter and the corresponding mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.07.109 – volume: 118 start-page: 70 year: 2018 ident: 10.1016/j.envint.2025.109646_b0100 article-title: Characteristics and potential health risk of rural Tibetans' exposure to polycyclic aromatic hydrocarbons during summer period publication-title: Environ. Int. doi: 10.1016/j.envint.2018.05.024 – volume: 4 start-page: 5 year: 2007 ident: 10.1016/j.envint.2025.109646_b0210 article-title: Relationship between redox activity and chemical speciation of size-fractionated particulate matter publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-4-5 – volume: 295 year: 2022 ident: 10.1016/j.envint.2025.109646_b0215 article-title: Skin models for dermal exposure assessment of phthalates publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.133909 – volume: 53 start-page: 4003 year: 2019 ident: 10.1016/j.envint.2025.109646_b0025 article-title: Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03430 – year: 2023 ident: 10.1016/j.envint.2025.109646_b0285 – volume: 128 start-page: 165 year: 2016 ident: 10.1016/j.envint.2025.109646_b0155 article-title: Gas-particle partitioning and precipitation scavenging of polycyclic aromatic hydrocarbons (PAHs) in the free troposphere in southern China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.12.030 – volume: 11 start-page: 917 year: 2020 ident: 10.1016/j.envint.2025.109646_b0195 article-title: Airborne aerosols and human health: leapfrogging from mass concentration to oxidative potential publication-title: Atmos. doi: 10.3390/atmos11090917 – volume: 85 start-page: 139 year: 2014 ident: 10.1016/j.envint.2025.109646_b0270 article-title: Phthalate esters (PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.11.068 – volume: 125 year: 2017 ident: 10.1016/j.envint.2025.109646_b0010 article-title: Associations between ambient fine particulate oxidative potential and cardiorespiratory emergency department visits publication-title: Environ. Health Perspect. – volume: 131 year: 2023 ident: 10.1016/j.envint.2025.109646_b0190 article-title: Fine particulate matter metal composition, oxidative potential, and adverse birth outcomes in Los Angeles publication-title: Environ. Health Perspect. doi: 10.1289/EHP12196 – volume: 587 start-page: 414 year: 2020 ident: 10.1016/j.envint.2025.109646_b0045 article-title: Sources of particulate-matter air pollution and its oxidative potential in Europe publication-title: Nature doi: 10.1038/s41586-020-2902-8 – volume: 234 year: 2021 ident: 10.1016/j.envint.2025.109646_b0230 article-title: Mass dose rates of particle-bound organic pollutants in the human respiratory tract: Implications for inhalation exposure and risk estimations publication-title: Int. J. Hyg. Environ. Health doi: 10.1016/j.ijheh.2021.113710 – volume: 146 year: 2021 ident: 10.1016/j.envint.2025.109646_b0255 article-title: Exposure to organophosphate ester flame retardants and plasticizers during pregnancy: thyroid endocrine disruption and mediation role of oxidative stress publication-title: Environ. Int. doi: 10.1016/j.envint.2020.106215 – ident: 10.1016/j.envint.2025.109646_b0145 doi: 10.2172/885731 – volume: 84 start-page: 64 year: 2015 ident: 10.1016/j.envint.2025.109646_b0005 article-title: Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants publication-title: Environ. Int. doi: 10.1016/j.envint.2015.07.015 – volume: 808 year: 2022 ident: 10.1016/j.envint.2025.109646_b0055 article-title: Identifying dermal exposure as the dominant pathway of children's exposure to flame retardants in kindergartens publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152004 – volume: 52 start-page: 8330 year: 2018 ident: 10.1016/j.envint.2025.109646_b0140 article-title: Importance of dermal absorption of polycyclic aromatic hydrocarbons derived from barbecue fumes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01689 – volume: 155 start-page: 454 year: 2025 ident: 10.1016/j.envint.2025.109646_b0240 article-title: Exposure to plasticizers in city waste recycling: Focused on the size-fractioned particulate-bound phthalates and bisphenols publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2024.10.012 – volume: 262 year: 2024 ident: 10.1016/j.envint.2025.109646_b0020 article-title: Indoor environment gas-particle partitioning models of SVOCs and impact of particle properties on the partitioning: a review publication-title: Build. Environ. doi: 10.1016/j.buildenv.2024.111791 – volume: 45 start-page: 10362 year: 2011 ident: 10.1016/j.envint.2025.109646_b0170 article-title: Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols publication-title: Environ. Sci. Technol. doi: 10.1021/es2028229 – volume: 1 year: 2022 ident: 10.1016/j.envint.2025.109646_b0115 article-title: Health and clinical impacts of air pollution and linkages with climate change publication-title: NEJM Evid. doi: 10.1056/EVIDra2200068 – volume: 156 year: 2021 ident: 10.1016/j.envint.2025.109646_b0295 article-title: DNA oxidative damage in pregnant women upon exposure to conventional and alternative phthalates publication-title: Environ. Int. doi: 10.1016/j.envint.2021.106743 – volume: 88 start-page: 370 year: 2020 ident: 10.1016/j.envint.2025.109646_b0275 article-title: Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: a review publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2019.09.007 – volume: 170 year: 2022 ident: 10.1016/j.envint.2025.109646_b0305 article-title: Distribution of flame retardants among indoor dust, airborne particles and vapour phase from Beijing: spatial–temporal variation and human exposure characteristics publication-title: Environ. Int. doi: 10.1016/j.envint.2022.107557 – volume: 125 start-page: 154 year: 2005 ident: 10.1016/j.envint.2025.109646_b0245 article-title: Particle size distribution of polycyclic aromatic hydrocarbons in motorcycle exhaust emissions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.05.019 |
SSID | ssj0002485 |
Score | 2.4688401 |
Snippet | [Display omitted]
•Pollutants in 9–10 µm fractions markedly enhance the formation of oxidation.•Benzo[g,h,i]perylene was the primary contributor to oxidation... Chronic exposure to inhalable atmospheric particulate matter is linked to millions of annual premature deaths globally. Yet the sources and factors driving... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 109646 |
SubjectTerms | Air Pollutants - analysis China Environmental Monitoring Exposure assessment Flame Retardants - analysis Humans Inhalation Exposure - analysis Inhalation Exposure - statistics & numerical data Organic pollutants Oxidation-Reduction Oxidative potential Particle Size Particulate Matter - analysis Phthalic Acids - analysis Polycyclic Aromatic Hydrocarbons - analysis Respiratory deposition Size-fractioned PM10 |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnkAIwUJheWmQuIbNw3aSI1StKiR6gUq9WXZso6BVEnXTatVD_0X_LzN20m4PCIljEidxMg9_tr-ZYexTpSucSGQiEdIUCa8t-kEnZFL6xnrDa841LQ18P5UnZ_zbuTjfY4dzLAzRKiffH3168NbTmdX0N1dD265-UG40nuU0iKc0qlIEOy9Jyz_f3NM8KGVXzO-dJtR6Dp8LHC8KJuuIUZkLyqskCQbvDE8hi_-DUepvKDSMRsfP2NMJRsKX2NPnbM91C_Z4J7nggh0c3cewYdPJiDcL9iQu1UGMQHrBbk_1VUi00f0ChIMQWOZui_Aceg9uO_S0ighjD4F92BDehlgNqoGBSiVTJeINtB1cxI17s3awaa9dgsf9-spZGGYCHujOQrtDYwdEzdBvWxsykOPzRuIv6fVLdnZ89PPwJJmqNSQN2v1IXrOi-QjO4HCKkktbC5S1zmyJqLHJvc5zI4Uwuct0zY3mpXM8567QpeTW6-KA7Xd9514zcHiPsbaSpadLwvgmc9xKvMNmmSuWLJmFpIaYlEPNbLXfKgpVkVBVFOqSfSVJ3rWllNrhBP4rNX2_SqvaNz4L1bw4L7ADskK4V6Ui5Vo7s2TlrAfqgYbio9p_vP7jrDYKjZd2ZHTn-suNQm-K5kDBvkv2KurTXScJSeMF-ea_3_uWPaKjSFd8x_bHi0v3HiHUaD4EG_kDquwcwA priority: 102 providerName: Elsevier |
Title | Navigating the complexity of exposure to multiclass organic pollutants in respirable size-resolved particles and implications for oxidative potential |
URI | https://dx.doi.org/10.1016/j.envint.2025.109646 https://www.ncbi.nlm.nih.gov/pubmed/40578116 https://www.proquest.com/docview/3224947811 https://doaj.org/article/089fcf1002974430bd6861580504aaeb |
Volume | 202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BcgEhBIWF8qiMxDWQh-0kxwXtqoDoiZX2ZtmxjYKqpNpmVxWH_Rf7f5mxk6Uc0F44tnnUzXjG3zjffAPwrtIVJhKZSIQ0RcJri3HQCZmUvrHe8JpzTVsD31Zyecq_nImzvVZfxAmL8sDxwX1Iq9o3PgtNljgvUmNlhatwlYqUa-0MRV9c86ZkaozBJNQVVb3ThGd5OhXNBWYXlZB1xKPMBakpSQK_e4tS0O7_a236F_YMa9DJY3g0gkd2FAf9BO64bgYP9iQFZ3B4_KdyDU8dXXc7g4dxg47FuqOncL3Sl0Feo_vBEASywC13OwTlrPfM7TY97R2yoWeBc9gQymaxB1TDNtQgmfoPb1nbsfP4ut6sHdu2v1yCn_v1pbNsM9HumO4sa_fI6wyxMut3rQ2643i_gVhLev0MTk-Ov39aJmOPhqRBbx8oVlaUhWDeholJLm0t0MI6syVixSb3Os-NFMLkLtM1N5qXzvGcu0KXkluvi0M46PrOvQDm8BpjbSVLT4eE8U3muJV4hc0yV8whmYykNlGKQ00ctZ8qGlWRUVU06hw-kiVvziUh7fAFPis1_n912_SaQznNAzVikog18FbtLT__dpo2Cl2W3sPozvUXW4UxFJ2ASnzn8DzOp5tBEn7GA_Ll_xj8K7hPA4p8xddwMJxfuDeIoQazgLvvr7IF3Dv6_HW5WgTn-Q0yeR0T |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAKIVgoXZ5GgmPYPBwnOXDg0WpL273QSr0ZJ3aqoFUSNduycOBf8Ev4g8zYSbs9ICSkHjdOHK_HM_PZ-WYG4FWqUtxIBLEXizzyeKbRDppYeElZ6DLnGeeKjgYOZmJ6xD8dx8dr8HuIhSFaZW_7nU231rq_Mulnc9JW1eQz5UbjQUhO3Cev2jMr98z3b7hv697ufkQhvw7Dne3DD1OvLy3gFbhIF6TiKYFn3G4gng6FzmIcmAp0ghCnCEsVhrmI4zw0gcp4rnhiDA-5iVQiuC5VhP3egJsczQWVTXjz85JXQjnCXEJx36PhDfF6llRG0Ws1UTjDmBI5CcLdK_7Qlg244hb_Bnut-9u5B3d73Mreuam5D2umHsHGSjbDEWxuXwbN4a291ehGcMedDTIX8vQAfs3Uuc3sUZ8wxJ_M0trNEvcDrCmZWbYNHVuyRcMs3bEggM9c-amCtVSbmUofd6yq2aljCuRzw7rqh_HwdzM_N5q1A-OPqVqzaoU3zxCms2ZZaZvyHPtbEGFKzR_C0bXIcBPW66Y2W8AMPpNrnYqkpKY4L4vAcC3wCR0EJhqDNwhJti4LiBzocV-lE6okoUon1DG8J0le3Es5vO0FnCvZ_3_pp1lZlIEtH8Z5hAMQKeLL1I99rpTJx5AM60BeUQnsqvrH618Oy0aitaBPQKo2zVkn0Xyj_lF08RgeufV0MUiC7tggHv_3e1_Arenhwb7c353tPYHb1OK4kk9hfXF6Zp4hflvkz62-MPhy3Qr6Bx4GWDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Navigating+the+complexity+of+exposure+to+multiclass+organic+pollutants+in+respirable+size-resolved+particles+and+implications+for+oxidative+potential&rft.jtitle=Environment+international&rft.au=Zhang%2C+Ying-Jie&rft.au=Xu%2C+Ting-Ting&rft.au=Luan%2C+Yu-Ling&rft.au=Shen%2C+Hui-Min&rft.date=2025-08-01&rft.eissn=1873-6750&rft.volume=202&rft.spage=109646&rft_id=info:doi/10.1016%2Fj.envint.2025.109646&rft_id=info%3Apmid%2F40578116&rft.externalDocID=40578116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon |