Geotrichum candidum aldehyde dehydrogenase-inorganic nanocrystal with enhanced activity
•Geotrichum candidum aldehyde dehydrogenase (GcALDH) was firstly immobilized by organic-inorganic nanocrystal formation.•The GcALDH nanocrystal exhibited enhanced activity of benzaldehyde oxidation to be 261 % comparing to the free GcALDH.•The GcALDH nanocrystal retained broad substrate specificity...
Saved in:
Published in | Enzyme and microbial technology Vol. 150; p. 109866 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0141-0229 1879-0909 1879-0909 |
DOI | 10.1016/j.enzmictec.2021.109866 |
Cover
Abstract | •Geotrichum candidum aldehyde dehydrogenase (GcALDH) was firstly immobilized by organic-inorganic nanocrystal formation.•The GcALDH nanocrystal exhibited enhanced activity of benzaldehyde oxidation to be 261 % comparing to the free GcALDH.•The GcALDH nanocrystal retained broad substrate specificity property.•The thermostability and recyclability of the GcALDH were improved by immobilization.•The robustness and versatility of the GcALDH nanocrystal made it promising for further applications.
A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free form of GcALDH still had a limitation in stability and recyclability. Herein, to overcome these limitations, this study achieved the immobilization of the GcALDH by the organic-inorganic nanocrystal formation. The GcALDH nanocrystal exhibited 261 ± 40 % of activity comparing to the free enzyme. It also exhibited improved thermostability and recyclability as well as remained excellent substrate promiscuity, which suggested its potential use in green industries. To the best of our knowledge, this is the first time to report the ALDH-inorganic nanocrystal formation with superior properties. |
---|---|
AbstractList | •Geotrichum candidum aldehyde dehydrogenase (GcALDH) was firstly immobilized by organic-inorganic nanocrystal formation.•The GcALDH nanocrystal exhibited enhanced activity of benzaldehyde oxidation to be 261 % comparing to the free GcALDH.•The GcALDH nanocrystal retained broad substrate specificity property.•The thermostability and recyclability of the GcALDH were improved by immobilization.•The robustness and versatility of the GcALDH nanocrystal made it promising for further applications.
A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free form of GcALDH still had a limitation in stability and recyclability. Herein, to overcome these limitations, this study achieved the immobilization of the GcALDH by the organic-inorganic nanocrystal formation. The GcALDH nanocrystal exhibited 261 ± 40 % of activity comparing to the free enzyme. It also exhibited improved thermostability and recyclability as well as remained excellent substrate promiscuity, which suggested its potential use in green industries. To the best of our knowledge, this is the first time to report the ALDH-inorganic nanocrystal formation with superior properties. A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free form of GcALDH still had a limitation in stability and recyclability. Herein, to overcome these limitations, this study achieved the immobilization of the GcALDH by the organic-inorganic nanocrystal formation. The GcALDH nanocrystal exhibited 261 ± 40 % of activity comparing to the free enzyme. It also exhibited improved thermostability and recyclability as well as remained excellent substrate promiscuity, which suggested its potential use in green industries. To the best of our knowledge, this is the first time to report the ALDH-inorganic nanocrystal formation with superior properties.A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free form of GcALDH still had a limitation in stability and recyclability. Herein, to overcome these limitations, this study achieved the immobilization of the GcALDH by the organic-inorganic nanocrystal formation. The GcALDH nanocrystal exhibited 261 ± 40 % of activity comparing to the free enzyme. It also exhibited improved thermostability and recyclability as well as remained excellent substrate promiscuity, which suggested its potential use in green industries. To the best of our knowledge, this is the first time to report the ALDH-inorganic nanocrystal formation with superior properties. A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free form of GcALDH still had a limitation in stability and recyclability. Herein, to overcome these limitations, this study achieved the immobilization of the GcALDH by the organic-inorganic nanocrystal formation. The GcALDH nanocrystal exhibited 261 ± 40 % of activity comparing to the free enzyme. It also exhibited improved thermostability and recyclability as well as remained excellent substrate promiscuity, which suggested its potential use in green industries. To the best of our knowledge, this is the first time to report the ALDH-inorganic nanocrystal formation with superior properties. |
ArticleNumber | 109866 |
Author | Ogura, Kazuki T.sriwong, Kotchakorn Hawari, Muhammad Arisyi Matsuda, Tomoko |
Author_xml | – sequence: 1 givenname: Kotchakorn orcidid: 0000-0002-0999-1846 surname: T.sriwong fullname: T.sriwong, Kotchakorn – sequence: 2 givenname: Kazuki surname: Ogura fullname: Ogura, Kazuki – sequence: 3 givenname: Muhammad Arisyi surname: Hawari fullname: Hawari, Muhammad Arisyi – sequence: 4 givenname: Tomoko orcidid: 0000-0002-8934-8198 surname: Matsuda fullname: Matsuda, Tomoko email: tmatsuda@bio.titech.ac.jp |
BookMark | eNqNkDFv2zAQhYkiBeqk_Q3VmEUuKcmkOHQIgsYtEKBLi47E6XiKz5DJlKQTOL8-cl10yJJO73B43xu-c3EWYiAhPiq5VFLpT9slhacdYyFcNrJR89f2Wr8RC9UbW0sr7ZlYSNWpWjaNfSfOc95KOT86uRC_1hRLYtzsdxVC8OznAyZPm4On6k-keEcBMtUcYrqDwFgFCBHTIReYqkcum4rCBgKSrwALP3A5vBdvR5gyffibF-LnzZcf11_r2-_rb9dXtzV2zarUBnup_IDYWppxpfoWwI8j6ZE8Dd6u1GBoMLrXZjDtipoR7Ni0IxCaTvbthbg87d6n-HtPubgdZ6RpgkBxn12jW90ZraR8vboycnZnOzNXP5-qmGLOiUaHXKBwDCUBT05Jd3Tvtu6fe3d0707uZ9684O8T7yAd_oO8OpE0S3tgSi4j01EtJ8LifORXN54BiMSpPA |
CitedBy_id | crossref_primary_10_1039_D3GC01536J crossref_primary_10_1021_acs_oprd_1c00404 crossref_primary_10_3390_foods12061124 crossref_primary_10_1016_j_bej_2021_108263 crossref_primary_10_1016_j_cis_2022_102780 crossref_primary_10_1039_D2RE00547F crossref_primary_10_1007_s10529_022_03224_3 crossref_primary_10_1007_s00284_023_03577_6 |
Cites_doi | 10.1039/C0GC00595A 10.1080/13102818.2015.1008192 10.1016/S2095-4956(13)60087-X 10.1039/C7GC01751K 10.1021/ja3120136 10.1016/j.rser.2018.04.103 10.1002/adsc.200303177 10.1016/j.colsurfb.2015.04.033 10.1039/C2GC36441G 10.1016/j.tet.2020.131387 10.1016/j.snb.2019.127628 10.1021/acs.chemrev.7b00167 10.1016/j.ijbiomac.2015.12.018 10.1039/D0RA03160G 10.1039/a900936a 10.1016/j.enzmictec.2019.109408 10.1002/cctc.201200042 10.1039/C5CC00318K 10.1038/nnano.2012.80 10.1016/j.enzmictec.2017.09.008 10.1016/j.snb.2015.01.106 10.1016/j.chemosphere.2017.05.012 10.1007/s12274-015-0841-8 10.1007/s10529-004-3513-4 10.1039/C4TB01697A 10.1016/j.ccr.2017.09.008 10.1016/j.tet.2013.07.101 10.1002/asia.201300020 10.1016/j.apsusc.2016.01.074 10.1016/0003-2697(76)90527-3 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.enzmictec.2021.109866 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1879-0909 |
ExternalDocumentID | 10_1016_j_enzmictec_2021_109866 S0141022921001241 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABNUV ABTAH ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CJTIS CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HLW HMG HVGLF HZ~ IHE J1W KOM LUGTX LX3 LX8 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SIN SPC SPCBC SSG SSI SSU SSZ T5K UNMZH VH1 WH7 WUQ XFK Y6R ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c425t-7c801dbcc39eced1183aadffe6fedebd951b7eb76867b735e2fa9f23faec74083 |
IEDL.DBID | AIKHN |
ISSN | 0141-0229 1879-0909 |
IngestDate | Thu Sep 04 18:07:12 EDT 2025 Fri Sep 05 07:12:24 EDT 2025 Tue Jul 01 03:08:18 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Fri Feb 23 02:43:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidation Enzyme immobilization Green chemistry Organic-inorganic nanocrystal Aldehyde dehydrogenase Biotransformation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-7c801dbcc39eced1183aadffe6fedebd951b7eb76867b735e2fa9f23faec74083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8934-8198 0000-0002-0999-1846 |
PQID | 2570109947 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636476100 proquest_miscellaneous_2570109947 crossref_citationtrail_10_1016_j_enzmictec_2021_109866 crossref_primary_10_1016_j_enzmictec_2021_109866 elsevier_sciencedirect_doi_10_1016_j_enzmictec_2021_109866 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Enzyme and microbial technology |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhang, Zhang, Song, Wang, Yan, He, Feng, Fang, Zhao, Zhang (bib0155) 2015; 211 Mitsukura, Sato, Yoshida, Nagasawa (bib0035) 2004; 26 Gao, Liu, Tong, Pang, Feng, Zuo, Wei, Li (bib0160) 2020; 307 Zhu, Gong, Zhang, Wang, Ge, Liu, Zare (bib0095) 2013; 8 Hollmann, Arends, Buehler, Bruno (bib0060) 2011; 13 Mei, Zhu, Qiu, Wu, Chen, Liang, Cansiz, Lv, Zhang, Tan (bib0105) 2015; 8 Nakamura, Inoue, Matsuda, Misawa (bib0040) 1999; 16 Altinkaynak, Yilmaz, Koksal, Özdemir, Ocsoy, Özdemir (bib0130) 2016; 84 Ge, Lei, Zare (bib0085) 2012; 7 Altinkaynak, Tavlasoglu, Kalin, Sadeghian, Ozdemir, Ocsoy, Özdemir (bib0115) 2017; 182 Li, Wu, He, Wang, Li, Huo, Chen, Zhang, Wang, Ma (bib0120) 2016; 6 Kroutil, Mang, Edegger, Faber (bib0055) 2004; 346 Wang, Wang, He, Zhuang, Wang, Zeng, Hou (bib0080) 2013; 135 Mohamad, Marzuki, Buang, Huyop, Wahab (bib0070) 2015; 29 T.sriwong, Koesoema, Matsuda (bib0145) 2020; 10 Hoshino, Yamabe, Hawari, Tamura, Kanamaru, Yoshida, Koesoema, Matsuda (bib0065) 2020; 76 Yin, Xiao, Lin, Xiao, Lin, Cai (bib0110) 2015; 3 Zhou, Dong, Tang, Ma, Chen, Yang, Xu (bib0010) 2013; 22 Dwevedi (bib0075) 2016 Bryliakov (bib0020) 2017; 117 Davis, Ide, Davis (bib0015) 2013; 15 Zhang, Li, Zhang, Li, Tian, Wang, Chen, Ali, Ali, Zhang (bib0100) 2016; 366 Zhang, Sun, Elfeky, Wang, Zhao, Zhou, Wang, Bao (bib0125) 2020; 132 Hu, Dai, Liu, Du, Wang (bib0165) 2018; 91 Li (bib0030) 2017; 19 Shaikh, Hong (bib0005) 2013; 69 Sheldon (bib0025) 2016 Romano, Villa, Molinari (bib0050) 2012; 4 Cui, Jia (bib0090) 2017; 352 Yu, Fei, Tian, Xu, Wang, Wang (bib0135) 2015; 130 López-Gallego, Yate (bib0140) 2015; 51 Bordewick, Beier, Balke, Bornscheuer (bib0045) 2018; 109 Bradford (bib0150) 1976; 254 Hoshino (10.1016/j.enzmictec.2021.109866_bib0065) 2020; 76 Altinkaynak (10.1016/j.enzmictec.2021.109866_bib0115) 2017; 182 Li (10.1016/j.enzmictec.2021.109866_bib0120) 2016; 6 Altinkaynak (10.1016/j.enzmictec.2021.109866_bib0130) 2016; 84 Davis (10.1016/j.enzmictec.2021.109866_bib0015) 2013; 15 Dwevedi (10.1016/j.enzmictec.2021.109866_bib0075) 2016 Nakamura (10.1016/j.enzmictec.2021.109866_bib0040) 1999; 16 Yin (10.1016/j.enzmictec.2021.109866_bib0110) 2015; 3 Romano (10.1016/j.enzmictec.2021.109866_bib0050) 2012; 4 Li (10.1016/j.enzmictec.2021.109866_bib0030) 2017; 19 Zhou (10.1016/j.enzmictec.2021.109866_bib0010) 2013; 22 Bordewick (10.1016/j.enzmictec.2021.109866_bib0045) 2018; 109 López-Gallego (10.1016/j.enzmictec.2021.109866_bib0140) 2015; 51 Ge (10.1016/j.enzmictec.2021.109866_bib0085) 2012; 7 Cui (10.1016/j.enzmictec.2021.109866_bib0090) 2017; 352 Shaikh (10.1016/j.enzmictec.2021.109866_bib0005) 2013; 69 Mitsukura (10.1016/j.enzmictec.2021.109866_bib0035) 2004; 26 Mohamad (10.1016/j.enzmictec.2021.109866_bib0070) 2015; 29 Bradford (10.1016/j.enzmictec.2021.109866_bib0150) 1976; 254 Kroutil (10.1016/j.enzmictec.2021.109866_bib0055) 2004; 346 Zhang (10.1016/j.enzmictec.2021.109866_bib0155) 2015; 211 Bryliakov (10.1016/j.enzmictec.2021.109866_bib0020) 2017; 117 T.sriwong (10.1016/j.enzmictec.2021.109866_bib0145) 2020; 10 Zhu (10.1016/j.enzmictec.2021.109866_bib0095) 2013; 8 Mei (10.1016/j.enzmictec.2021.109866_bib0105) 2015; 8 Zhang (10.1016/j.enzmictec.2021.109866_bib0125) 2020; 132 Yu (10.1016/j.enzmictec.2021.109866_bib0135) 2015; 130 Gao (10.1016/j.enzmictec.2021.109866_bib0160) 2020; 307 Sheldon (10.1016/j.enzmictec.2021.109866_bib0025) 2016 Zhang (10.1016/j.enzmictec.2021.109866_bib0100) 2016; 366 Hu (10.1016/j.enzmictec.2021.109866_bib0165) 2018; 91 Hollmann (10.1016/j.enzmictec.2021.109866_bib0060) 2011; 13 Wang (10.1016/j.enzmictec.2021.109866_bib0080) 2013; 135 |
References_xml | – volume: 135 start-page: 1272 year: 2013 end-page: 1275 ident: bib0080 article-title: A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1 year: 2016 end-page: 7 ident: bib0120 article-title: Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity publication-title: Sci. Rep. – volume: 15 start-page: 17 year: 2013 end-page: 45 ident: bib0015 article-title: Selective oxidation of alcohols and aldehydes over supported metal nanoparticles publication-title: Green Chem. – volume: 3 start-page: 2295 year: 2015 end-page: 2300 ident: bib0110 article-title: An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity publication-title: J. Mater. Chem. B – volume: 10 start-page: 30953 year: 2020 end-page: 30960 ident: bib0145 article-title: Organic-inorganic nanocrystal reductase to promote green asymmetric synthesis publication-title: RSC Adv. – start-page: 1 year: 2016 end-page: 15 ident: bib0025 article-title: Biocatalysis and Green chemistry publication-title: Green Biocatalysis – volume: 254 start-page: 248 year: 1976 end-page: 254 ident: bib0150 article-title: A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. – volume: 352 start-page: 249 year: 2017 end-page: 263 ident: bib0090 article-title: Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules publication-title: Coord. Chem. Rev. – volume: 51 start-page: 8753 year: 2015 end-page: 8756 ident: bib0140 article-title: Selective biomineralization of Co publication-title: Chem. Commun. – volume: 346 start-page: 125 year: 2004 end-page: 142 ident: bib0055 article-title: Biocatalytic oxidation of primary and secondary alcohols publication-title: Adv. Synth. Catal. – volume: 19 start-page: 4544 year: 2017 ident: bib0030 article-title: Whole-cell biocatalytic selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid publication-title: Green Chem. – start-page: 1 year: 2016 end-page: 132 ident: bib0075 article-title: Chapter 2 Basic of enzyme immobilization publication-title: Enzyme Immobilization Advances in Industry, Agriculture, Medicine, and the Environment – volume: 69 start-page: 8929 year: 2013 end-page: 8935 ident: bib0005 article-title: Efficient method for the oxidation of aldehydes and diols with tert-butylhydroperoxide under transition metal-free conditions publication-title: Tetrahedron – volume: 182 start-page: 122 year: 2017 end-page: 128 ident: bib0115 article-title: A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization publication-title: Chemosphere – volume: 109 start-page: 31 year: 2018 end-page: 42 ident: bib0045 article-title: Enzyme and Microbial Technology Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations publication-title: Enzyme Microb. Technol. – volume: 29 start-page: 205 year: 2015 end-page: 220 ident: bib0070 article-title: An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes publication-title: Biotechnol. Biotechnol. Equip. – volume: 4 start-page: 739 year: 2012 end-page: 749 ident: bib0050 article-title: Preparative biotransformations : oxidation of alcohols publication-title: ChemCatChem – volume: 117 start-page: 11406 year: 2017 end-page: 11459 ident: bib0020 article-title: Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2 publication-title: Chem. Rev. – volume: 26 start-page: 1643 year: 2004 end-page: 1648 ident: bib0035 article-title: Oxidation of heterocyclic and aromatic aldehydes to the corresponding carboxylic acids by Acetobacter and Serratia strains publication-title: Biotechnol. Lett. – volume: 307 start-page: 127628 year: 2020 ident: bib0160 article-title: Hemoglobin-Mn3(PO4)2 hybrid nanoflower with opulent electroactive centers for high-performance hydrogen peroxide electrochemical biosensor publication-title: Sens. Actuators B Chem. – volume: 84 start-page: 402 year: 2016 end-page: 409 ident: bib0130 article-title: Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability publication-title: Int. J. Biol. Macromol. – volume: 7 start-page: 428 year: 2012 end-page: 432 ident: bib0085 article-title: Protein-inorganic hybrid nanoflowers publication-title: Nat. Nanotechnol. – volume: 22 start-page: 659 year: 2013 end-page: 664 ident: bib0010 article-title: Sulfonated carbon catalyzed oxidation of aldehydes to carboxylic acids by hydrogen peroxide publication-title: J. Energy Chem. – volume: 8 start-page: 2358 year: 2013 end-page: 2360 ident: bib0095 article-title: Rapid detection of phenol using a membrane containing laccase nanoflowers publication-title: Chem. - An Asian J. – volume: 132 start-page: 109408 year: 2020 ident: bib0125 article-title: Self-assembly of lipase hybrid nanoflowers with bifunctional Ca2+ for improved activity and stability publication-title: Enzyme Microb. Technol. – volume: 76 start-page: 131387 year: 2020 ident: bib0065 article-title: Oxidation of aromatic and aliphatic aldehydes to carboxylic acids by Geotrichum candidum aldehyde dehydrogenase publication-title: Tetrahedron – volume: 13 start-page: 226 year: 2011 end-page: 265 ident: bib0060 article-title: Green Chemistry Enzyme-mediated oxidations for the chemist publication-title: Green Chem. – volume: 366 start-page: 328 year: 2016 end-page: 338 ident: bib0100 article-title: Red-blood-cell-like BSA/Zn 3 (PO 4) 2 hybrid particles: Preparation and application to adsorption of heavy metal ions publication-title: Appl. Surf. Sci. – volume: 91 start-page: 793 year: 2018 end-page: 801 ident: bib0165 article-title: Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs) publication-title: Renew. Sustain. Energy Rev. – volume: 130 start-page: 299 year: 2015 end-page: 304 ident: bib0135 article-title: Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification publication-title: Colloids Surf. B Biointerfaces – volume: 16 start-page: 2397 year: 1999 end-page: 2402 ident: bib0040 article-title: Stereoselective oxidation and reduction by immobilized Geotrichum candidum in an organic solvent publication-title: J. Chem. Soc. Perkin Trans. I – volume: 8 start-page: 3447 year: 2015 end-page: 3460 ident: bib0105 article-title: Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery publication-title: Nano Res. – volume: 211 start-page: 310 year: 2015 end-page: 317 ident: bib0155 article-title: Manganese(II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine publication-title: Sens. Actuators B Chem. – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.enzmictec.2021.109866_bib0120 article-title: Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity publication-title: Sci. Rep. – volume: 13 start-page: 226 year: 2011 ident: 10.1016/j.enzmictec.2021.109866_bib0060 article-title: Green Chemistry Enzyme-mediated oxidations for the chemist publication-title: Green Chem. doi: 10.1039/C0GC00595A – volume: 29 start-page: 205 year: 2015 ident: 10.1016/j.enzmictec.2021.109866_bib0070 article-title: An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes publication-title: Biotechnol. Biotechnol. Equip. doi: 10.1080/13102818.2015.1008192 – volume: 22 start-page: 659 year: 2013 ident: 10.1016/j.enzmictec.2021.109866_bib0010 article-title: Sulfonated carbon catalyzed oxidation of aldehydes to carboxylic acids by hydrogen peroxide publication-title: J. Energy Chem. doi: 10.1016/S2095-4956(13)60087-X – volume: 19 start-page: 4544 year: 2017 ident: 10.1016/j.enzmictec.2021.109866_bib0030 article-title: Whole-cell biocatalytic selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid publication-title: Green Chem. doi: 10.1039/C7GC01751K – volume: 135 start-page: 1272 year: 2013 ident: 10.1016/j.enzmictec.2021.109866_bib0080 article-title: A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3120136 – volume: 91 start-page: 793 year: 2018 ident: 10.1016/j.enzmictec.2021.109866_bib0165 article-title: Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs) publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.103 – start-page: 1 year: 2016 ident: 10.1016/j.enzmictec.2021.109866_bib0025 article-title: Biocatalysis and Green chemistry – volume: 346 start-page: 125 year: 2004 ident: 10.1016/j.enzmictec.2021.109866_bib0055 article-title: Biocatalytic oxidation of primary and secondary alcohols publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.200303177 – volume: 130 start-page: 299 year: 2015 ident: 10.1016/j.enzmictec.2021.109866_bib0135 article-title: Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2015.04.033 – volume: 15 start-page: 17 year: 2013 ident: 10.1016/j.enzmictec.2021.109866_bib0015 article-title: Selective oxidation of alcohols and aldehydes over supported metal nanoparticles publication-title: Green Chem. doi: 10.1039/C2GC36441G – volume: 76 start-page: 131387 year: 2020 ident: 10.1016/j.enzmictec.2021.109866_bib0065 article-title: Oxidation of aromatic and aliphatic aldehydes to carboxylic acids by Geotrichum candidum aldehyde dehydrogenase publication-title: Tetrahedron doi: 10.1016/j.tet.2020.131387 – volume: 307 start-page: 127628 year: 2020 ident: 10.1016/j.enzmictec.2021.109866_bib0160 article-title: Hemoglobin-Mn3(PO4)2 hybrid nanoflower with opulent electroactive centers for high-performance hydrogen peroxide electrochemical biosensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.127628 – volume: 117 start-page: 11406 year: 2017 ident: 10.1016/j.enzmictec.2021.109866_bib0020 article-title: Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00167 – volume: 84 start-page: 402 year: 2016 ident: 10.1016/j.enzmictec.2021.109866_bib0130 article-title: Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.12.018 – volume: 10 start-page: 30953 year: 2020 ident: 10.1016/j.enzmictec.2021.109866_bib0145 article-title: Organic-inorganic nanocrystal reductase to promote green asymmetric synthesis publication-title: RSC Adv. doi: 10.1039/D0RA03160G – volume: 16 start-page: 2397 year: 1999 ident: 10.1016/j.enzmictec.2021.109866_bib0040 article-title: Stereoselective oxidation and reduction by immobilized Geotrichum candidum in an organic solvent publication-title: J. Chem. Soc. Perkin Trans. I doi: 10.1039/a900936a – volume: 132 start-page: 109408 year: 2020 ident: 10.1016/j.enzmictec.2021.109866_bib0125 article-title: Self-assembly of lipase hybrid nanoflowers with bifunctional Ca2+ for improved activity and stability publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2019.109408 – volume: 4 start-page: 739 year: 2012 ident: 10.1016/j.enzmictec.2021.109866_bib0050 article-title: Preparative biotransformations : oxidation of alcohols publication-title: ChemCatChem doi: 10.1002/cctc.201200042 – volume: 51 start-page: 8753 year: 2015 ident: 10.1016/j.enzmictec.2021.109866_bib0140 article-title: Selective biomineralization of Co3(PO4)2-sponges triggered by His-tagged proteins: efficient heterogeneous biocatalysts for redox processes publication-title: Chem. Commun. doi: 10.1039/C5CC00318K – volume: 7 start-page: 428 year: 2012 ident: 10.1016/j.enzmictec.2021.109866_bib0085 article-title: Protein-inorganic hybrid nanoflowers publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.80 – volume: 109 start-page: 31 year: 2018 ident: 10.1016/j.enzmictec.2021.109866_bib0045 article-title: Enzyme and Microbial Technology Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2017.09.008 – volume: 211 start-page: 310 year: 2015 ident: 10.1016/j.enzmictec.2021.109866_bib0155 article-title: Manganese(II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.01.106 – volume: 182 start-page: 122 year: 2017 ident: 10.1016/j.enzmictec.2021.109866_bib0115 article-title: A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.05.012 – volume: 8 start-page: 3447 year: 2015 ident: 10.1016/j.enzmictec.2021.109866_bib0105 article-title: Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery publication-title: Nano Res. doi: 10.1007/s12274-015-0841-8 – volume: 26 start-page: 1643 year: 2004 ident: 10.1016/j.enzmictec.2021.109866_bib0035 article-title: Oxidation of heterocyclic and aromatic aldehydes to the corresponding carboxylic acids by Acetobacter and Serratia strains publication-title: Biotechnol. Lett. doi: 10.1007/s10529-004-3513-4 – volume: 3 start-page: 2295 year: 2015 ident: 10.1016/j.enzmictec.2021.109866_bib0110 article-title: An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01697A – volume: 352 start-page: 249 year: 2017 ident: 10.1016/j.enzmictec.2021.109866_bib0090 article-title: Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.008 – start-page: 1 year: 2016 ident: 10.1016/j.enzmictec.2021.109866_bib0075 article-title: Chapter 2 Basic of enzyme immobilization – volume: 69 start-page: 8929 year: 2013 ident: 10.1016/j.enzmictec.2021.109866_bib0005 article-title: Efficient method for the oxidation of aldehydes and diols with tert-butylhydroperoxide under transition metal-free conditions publication-title: Tetrahedron doi: 10.1016/j.tet.2013.07.101 – volume: 8 start-page: 2358 year: 2013 ident: 10.1016/j.enzmictec.2021.109866_bib0095 article-title: Rapid detection of phenol using a membrane containing laccase nanoflowers publication-title: Chem. - An Asian J. doi: 10.1002/asia.201300020 – volume: 366 start-page: 328 year: 2016 ident: 10.1016/j.enzmictec.2021.109866_bib0100 article-title: Red-blood-cell-like BSA/Zn 3 (PO 4) 2 hybrid particles: Preparation and application to adsorption of heavy metal ions publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.01.074 – volume: 254 start-page: 248 year: 1976 ident: 10.1016/j.enzmictec.2021.109866_bib0150 article-title: A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 |
SSID | ssj0001440 |
Score | 2.4083438 |
Snippet | •Geotrichum candidum aldehyde dehydrogenase (GcALDH) was firstly immobilized by organic-inorganic nanocrystal formation.•The GcALDH nanocrystal exhibited... A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109866 |
SubjectTerms | Aldehyde dehydrogenase aldehydes Biotransformation Enzyme immobilization Geotrichum candidum Green chemistry nanocrystals Organic-inorganic nanocrystal Oxidation thermal stability |
Title | Geotrichum candidum aldehyde dehydrogenase-inorganic nanocrystal with enhanced activity |
URI | https://dx.doi.org/10.1016/j.enzmictec.2021.109866 https://www.proquest.com/docview/2570109947 https://www.proquest.com/docview/2636476100 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxtBDLZoUKVyQC1tVR5FW6nXJZvZ7GO4IQRNW5VLi-A2modHSRVmUUgO4cBvx95HBAiVQ0_70FgaeTy2Z2x_BvhqBk6n1mdx4hO-rcrT2HCQ10l02udm4Ouq919n-eh8-OMyu1yD464WhtMqW93f6PRaW7d_-i03-9eTSf93naIohBQMIyS4eH1dpDLPerB-9P3n6GylkDl-2WQy0smZCB6leWG4vZrYOTKcoRgwulJZIyY-a6SeqOvaBp2-hc3WeYyOmvm9gzUMW_C6aSe53IKNB-CC7-HiG1YMvz9eXEWWi1ccveipw_HSYVQ_ZhWJD5mxeBKa7k42CjpUdrYkn3Ea8R1thGFcJwlEXAHBjSY-wPnpyZ_jUdy2UYgtbch5XFiyQs5Ym0qk4XSiSLV23mPu0aFx5GOZAg2dO_LCFGmGwmvpReo12mJILtpH6IUq4CeIbGlKbTDLfJEOUQtdyqQsvJWlRJRebkPe8U3ZFmOcW11MVZdM9letGK6Y4aph-DYkK8LrBmbjZZLDbmHUI4lRZAxeJv7SLaWi_cRBEh2wWtwo7urH0cJh8Y8xOaPuk-OZ7PzPJHbhDX81qYF70JvPFviZXJy52YdXB3eD_VaQ7wHJ5__m |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6hoAo4oJaCyqPtVup1lc2-zQ0haCiQS0HlZvkxVlIFLwrJIfx6ZvYRlaoqh552teuRrLE9D8_MNwBf9cCqxLgsjFzEt1V5EmoO8lqBVrlcD1xd9X49yoe36fe77G4NTrtaGE6rbGV_I9Nrad1-6bfc7D9MJv0fdYpiHIuYYYRiLl5fTzPy9nqwfnJxORytBDLHL5tMRvKcieBFmhf6p_uJmSPDGcYDRlcqa8TEvyqpP8R1rYPO38J2azwGJ8383sEa-h1407STXO7A1m_ggu_h5zesGH5_vLgPDBevWHpRU4vjpcWgfswq2j6kxsKJb7o7mcArX5nZkmzGacB3tAH6cZ0kEHAFBDea2IXb87Ob02HYtlEIDR3IeVgY0kJWG5MIpOHkUSRKWecwd2hRW7KxdIGa_I680EWSYeyUcHHiFJoiJRNtD3q-8vgBAlPqUmnMMlckKapYlSIqC2dEKRCFE_uQd3yTpsUY51YXU9klk_2SK4ZLZrhsGL4P0YrwoYHZeJ3kuFsY-WLHSFIGrxN_6ZZS0nniIInyWC0eJXf142hhWvxjTM6o-2R4Rgf_M4nPsDG8ub6SVxejy0PY5D9NmuAR9OazBX4kc2euP7Xb-RnrcAHk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geotrichum+candidum+aldehyde+dehydrogenase-inorganic+nanocrystal+with+enhanced+activity&rft.jtitle=Enzyme+and+microbial+technology&rft.au=T.sriwong%2C+Kotchakorn&rft.au=Ogura%2C+Kazuki&rft.au=Hawari%2C+Muhammad+Arisyi&rft.au=Matsuda%2C+Tomoko&rft.date=2021-10-01&rft.pub=Elsevier+Inc&rft.issn=0141-0229&rft.eissn=1879-0909&rft.volume=150&rft_id=info:doi/10.1016%2Fj.enzmictec.2021.109866&rft.externalDocID=S0141022921001241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0229&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0229&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0229&client=summon |