Geotrichum candidum aldehyde dehydrogenase-inorganic nanocrystal with enhanced activity

•Geotrichum candidum aldehyde dehydrogenase (GcALDH) was firstly immobilized by organic-inorganic nanocrystal formation.•The GcALDH nanocrystal exhibited enhanced activity of benzaldehyde oxidation to be 261 % comparing to the free GcALDH.•The GcALDH nanocrystal retained broad substrate specificity...

Full description

Saved in:
Bibliographic Details
Published inEnzyme and microbial technology Vol. 150; p. 109866
Main Authors T.sriwong, Kotchakorn, Ogura, Kazuki, Hawari, Muhammad Arisyi, Matsuda, Tomoko
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2021
Subjects
Online AccessGet full text
ISSN0141-0229
1879-0909
1879-0909
DOI10.1016/j.enzmictec.2021.109866

Cover

Abstract •Geotrichum candidum aldehyde dehydrogenase (GcALDH) was firstly immobilized by organic-inorganic nanocrystal formation.•The GcALDH nanocrystal exhibited enhanced activity of benzaldehyde oxidation to be 261 % comparing to the free GcALDH.•The GcALDH nanocrystal retained broad substrate specificity property.•The thermostability and recyclability of the GcALDH were improved by immobilization.•The robustness and versatility of the GcALDH nanocrystal made it promising for further applications. A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free form of GcALDH still had a limitation in stability and recyclability. Herein, to overcome these limitations, this study achieved the immobilization of the GcALDH by the organic-inorganic nanocrystal formation. The GcALDH nanocrystal exhibited 261 ± 40 % of activity comparing to the free enzyme. It also exhibited improved thermostability and recyclability as well as remained excellent substrate promiscuity, which suggested its potential use in green industries. To the best of our knowledge, this is the first time to report the ALDH-inorganic nanocrystal formation with superior properties.
AbstractList •Geotrichum candidum aldehyde dehydrogenase (GcALDH) was firstly immobilized by organic-inorganic nanocrystal formation.•The GcALDH nanocrystal exhibited enhanced activity of benzaldehyde oxidation to be 261 % comparing to the free GcALDH.•The GcALDH nanocrystal retained broad substrate specificity property.•The thermostability and recyclability of the GcALDH were improved by immobilization.•The robustness and versatility of the GcALDH nanocrystal made it promising for further applications. A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free form of GcALDH still had a limitation in stability and recyclability. Herein, to overcome these limitations, this study achieved the immobilization of the GcALDH by the organic-inorganic nanocrystal formation. The GcALDH nanocrystal exhibited 261 ± 40 % of activity comparing to the free enzyme. It also exhibited improved thermostability and recyclability as well as remained excellent substrate promiscuity, which suggested its potential use in green industries. To the best of our knowledge, this is the first time to report the ALDH-inorganic nanocrystal formation with superior properties.
A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free form of GcALDH still had a limitation in stability and recyclability. Herein, to overcome these limitations, this study achieved the immobilization of the GcALDH by the organic-inorganic nanocrystal formation. The GcALDH nanocrystal exhibited 261 ± 40 % of activity comparing to the free enzyme. It also exhibited improved thermostability and recyclability as well as remained excellent substrate promiscuity, which suggested its potential use in green industries. To the best of our knowledge, this is the first time to report the ALDH-inorganic nanocrystal formation with superior properties.A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free form of GcALDH still had a limitation in stability and recyclability. Herein, to overcome these limitations, this study achieved the immobilization of the GcALDH by the organic-inorganic nanocrystal formation. The GcALDH nanocrystal exhibited 261 ± 40 % of activity comparing to the free enzyme. It also exhibited improved thermostability and recyclability as well as remained excellent substrate promiscuity, which suggested its potential use in green industries. To the best of our knowledge, this is the first time to report the ALDH-inorganic nanocrystal formation with superior properties.
A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free form of GcALDH still had a limitation in stability and recyclability. Herein, to overcome these limitations, this study achieved the immobilization of the GcALDH by the organic-inorganic nanocrystal formation. The GcALDH nanocrystal exhibited 261 ± 40 % of activity comparing to the free enzyme. It also exhibited improved thermostability and recyclability as well as remained excellent substrate promiscuity, which suggested its potential use in green industries. To the best of our knowledge, this is the first time to report the ALDH-inorganic nanocrystal formation with superior properties.
ArticleNumber 109866
Author Ogura, Kazuki
T.sriwong, Kotchakorn
Hawari, Muhammad Arisyi
Matsuda, Tomoko
Author_xml – sequence: 1
  givenname: Kotchakorn
  orcidid: 0000-0002-0999-1846
  surname: T.sriwong
  fullname: T.sriwong, Kotchakorn
– sequence: 2
  givenname: Kazuki
  surname: Ogura
  fullname: Ogura, Kazuki
– sequence: 3
  givenname: Muhammad Arisyi
  surname: Hawari
  fullname: Hawari, Muhammad Arisyi
– sequence: 4
  givenname: Tomoko
  orcidid: 0000-0002-8934-8198
  surname: Matsuda
  fullname: Matsuda, Tomoko
  email: tmatsuda@bio.titech.ac.jp
BookMark eNqNkDFv2zAQhYkiBeqk_Q3VmEUuKcmkOHQIgsYtEKBLi47E6XiKz5DJlKQTOL8-cl10yJJO73B43xu-c3EWYiAhPiq5VFLpT9slhacdYyFcNrJR89f2Wr8RC9UbW0sr7ZlYSNWpWjaNfSfOc95KOT86uRC_1hRLYtzsdxVC8OznAyZPm4On6k-keEcBMtUcYrqDwFgFCBHTIReYqkcum4rCBgKSrwALP3A5vBdvR5gyffibF-LnzZcf11_r2-_rb9dXtzV2zarUBnup_IDYWppxpfoWwI8j6ZE8Dd6u1GBoMLrXZjDtipoR7Ni0IxCaTvbthbg87d6n-HtPubgdZ6RpgkBxn12jW90ZraR8vboycnZnOzNXP5-qmGLOiUaHXKBwDCUBT05Jd3Tvtu6fe3d0707uZ9684O8T7yAd_oO8OpE0S3tgSi4j01EtJ8LifORXN54BiMSpPA
CitedBy_id crossref_primary_10_1039_D3GC01536J
crossref_primary_10_1021_acs_oprd_1c00404
crossref_primary_10_3390_foods12061124
crossref_primary_10_1016_j_bej_2021_108263
crossref_primary_10_1016_j_cis_2022_102780
crossref_primary_10_1039_D2RE00547F
crossref_primary_10_1007_s10529_022_03224_3
crossref_primary_10_1007_s00284_023_03577_6
Cites_doi 10.1039/C0GC00595A
10.1080/13102818.2015.1008192
10.1016/S2095-4956(13)60087-X
10.1039/C7GC01751K
10.1021/ja3120136
10.1016/j.rser.2018.04.103
10.1002/adsc.200303177
10.1016/j.colsurfb.2015.04.033
10.1039/C2GC36441G
10.1016/j.tet.2020.131387
10.1016/j.snb.2019.127628
10.1021/acs.chemrev.7b00167
10.1016/j.ijbiomac.2015.12.018
10.1039/D0RA03160G
10.1039/a900936a
10.1016/j.enzmictec.2019.109408
10.1002/cctc.201200042
10.1039/C5CC00318K
10.1038/nnano.2012.80
10.1016/j.enzmictec.2017.09.008
10.1016/j.snb.2015.01.106
10.1016/j.chemosphere.2017.05.012
10.1007/s12274-015-0841-8
10.1007/s10529-004-3513-4
10.1039/C4TB01697A
10.1016/j.ccr.2017.09.008
10.1016/j.tet.2013.07.101
10.1002/asia.201300020
10.1016/j.apsusc.2016.01.074
10.1016/0003-2697(76)90527-3
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.enzmictec.2021.109866
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1879-0909
ExternalDocumentID 10_1016_j_enzmictec_2021_109866
S0141022921001241
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABTAH
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CJTIS
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HLW
HMG
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
LX3
LX8
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SIN
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
UNMZH
VH1
WH7
WUQ
XFK
Y6R
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c425t-7c801dbcc39eced1183aadffe6fedebd951b7eb76867b735e2fa9f23faec74083
IEDL.DBID AIKHN
ISSN 0141-0229
1879-0909
IngestDate Thu Sep 04 18:07:12 EDT 2025
Fri Sep 05 07:12:24 EDT 2025
Tue Jul 01 03:08:18 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Fri Feb 23 02:43:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oxidation
Enzyme immobilization
Green chemistry
Organic-inorganic nanocrystal
Aldehyde dehydrogenase
Biotransformation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-7c801dbcc39eced1183aadffe6fedebd951b7eb76867b735e2fa9f23faec74083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8934-8198
0000-0002-0999-1846
PQID 2570109947
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636476100
proquest_miscellaneous_2570109947
crossref_citationtrail_10_1016_j_enzmictec_2021_109866
crossref_primary_10_1016_j_enzmictec_2021_109866
elsevier_sciencedirect_doi_10_1016_j_enzmictec_2021_109866
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Enzyme and microbial technology
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Zhang, Song, Wang, Yan, He, Feng, Fang, Zhao, Zhang (bib0155) 2015; 211
Mitsukura, Sato, Yoshida, Nagasawa (bib0035) 2004; 26
Gao, Liu, Tong, Pang, Feng, Zuo, Wei, Li (bib0160) 2020; 307
Zhu, Gong, Zhang, Wang, Ge, Liu, Zare (bib0095) 2013; 8
Hollmann, Arends, Buehler, Bruno (bib0060) 2011; 13
Mei, Zhu, Qiu, Wu, Chen, Liang, Cansiz, Lv, Zhang, Tan (bib0105) 2015; 8
Nakamura, Inoue, Matsuda, Misawa (bib0040) 1999; 16
Altinkaynak, Yilmaz, Koksal, Özdemir, Ocsoy, Özdemir (bib0130) 2016; 84
Ge, Lei, Zare (bib0085) 2012; 7
Altinkaynak, Tavlasoglu, Kalin, Sadeghian, Ozdemir, Ocsoy, Özdemir (bib0115) 2017; 182
Li, Wu, He, Wang, Li, Huo, Chen, Zhang, Wang, Ma (bib0120) 2016; 6
Kroutil, Mang, Edegger, Faber (bib0055) 2004; 346
Wang, Wang, He, Zhuang, Wang, Zeng, Hou (bib0080) 2013; 135
Mohamad, Marzuki, Buang, Huyop, Wahab (bib0070) 2015; 29
T.sriwong, Koesoema, Matsuda (bib0145) 2020; 10
Hoshino, Yamabe, Hawari, Tamura, Kanamaru, Yoshida, Koesoema, Matsuda (bib0065) 2020; 76
Yin, Xiao, Lin, Xiao, Lin, Cai (bib0110) 2015; 3
Zhou, Dong, Tang, Ma, Chen, Yang, Xu (bib0010) 2013; 22
Dwevedi (bib0075) 2016
Bryliakov (bib0020) 2017; 117
Davis, Ide, Davis (bib0015) 2013; 15
Zhang, Li, Zhang, Li, Tian, Wang, Chen, Ali, Ali, Zhang (bib0100) 2016; 366
Zhang, Sun, Elfeky, Wang, Zhao, Zhou, Wang, Bao (bib0125) 2020; 132
Hu, Dai, Liu, Du, Wang (bib0165) 2018; 91
Li (bib0030) 2017; 19
Shaikh, Hong (bib0005) 2013; 69
Sheldon (bib0025) 2016
Romano, Villa, Molinari (bib0050) 2012; 4
Cui, Jia (bib0090) 2017; 352
Yu, Fei, Tian, Xu, Wang, Wang (bib0135) 2015; 130
López-Gallego, Yate (bib0140) 2015; 51
Bordewick, Beier, Balke, Bornscheuer (bib0045) 2018; 109
Bradford (bib0150) 1976; 254
Hoshino (10.1016/j.enzmictec.2021.109866_bib0065) 2020; 76
Altinkaynak (10.1016/j.enzmictec.2021.109866_bib0115) 2017; 182
Li (10.1016/j.enzmictec.2021.109866_bib0120) 2016; 6
Altinkaynak (10.1016/j.enzmictec.2021.109866_bib0130) 2016; 84
Davis (10.1016/j.enzmictec.2021.109866_bib0015) 2013; 15
Dwevedi (10.1016/j.enzmictec.2021.109866_bib0075) 2016
Nakamura (10.1016/j.enzmictec.2021.109866_bib0040) 1999; 16
Yin (10.1016/j.enzmictec.2021.109866_bib0110) 2015; 3
Romano (10.1016/j.enzmictec.2021.109866_bib0050) 2012; 4
Li (10.1016/j.enzmictec.2021.109866_bib0030) 2017; 19
Zhou (10.1016/j.enzmictec.2021.109866_bib0010) 2013; 22
Bordewick (10.1016/j.enzmictec.2021.109866_bib0045) 2018; 109
López-Gallego (10.1016/j.enzmictec.2021.109866_bib0140) 2015; 51
Ge (10.1016/j.enzmictec.2021.109866_bib0085) 2012; 7
Cui (10.1016/j.enzmictec.2021.109866_bib0090) 2017; 352
Shaikh (10.1016/j.enzmictec.2021.109866_bib0005) 2013; 69
Mitsukura (10.1016/j.enzmictec.2021.109866_bib0035) 2004; 26
Mohamad (10.1016/j.enzmictec.2021.109866_bib0070) 2015; 29
Bradford (10.1016/j.enzmictec.2021.109866_bib0150) 1976; 254
Kroutil (10.1016/j.enzmictec.2021.109866_bib0055) 2004; 346
Zhang (10.1016/j.enzmictec.2021.109866_bib0155) 2015; 211
Bryliakov (10.1016/j.enzmictec.2021.109866_bib0020) 2017; 117
T.sriwong (10.1016/j.enzmictec.2021.109866_bib0145) 2020; 10
Zhu (10.1016/j.enzmictec.2021.109866_bib0095) 2013; 8
Mei (10.1016/j.enzmictec.2021.109866_bib0105) 2015; 8
Zhang (10.1016/j.enzmictec.2021.109866_bib0125) 2020; 132
Yu (10.1016/j.enzmictec.2021.109866_bib0135) 2015; 130
Gao (10.1016/j.enzmictec.2021.109866_bib0160) 2020; 307
Sheldon (10.1016/j.enzmictec.2021.109866_bib0025) 2016
Zhang (10.1016/j.enzmictec.2021.109866_bib0100) 2016; 366
Hu (10.1016/j.enzmictec.2021.109866_bib0165) 2018; 91
Hollmann (10.1016/j.enzmictec.2021.109866_bib0060) 2011; 13
Wang (10.1016/j.enzmictec.2021.109866_bib0080) 2013; 135
References_xml – volume: 135
  start-page: 1272
  year: 2013
  end-page: 1275
  ident: bib0080
  article-title: A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib0120
  article-title: Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity
  publication-title: Sci. Rep.
– volume: 15
  start-page: 17
  year: 2013
  end-page: 45
  ident: bib0015
  article-title: Selective oxidation of alcohols and aldehydes over supported metal nanoparticles
  publication-title: Green Chem.
– volume: 3
  start-page: 2295
  year: 2015
  end-page: 2300
  ident: bib0110
  article-title: An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity
  publication-title: J. Mater. Chem. B
– volume: 10
  start-page: 30953
  year: 2020
  end-page: 30960
  ident: bib0145
  article-title: Organic-inorganic nanocrystal reductase to promote green asymmetric synthesis
  publication-title: RSC Adv.
– start-page: 1
  year: 2016
  end-page: 15
  ident: bib0025
  article-title: Biocatalysis and Green chemistry
  publication-title: Green Biocatalysis
– volume: 254
  start-page: 248
  year: 1976
  end-page: 254
  ident: bib0150
  article-title: A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
– volume: 352
  start-page: 249
  year: 2017
  end-page: 263
  ident: bib0090
  article-title: Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules
  publication-title: Coord. Chem. Rev.
– volume: 51
  start-page: 8753
  year: 2015
  end-page: 8756
  ident: bib0140
  article-title: Selective biomineralization of Co
  publication-title: Chem. Commun.
– volume: 346
  start-page: 125
  year: 2004
  end-page: 142
  ident: bib0055
  article-title: Biocatalytic oxidation of primary and secondary alcohols
  publication-title: Adv. Synth. Catal.
– volume: 19
  start-page: 4544
  year: 2017
  ident: bib0030
  article-title: Whole-cell biocatalytic selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid
  publication-title: Green Chem.
– start-page: 1
  year: 2016
  end-page: 132
  ident: bib0075
  article-title: Chapter 2 Basic of enzyme immobilization
  publication-title: Enzyme Immobilization Advances in Industry, Agriculture, Medicine, and the Environment
– volume: 69
  start-page: 8929
  year: 2013
  end-page: 8935
  ident: bib0005
  article-title: Efficient method for the oxidation of aldehydes and diols with tert-butylhydroperoxide under transition metal-free conditions
  publication-title: Tetrahedron
– volume: 182
  start-page: 122
  year: 2017
  end-page: 128
  ident: bib0115
  article-title: A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization
  publication-title: Chemosphere
– volume: 109
  start-page: 31
  year: 2018
  end-page: 42
  ident: bib0045
  article-title: Enzyme and Microbial Technology Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations
  publication-title: Enzyme Microb. Technol.
– volume: 29
  start-page: 205
  year: 2015
  end-page: 220
  ident: bib0070
  article-title: An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes
  publication-title: Biotechnol. Biotechnol. Equip.
– volume: 4
  start-page: 739
  year: 2012
  end-page: 749
  ident: bib0050
  article-title: Preparative biotransformations : oxidation of alcohols
  publication-title: ChemCatChem
– volume: 117
  start-page: 11406
  year: 2017
  end-page: 11459
  ident: bib0020
  article-title: Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2
  publication-title: Chem. Rev.
– volume: 26
  start-page: 1643
  year: 2004
  end-page: 1648
  ident: bib0035
  article-title: Oxidation of heterocyclic and aromatic aldehydes to the corresponding carboxylic acids by Acetobacter and Serratia strains
  publication-title: Biotechnol. Lett.
– volume: 307
  start-page: 127628
  year: 2020
  ident: bib0160
  article-title: Hemoglobin-Mn3(PO4)2 hybrid nanoflower with opulent electroactive centers for high-performance hydrogen peroxide electrochemical biosensor
  publication-title: Sens. Actuators B Chem.
– volume: 84
  start-page: 402
  year: 2016
  end-page: 409
  ident: bib0130
  article-title: Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability
  publication-title: Int. J. Biol. Macromol.
– volume: 7
  start-page: 428
  year: 2012
  end-page: 432
  ident: bib0085
  article-title: Protein-inorganic hybrid nanoflowers
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 659
  year: 2013
  end-page: 664
  ident: bib0010
  article-title: Sulfonated carbon catalyzed oxidation of aldehydes to carboxylic acids by hydrogen peroxide
  publication-title: J. Energy Chem.
– volume: 8
  start-page: 2358
  year: 2013
  end-page: 2360
  ident: bib0095
  article-title: Rapid detection of phenol using a membrane containing laccase nanoflowers
  publication-title: Chem. - An Asian J.
– volume: 132
  start-page: 109408
  year: 2020
  ident: bib0125
  article-title: Self-assembly of lipase hybrid nanoflowers with bifunctional Ca2+ for improved activity and stability
  publication-title: Enzyme Microb. Technol.
– volume: 76
  start-page: 131387
  year: 2020
  ident: bib0065
  article-title: Oxidation of aromatic and aliphatic aldehydes to carboxylic acids by Geotrichum candidum aldehyde dehydrogenase
  publication-title: Tetrahedron
– volume: 13
  start-page: 226
  year: 2011
  end-page: 265
  ident: bib0060
  article-title: Green Chemistry Enzyme-mediated oxidations for the chemist
  publication-title: Green Chem.
– volume: 366
  start-page: 328
  year: 2016
  end-page: 338
  ident: bib0100
  article-title: Red-blood-cell-like BSA/Zn 3 (PO 4) 2 hybrid particles: Preparation and application to adsorption of heavy metal ions
  publication-title: Appl. Surf. Sci.
– volume: 91
  start-page: 793
  year: 2018
  end-page: 801
  ident: bib0165
  article-title: Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)
  publication-title: Renew. Sustain. Energy Rev.
– volume: 130
  start-page: 299
  year: 2015
  end-page: 304
  ident: bib0135
  article-title: Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification
  publication-title: Colloids Surf. B Biointerfaces
– volume: 16
  start-page: 2397
  year: 1999
  end-page: 2402
  ident: bib0040
  article-title: Stereoselective oxidation and reduction by immobilized Geotrichum candidum in an organic solvent
  publication-title: J. Chem. Soc. Perkin Trans. I
– volume: 8
  start-page: 3447
  year: 2015
  end-page: 3460
  ident: bib0105
  article-title: Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery
  publication-title: Nano Res.
– volume: 211
  start-page: 310
  year: 2015
  end-page: 317
  ident: bib0155
  article-title: Manganese(II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine
  publication-title: Sens. Actuators B Chem.
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.enzmictec.2021.109866_bib0120
  article-title: Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity
  publication-title: Sci. Rep.
– volume: 13
  start-page: 226
  year: 2011
  ident: 10.1016/j.enzmictec.2021.109866_bib0060
  article-title: Green Chemistry Enzyme-mediated oxidations for the chemist
  publication-title: Green Chem.
  doi: 10.1039/C0GC00595A
– volume: 29
  start-page: 205
  year: 2015
  ident: 10.1016/j.enzmictec.2021.109866_bib0070
  article-title: An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes
  publication-title: Biotechnol. Biotechnol. Equip.
  doi: 10.1080/13102818.2015.1008192
– volume: 22
  start-page: 659
  year: 2013
  ident: 10.1016/j.enzmictec.2021.109866_bib0010
  article-title: Sulfonated carbon catalyzed oxidation of aldehydes to carboxylic acids by hydrogen peroxide
  publication-title: J. Energy Chem.
  doi: 10.1016/S2095-4956(13)60087-X
– volume: 19
  start-page: 4544
  year: 2017
  ident: 10.1016/j.enzmictec.2021.109866_bib0030
  article-title: Whole-cell biocatalytic selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid
  publication-title: Green Chem.
  doi: 10.1039/C7GC01751K
– volume: 135
  start-page: 1272
  year: 2013
  ident: 10.1016/j.enzmictec.2021.109866_bib0080
  article-title: A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3120136
– volume: 91
  start-page: 793
  year: 2018
  ident: 10.1016/j.enzmictec.2021.109866_bib0165
  article-title: Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.103
– start-page: 1
  year: 2016
  ident: 10.1016/j.enzmictec.2021.109866_bib0025
  article-title: Biocatalysis and Green chemistry
– volume: 346
  start-page: 125
  year: 2004
  ident: 10.1016/j.enzmictec.2021.109866_bib0055
  article-title: Biocatalytic oxidation of primary and secondary alcohols
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.200303177
– volume: 130
  start-page: 299
  year: 2015
  ident: 10.1016/j.enzmictec.2021.109866_bib0135
  article-title: Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2015.04.033
– volume: 15
  start-page: 17
  year: 2013
  ident: 10.1016/j.enzmictec.2021.109866_bib0015
  article-title: Selective oxidation of alcohols and aldehydes over supported metal nanoparticles
  publication-title: Green Chem.
  doi: 10.1039/C2GC36441G
– volume: 76
  start-page: 131387
  year: 2020
  ident: 10.1016/j.enzmictec.2021.109866_bib0065
  article-title: Oxidation of aromatic and aliphatic aldehydes to carboxylic acids by Geotrichum candidum aldehyde dehydrogenase
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2020.131387
– volume: 307
  start-page: 127628
  year: 2020
  ident: 10.1016/j.enzmictec.2021.109866_bib0160
  article-title: Hemoglobin-Mn3(PO4)2 hybrid nanoflower with opulent electroactive centers for high-performance hydrogen peroxide electrochemical biosensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.127628
– volume: 117
  start-page: 11406
  year: 2017
  ident: 10.1016/j.enzmictec.2021.109866_bib0020
  article-title: Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00167
– volume: 84
  start-page: 402
  year: 2016
  ident: 10.1016/j.enzmictec.2021.109866_bib0130
  article-title: Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.12.018
– volume: 10
  start-page: 30953
  year: 2020
  ident: 10.1016/j.enzmictec.2021.109866_bib0145
  article-title: Organic-inorganic nanocrystal reductase to promote green asymmetric synthesis
  publication-title: RSC Adv.
  doi: 10.1039/D0RA03160G
– volume: 16
  start-page: 2397
  year: 1999
  ident: 10.1016/j.enzmictec.2021.109866_bib0040
  article-title: Stereoselective oxidation and reduction by immobilized Geotrichum candidum in an organic solvent
  publication-title: J. Chem. Soc. Perkin Trans. I
  doi: 10.1039/a900936a
– volume: 132
  start-page: 109408
  year: 2020
  ident: 10.1016/j.enzmictec.2021.109866_bib0125
  article-title: Self-assembly of lipase hybrid nanoflowers with bifunctional Ca2+ for improved activity and stability
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2019.109408
– volume: 4
  start-page: 739
  year: 2012
  ident: 10.1016/j.enzmictec.2021.109866_bib0050
  article-title: Preparative biotransformations : oxidation of alcohols
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201200042
– volume: 51
  start-page: 8753
  year: 2015
  ident: 10.1016/j.enzmictec.2021.109866_bib0140
  article-title: Selective biomineralization of Co3(PO4)2-sponges triggered by His-tagged proteins: efficient heterogeneous biocatalysts for redox processes
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00318K
– volume: 7
  start-page: 428
  year: 2012
  ident: 10.1016/j.enzmictec.2021.109866_bib0085
  article-title: Protein-inorganic hybrid nanoflowers
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.80
– volume: 109
  start-page: 31
  year: 2018
  ident: 10.1016/j.enzmictec.2021.109866_bib0045
  article-title: Enzyme and Microbial Technology Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2017.09.008
– volume: 211
  start-page: 310
  year: 2015
  ident: 10.1016/j.enzmictec.2021.109866_bib0155
  article-title: Manganese(II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.01.106
– volume: 182
  start-page: 122
  year: 2017
  ident: 10.1016/j.enzmictec.2021.109866_bib0115
  article-title: A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.05.012
– volume: 8
  start-page: 3447
  year: 2015
  ident: 10.1016/j.enzmictec.2021.109866_bib0105
  article-title: Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0841-8
– volume: 26
  start-page: 1643
  year: 2004
  ident: 10.1016/j.enzmictec.2021.109866_bib0035
  article-title: Oxidation of heterocyclic and aromatic aldehydes to the corresponding carboxylic acids by Acetobacter and Serratia strains
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-004-3513-4
– volume: 3
  start-page: 2295
  year: 2015
  ident: 10.1016/j.enzmictec.2021.109866_bib0110
  article-title: An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01697A
– volume: 352
  start-page: 249
  year: 2017
  ident: 10.1016/j.enzmictec.2021.109866_bib0090
  article-title: Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.008
– start-page: 1
  year: 2016
  ident: 10.1016/j.enzmictec.2021.109866_bib0075
  article-title: Chapter 2 Basic of enzyme immobilization
– volume: 69
  start-page: 8929
  year: 2013
  ident: 10.1016/j.enzmictec.2021.109866_bib0005
  article-title: Efficient method for the oxidation of aldehydes and diols with tert-butylhydroperoxide under transition metal-free conditions
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2013.07.101
– volume: 8
  start-page: 2358
  year: 2013
  ident: 10.1016/j.enzmictec.2021.109866_bib0095
  article-title: Rapid detection of phenol using a membrane containing laccase nanoflowers
  publication-title: Chem. - An Asian J.
  doi: 10.1002/asia.201300020
– volume: 366
  start-page: 328
  year: 2016
  ident: 10.1016/j.enzmictec.2021.109866_bib0100
  article-title: Red-blood-cell-like BSA/Zn 3 (PO 4) 2 hybrid particles: Preparation and application to adsorption of heavy metal ions
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.01.074
– volume: 254
  start-page: 248
  year: 1976
  ident: 10.1016/j.enzmictec.2021.109866_bib0150
  article-title: A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
SSID ssj0001440
Score 2.4083438
Snippet •Geotrichum candidum aldehyde dehydrogenase (GcALDH) was firstly immobilized by organic-inorganic nanocrystal formation.•The GcALDH nanocrystal exhibited...
A novel Geotrichum candidum aldehyde dehydrogenase (GcALDH) effectively oxidized aldehydes to carboxylic acids under mild conditions. Nonetheless, the free...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109866
SubjectTerms Aldehyde dehydrogenase
aldehydes
Biotransformation
Enzyme immobilization
Geotrichum candidum
Green chemistry
nanocrystals
Organic-inorganic nanocrystal
Oxidation
thermal stability
Title Geotrichum candidum aldehyde dehydrogenase-inorganic nanocrystal with enhanced activity
URI https://dx.doi.org/10.1016/j.enzmictec.2021.109866
https://www.proquest.com/docview/2570109947
https://www.proquest.com/docview/2636476100
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxtBDLZoUKVyQC1tVR5FW6nXJZvZ7GO4IQRNW5VLi-A2modHSRVmUUgO4cBvx95HBAiVQ0_70FgaeTy2Z2x_BvhqBk6n1mdx4hO-rcrT2HCQ10l02udm4Ouq919n-eh8-OMyu1yD464WhtMqW93f6PRaW7d_-i03-9eTSf93naIohBQMIyS4eH1dpDLPerB-9P3n6GylkDl-2WQy0smZCB6leWG4vZrYOTKcoRgwulJZIyY-a6SeqOvaBp2-hc3WeYyOmvm9gzUMW_C6aSe53IKNB-CC7-HiG1YMvz9eXEWWi1ccveipw_HSYVQ_ZhWJD5mxeBKa7k42CjpUdrYkn3Ea8R1thGFcJwlEXAHBjSY-wPnpyZ_jUdy2UYgtbch5XFiyQs5Ym0qk4XSiSLV23mPu0aFx5GOZAg2dO_LCFGmGwmvpReo12mJILtpH6IUq4CeIbGlKbTDLfJEOUQtdyqQsvJWlRJRebkPe8U3ZFmOcW11MVZdM9letGK6Y4aph-DYkK8LrBmbjZZLDbmHUI4lRZAxeJv7SLaWi_cRBEh2wWtwo7urH0cJh8Y8xOaPuk-OZ7PzPJHbhDX81qYF70JvPFviZXJy52YdXB3eD_VaQ7wHJ5__m
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6hoAo4oJaCyqPtVup1lc2-zQ0haCiQS0HlZvkxVlIFLwrJIfx6ZvYRlaoqh552teuRrLE9D8_MNwBf9cCqxLgsjFzEt1V5EmoO8lqBVrlcD1xd9X49yoe36fe77G4NTrtaGE6rbGV_I9Nrad1-6bfc7D9MJv0fdYpiHIuYYYRiLl5fTzPy9nqwfnJxORytBDLHL5tMRvKcieBFmhf6p_uJmSPDGcYDRlcqa8TEvyqpP8R1rYPO38J2azwGJ8383sEa-h1407STXO7A1m_ggu_h5zesGH5_vLgPDBevWHpRU4vjpcWgfswq2j6kxsKJb7o7mcArX5nZkmzGacB3tAH6cZ0kEHAFBDea2IXb87Ob02HYtlEIDR3IeVgY0kJWG5MIpOHkUSRKWecwd2hRW7KxdIGa_I680EWSYeyUcHHiFJoiJRNtD3q-8vgBAlPqUmnMMlckKapYlSIqC2dEKRCFE_uQd3yTpsUY51YXU9klk_2SK4ZLZrhsGL4P0YrwoYHZeJ3kuFsY-WLHSFIGrxN_6ZZS0nniIInyWC0eJXf142hhWvxjTM6o-2R4Rgf_M4nPsDG8ub6SVxejy0PY5D9NmuAR9OazBX4kc2euP7Xb-RnrcAHk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geotrichum+candidum+aldehyde+dehydrogenase-inorganic+nanocrystal+with+enhanced+activity&rft.jtitle=Enzyme+and+microbial+technology&rft.au=T.sriwong%2C+Kotchakorn&rft.au=Ogura%2C+Kazuki&rft.au=Hawari%2C+Muhammad+Arisyi&rft.au=Matsuda%2C+Tomoko&rft.date=2021-10-01&rft.pub=Elsevier+Inc&rft.issn=0141-0229&rft.eissn=1879-0909&rft.volume=150&rft_id=info:doi/10.1016%2Fj.enzmictec.2021.109866&rft.externalDocID=S0141022921001241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0229&client=summon