Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene
Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric fields can tune this topological valley transport over long distances at room temperature. The field of ‘Valleytronics’ has recently been attract...
Saved in:
Published in | Nature physics Vol. 11; no. 12; pp. 1032 - 1036 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric fields can tune this topological valley transport over long distances at room temperature.
The field of ‘Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents
1
. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical
2
,
3
,
4
,
5
, magnetic
6
,
7
,
8
,
9
and electrical control of the valley degree of freedom
10
,
11
,
12
. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current. |
---|---|
AbstractList | Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric fields can tune this topological valley transport over long distances at room temperature.
The field of ‘Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents
1
. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical
2
,
3
,
4
,
5
, magnetic
6
,
7
,
8
,
9
and electrical control of the valley degree of freedom
10
,
11
,
12
. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current. The field of 'Valleytronics' has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical magnetic and electrical control of the valley degree of freedom. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current. Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric fields can tune this topological valley transport over long distances at room temperature.The field of ‘Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents1. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical2,3,4,5, magnetic6,7,8,9 and electrical control of the valley degree of freedom10,11,12. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current. |
Author | Borzenets, I. V. Yamamoto, M. Shimazaki, Y. Watanabe, K. Taniguchi, T. Tarucha, S. |
Author_xml | – sequence: 1 givenname: Y. surname: Shimazaki fullname: Shimazaki, Y. organization: Department of Applied Physics, University of Tokyo – sequence: 2 givenname: M. surname: Yamamoto fullname: Yamamoto, M. email: yamamoto@ap.t.u-tokyo.ac.jp organization: Department of Applied Physics, University of Tokyo, PRESTO, JST – sequence: 3 givenname: I. V. surname: Borzenets fullname: Borzenets, I. V. organization: Department of Applied Physics, University of Tokyo – sequence: 4 givenname: K. orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, K. organization: National Institute for Materials Science – sequence: 5 givenname: T. surname: Taniguchi fullname: Taniguchi, T. organization: National Institute for Materials Science – sequence: 6 givenname: S. surname: Tarucha fullname: Tarucha, S. email: tarucha@ap.t.u-tokyo.ac.jp organization: Department of Applied Physics, University of Tokyo, Center for Emergent Matter Science (CEMS), RIKEN |
BookMark | eNp9kMFKw0AQhhepYFs9-AYLnhSiu5tkNzlq0SoUvOg5bDazbUq6iZOkkLfps_TJTFspouJpZpjvn3_4R2TgSgeEXHJ2y5kf3blq0dV-GPITMuQqCD0RRHxw7JV_RkZ1vWQsEJL7Q7KaggPUTV46ql1GM2jA7KfS0qpFoGtdFNBR0yKCa2jabTdQ9Azmpt90NHdZayCjD4C4x9a62elyR9O80B3gdjNHXS16o3NyanVRw8VXHZP3p8e3ybM3e52-TO5nnglE2HhKSDAyC4yVKfOVDINIGyOZErFkWqhUxDri1kpgzMbW-DzmOrUqjSBg0mb-mFwd7lZYfrRQN8mybNH1lonPo0gywUP2H8WVlJwLHqueuj5QBsu6RrBJhflKY5dwluwyT46Z9-zdD9bkzT7cBnVe_Km4OSjq_qqbA3774Rf8CSXHmKc |
CitedBy_id | crossref_primary_10_1088_1674_1056_ad401a crossref_primary_10_1103_PhysRevApplied_18_014028 crossref_primary_10_1142_S0217984919300011 crossref_primary_10_1038_nnano_2016_158 crossref_primary_10_1088_1361_6463_ac5bc9 crossref_primary_10_1103_PhysRevB_103_224426 crossref_primary_10_1016_j_jmmm_2021_167870 crossref_primary_10_1088_1367_2630_18_10_103024 crossref_primary_10_1088_1361_6463_aa67c1 crossref_primary_10_1088_2053_1583_aa7cbd crossref_primary_10_7566_JPSJ_87_044702 crossref_primary_10_1038_s41578_024_00671_4 crossref_primary_10_1103_PhysRevB_108_085419 crossref_primary_10_1103_PhysRevLett_121_136806 crossref_primary_10_1038_s41598_024_74596_x crossref_primary_10_1039_D0CP05028H crossref_primary_10_1088_1674_1056_acfd17 crossref_primary_10_1126_sciadv_aaq0194 crossref_primary_10_1103_PhysRevLett_117_276801 crossref_primary_10_1103_PhysRevB_97_195151 crossref_primary_10_1039_C7TC05460B crossref_primary_10_1088_1367_2630_aa6d37 crossref_primary_10_1103_PhysRevB_98_195436 crossref_primary_10_1021_acs_nanolett_0c02131 crossref_primary_10_1103_PhysRevB_97_115106 crossref_primary_10_1021_acs_nanolett_7b03604 crossref_primary_10_1088_2053_1583_ac5f6c crossref_primary_10_1021_acsami_8b16625 crossref_primary_10_1038_s41699_018_0061_7 crossref_primary_10_1103_PhysRevApplied_11_034048 crossref_primary_10_1103_PhysRevApplied_14_014039 crossref_primary_10_1103_PhysRevB_110_L241108 crossref_primary_10_1038_s41535_017_0051_6 crossref_primary_10_1038_s41598_022_13398_5 crossref_primary_10_1103_PhysRevB_103_115406 crossref_primary_10_1016_j_physleta_2020_126990 crossref_primary_10_1016_j_micrna_2023_207731 crossref_primary_10_1088_2053_1583_aa5e9b crossref_primary_10_1016_j_physe_2018_01_022 crossref_primary_10_1021_acs_nanolett_0c03453 crossref_primary_10_1002_adma_201706103 crossref_primary_10_1002_adma_202500757 crossref_primary_10_1038_s41586_021_03501_7 crossref_primary_10_1021_acs_nanolett_8b01848 crossref_primary_10_1103_PhysRevB_103_125138 crossref_primary_10_1088_2053_1583_ab89e8 crossref_primary_10_1038_nphys3587 crossref_primary_10_1088_1361_648X_abfee5 crossref_primary_10_1103_PhysRevB_107_035411 crossref_primary_10_1002_qute_201800111 crossref_primary_10_1364_OE_431305 crossref_primary_10_1103_PhysRevB_100_165417 crossref_primary_10_1103_PhysRevB_94_035409 crossref_primary_10_1103_PhysRevB_96_085442 crossref_primary_10_1002_aelm_202200510 crossref_primary_10_1016_j_mssp_2024_108705 crossref_primary_10_1016_j_mattod_2016_02_021 crossref_primary_10_1021_acs_nanolett_4c02660 crossref_primary_10_1007_s10948_019_5055_y crossref_primary_10_1103_PhysRevLett_127_116402 crossref_primary_10_1103_PhysRevLett_132_156301 crossref_primary_10_1021_acs_nanolett_6b02559 crossref_primary_10_1007_s10948_016_3973_5 crossref_primary_10_1103_PhysRevLett_131_246301 crossref_primary_10_1380_jsssj_37_535 crossref_primary_10_1016_j_physb_2023_415148 crossref_primary_10_1088_1572_9494_ac1d9f crossref_primary_10_1103_PhysRevB_103_125149 crossref_primary_10_1103_PhysRevResearch_2_013076 crossref_primary_10_1021_acsnano_0c02703 crossref_primary_10_1038_ncomms14552 crossref_primary_10_1088_1367_2630_ad89f1 crossref_primary_10_1088_1674_1056_aceee5 crossref_primary_10_1103_PhysRevB_103_235435 crossref_primary_10_1103_PhysRevB_104_165427 crossref_primary_10_1038_natrevmats_2016_55 crossref_primary_10_1039_D3CP04740G crossref_primary_10_1088_2515_7639_ac452a crossref_primary_10_1038_s41928_021_00537_5 crossref_primary_10_1088_1361_648X_ad1f8c crossref_primary_10_1088_1361_648X_accbf9 crossref_primary_10_1016_j_micrna_2022_207430 crossref_primary_10_1103_PhysRevB_104_155401 crossref_primary_10_1103_PhysRevB_104_075403 crossref_primary_10_1103_PhysRevB_106_075403 crossref_primary_10_1103_PhysRevB_98_035435 crossref_primary_10_7498_aps_70_20202132 crossref_primary_10_1103_PhysRevB_111_115406 crossref_primary_10_1038_s41565_018_0080_8 crossref_primary_10_1103_PhysRevLett_133_136901 crossref_primary_10_1103_PhysRevB_96_245410 crossref_primary_10_1103_PhysRevB_104_155402 crossref_primary_10_1103_PhysRevResearch_3_033160 crossref_primary_10_1103_RevModPhys_93_011001 crossref_primary_10_1016_j_jmmm_2024_172108 crossref_primary_10_1063_5_0068538 crossref_primary_10_1063_5_0264472 crossref_primary_10_1038_s41598_019_40947_2 crossref_primary_10_1103_PhysRevB_96_245414 crossref_primary_10_1126_science_adf9887 crossref_primary_10_1016_j_physrep_2016_07_003 crossref_primary_10_1038_s41535_021_00379_6 crossref_primary_10_1038_s41565_020_0727_0 crossref_primary_10_1021_acsnano_3c03795 crossref_primary_10_1103_PhysRevMaterials_3_054605 crossref_primary_10_1016_j_physleta_2017_01_020 crossref_primary_10_1103_PhysRevB_99_085421 crossref_primary_10_1063_5_0010961 crossref_primary_10_1103_PhysRevB_95_085145 crossref_primary_10_1038_s42005_023_01377_9 crossref_primary_10_1103_PhysRevB_101_195406 crossref_primary_10_1103_PhysRevB_103_075414 crossref_primary_10_1016_j_commatsci_2018_05_023 crossref_primary_10_1038_s41699_022_00291_y crossref_primary_10_1016_j_ssc_2016_06_020 crossref_primary_10_1103_PhysRevB_96_045412 crossref_primary_10_1088_1361_6463_abcbbd crossref_primary_10_1103_PhysRevB_108_155132 crossref_primary_10_1016_j_pcrysgrow_2017_06_001 crossref_primary_10_1021_acs_nanolett_3c00045 crossref_primary_10_1021_acs_nanolett_6b04870 crossref_primary_10_7566_JPSJ_92_114706 crossref_primary_10_1088_2053_1583_aa6f4d crossref_primary_10_1103_PhysRevB_109_075409 crossref_primary_10_7566_JPSJ_90_114701 crossref_primary_10_1103_PhysRevLett_132_166601 crossref_primary_10_1063_5_0114389 crossref_primary_10_1103_PhysRevB_108_235425 crossref_primary_10_1103_PhysRevLett_121_127706 crossref_primary_10_1088_1361_6633_abdb98 crossref_primary_10_1021_acsami_8b08959 crossref_primary_10_1103_PhysRevB_101_085425 crossref_primary_10_1103_PhysRevB_101_161103 crossref_primary_10_1103_PhysRevB_106_075425 crossref_primary_10_7498_aps_68_20191072 crossref_primary_10_1126_sciadv_adp6296 crossref_primary_10_1088_1674_1056_27_12_127203 crossref_primary_10_1103_PhysRevResearch_6_023212 crossref_primary_10_1364_OL_483236 crossref_primary_10_1103_PhysRevB_104_045416 crossref_primary_10_1088_0256_307X_38_8_087201 crossref_primary_10_1103_PhysRevB_95_201411 crossref_primary_10_1063_5_0114386 crossref_primary_10_1039_C9NR09545D crossref_primary_10_1088_1361_648X_aa6487 crossref_primary_10_1103_PhysRevB_106_245422 crossref_primary_10_1088_1367_2630_aae513 crossref_primary_10_1039_C8CP03489C crossref_primary_10_1007_s11467_023_1386_z crossref_primary_10_1038_nnano_2015_337 crossref_primary_10_1103_PhysRevLett_121_186403 crossref_primary_10_1039_D2DT02531K crossref_primary_10_1021_acs_jpclett_2c02407 crossref_primary_10_1103_PhysRevB_94_121408 crossref_primary_10_1016_j_carbon_2020_03_018 crossref_primary_10_1016_j_isci_2024_109374 crossref_primary_10_1038_s41598_017_10460_5 crossref_primary_10_1126_science_abl4266 crossref_primary_10_1103_PhysRevLett_124_166801 crossref_primary_10_1002_adma_202109894 crossref_primary_10_1063_5_0241163 crossref_primary_10_1088_1674_1056_25_11_117303 crossref_primary_10_1103_PhysRevB_98_201407 crossref_primary_10_1088_1361_6528_ac0dd8 crossref_primary_10_1088_0953_8984_28_35_355002 crossref_primary_10_1103_PhysRevLett_134_026304 crossref_primary_10_35848_1882_0786_ab790d crossref_primary_10_1103_PhysRevLett_128_206805 crossref_primary_10_1103_PhysRevB_101_085423 crossref_primary_10_1103_PhysRevB_93_085312 crossref_primary_10_1103_PhysRevLett_127_126801 crossref_primary_10_1038_s41598_020_72000_y crossref_primary_10_1063_1_4963063 crossref_primary_10_1103_PhysRevB_95_195424 crossref_primary_10_1103_PhysRevB_100_115421 crossref_primary_10_1103_PhysRevLett_126_056803 crossref_primary_10_1126_sciadv_aau6478 crossref_primary_10_1039_C6CP08817A crossref_primary_10_1021_acs_nanolett_4c00057 crossref_primary_10_1021_acs_nanolett_7b02584 crossref_primary_10_1103_PhysRevB_102_155205 crossref_primary_10_1103_PhysRevB_95_205431 crossref_primary_10_7567_1882_0786_aaff25 crossref_primary_10_1103_PhysRevB_98_155138 crossref_primary_10_1002_adfm_202002672 crossref_primary_10_1038_s41566_018_0204_6 crossref_primary_10_1126_science_aao5989 crossref_primary_10_1016_j_physrep_2018_06_006 crossref_primary_10_1007_s10948_020_05691_z crossref_primary_10_1016_j_apsusc_2020_147708 crossref_primary_10_1088_1361_648X_ab351b crossref_primary_10_1103_PhysRevLett_133_156301 crossref_primary_10_1002_smll_202402139 crossref_primary_10_1103_PhysRevLett_120_063902 crossref_primary_10_1021_acs_nanolett_0c04712 crossref_primary_10_1103_PhysRevB_99_245106 crossref_primary_10_1038_s41467_020_15117_y crossref_primary_10_1007_s11467_017_0652_3 crossref_primary_10_1016_j_nantod_2019_05_005 crossref_primary_10_1038_s41467_024_52877_3 crossref_primary_10_1103_PhysRevApplied_22_054078 crossref_primary_10_1016_j_apsusc_2023_156717 crossref_primary_10_1038_s41467_022_34104_z crossref_primary_10_1016_j_spmi_2017_02_038 crossref_primary_10_1038_s41565_018_0294_9 crossref_primary_10_1063_5_0030149 crossref_primary_10_1039_D0EE01370F crossref_primary_10_1103_PhysRevB_110_245403 crossref_primary_10_1103_PhysRevLett_124_037701 crossref_primary_10_1103_PhysRevB_99_205416 crossref_primary_10_1103_PhysRevB_100_075421 crossref_primary_10_1103_PhysRevB_101_245428 crossref_primary_10_1103_PhysRevB_100_115404 crossref_primary_10_1103_PhysRevLett_120_026802 crossref_primary_10_1002_pssb_202100562 crossref_primary_10_1103_PhysRevB_102_241301 crossref_primary_10_1103_PhysRevB_99_125422 crossref_primary_10_1021_acsnano_3c03455 crossref_primary_10_1103_PhysRevLett_132_096302 crossref_primary_10_1103_PhysRevLett_132_096301 crossref_primary_10_1103_PhysRevB_96_161103 crossref_primary_10_1103_PhysRevB_110_165410 crossref_primary_10_3390_ma17133331 crossref_primary_10_3390_ma17020333 crossref_primary_10_1103_PhysRevLett_126_016801 crossref_primary_10_1103_PhysRevLett_132_106301 crossref_primary_10_1038_nnano_2017_100 crossref_primary_10_1103_PhysRevB_111_035437 crossref_primary_10_1063_1_5020044 crossref_primary_10_1038_s42005_018_0106_4 crossref_primary_10_1002_adom_201800365 crossref_primary_10_1007_s12274_023_6325_3 crossref_primary_10_1021_acs_nanolett_8b00228 crossref_primary_10_1103_PhysRevB_110_014442 crossref_primary_10_1103_PhysRevB_102_064203 crossref_primary_10_1038_s41467_020_19043_x crossref_primary_10_1021_acsnano_4c12812 crossref_primary_10_1021_acs_nanolett_2c03947 crossref_primary_10_1103_PhysRevB_95_035416 crossref_primary_10_1039_C9CP05984A crossref_primary_10_1002_adfm_201900260 crossref_primary_10_1039_D3NR01288C crossref_primary_10_1103_PhysRevB_103_214114 crossref_primary_10_1016_j_carbon_2021_10_012 crossref_primary_10_1021_acsami_3c19260 crossref_primary_10_1103_PhysRevB_109_235403 crossref_primary_10_1016_j_matt_2021_08_020 crossref_primary_10_1016_j_physleta_2019_03_024 crossref_primary_10_1038_s41598_017_18238_5 crossref_primary_10_1016_j_carbon_2020_01_031 crossref_primary_10_1016_j_scib_2023_05_011 crossref_primary_10_1103_PhysRevB_101_241401 crossref_primary_10_1088_1674_1056_ab8db2 crossref_primary_10_1021_acs_nanolett_8b02750 crossref_primary_10_1063_5_0056270 crossref_primary_10_1103_PhysRevB_104_205430 crossref_primary_10_1088_1674_1056_ad2605 crossref_primary_10_1103_PhysRevB_108_L121405 crossref_primary_10_7566_JPSJ_92_123704 crossref_primary_10_7498_aps_66_217201 crossref_primary_10_1088_2053_1583_aa598d crossref_primary_10_1103_PhysRevLett_118_096602 crossref_primary_10_1038_nphys4331 crossref_primary_10_1038_s41586_020_2970_9 crossref_primary_10_1103_PhysRevB_96_075206 crossref_primary_10_1021_acs_jpclett_0c00863 crossref_primary_10_1088_1361_648X_aa8251 crossref_primary_10_1103_PhysRevApplied_15_024020 crossref_primary_10_1002_aenm_202403319 crossref_primary_10_1002_inf2_12095 crossref_primary_10_1088_1361_6528_ac50f2 crossref_primary_10_1038_s41467_020_19284_w crossref_primary_10_1103_PhysRevB_105_195420 crossref_primary_10_1038_srep23211 crossref_primary_10_1103_PhysRevB_107_235403 crossref_primary_10_1007_s44214_022_00010_0 crossref_primary_10_1038_s41467_023_43965_x crossref_primary_10_1103_PhysRevB_97_085420 crossref_primary_10_1038_s42005_019_0127_7 crossref_primary_10_1063_1_5094456 crossref_primary_10_1103_PhysRevB_94_035302 crossref_primary_10_1103_PhysRevLett_117_267203 crossref_primary_10_1002_adfm_202401684 crossref_primary_10_1038_s42254_020_00276_0 crossref_primary_10_1063_5_0095650 crossref_primary_10_1063_5_0198648 crossref_primary_10_1002_adma_201707627 crossref_primary_10_1021_acs_nanolett_4c01755 crossref_primary_10_1103_PhysRevB_104_245436 crossref_primary_10_1103_PhysRevB_94_075441 crossref_primary_10_1103_PhysRevB_100_155414 crossref_primary_10_1007_s11467_021_1125_2 crossref_primary_10_1142_S021963361950024X crossref_primary_10_1039_D0CP03292A crossref_primary_10_1103_PhysRevB_97_085410 crossref_primary_10_1016_j_mattod_2024_03_014 crossref_primary_10_1007_s00339_018_1906_9 crossref_primary_10_1103_PhysRevLett_117_247702 crossref_primary_10_1103_PhysRevB_108_L241120 crossref_primary_10_1063_1_4990390 crossref_primary_10_1103_PhysRevB_98_165437 crossref_primary_10_1016_j_physleta_2018_01_038 crossref_primary_10_1103_PhysRevB_97_161113 crossref_primary_10_1134_S0022476618040042 crossref_primary_10_1002_apxr_202300064 crossref_primary_10_1002_qute_202100162 crossref_primary_10_1063_1_4980109 crossref_primary_10_1103_PhysRevB_106_115406 crossref_primary_10_1103_PhysRevB_109_L161101 crossref_primary_10_1038_s42005_020_00495_y crossref_primary_10_1103_PhysRevMaterials_6_024002 crossref_primary_10_1088_2515_7639_ab5082 crossref_primary_10_1103_PhysRevB_100_155423 crossref_primary_10_1021_acs_nanolett_3c02513 crossref_primary_10_1103_PhysRevResearch_2_033494 crossref_primary_10_1088_1402_4896_ad1a03 crossref_primary_10_1103_PhysRevResearch_4_013243 crossref_primary_10_1021_acs_nanolett_2c04048 crossref_primary_10_1038_s41467_024_51215_x crossref_primary_10_7498_aps_70_20201415 crossref_primary_10_1088_1674_1056_26_3_037301 crossref_primary_10_1186_s11671_018_2495_4 crossref_primary_10_1016_j_cjph_2025_01_015 crossref_primary_10_1002_smll_201801483 crossref_primary_10_1021_acsnano_0c07524 crossref_primary_10_1021_acsaelm_2c00599 crossref_primary_10_1103_PhysRevLett_125_116804 crossref_primary_10_1039_C8CP04878A crossref_primary_10_1039_C9NA00555B crossref_primary_10_1103_PhysRevB_108_195418 crossref_primary_10_1063_1674_0068_cjcp1812291 crossref_primary_10_7566_JPSJ_85_094710 crossref_primary_10_1039_C9NR03621K crossref_primary_10_1103_PhysRevB_99_235405 crossref_primary_10_1002_advs_202411313 crossref_primary_10_1038_s41467_019_08629_9 crossref_primary_10_1103_PhysRevB_99_235406 crossref_primary_10_1103_PhysRevX_7_031043 crossref_primary_10_1080_23746149_2022_2032343 crossref_primary_10_1103_PhysRevB_102_075407 crossref_primary_10_1038_s41598_017_06902_9 crossref_primary_10_1088_2053_1583_aaa490 crossref_primary_10_1103_PhysRevApplied_19_024072 crossref_primary_10_1103_PhysRevB_105_085420 crossref_primary_10_1039_C8CP07395C crossref_primary_10_1088_0953_8984_28_50_505303 |
Cites_doi | 10.1038/nmat2082 10.1103/PhysRevLett.100.056802 10.1126/science.1199595 10.1038/nature08105 10.1038/nphys3485 10.1038/nnano.2012.96 10.1103/PhysRevLett.114.256601 10.1038/nphys3201 10.1103/PhysRevLett.99.236809 10.1038/nature14364 10.1103/PhysRevLett.105.166601 10.1038/nphys1655 10.1038/nphys2576 10.1103/PhysRevLett.106.156801 10.1103/PhysRevB.77.235406 10.1038/nnano.2012.95 10.1126/science.1130681 10.1088/0957-4484/22/29/295705 10.1063/1.3685504 10.1103/PhysRevB.79.035304 10.1038/nphys2008 10.1103/PhysRevLett.113.266804 10.1126/science.1254966 10.1038/nmat3279 10.1038/nnano.2010.172 10.1103/PhysRevLett.114.037401 10.1103/PhysRevB.82.081407 10.1038/ncomms1882 10.1038/nature04937 10.1063/1.3695451 10.1126/science.1250140 10.1038/nphys1822 10.1088/1367-2630/11/9/095010 10.1103/RevModPhys.82.1539 10.1021/nl102459t 10.1038/nphys3203 10.1103/RevModPhys.82.1959 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2015 Copyright Nature Publishing Group Dec 2015 |
Copyright_xml | – notice: Springer Nature Limited 2015 – notice: Copyright Nature Publishing Group Dec 2015 |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U PRINS |
DOI | 10.1038/nphys3551 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database (ProQuest) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) ProQuest Central China |
DatabaseTitleList | ProQuest Central Student ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 1036 |
ExternalDocumentID | 3956577831 10_1038_nphys3551 |
Genre | Feature |
GroupedDBID | 0R~ 123 29M 39C 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFKRA AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NFIDA NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PHGZT PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ACMFV ACSTC ATHPR CITATION PHGZM 3V. 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U PRINS |
ID | FETCH-LOGICAL-c425t-726ec6d4cf6b0376548acc6072960a27b29a81ff6e00f9fc3191abf7b8e406fd3 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Sat Aug 16 18:41:51 EDT 2025 Sat Aug 23 13:21:13 EDT 2025 Sun Jul 06 05:06:32 EDT 2025 Thu Apr 24 23:06:53 EDT 2025 Fri Apr 11 01:29:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-726ec6d4cf6b0376548acc6072960a27b29a81ff6e00f9fc3191abf7b8e406fd3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0003-3701-8119 |
OpenAccessLink | https://www.nature.com/articles/nphys3551.pdf |
PQID | 1766112197 |
PQPubID | 27545 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3188602150 proquest_journals_1766112197 crossref_primary_10_1038_nphys3551 crossref_citationtrail_10_1038_nphys3551 springer_journals_10_1038_nphys3551 |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nature Phys |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | T Taychatanapat (BFnphys3551_CR18) 2010; 105 D Xiao (BFnphys3551_CR10) 2007; 99 J Balakrishnan (BFnphys3551_CR26) 2013; 9 KF Mak (BFnphys3551_CR11) 2014; 344 J Li (BFnphys3551_CR31) 2010; 7 KF Mak (BFnphys3551_CR5) 2012; 7 CR Dean (BFnphys3551_CR27) 2010; 5 H Zeng (BFnphys3551_CR4) 2012; 7 N Nagaosa (BFnphys3551_CR13) 2010; 82 T Cao (BFnphys3551_CR3) 2012; 3 G Aivazian (BFnphys3551_CR9) 2015; 11 AM Goossens (BFnphys3551_CR36) 2012; 100 F Zhang (BFnphys3551_CR21) 2011; 106 W Yao (BFnphys3551_CR2) 2008; 77 R Jalilian (BFnphys3551_CR35) 2011; 22 T Ohta (BFnphys3551_CR28) 2006; 313 YD Lensky (BFnphys3551_CR30) 2015; 114 DA Abanin (BFnphys3551_CR25) 2011; 332 FV Tikhonenko (BFnphys3551_CR29) 2008; 100 DA Abanin (BFnphys3551_CR23) 2009; 79 L Ju (BFnphys3551_CR32) 2015; 520 Y Li (BFnphys3551_CR6) 2014; 113 RV Gorbachev (BFnphys3551_CR12) 2014; 346 Y Zhang (BFnphys3551_CR16) 2009; 459 M Koshino (BFnphys3551_CR20) 2009; 11 BFnphys3551_CR33 T Jungwirth (BFnphys3551_CR1) 2012; 11 A Srivastava (BFnphys3551_CR8) 2015; 11 D MacNeill (BFnphys3551_CR7) 2015; 114 K Zou (BFnphys3551_CR17) 2010; 82 T Taychatanapat (BFnphys3551_CR34) 2011; 7 J Yan (BFnphys3551_CR19) 2010; 10 JB Oostinga (BFnphys3551_CR15) 2007; 7 D Xiao (BFnphys3551_CR14) 2010; 82 C Brüne (BFnphys3551_CR24) 2010; 6 N Lindvall (BFnphys3551_CR37) 2012; 111 SO Valenzuela (BFnphys3551_CR22) 2006; 442 |
References_xml | – volume: 7 start-page: 151 year: 2007 ident: BFnphys3551_CR15 publication-title: Nature Mater. doi: 10.1038/nmat2082 – volume: 100 start-page: 056802 year: 2008 ident: BFnphys3551_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.056802 – volume: 332 start-page: 328 year: 2011 ident: BFnphys3551_CR25 publication-title: Science doi: 10.1126/science.1199595 – volume: 459 start-page: 820 year: 2009 ident: BFnphys3551_CR16 publication-title: Nature doi: 10.1038/nature08105 – ident: BFnphys3551_CR33 doi: 10.1038/nphys3485 – volume: 7 start-page: 494 year: 2012 ident: BFnphys3551_CR5 publication-title: Nature Nanotech. doi: 10.1038/nnano.2012.96 – volume: 114 start-page: 256601 year: 2015 ident: BFnphys3551_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.256601 – volume: 11 start-page: 148 year: 2015 ident: BFnphys3551_CR9 publication-title: Nature Phys. doi: 10.1038/nphys3201 – volume: 99 start-page: 236809 year: 2007 ident: BFnphys3551_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.236809 – volume: 520 start-page: 650 year: 2015 ident: BFnphys3551_CR32 publication-title: Nature doi: 10.1038/nature14364 – volume: 105 start-page: 166601 year: 2010 ident: BFnphys3551_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.166601 – volume: 6 start-page: 448 year: 2010 ident: BFnphys3551_CR24 publication-title: Nature Phys. doi: 10.1038/nphys1655 – volume: 9 start-page: 284 year: 2013 ident: BFnphys3551_CR26 publication-title: Nature Phys. doi: 10.1038/nphys2576 – volume: 106 start-page: 156801 year: 2011 ident: BFnphys3551_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.156801 – volume: 77 start-page: 235406 year: 2008 ident: BFnphys3551_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.235406 – volume: 7 start-page: 490 year: 2012 ident: BFnphys3551_CR4 publication-title: Nature Nanotech. doi: 10.1038/nnano.2012.95 – volume: 313 start-page: 951 year: 2006 ident: BFnphys3551_CR28 publication-title: Science doi: 10.1126/science.1130681 – volume: 22 start-page: 295705 year: 2011 ident: BFnphys3551_CR35 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/29/295705 – volume: 100 start-page: 073110 year: 2012 ident: BFnphys3551_CR36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3685504 – volume: 79 start-page: 035304 year: 2009 ident: BFnphys3551_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.035304 – volume: 7 start-page: 621 year: 2011 ident: BFnphys3551_CR34 publication-title: Nature Phys. doi: 10.1038/nphys2008 – volume: 113 start-page: 266804 year: 2014 ident: BFnphys3551_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.266804 – volume: 346 start-page: 448 year: 2014 ident: BFnphys3551_CR12 publication-title: Science doi: 10.1126/science.1254966 – volume: 11 start-page: 382 year: 2012 ident: BFnphys3551_CR1 publication-title: Nature Mater. doi: 10.1038/nmat3279 – volume: 5 start-page: 722 year: 2010 ident: BFnphys3551_CR27 publication-title: Nature Nanotech. doi: 10.1038/nnano.2010.172 – volume: 114 start-page: 037401 year: 2015 ident: BFnphys3551_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.037401 – volume: 82 start-page: 081407 year: 2010 ident: BFnphys3551_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.081407 – volume: 3 start-page: 887 year: 2012 ident: BFnphys3551_CR3 publication-title: Nature Commun. doi: 10.1038/ncomms1882 – volume: 442 start-page: 176 year: 2006 ident: BFnphys3551_CR22 publication-title: Nature doi: 10.1038/nature04937 – volume: 111 start-page: 064904 year: 2012 ident: BFnphys3551_CR37 publication-title: J. Appl. Phys. doi: 10.1063/1.3695451 – volume: 344 start-page: 1489 year: 2014 ident: BFnphys3551_CR11 publication-title: Science doi: 10.1126/science.1250140 – volume: 7 start-page: 38 year: 2010 ident: BFnphys3551_CR31 publication-title: Nature Phys. doi: 10.1038/nphys1822 – volume: 11 start-page: 095010 year: 2009 ident: BFnphys3551_CR20 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/9/095010 – volume: 82 start-page: 1539 year: 2010 ident: BFnphys3551_CR13 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1539 – volume: 10 start-page: 4521 year: 2010 ident: BFnphys3551_CR19 publication-title: Nano Lett. doi: 10.1021/nl102459t – volume: 11 start-page: 141 year: 2015 ident: BFnphys3551_CR8 publication-title: Nature Phys. doi: 10.1038/nphys3203 – volume: 82 start-page: 1959 year: 2010 ident: BFnphys3551_CR14 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1959 |
SSID | ssj0042613 |
Score | 2.6256323 |
Snippet | Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric... The field of 'Valleytronics' has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1032 |
SubjectTerms | 136/117 142/126 639/766/119/1000/1018 639/766/119/995 639/925/918/1052 Atomic Bilayers Carrier density Classical and Continuum Physics Complex Systems Condensed Matter Physics Conduction bands Control systems Crystal defects Crystal lattices Crystal structure Curvature Electric fields Electronic systems Electronics Energy bands Fruits Graphene Insulation letter Magnetic fields Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Quantum physics Room temperature Symmetry Theoretical Topology Valence band |
Title | Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene |
URI | https://link.springer.com/article/10.1038/nphys3551 https://www.proquest.com/docview/1766112197 https://www.proquest.com/docview/3188602150 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA7OIfgiXnHeCOqDL8U2vSR9EiebQ1BEHPhWcgVxdLPrBvv3nqStlzF8bVMCOT3nfCc5-T6ELkXEFEss0S0NoEAxfuxxHvseF4SkKlJGOZnOx6dkMIwe3uK3esNtWrdVNjHRBWo1lnaP_NoSGQI2CFJ6M_n0rGqUPV2tJTRaqA0hmEHx1e72np5fmlhs64OwuhIZeySiYcMtFLLr3G4dQLYN_makH5i5dDLqEk5_G23VSBHfVqbdQWs630UbrmNTTvfQR0UYbdcV81xhpUvXVZXjscGTWaHx3MqkLLCsGJiwWOBK88aaZbTAUIyDWRXu6qJwo-aO4xOeY_E-4gDFsWOzhmn20bDfe70beLVygifBB0uPkkTLREXSJMKHEAJlCZcysSzhic8JFSTlLDAm0b5vUiPBDwMuDBVMQ4I3KjxA6_k414cIxxRAEfVTQnQcAT7gkhIFsFAyoSIdkA66alYvkzWtuFW3GGXueDtk2fdCd9D599BJxaWxatBJY4Ksdqdp9mP8la8hLlkpLcC2HXTRWO3X18tzHP0_xzHaBFgUV00rJ2i9LGb6FKBHKc5Qi_Xvz-q_7AsSItvH |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3HTsQwEB1RhOCCqGKpFkXiEpE4xckBIdqy1BNI3IKrhFhlly2g_Sm-kbGzoQlx45o4seR5nnm2x28AtkWUqjSxQrcswAWK8WOP89j3uKA0U5EyypXpvL5JGnfRxX18PwJv1V0Ym1ZZ-UTnqFVL2j3yPStkiNwgyNhB-9mzVaPs6WpVQqOExaUevOKSrbt_foL23aG0fnp73PCGVQU8ifjseYwmWiYqkiYRPk4vpOxcysQqaCc-p0zQjKeBMYn2fZMZiRgNuDBMpBqDn1Eh_ncUxqMwzOyMSutnlee3q5GwvIAZezRiYaVkFKZ7hd2owNgefI9_n6T2xzmsC2_1GZge8lJyWAJpFkZ0MQcTLj9UdufhqZSntlYkvFBE6Z7L4SpIy5B2v6PJiy3KMiCy1HsiYkDKCjsWBM0BwaU_gkiRI93puFYvTlEUnxPx2ORI_InTzsZuFuDuX0Z0EcaKVqGXgMQMKRjzM0p1HCEb4ZJRhSRUpkJFOqA12K1GL5dDEXNbS6OZu8P0MM0_BroGmx9N26Vyx2-NVisT5MPJ280_ofbra_SCtnAXMukabFVW-_L1zz6W_-5jAyYbt9dX-dX5zeUKTCEhi8t0mVUY63X6eg1JT0-sO6QRePhvaL8DcaEWpA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS-QwFD64I7v4Iuq6OF6D7oIvZdr0kvZBxNvgdRBR8K2bK4hDZ5wZlflr_jpP0tYb4puvbdpAzpec7yQn3wH4K6JUpYkVumUBBijGjz3OY9_jgtJMRcooV6bzrJMcXkXH1_H1BDzVd2FsWmW9JrqFWvWk3SNvWSFD5AZBxlqmSos4329v9-88W0HKnrTW5TRKiJzo8SOGb8Oto3209T9K2weXe4deVWHAk4jVkcdoomWiImkS4eNUQ_rOpUysmnbic8oEzXgaGJNo3zeZkYjXgAvDRKrRERoV4n9_wCTDqMhvwOTuQef8ovYDNjYJy-uYsUcjFta6RmHaKuy2BXr64L03fKW4H05lnbNrz8B0xVLJTgmrWZjQxRz8dNmicvgbbkuxamtTwgtFlB65jK6C9Azp3w80ebAlWsZElupPRIxJWW_HQqI7JjeFQkgpsqsHA9fqwemL4nMibrocwwDilLSxm3m4-pYx_QONolfoBSAxQ0LG_IxSHUfITbhkVCEllalQkQ5oEzbr0ctlJWluK2t0c3e0Hqb5y0A3Yf2lab_U8fis0XJtgryaysP8FXifvsY10ZbxQl7dhI3aam--_tjH4td9rMEvhHV-etQ5WYIpZGdxmTuzDI3R4F6vIAMaidUKagT-fze6nwHH_Rw2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+and+detection+of+pure+valley+current+by%C2%A0electrically+induced+Berry+curvature+in+bilayer%C2%A0graphene&rft.jtitle=Nature+physics&rft.au=Shimazaki%2C+Y.&rft.au=Yamamoto%2C+M.&rft.au=Borzenets%2C+I.+V.&rft.au=Watanabe%2C+K.&rft.date=2015-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=11&rft.issue=12&rft.spage=1032&rft.epage=1036&rft_id=info:doi/10.1038%2Fnphys3551&rft.externalDocID=10_1038_nphys3551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |