Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene

Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric fields can tune this topological valley transport over long distances at room temperature. The field of ‘Valleytronics’ has recently been attract...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 11; no. 12; pp. 1032 - 1036
Main Authors Shimazaki, Y., Yamamoto, M., Borzenets, I. V., Watanabe, K., Taniguchi, T., Tarucha, S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric fields can tune this topological valley transport over long distances at room temperature. The field of ‘Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents 1 . Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical 2 , 3 , 4 , 5 , magnetic 6 , 7 , 8 , 9 and electrical control of the valley degree of freedom 10 , 11 , 12 . Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.
AbstractList Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric fields can tune this topological valley transport over long distances at room temperature. The field of ‘Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents 1 . Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical 2 , 3 , 4 , 5 , magnetic 6 , 7 , 8 , 9 and electrical control of the valley degree of freedom 10 , 11 , 12 . Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.
The field of 'Valleytronics' has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical magnetic and electrical control of the valley degree of freedom. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.
Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric fields can tune this topological valley transport over long distances at room temperature.The field of ‘Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents1. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical2,3,4,5, magnetic6,7,8,9 and electrical control of the valley degree of freedom10,11,12. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.
Author Borzenets, I. V.
Yamamoto, M.
Shimazaki, Y.
Watanabe, K.
Taniguchi, T.
Tarucha, S.
Author_xml – sequence: 1
  givenname: Y.
  surname: Shimazaki
  fullname: Shimazaki, Y.
  organization: Department of Applied Physics, University of Tokyo
– sequence: 2
  givenname: M.
  surname: Yamamoto
  fullname: Yamamoto, M.
  email: yamamoto@ap.t.u-tokyo.ac.jp
  organization: Department of Applied Physics, University of Tokyo, PRESTO, JST
– sequence: 3
  givenname: I. V.
  surname: Borzenets
  fullname: Borzenets, I. V.
  organization: Department of Applied Physics, University of Tokyo
– sequence: 4
  givenname: K.
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, K.
  organization: National Institute for Materials Science
– sequence: 5
  givenname: T.
  surname: Taniguchi
  fullname: Taniguchi, T.
  organization: National Institute for Materials Science
– sequence: 6
  givenname: S.
  surname: Tarucha
  fullname: Tarucha, S.
  email: tarucha@ap.t.u-tokyo.ac.jp
  organization: Department of Applied Physics, University of Tokyo, Center for Emergent Matter Science (CEMS), RIKEN
BookMark eNp9kMFKw0AQhhepYFs9-AYLnhSiu5tkNzlq0SoUvOg5bDazbUq6iZOkkLfps_TJTFspouJpZpjvn3_4R2TgSgeEXHJ2y5kf3blq0dV-GPITMuQqCD0RRHxw7JV_RkZ1vWQsEJL7Q7KaggPUTV46ql1GM2jA7KfS0qpFoGtdFNBR0yKCa2jabTdQ9Azmpt90NHdZayCjD4C4x9a62elyR9O80B3gdjNHXS16o3NyanVRw8VXHZP3p8e3ybM3e52-TO5nnglE2HhKSDAyC4yVKfOVDINIGyOZErFkWqhUxDri1kpgzMbW-DzmOrUqjSBg0mb-mFwd7lZYfrRQN8mybNH1lonPo0gywUP2H8WVlJwLHqueuj5QBsu6RrBJhflKY5dwluwyT46Z9-zdD9bkzT7cBnVe_Km4OSjq_qqbA3774Rf8CSXHmKc
CitedBy_id crossref_primary_10_1088_1674_1056_ad401a
crossref_primary_10_1103_PhysRevApplied_18_014028
crossref_primary_10_1142_S0217984919300011
crossref_primary_10_1038_nnano_2016_158
crossref_primary_10_1088_1361_6463_ac5bc9
crossref_primary_10_1103_PhysRevB_103_224426
crossref_primary_10_1016_j_jmmm_2021_167870
crossref_primary_10_1088_1367_2630_18_10_103024
crossref_primary_10_1088_1361_6463_aa67c1
crossref_primary_10_1088_2053_1583_aa7cbd
crossref_primary_10_7566_JPSJ_87_044702
crossref_primary_10_1038_s41578_024_00671_4
crossref_primary_10_1103_PhysRevB_108_085419
crossref_primary_10_1103_PhysRevLett_121_136806
crossref_primary_10_1038_s41598_024_74596_x
crossref_primary_10_1039_D0CP05028H
crossref_primary_10_1088_1674_1056_acfd17
crossref_primary_10_1126_sciadv_aaq0194
crossref_primary_10_1103_PhysRevLett_117_276801
crossref_primary_10_1103_PhysRevB_97_195151
crossref_primary_10_1039_C7TC05460B
crossref_primary_10_1088_1367_2630_aa6d37
crossref_primary_10_1103_PhysRevB_98_195436
crossref_primary_10_1021_acs_nanolett_0c02131
crossref_primary_10_1103_PhysRevB_97_115106
crossref_primary_10_1021_acs_nanolett_7b03604
crossref_primary_10_1088_2053_1583_ac5f6c
crossref_primary_10_1021_acsami_8b16625
crossref_primary_10_1038_s41699_018_0061_7
crossref_primary_10_1103_PhysRevApplied_11_034048
crossref_primary_10_1103_PhysRevApplied_14_014039
crossref_primary_10_1103_PhysRevB_110_L241108
crossref_primary_10_1038_s41535_017_0051_6
crossref_primary_10_1038_s41598_022_13398_5
crossref_primary_10_1103_PhysRevB_103_115406
crossref_primary_10_1016_j_physleta_2020_126990
crossref_primary_10_1016_j_micrna_2023_207731
crossref_primary_10_1088_2053_1583_aa5e9b
crossref_primary_10_1016_j_physe_2018_01_022
crossref_primary_10_1021_acs_nanolett_0c03453
crossref_primary_10_1002_adma_201706103
crossref_primary_10_1002_adma_202500757
crossref_primary_10_1038_s41586_021_03501_7
crossref_primary_10_1021_acs_nanolett_8b01848
crossref_primary_10_1103_PhysRevB_103_125138
crossref_primary_10_1088_2053_1583_ab89e8
crossref_primary_10_1038_nphys3587
crossref_primary_10_1088_1361_648X_abfee5
crossref_primary_10_1103_PhysRevB_107_035411
crossref_primary_10_1002_qute_201800111
crossref_primary_10_1364_OE_431305
crossref_primary_10_1103_PhysRevB_100_165417
crossref_primary_10_1103_PhysRevB_94_035409
crossref_primary_10_1103_PhysRevB_96_085442
crossref_primary_10_1002_aelm_202200510
crossref_primary_10_1016_j_mssp_2024_108705
crossref_primary_10_1016_j_mattod_2016_02_021
crossref_primary_10_1021_acs_nanolett_4c02660
crossref_primary_10_1007_s10948_019_5055_y
crossref_primary_10_1103_PhysRevLett_127_116402
crossref_primary_10_1103_PhysRevLett_132_156301
crossref_primary_10_1021_acs_nanolett_6b02559
crossref_primary_10_1007_s10948_016_3973_5
crossref_primary_10_1103_PhysRevLett_131_246301
crossref_primary_10_1380_jsssj_37_535
crossref_primary_10_1016_j_physb_2023_415148
crossref_primary_10_1088_1572_9494_ac1d9f
crossref_primary_10_1103_PhysRevB_103_125149
crossref_primary_10_1103_PhysRevResearch_2_013076
crossref_primary_10_1021_acsnano_0c02703
crossref_primary_10_1038_ncomms14552
crossref_primary_10_1088_1367_2630_ad89f1
crossref_primary_10_1088_1674_1056_aceee5
crossref_primary_10_1103_PhysRevB_103_235435
crossref_primary_10_1103_PhysRevB_104_165427
crossref_primary_10_1038_natrevmats_2016_55
crossref_primary_10_1039_D3CP04740G
crossref_primary_10_1088_2515_7639_ac452a
crossref_primary_10_1038_s41928_021_00537_5
crossref_primary_10_1088_1361_648X_ad1f8c
crossref_primary_10_1088_1361_648X_accbf9
crossref_primary_10_1016_j_micrna_2022_207430
crossref_primary_10_1103_PhysRevB_104_155401
crossref_primary_10_1103_PhysRevB_104_075403
crossref_primary_10_1103_PhysRevB_106_075403
crossref_primary_10_1103_PhysRevB_98_035435
crossref_primary_10_7498_aps_70_20202132
crossref_primary_10_1103_PhysRevB_111_115406
crossref_primary_10_1038_s41565_018_0080_8
crossref_primary_10_1103_PhysRevLett_133_136901
crossref_primary_10_1103_PhysRevB_96_245410
crossref_primary_10_1103_PhysRevB_104_155402
crossref_primary_10_1103_PhysRevResearch_3_033160
crossref_primary_10_1103_RevModPhys_93_011001
crossref_primary_10_1016_j_jmmm_2024_172108
crossref_primary_10_1063_5_0068538
crossref_primary_10_1063_5_0264472
crossref_primary_10_1038_s41598_019_40947_2
crossref_primary_10_1103_PhysRevB_96_245414
crossref_primary_10_1126_science_adf9887
crossref_primary_10_1016_j_physrep_2016_07_003
crossref_primary_10_1038_s41535_021_00379_6
crossref_primary_10_1038_s41565_020_0727_0
crossref_primary_10_1021_acsnano_3c03795
crossref_primary_10_1103_PhysRevMaterials_3_054605
crossref_primary_10_1016_j_physleta_2017_01_020
crossref_primary_10_1103_PhysRevB_99_085421
crossref_primary_10_1063_5_0010961
crossref_primary_10_1103_PhysRevB_95_085145
crossref_primary_10_1038_s42005_023_01377_9
crossref_primary_10_1103_PhysRevB_101_195406
crossref_primary_10_1103_PhysRevB_103_075414
crossref_primary_10_1016_j_commatsci_2018_05_023
crossref_primary_10_1038_s41699_022_00291_y
crossref_primary_10_1016_j_ssc_2016_06_020
crossref_primary_10_1103_PhysRevB_96_045412
crossref_primary_10_1088_1361_6463_abcbbd
crossref_primary_10_1103_PhysRevB_108_155132
crossref_primary_10_1016_j_pcrysgrow_2017_06_001
crossref_primary_10_1021_acs_nanolett_3c00045
crossref_primary_10_1021_acs_nanolett_6b04870
crossref_primary_10_7566_JPSJ_92_114706
crossref_primary_10_1088_2053_1583_aa6f4d
crossref_primary_10_1103_PhysRevB_109_075409
crossref_primary_10_7566_JPSJ_90_114701
crossref_primary_10_1103_PhysRevLett_132_166601
crossref_primary_10_1063_5_0114389
crossref_primary_10_1103_PhysRevB_108_235425
crossref_primary_10_1103_PhysRevLett_121_127706
crossref_primary_10_1088_1361_6633_abdb98
crossref_primary_10_1021_acsami_8b08959
crossref_primary_10_1103_PhysRevB_101_085425
crossref_primary_10_1103_PhysRevB_101_161103
crossref_primary_10_1103_PhysRevB_106_075425
crossref_primary_10_7498_aps_68_20191072
crossref_primary_10_1126_sciadv_adp6296
crossref_primary_10_1088_1674_1056_27_12_127203
crossref_primary_10_1103_PhysRevResearch_6_023212
crossref_primary_10_1364_OL_483236
crossref_primary_10_1103_PhysRevB_104_045416
crossref_primary_10_1088_0256_307X_38_8_087201
crossref_primary_10_1103_PhysRevB_95_201411
crossref_primary_10_1063_5_0114386
crossref_primary_10_1039_C9NR09545D
crossref_primary_10_1088_1361_648X_aa6487
crossref_primary_10_1103_PhysRevB_106_245422
crossref_primary_10_1088_1367_2630_aae513
crossref_primary_10_1039_C8CP03489C
crossref_primary_10_1007_s11467_023_1386_z
crossref_primary_10_1038_nnano_2015_337
crossref_primary_10_1103_PhysRevLett_121_186403
crossref_primary_10_1039_D2DT02531K
crossref_primary_10_1021_acs_jpclett_2c02407
crossref_primary_10_1103_PhysRevB_94_121408
crossref_primary_10_1016_j_carbon_2020_03_018
crossref_primary_10_1016_j_isci_2024_109374
crossref_primary_10_1038_s41598_017_10460_5
crossref_primary_10_1126_science_abl4266
crossref_primary_10_1103_PhysRevLett_124_166801
crossref_primary_10_1002_adma_202109894
crossref_primary_10_1063_5_0241163
crossref_primary_10_1088_1674_1056_25_11_117303
crossref_primary_10_1103_PhysRevB_98_201407
crossref_primary_10_1088_1361_6528_ac0dd8
crossref_primary_10_1088_0953_8984_28_35_355002
crossref_primary_10_1103_PhysRevLett_134_026304
crossref_primary_10_35848_1882_0786_ab790d
crossref_primary_10_1103_PhysRevLett_128_206805
crossref_primary_10_1103_PhysRevB_101_085423
crossref_primary_10_1103_PhysRevB_93_085312
crossref_primary_10_1103_PhysRevLett_127_126801
crossref_primary_10_1038_s41598_020_72000_y
crossref_primary_10_1063_1_4963063
crossref_primary_10_1103_PhysRevB_95_195424
crossref_primary_10_1103_PhysRevB_100_115421
crossref_primary_10_1103_PhysRevLett_126_056803
crossref_primary_10_1126_sciadv_aau6478
crossref_primary_10_1039_C6CP08817A
crossref_primary_10_1021_acs_nanolett_4c00057
crossref_primary_10_1021_acs_nanolett_7b02584
crossref_primary_10_1103_PhysRevB_102_155205
crossref_primary_10_1103_PhysRevB_95_205431
crossref_primary_10_7567_1882_0786_aaff25
crossref_primary_10_1103_PhysRevB_98_155138
crossref_primary_10_1002_adfm_202002672
crossref_primary_10_1038_s41566_018_0204_6
crossref_primary_10_1126_science_aao5989
crossref_primary_10_1016_j_physrep_2018_06_006
crossref_primary_10_1007_s10948_020_05691_z
crossref_primary_10_1016_j_apsusc_2020_147708
crossref_primary_10_1088_1361_648X_ab351b
crossref_primary_10_1103_PhysRevLett_133_156301
crossref_primary_10_1002_smll_202402139
crossref_primary_10_1103_PhysRevLett_120_063902
crossref_primary_10_1021_acs_nanolett_0c04712
crossref_primary_10_1103_PhysRevB_99_245106
crossref_primary_10_1038_s41467_020_15117_y
crossref_primary_10_1007_s11467_017_0652_3
crossref_primary_10_1016_j_nantod_2019_05_005
crossref_primary_10_1038_s41467_024_52877_3
crossref_primary_10_1103_PhysRevApplied_22_054078
crossref_primary_10_1016_j_apsusc_2023_156717
crossref_primary_10_1038_s41467_022_34104_z
crossref_primary_10_1016_j_spmi_2017_02_038
crossref_primary_10_1038_s41565_018_0294_9
crossref_primary_10_1063_5_0030149
crossref_primary_10_1039_D0EE01370F
crossref_primary_10_1103_PhysRevB_110_245403
crossref_primary_10_1103_PhysRevLett_124_037701
crossref_primary_10_1103_PhysRevB_99_205416
crossref_primary_10_1103_PhysRevB_100_075421
crossref_primary_10_1103_PhysRevB_101_245428
crossref_primary_10_1103_PhysRevB_100_115404
crossref_primary_10_1103_PhysRevLett_120_026802
crossref_primary_10_1002_pssb_202100562
crossref_primary_10_1103_PhysRevB_102_241301
crossref_primary_10_1103_PhysRevB_99_125422
crossref_primary_10_1021_acsnano_3c03455
crossref_primary_10_1103_PhysRevLett_132_096302
crossref_primary_10_1103_PhysRevLett_132_096301
crossref_primary_10_1103_PhysRevB_96_161103
crossref_primary_10_1103_PhysRevB_110_165410
crossref_primary_10_3390_ma17133331
crossref_primary_10_3390_ma17020333
crossref_primary_10_1103_PhysRevLett_126_016801
crossref_primary_10_1103_PhysRevLett_132_106301
crossref_primary_10_1038_nnano_2017_100
crossref_primary_10_1103_PhysRevB_111_035437
crossref_primary_10_1063_1_5020044
crossref_primary_10_1038_s42005_018_0106_4
crossref_primary_10_1002_adom_201800365
crossref_primary_10_1007_s12274_023_6325_3
crossref_primary_10_1021_acs_nanolett_8b00228
crossref_primary_10_1103_PhysRevB_110_014442
crossref_primary_10_1103_PhysRevB_102_064203
crossref_primary_10_1038_s41467_020_19043_x
crossref_primary_10_1021_acsnano_4c12812
crossref_primary_10_1021_acs_nanolett_2c03947
crossref_primary_10_1103_PhysRevB_95_035416
crossref_primary_10_1039_C9CP05984A
crossref_primary_10_1002_adfm_201900260
crossref_primary_10_1039_D3NR01288C
crossref_primary_10_1103_PhysRevB_103_214114
crossref_primary_10_1016_j_carbon_2021_10_012
crossref_primary_10_1021_acsami_3c19260
crossref_primary_10_1103_PhysRevB_109_235403
crossref_primary_10_1016_j_matt_2021_08_020
crossref_primary_10_1016_j_physleta_2019_03_024
crossref_primary_10_1038_s41598_017_18238_5
crossref_primary_10_1016_j_carbon_2020_01_031
crossref_primary_10_1016_j_scib_2023_05_011
crossref_primary_10_1103_PhysRevB_101_241401
crossref_primary_10_1088_1674_1056_ab8db2
crossref_primary_10_1021_acs_nanolett_8b02750
crossref_primary_10_1063_5_0056270
crossref_primary_10_1103_PhysRevB_104_205430
crossref_primary_10_1088_1674_1056_ad2605
crossref_primary_10_1103_PhysRevB_108_L121405
crossref_primary_10_7566_JPSJ_92_123704
crossref_primary_10_7498_aps_66_217201
crossref_primary_10_1088_2053_1583_aa598d
crossref_primary_10_1103_PhysRevLett_118_096602
crossref_primary_10_1038_nphys4331
crossref_primary_10_1038_s41586_020_2970_9
crossref_primary_10_1103_PhysRevB_96_075206
crossref_primary_10_1021_acs_jpclett_0c00863
crossref_primary_10_1088_1361_648X_aa8251
crossref_primary_10_1103_PhysRevApplied_15_024020
crossref_primary_10_1002_aenm_202403319
crossref_primary_10_1002_inf2_12095
crossref_primary_10_1088_1361_6528_ac50f2
crossref_primary_10_1038_s41467_020_19284_w
crossref_primary_10_1103_PhysRevB_105_195420
crossref_primary_10_1038_srep23211
crossref_primary_10_1103_PhysRevB_107_235403
crossref_primary_10_1007_s44214_022_00010_0
crossref_primary_10_1038_s41467_023_43965_x
crossref_primary_10_1103_PhysRevB_97_085420
crossref_primary_10_1038_s42005_019_0127_7
crossref_primary_10_1063_1_5094456
crossref_primary_10_1103_PhysRevB_94_035302
crossref_primary_10_1103_PhysRevLett_117_267203
crossref_primary_10_1002_adfm_202401684
crossref_primary_10_1038_s42254_020_00276_0
crossref_primary_10_1063_5_0095650
crossref_primary_10_1063_5_0198648
crossref_primary_10_1002_adma_201707627
crossref_primary_10_1021_acs_nanolett_4c01755
crossref_primary_10_1103_PhysRevB_104_245436
crossref_primary_10_1103_PhysRevB_94_075441
crossref_primary_10_1103_PhysRevB_100_155414
crossref_primary_10_1007_s11467_021_1125_2
crossref_primary_10_1142_S021963361950024X
crossref_primary_10_1039_D0CP03292A
crossref_primary_10_1103_PhysRevB_97_085410
crossref_primary_10_1016_j_mattod_2024_03_014
crossref_primary_10_1007_s00339_018_1906_9
crossref_primary_10_1103_PhysRevLett_117_247702
crossref_primary_10_1103_PhysRevB_108_L241120
crossref_primary_10_1063_1_4990390
crossref_primary_10_1103_PhysRevB_98_165437
crossref_primary_10_1016_j_physleta_2018_01_038
crossref_primary_10_1103_PhysRevB_97_161113
crossref_primary_10_1134_S0022476618040042
crossref_primary_10_1002_apxr_202300064
crossref_primary_10_1002_qute_202100162
crossref_primary_10_1063_1_4980109
crossref_primary_10_1103_PhysRevB_106_115406
crossref_primary_10_1103_PhysRevB_109_L161101
crossref_primary_10_1038_s42005_020_00495_y
crossref_primary_10_1103_PhysRevMaterials_6_024002
crossref_primary_10_1088_2515_7639_ab5082
crossref_primary_10_1103_PhysRevB_100_155423
crossref_primary_10_1021_acs_nanolett_3c02513
crossref_primary_10_1103_PhysRevResearch_2_033494
crossref_primary_10_1088_1402_4896_ad1a03
crossref_primary_10_1103_PhysRevResearch_4_013243
crossref_primary_10_1021_acs_nanolett_2c04048
crossref_primary_10_1038_s41467_024_51215_x
crossref_primary_10_7498_aps_70_20201415
crossref_primary_10_1088_1674_1056_26_3_037301
crossref_primary_10_1186_s11671_018_2495_4
crossref_primary_10_1016_j_cjph_2025_01_015
crossref_primary_10_1002_smll_201801483
crossref_primary_10_1021_acsnano_0c07524
crossref_primary_10_1021_acsaelm_2c00599
crossref_primary_10_1103_PhysRevLett_125_116804
crossref_primary_10_1039_C8CP04878A
crossref_primary_10_1039_C9NA00555B
crossref_primary_10_1103_PhysRevB_108_195418
crossref_primary_10_1063_1674_0068_cjcp1812291
crossref_primary_10_7566_JPSJ_85_094710
crossref_primary_10_1039_C9NR03621K
crossref_primary_10_1103_PhysRevB_99_235405
crossref_primary_10_1002_advs_202411313
crossref_primary_10_1038_s41467_019_08629_9
crossref_primary_10_1103_PhysRevB_99_235406
crossref_primary_10_1103_PhysRevX_7_031043
crossref_primary_10_1080_23746149_2022_2032343
crossref_primary_10_1103_PhysRevB_102_075407
crossref_primary_10_1038_s41598_017_06902_9
crossref_primary_10_1088_2053_1583_aaa490
crossref_primary_10_1103_PhysRevApplied_19_024072
crossref_primary_10_1103_PhysRevB_105_085420
crossref_primary_10_1039_C8CP07395C
crossref_primary_10_1088_0953_8984_28_50_505303
Cites_doi 10.1038/nmat2082
10.1103/PhysRevLett.100.056802
10.1126/science.1199595
10.1038/nature08105
10.1038/nphys3485
10.1038/nnano.2012.96
10.1103/PhysRevLett.114.256601
10.1038/nphys3201
10.1103/PhysRevLett.99.236809
10.1038/nature14364
10.1103/PhysRevLett.105.166601
10.1038/nphys1655
10.1038/nphys2576
10.1103/PhysRevLett.106.156801
10.1103/PhysRevB.77.235406
10.1038/nnano.2012.95
10.1126/science.1130681
10.1088/0957-4484/22/29/295705
10.1063/1.3685504
10.1103/PhysRevB.79.035304
10.1038/nphys2008
10.1103/PhysRevLett.113.266804
10.1126/science.1254966
10.1038/nmat3279
10.1038/nnano.2010.172
10.1103/PhysRevLett.114.037401
10.1103/PhysRevB.82.081407
10.1038/ncomms1882
10.1038/nature04937
10.1063/1.3695451
10.1126/science.1250140
10.1038/nphys1822
10.1088/1367-2630/11/9/095010
10.1103/RevModPhys.82.1539
10.1021/nl102459t
10.1038/nphys3203
10.1103/RevModPhys.82.1959
ContentType Journal Article
Copyright Springer Nature Limited 2015
Copyright Nature Publishing Group Dec 2015
Copyright_xml – notice: Springer Nature Limited 2015
– notice: Copyright Nature Publishing Group Dec 2015
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
PRINS
DOI 10.1038/nphys3551
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database (ProQuest)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
ProQuest Central China
DatabaseTitleList
ProQuest Central Student
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 1036
ExternalDocumentID 3956577831
10_1038_nphys3551
Genre Feature
GroupedDBID 0R~
123
29M
39C
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NFIDA
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PHGZT
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACMFV
ACSTC
ATHPR
CITATION
PHGZM
3V.
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PRINS
ID FETCH-LOGICAL-c425t-726ec6d4cf6b0376548acc6072960a27b29a81ff6e00f9fc3191abf7b8e406fd3
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Sat Aug 16 18:41:51 EDT 2025
Sat Aug 23 13:21:13 EDT 2025
Sun Jul 06 05:06:32 EDT 2025
Thu Apr 24 23:06:53 EDT 2025
Fri Apr 11 01:29:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-726ec6d4cf6b0376548acc6072960a27b29a81ff6e00f9fc3191abf7b8e406fd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0003-3701-8119
OpenAccessLink https://www.nature.com/articles/nphys3551.pdf
PQID 1766112197
PQPubID 27545
PageCount 5
ParticipantIDs proquest_journals_3188602150
proquest_journals_1766112197
crossref_primary_10_1038_nphys3551
crossref_citationtrail_10_1038_nphys3551
springer_journals_10_1038_nphys3551
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References T Taychatanapat (BFnphys3551_CR18) 2010; 105
D Xiao (BFnphys3551_CR10) 2007; 99
J Balakrishnan (BFnphys3551_CR26) 2013; 9
KF Mak (BFnphys3551_CR11) 2014; 344
J Li (BFnphys3551_CR31) 2010; 7
KF Mak (BFnphys3551_CR5) 2012; 7
CR Dean (BFnphys3551_CR27) 2010; 5
H Zeng (BFnphys3551_CR4) 2012; 7
N Nagaosa (BFnphys3551_CR13) 2010; 82
T Cao (BFnphys3551_CR3) 2012; 3
G Aivazian (BFnphys3551_CR9) 2015; 11
AM Goossens (BFnphys3551_CR36) 2012; 100
F Zhang (BFnphys3551_CR21) 2011; 106
W Yao (BFnphys3551_CR2) 2008; 77
R Jalilian (BFnphys3551_CR35) 2011; 22
T Ohta (BFnphys3551_CR28) 2006; 313
YD Lensky (BFnphys3551_CR30) 2015; 114
DA Abanin (BFnphys3551_CR25) 2011; 332
FV Tikhonenko (BFnphys3551_CR29) 2008; 100
DA Abanin (BFnphys3551_CR23) 2009; 79
L Ju (BFnphys3551_CR32) 2015; 520
Y Li (BFnphys3551_CR6) 2014; 113
RV Gorbachev (BFnphys3551_CR12) 2014; 346
Y Zhang (BFnphys3551_CR16) 2009; 459
M Koshino (BFnphys3551_CR20) 2009; 11
BFnphys3551_CR33
T Jungwirth (BFnphys3551_CR1) 2012; 11
A Srivastava (BFnphys3551_CR8) 2015; 11
D MacNeill (BFnphys3551_CR7) 2015; 114
K Zou (BFnphys3551_CR17) 2010; 82
T Taychatanapat (BFnphys3551_CR34) 2011; 7
J Yan (BFnphys3551_CR19) 2010; 10
JB Oostinga (BFnphys3551_CR15) 2007; 7
D Xiao (BFnphys3551_CR14) 2010; 82
C Brüne (BFnphys3551_CR24) 2010; 6
N Lindvall (BFnphys3551_CR37) 2012; 111
SO Valenzuela (BFnphys3551_CR22) 2006; 442
References_xml – volume: 7
  start-page: 151
  year: 2007
  ident: BFnphys3551_CR15
  publication-title: Nature Mater.
  doi: 10.1038/nmat2082
– volume: 100
  start-page: 056802
  year: 2008
  ident: BFnphys3551_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.056802
– volume: 332
  start-page: 328
  year: 2011
  ident: BFnphys3551_CR25
  publication-title: Science
  doi: 10.1126/science.1199595
– volume: 459
  start-page: 820
  year: 2009
  ident: BFnphys3551_CR16
  publication-title: Nature
  doi: 10.1038/nature08105
– ident: BFnphys3551_CR33
  doi: 10.1038/nphys3485
– volume: 7
  start-page: 494
  year: 2012
  ident: BFnphys3551_CR5
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2012.96
– volume: 114
  start-page: 256601
  year: 2015
  ident: BFnphys3551_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.256601
– volume: 11
  start-page: 148
  year: 2015
  ident: BFnphys3551_CR9
  publication-title: Nature Phys.
  doi: 10.1038/nphys3201
– volume: 99
  start-page: 236809
  year: 2007
  ident: BFnphys3551_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.236809
– volume: 520
  start-page: 650
  year: 2015
  ident: BFnphys3551_CR32
  publication-title: Nature
  doi: 10.1038/nature14364
– volume: 105
  start-page: 166601
  year: 2010
  ident: BFnphys3551_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.166601
– volume: 6
  start-page: 448
  year: 2010
  ident: BFnphys3551_CR24
  publication-title: Nature Phys.
  doi: 10.1038/nphys1655
– volume: 9
  start-page: 284
  year: 2013
  ident: BFnphys3551_CR26
  publication-title: Nature Phys.
  doi: 10.1038/nphys2576
– volume: 106
  start-page: 156801
  year: 2011
  ident: BFnphys3551_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.156801
– volume: 77
  start-page: 235406
  year: 2008
  ident: BFnphys3551_CR2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.235406
– volume: 7
  start-page: 490
  year: 2012
  ident: BFnphys3551_CR4
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2012.95
– volume: 313
  start-page: 951
  year: 2006
  ident: BFnphys3551_CR28
  publication-title: Science
  doi: 10.1126/science.1130681
– volume: 22
  start-page: 295705
  year: 2011
  ident: BFnphys3551_CR35
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/29/295705
– volume: 100
  start-page: 073110
  year: 2012
  ident: BFnphys3551_CR36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3685504
– volume: 79
  start-page: 035304
  year: 2009
  ident: BFnphys3551_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.035304
– volume: 7
  start-page: 621
  year: 2011
  ident: BFnphys3551_CR34
  publication-title: Nature Phys.
  doi: 10.1038/nphys2008
– volume: 113
  start-page: 266804
  year: 2014
  ident: BFnphys3551_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.266804
– volume: 346
  start-page: 448
  year: 2014
  ident: BFnphys3551_CR12
  publication-title: Science
  doi: 10.1126/science.1254966
– volume: 11
  start-page: 382
  year: 2012
  ident: BFnphys3551_CR1
  publication-title: Nature Mater.
  doi: 10.1038/nmat3279
– volume: 5
  start-page: 722
  year: 2010
  ident: BFnphys3551_CR27
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2010.172
– volume: 114
  start-page: 037401
  year: 2015
  ident: BFnphys3551_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.037401
– volume: 82
  start-page: 081407
  year: 2010
  ident: BFnphys3551_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.081407
– volume: 3
  start-page: 887
  year: 2012
  ident: BFnphys3551_CR3
  publication-title: Nature Commun.
  doi: 10.1038/ncomms1882
– volume: 442
  start-page: 176
  year: 2006
  ident: BFnphys3551_CR22
  publication-title: Nature
  doi: 10.1038/nature04937
– volume: 111
  start-page: 064904
  year: 2012
  ident: BFnphys3551_CR37
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3695451
– volume: 344
  start-page: 1489
  year: 2014
  ident: BFnphys3551_CR11
  publication-title: Science
  doi: 10.1126/science.1250140
– volume: 7
  start-page: 38
  year: 2010
  ident: BFnphys3551_CR31
  publication-title: Nature Phys.
  doi: 10.1038/nphys1822
– volume: 11
  start-page: 095010
  year: 2009
  ident: BFnphys3551_CR20
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/9/095010
– volume: 82
  start-page: 1539
  year: 2010
  ident: BFnphys3551_CR13
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.1539
– volume: 10
  start-page: 4521
  year: 2010
  ident: BFnphys3551_CR19
  publication-title: Nano Lett.
  doi: 10.1021/nl102459t
– volume: 11
  start-page: 141
  year: 2015
  ident: BFnphys3551_CR8
  publication-title: Nature Phys.
  doi: 10.1038/nphys3203
– volume: 82
  start-page: 1959
  year: 2010
  ident: BFnphys3551_CR14
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.1959
SSID ssj0042613
Score 2.6256323
Snippet Bilayer graphene can host topological currents that are robust against defects and are associated with the electron valleys. It is now shown that electric...
The field of 'Valleytronics' has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1032
SubjectTerms 136/117
142/126
639/766/119/1000/1018
639/766/119/995
639/925/918/1052
Atomic
Bilayers
Carrier density
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Conduction bands
Control systems
Crystal defects
Crystal lattices
Crystal structure
Curvature
Electric fields
Electronic systems
Electronics
Energy bands
Fruits
Graphene
Insulation
letter
Magnetic fields
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Quantum physics
Room temperature
Symmetry
Theoretical
Topology
Valence band
Title Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene
URI https://link.springer.com/article/10.1038/nphys3551
https://www.proquest.com/docview/1766112197
https://www.proquest.com/docview/3188602150
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA7OIfgiXnHeCOqDL8U2vSR9EiebQ1BEHPhWcgVxdLPrBvv3nqStlzF8bVMCOT3nfCc5-T6ELkXEFEss0S0NoEAxfuxxHvseF4SkKlJGOZnOx6dkMIwe3uK3esNtWrdVNjHRBWo1lnaP_NoSGQI2CFJ6M_n0rGqUPV2tJTRaqA0hmEHx1e72np5fmlhs64OwuhIZeySiYcMtFLLr3G4dQLYN_makH5i5dDLqEk5_G23VSBHfVqbdQWs630UbrmNTTvfQR0UYbdcV81xhpUvXVZXjscGTWaHx3MqkLLCsGJiwWOBK88aaZbTAUIyDWRXu6qJwo-aO4xOeY_E-4gDFsWOzhmn20bDfe70beLVygifBB0uPkkTLREXSJMKHEAJlCZcysSzhic8JFSTlLDAm0b5vUiPBDwMuDBVMQ4I3KjxA6_k414cIxxRAEfVTQnQcAT7gkhIFsFAyoSIdkA66alYvkzWtuFW3GGXueDtk2fdCd9D599BJxaWxatBJY4Ksdqdp9mP8la8hLlkpLcC2HXTRWO3X18tzHP0_xzHaBFgUV00rJ2i9LGb6FKBHKc5Qi_Xvz-q_7AsSItvH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3HTsQwEB1RhOCCqGKpFkXiEpE4xckBIdqy1BNI3IKrhFhlly2g_Sm-kbGzoQlx45o4seR5nnm2x28AtkWUqjSxQrcswAWK8WOP89j3uKA0U5EyypXpvL5JGnfRxX18PwJv1V0Ym1ZZ-UTnqFVL2j3yPStkiNwgyNhB-9mzVaPs6WpVQqOExaUevOKSrbt_foL23aG0fnp73PCGVQU8ifjseYwmWiYqkiYRPk4vpOxcysQqaCc-p0zQjKeBMYn2fZMZiRgNuDBMpBqDn1Eh_ncUxqMwzOyMSutnlee3q5GwvIAZezRiYaVkFKZ7hd2owNgefI9_n6T2xzmsC2_1GZge8lJyWAJpFkZ0MQcTLj9UdufhqZSntlYkvFBE6Z7L4SpIy5B2v6PJiy3KMiCy1HsiYkDKCjsWBM0BwaU_gkiRI93puFYvTlEUnxPx2ORI_InTzsZuFuDuX0Z0EcaKVqGXgMQMKRjzM0p1HCEb4ZJRhSRUpkJFOqA12K1GL5dDEXNbS6OZu8P0MM0_BroGmx9N26Vyx2-NVisT5MPJ280_ofbra_SCtnAXMukabFVW-_L1zz6W_-5jAyYbt9dX-dX5zeUKTCEhi8t0mVUY63X6eg1JT0-sO6QRePhvaL8DcaEWpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS-QwFD64I7v4Iuq6OF6D7oIvZdr0kvZBxNvgdRBR8K2bK4hDZ5wZlflr_jpP0tYb4puvbdpAzpec7yQn3wH4K6JUpYkVumUBBijGjz3OY9_jgtJMRcooV6bzrJMcXkXH1_H1BDzVd2FsWmW9JrqFWvWk3SNvWSFD5AZBxlqmSos4329v9-88W0HKnrTW5TRKiJzo8SOGb8Oto3209T9K2weXe4deVWHAk4jVkcdoomWiImkS4eNUQ_rOpUysmnbic8oEzXgaGJNo3zeZkYjXgAvDRKrRERoV4n9_wCTDqMhvwOTuQef8ovYDNjYJy-uYsUcjFta6RmHaKuy2BXr64L03fKW4H05lnbNrz8B0xVLJTgmrWZjQxRz8dNmicvgbbkuxamtTwgtFlB65jK6C9Azp3w80ebAlWsZElupPRIxJWW_HQqI7JjeFQkgpsqsHA9fqwemL4nMibrocwwDilLSxm3m4-pYx_QONolfoBSAxQ0LG_IxSHUfITbhkVCEllalQkQ5oEzbr0ctlJWluK2t0c3e0Hqb5y0A3Yf2lab_U8fis0XJtgryaysP8FXifvsY10ZbxQl7dhI3aam--_tjH4td9rMEvhHV-etQ5WYIpZGdxmTuzDI3R4F6vIAMaidUKagT-fze6nwHH_Rw2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+and+detection+of+pure+valley+current+by%C2%A0electrically+induced+Berry+curvature+in+bilayer%C2%A0graphene&rft.jtitle=Nature+physics&rft.au=Shimazaki%2C+Y.&rft.au=Yamamoto%2C+M.&rft.au=Borzenets%2C+I.+V.&rft.au=Watanabe%2C+K.&rft.date=2015-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=11&rft.issue=12&rft.spage=1032&rft.epage=1036&rft_id=info:doi/10.1038%2Fnphys3551&rft.externalDocID=10_1038_nphys3551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon