Metagenomic analysis deciphers airborne pathogens with enhanced antimicrobial resistance and virulence factors in composting facilities

[Display omitted] •The first airborne HPARB in a composting facility were profiled.•Enhanced airborne HPARB carried increasing ARGs and VFGs than those in compost.•Multiple antibiotic-resistant Mycobacterium tuberculosis was prevalent in the air.•A total of 23 core ARGs were enriched in the air, wit...

Full description

Saved in:
Bibliographic Details
Published inEnvironment international Vol. 201; p. 109569
Main Authors Chen, Mo, Xing, Lijun, Gao, Shanshan, Guo, Yajie, Qiu, Tianlei, Wang, Xuming, Gao, Min
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.07.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The first airborne HPARB in a composting facility were profiled.•Enhanced airborne HPARB carried increasing ARGs and VFGs than those in compost.•Multiple antibiotic-resistant Mycobacterium tuberculosis was prevalent in the air.•A total of 23 core ARGs were enriched in the air, with increases ranging from 2.16- to 13.36-fold.•Airborne AMR in the composting facility posed a higher risk than that in hospital and urban environment. The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure.
AbstractList The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harbored an increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure.
The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure.The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure.
The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure.
[Display omitted] •The first airborne HPARB in a composting facility were profiled.•Enhanced airborne HPARB carried increasing ARGs and VFGs than those in compost.•Multiple antibiotic-resistant Mycobacterium tuberculosis was prevalent in the air.•A total of 23 core ARGs were enriched in the air, with increases ranging from 2.16- to 13.36-fold.•Airborne AMR in the composting facility posed a higher risk than that in hospital and urban environment. The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure.
ArticleNumber 109569
Author Guo, Yajie
Xing, Lijun
Qiu, Tianlei
Chen, Mo
Gao, Min
Gao, Shanshan
Wang, Xuming
Author_xml – sequence: 1
  givenname: Mo
  surname: Chen
  fullname: Chen, Mo
  organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
– sequence: 2
  givenname: Lijun
  surname: Xing
  fullname: Xing, Lijun
  organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
– sequence: 3
  givenname: Shanshan
  surname: Gao
  fullname: Gao, Shanshan
  organization: School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China
– sequence: 4
  givenname: Yajie
  surname: Guo
  fullname: Guo, Yajie
  organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
– sequence: 5
  givenname: Tianlei
  surname: Qiu
  fullname: Qiu, Tianlei
  organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
– sequence: 6
  givenname: Xuming
  orcidid: 0000-0003-3590-562X
  surname: Wang
  fullname: Wang, Xuming
  email: wangxuming@baafs.net.cn
  organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
– sequence: 7
  givenname: Min
  surname: Gao
  fullname: Gao, Min
  email: gaomin@baafs.net.cn
  organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40472755$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAURS1URKeFP0AoSzYZbMeO4w0SqmipVMQG1pbjvMy8UWIPtmdQv4DfxiGlS1aW3zv3Wr73ilz44IGQt4xuGWXth8MW_Bl93nLKZRlp2eoXZMM61dStkvSCbApGa8E4vSRXKR0opVx08hW5FFQorqTckN9fIdsd-DCjq6y302PCVA3g8LiHmCqLsQ_RQ3W0eR8KmKpfmPcV-L31DoaiyVi0MfRopypCkedlUxZDdcZ4mmC5jdblUPzQVy7Mx5Ay-t0yxQkzQnpNXo52SvDm6bwmP24_f7_5Uj98u7u_-fRQO8FlrhUDAe0I5QPj2GiQPReNdnIQLVhtewej4lq3A5dWsYaN0HQdcKlZo5Ubu-aa3K--Q7AHc4w42_hogkXzdxDiztiY0U1glGSS9T23xVYo1Wk6uEbTsWtFCbZ3xev96nWM4ecJUjYzJgfTZD2EUzINZ20jte5oQd89oad-huH54X9FFECsQEkypQjjM8KoWfo2B7P2bZa-zdp3kX1cZVAyOyNEkxwugQ8YweXyKfy_wR9JqLf5
Cites_doi 10.7717/peerj-cs.104
10.1080/10643389.2020.1777815
10.3390/antibiotics9120918
10.1016/j.envint.2023.107751
10.3390/vetsci10050337
10.1186/s13059-019-1891-0
10.1093/bioinformatics/btw136
10.1038/ncomms9452
10.1016/j.envint.2022.107127
10.1038/nature10388
10.1093/ismejo/wrae092
10.1186/s40168-016-0199-5
10.1016/j.jhazmat.2024.136226
10.1038/s41579-024-01025-1
10.1016/j.envpol.2019.06.073
10.1016/j.envpol.2022.119572
10.1038/ncomms5306
10.1016/S0140-6736(21)02724-0
10.1021/acs.est.7b04483
10.1186/s12889-024-20664-w
10.1111/j.1654-1103.2003.tb02228.x
10.1016/j.envint.2019.105026
10.1016/j.envint.2018.04.028
10.3390/microorganisms8020268
10.1016/j.micpath.2022.105923
10.1016/j.envint.2024.108869
10.1016/j.chemosphere.2018.09.066
10.1186/s40168-021-01197-5
10.1038/nmeth.3103
10.1038/ismej.2017.126
10.1016/j.ymeth.2016.02.020
10.1016/j.scitotenv.2023.164925
10.1021/acs.est.1c07023
10.1016/j.envpol.2016.10.101
10.1016/j.jhazmat.2023.133247
10.1016/j.scitotenv.2022.158050
10.1080/10937404.2015.1009961
10.1016/j.scitotenv.2017.05.235
10.1021/acs.est.3c04681
10.1016/0195-6701(87)90048-X
10.1016/j.watres.2016.09.055
10.1038/nmeth.3176
10.1016/j.watres.2023.120911
10.1021/acs.est.5b00729
10.1016/j.jhazmat.2024.136466
10.1016/j.envint.2017.10.016
10.1021/acs.est.7b03623
10.1038/s41396-020-0621-7
10.1038/s41467-022-29283-8
10.1016/j.scitotenv.2018.05.006
10.1016/j.envint.2020.105458
10.1016/j.envint.2020.105971
10.1038/s41467-018-07992-3
10.1186/2049-2618-2-26
10.1016/j.atmosenv.2005.11.010
10.1093/bioinformatics/btz848
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright © 2025. Published by Elsevier Ltd.
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: Copyright © 2025. Published by Elsevier Ltd.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.envint.2025.109569
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
Environmental Sciences
EISSN 1873-6750
ExternalDocumentID oai_doaj_org_article_75151bb2aabc477890dc390f864016bc
40472755
10_1016_j_envint_2025_109569
S0160412025003204
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPKN
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SSH
SSJ
SSZ
T5K
TN5
WUQ
XPP
~02
~G-
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c425t-71e4e6fe404ff39e5b2439c5d46ea9abcef72996d25a7131fe388e2591397cf83
IEDL.DBID .~1
ISSN 0160-4120
1873-6750
IngestDate Wed Aug 27 01:26:36 EDT 2025
Wed Jul 02 02:48:04 EDT 2025
Mon Jul 21 06:06:21 EDT 2025
Thu Jul 03 08:35:57 EDT 2025
Sat Jul 19 17:11:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Enrichment
Metagenome-assembled genomes
Airborne antimicrobial resistance
Composting facility
Human-pathogenic antibiotic-resistant bacteria
Language English
License This is an open access article under the CC BY-NC license.
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-71e4e6fe404ff39e5b2439c5d46ea9abcef72996d25a7131fe388e2591397cf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3590-562X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0160412025003204
PMID 40472755
PQID 3216359980
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_75151bb2aabc477890dc390f864016bc
proquest_miscellaneous_3216359980
pubmed_primary_40472755
crossref_primary_10_1016_j_envint_2025_109569
elsevier_sciencedirect_doi_10_1016_j_envint_2025_109569
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Environment international
PublicationTitleAlternate Environ Int
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wood, Lu, Langmead (b0240) 2019; 20
Gao, Qiu, Sun, Wang (b0065) 2018; 116
Buchfink, Xie, Huson (b0015) 2015; 12
O’Neill (b0185) 2014
Murray, Ikuta, Sharara, Swetschinski, Robles Aguilar, Gray, Han, Bisignano, Rao, Wool (b0175) 2022; 399
Tiseo, Huber, Gilbert, Robinson, Van Boeckel (b0225) 2020; 9
Farhat, Cox, Ghanem, Denkinger, Rodrigues, Abd El Aziz, Enkh-Amgalan, Vambe, Ugarte-Gil, Furin (b0050) 2024; 22
Akram, Imtiaz, Haq (b0010) 2023; 174
Yang, Ruan, Li, Xiong, Zheng (b0270) 2024; 24
Daschner, Habel (b0035) 1987; 9
Yan, Ma, Chen, Lei, Li, Han (b0275) 2022; 161
Dixon (b0040) 2003; 14
Gao, Jia, Qiu, Han, Wang (b0060) 2017; 220
Lappan, Thakar, Molares Moncayo, Besser, Bradley, Goordial, Trembath-Reichert, Greening (b0090) 2024; 18
Zhang, Sui, Tong, Buhe, Wang, Chen, Wei (b0290) 2016; 106
Chen, Duan, Zhang, Gao, Dai, Tu, Gao (b0025) 2024; 465
Lu, Breitwieser, Thielen, Salzberg (b0130) 2017; 3
Munck, Albertsen, Telke, Ellabaan, Nielsen, Sommer (b0170) 2015; 6
Gao, He, Bai, He, Zhang, Chen, Liu, Ying (b0055) 2023; 172
Taha, Drew, Longhurst, Smith, Pollard (b0220) 2006; 40
Wu, Tang, Tringe, Simmons, Singer (b0250) 2014; 2
Mbareche, Veillette, Bonifait, Dubuis, Benard, Marchand, Bilodeau, Duchaine (b0160) 2017; 601–602
Yang, Jiang, Chai, Ma, Li, Zhang, Cole, Tiedje, Zhang (b0280) 2016; 32
Zhao, Yang, Zhou, Wang, Muurinen, Virta, Brandt, Zhu (b0315) 2021; 51
Liu, Zhu, Liu, Yao, Ge, Zhang (b0120) 2020; 14
Chaumeil, Mussig, Hugenholtz, Parks (b0020) 2020; 36
Douwes, Thorne, Pearce, Heederik (b0045) 2003; 47
Grace (b0070) 2015
Lu, Li, Li, Xie, Fan, Liu, Deng (b0140) 2018; 637–638
Hennart, Panunzi, Rodrigues, Gaday, Brisse (b0075) 2020
Xin, Gao, Wang, Qiu, Guo, Zhang (b0260) 2022; 851
Li, Luo, Liu, Leung, Ting, Sadakane, Yamashita, Lam (b0095) 2016; 102
Liu, Ai, Lu, Tian (b0125) 2023; 897
Qiao, Ying, Singer, Zhu (b0210) 2018; 110
Ma, Peng, Tang, Jiang, Chang, Li, Wang, Yang, Yuan (b0155) 2025; 481
Min, Amy, Chaoqi, Heath, Kang, Liqing (b0165) 2018; 94
Zhou, Yao (b0320) 2020; 8
Lysitsas, Chatzipanagiotidou, Billinis (b0215) 2023; 10
Vikesland, Pruden, Alvarez, Aga, Burgmann, Li, Manaia, Nambi, Wigginton, Zhang (b0230) 2017; 51
Wu, Jin, Xie, Liu, Zhao, Ye, Li (b0245) 2022; 10
Xin, Qiu, Guo, Wang, Liu, Gao (b0265) 2024; 480
Zhang, Wang, Su, Wu, Wang, Li, Xie (b0295) 2023; 57
Li, Feng, Wang, Yang, Peng, Tu, Deng (b0100) 2024; 190
Yang, Zhou, Chen, Zhang, Hu, Zou (b0285) 2018; 213
Zhang, Zhang, Wang, Xu, Lu, Hong, Penuelas, Gillings, Wang, Gao (b0310) 2022; 13
Wéry (b0235) 2014; 4
D’Costa, King, Kalan, Morar, Sung, Schwarz, Froese, Zazula, Calmels, Debruyne (b0030) 2011; 477
Alneberg, Bjarnason, Bruijn, Schirmer, Quince (b0005) 2014; 11
Olm, Brown, Brooks, Banfield (b0190) 2017; 11
Liao, Lu, Rensing, Friman, Geisen, Chen, Yu, Wei, Zhou, Zhu (b0110) 2018; 52
Jiang, Zhao, Zhu, Pan, Yang (b0080) 2024; 249
Pal, Bengtsson-Palme, Kristiansson, Larsson (b0195) 2016; 4
Zhang, He, Liu, Zhao, Zhang, Chen, Zhang, Ying (b0300) 2020; 136
Zhang, Ying, Pan, Liu, Zhao (b0305) 2015; 49
Pearson, Littlewood, Douglas, Robertson, Hansell (b0200) 2015; 18
Liebenberg, Gordhan, Kana (b0115) 2022
Xie, Jin, Wu, Pruden, Li (b0255) 2022; 56
Pei, Zhang, He, Su, Gin, Lev, Shen, Hu (b0205) 2019; 131
Karkman, Pärnänen, Larsson (b0085) 2019; 10
Nandakumar, Nathan, Rhee (b0180) 2014; 5
Lu, Wang, Li, Jiao, Luo, Luo, Yu, Xiao, Li, Qiu (b0135) 2022; 308
Luiken, Van Gompel, Bossers, Munk, Joosten, Hansen, Knudsen, García-Cobos, Dewulf, Aarestrup (b0150) 2020; 143
Lu, Lu (b0145) 2019; 252
Liebenberg (10.1016/j.envint.2025.109569_b0115) 2022
Nandakumar (10.1016/j.envint.2025.109569_b0180) 2014; 5
Lysitsas (10.1016/j.envint.2025.109569_b0215) 2023; 10
Olm (10.1016/j.envint.2025.109569_b0190) 2017; 11
Xie (10.1016/j.envint.2025.109569_b0255) 2022; 56
Xin (10.1016/j.envint.2025.109569_b0260) 2022; 851
Zhang (10.1016/j.envint.2025.109569_b0290) 2016; 106
Karkman (10.1016/j.envint.2025.109569_b0085) 2019; 10
Pearson (10.1016/j.envint.2025.109569_b0200) 2015; 18
Daschner (10.1016/j.envint.2025.109569_b0035) 1987; 9
Yan (10.1016/j.envint.2025.109569_b0275) 2022; 161
Taha (10.1016/j.envint.2025.109569_b0220) 2006; 40
Dixon (10.1016/j.envint.2025.109569_b0040) 2003; 14
Lu (10.1016/j.envint.2025.109569_b0135) 2022; 308
Alneberg (10.1016/j.envint.2025.109569_b0005) 2014; 11
Jiang (10.1016/j.envint.2025.109569_b0080) 2024; 249
Zhou (10.1016/j.envint.2025.109569_b0320) 2020; 8
Li (10.1016/j.envint.2025.109569_b0095) 2016; 102
Buchfink (10.1016/j.envint.2025.109569_b0015) 2015; 12
Murray (10.1016/j.envint.2025.109569_b0175) 2022; 399
Chaumeil (10.1016/j.envint.2025.109569_b0020) 2020; 36
Mbareche (10.1016/j.envint.2025.109569_b0160) 2017; 601–602
Qiao (10.1016/j.envint.2025.109569_b0210) 2018; 110
Vikesland (10.1016/j.envint.2025.109569_b0230) 2017; 51
Gao (10.1016/j.envint.2025.109569_b0060) 2017; 220
Hennart (10.1016/j.envint.2025.109569_b0075) 2020
Liu (10.1016/j.envint.2025.109569_b0120) 2020; 14
Gao (10.1016/j.envint.2025.109569_b0055) 2023; 172
Lappan (10.1016/j.envint.2025.109569_b0090) 2024; 18
Yang (10.1016/j.envint.2025.109569_b0280) 2016; 32
Akram (10.1016/j.envint.2025.109569_b0010) 2023; 174
O’Neill (10.1016/j.envint.2025.109569_b0185) 2014
Douwes (10.1016/j.envint.2025.109569_b0045) 2003; 47
Pei (10.1016/j.envint.2025.109569_b0205) 2019; 131
Wu (10.1016/j.envint.2025.109569_b0250) 2014; 2
Wu (10.1016/j.envint.2025.109569_b0245) 2022; 10
Lu (10.1016/j.envint.2025.109569_b0140) 2018; 637–638
Yang (10.1016/j.envint.2025.109569_b0270) 2024; 24
Munck (10.1016/j.envint.2025.109569_b0170) 2015; 6
Grace (10.1016/j.envint.2025.109569_b0070) 2015
Zhang (10.1016/j.envint.2025.109569_b0310) 2022; 13
Luiken (10.1016/j.envint.2025.109569_b0150) 2020; 143
Zhang (10.1016/j.envint.2025.109569_b0305) 2015; 49
Min (10.1016/j.envint.2025.109569_b0165) 2018; 94
Ma (10.1016/j.envint.2025.109569_b0155) 2025; 481
Zhao (10.1016/j.envint.2025.109569_b0315) 2021; 51
Farhat (10.1016/j.envint.2025.109569_b0050) 2024; 22
D’Costa (10.1016/j.envint.2025.109569_b0030) 2011; 477
Gao (10.1016/j.envint.2025.109569_b0065) 2018; 116
Lu (10.1016/j.envint.2025.109569_b0130) 2017; 3
Yang (10.1016/j.envint.2025.109569_b0285) 2018; 213
Pal (10.1016/j.envint.2025.109569_b0195) 2016; 4
Wéry (10.1016/j.envint.2025.109569_b0235) 2014; 4
Li (10.1016/j.envint.2025.109569_b0100) 2024; 190
Lu (10.1016/j.envint.2025.109569_b0145) 2019; 252
Zhang (10.1016/j.envint.2025.109569_b0295) 2023; 57
Wood (10.1016/j.envint.2025.109569_b0240) 2019; 20
Liao (10.1016/j.envint.2025.109569_b0110) 2018; 52
Chen (10.1016/j.envint.2025.109569_b0025) 2024; 465
Zhang (10.1016/j.envint.2025.109569_b0300) 2020; 136
Liu (10.1016/j.envint.2025.109569_b0125) 2023; 897
Tiseo (10.1016/j.envint.2025.109569_b0225) 2020; 9
Xin (10.1016/j.envint.2025.109569_b0265) 2024; 480
References_xml – volume: 220
  start-page: 1342
  year: 2017
  end-page: 1348
  ident: b0060
  article-title: Size-related bacterial diversity and tetracycline resistance gene abundance in the air of concentrated poultry feeding operations
  publication-title: Environ. Pollut.
– volume: 5
  start-page: 4306
  year: 2014
  ident: b0180
  article-title: Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis
  publication-title: Nat. Commun.
– volume: 161
  year: 2022
  ident: b0275
  article-title: Characteristics of airborne bacterial communities and antibiotic resistance genes under different air quality levels
  publication-title: Environ. Int.
– volume: 8
  start-page: 268
  year: 2020
  ident: b0320
  article-title: Effects of composting different types of organic fertilizer on the microbial community structure and antibiotic resistance genes
  publication-title: Microorganisms
– volume: 4
  start-page: 42
  year: 2014
  ident: b0235
  article-title: Bioaerosols from composting facilities–a review
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 116
  start-page: 229
  year: 2018
  end-page: 238
  ident: b0065
  article-title: The abundance and diversity of antibiotic resistance genes in the atmospheric environment of composting plants
  publication-title: Environ. Int.
– volume: 56
  start-page: 7040
  year: 2022
  end-page: 7051
  ident: b0255
  article-title: Inhalable antibiotic resistome from wastewater treatment plants to urban areas: bacterial hosts, dissemination risks, and source contributions
  publication-title: Environ. Sci. Tech.
– volume: 190
  year: 2024
  ident: b0100
  article-title: Beyond water and soil: air emerges as a major reservoir of human pathogens
  publication-title: Environ. Int.
– volume: 308
  year: 2022
  ident: b0135
  article-title: Microbial community assembly and co-occurrence relationship in sediments of the river-dominated estuary and the adjacent shelf in the wet season
  publication-title: Environ. Pollut.
– volume: 47
  start-page: 187
  year: 2003
  end-page: 200
  ident: b0045
  article-title: Bioaerosol health effects and exposure assessment: progress and prospects
  publication-title: Ann. Occup. Hyg.
– volume: 14
  start-page: 1463
  year: 2020
  end-page: 1478
  ident: b0120
  article-title: Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship
  publication-title: ISME J.
– volume: 174
  year: 2023
  ident: b0010
  article-title: Emergent crisis of antibiotic resistance: a silent pandemic threat to 21st century
  publication-title: Microb. Pathog.
– volume: 481
  year: 2025
  ident: b0155
  article-title: Bioaerosol emission characteristics and potential risks during composting: focus on pathogens and antimicrobial resistance
  publication-title: J. Hazard. Mater.
– volume: 57
  start-page: 19965
  year: 2023
  end-page: 19978
  ident: b0295
  article-title: Pathogenic bacteria are the primary determinants shaping PM2.5-borne resistomes in the municipal food waste treatment system
  publication-title: Environ. Sci. Tech.
– volume: 11
  start-page: 2864
  year: 2017
  end-page: 2868
  ident: b0190
  article-title: dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication
  publication-title: ISME J.
– volume: 2
  start-page: 26
  year: 2014
  ident: b0250
  article-title: MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm
  publication-title: Microbiome
– volume: 24
  start-page: 3111
  year: 2024
  ident: b0270
  article-title: global, regional, and national burden of tuberculosis and attributable risk factors for 204 countries and territories, 1990-2021: a systematic analysis for the global burden of diseases 2021 study
  publication-title: BMC public health
– volume: 213
  start-page: 463
  year: 2018
  end-page: 471
  ident: b0285
  article-title: Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach
  publication-title: Chemosphere
– volume: 32
  start-page: 2346
  year: 2016
  end-page: 2351
  ident: b0280
  article-title: ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database
  publication-title: Bioinformatics
– volume: 14
  start-page: 927
  year: 2003
  end-page: 930
  ident: b0040
  article-title: VEGAN, a package of R functions for community ecology
  publication-title: J. Veg. Sci.
– volume: 4
  start-page: 54
  year: 2016
  ident: b0195
  article-title: The structure and diversity of human, animal and environmental resistomes
  publication-title: Microbiome
– volume: 12
  start-page: 59
  year: 2015
  end-page: 60
  ident: b0015
  article-title: Fast and sensitive protein alignment using DIAMOND
  publication-title: Nat. Methods
– volume: 36
  start-page: 1925
  year: 2020
  end-page: 1927
  ident: b0020
  article-title: GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database
  publication-title: Bioinformatics
– volume: 136
  year: 2020
  ident: b0300
  article-title: Variation of antibiotic resistome during commercial livestock manure composting
  publication-title: Environ. Int.
– volume: 3
  start-page: e104
  year: 2017
  ident: b0130
  article-title: Bracken: estimating species abundance in metagenomics data
  publication-title: PeerJ Comput. Sci.
– volume: 11
  start-page: 1144
  year: 2014
  end-page: 1146
  ident: b0005
  article-title: Binning metagenomic contigs by coverage and composition
  publication-title: Nat. Methods
– volume: 110
  start-page: 160
  year: 2018
  end-page: 172
  ident: b0210
  article-title: Review of antibiotic resistance in China and its environment
  publication-title: Environ. Int.
– volume: 131
  year: 2019
  ident: b0205
  article-title: State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants
  publication-title: Environ. Int.
– volume: 102
  start-page: 3
  year: 2016
  end-page: 11
  ident: b0095
  article-title: MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices
  publication-title: Methods
– volume: 51
  start-page: 2159
  year: 2021
  end-page: 2196
  ident: b0315
  article-title: Antibiotic resistome in the livestock and aquaculture industries: status and solutions
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 252
  start-page: 1277
  year: 2019
  end-page: 1287
  ident: b0145
  article-title: Synergistic effects of key parameters on the fate of antibiotic resistance genes during swine manure composting
  publication-title: Environ. Pollut.
– volume: 10
  start-page: 337
  year: 2023
  ident: b0215
  article-title: Fosfomycin resistance in bacteria isolated from companion animals (dogs and cats)
  publication-title: Veterinary Science
– volume: 897
  year: 2023
  ident: b0125
  article-title: Comparison of bioaerosol release characteristics between windrow and trough sludge composting plants: concentration distribution, community evolution, bioaerosolization behaviour, and exposure risk
  publication-title: Sci. Total Environ.
– year: 2015
  ident: b0070
  article-title: Review of evidence on antimicrobial resistance and animal agriculture in developing countries
– year: 2014
  ident: b0185
  article-title: Antimicrobial resistance: tackling a crisis for the health and wealth of nations
– volume: 851
  year: 2022
  ident: b0260
  article-title: Animal farms are hot spots for airborne antimicrobial resistance
  publication-title: Sci. Total Environ.
– volume: 49
  start-page: 6772
  year: 2015
  end-page: 6782
  ident: b0305
  article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
  publication-title: Environ. Sci. Tech.
– volume: 9
  start-page: 110
  year: 1987
  end-page: 119
  ident: b0035
  article-title: Hospital outbreak of multi-resistant acinetobacter anitratus: an airborne mode of spread?
  publication-title: J. Hosp. Infect.
– year: 2022
  ident: b0115
  article-title: Drug resistant tuberculosis: implications for transmission, diagnosis, and disease management
  publication-title: Frontiers in Cellular and Infection Microbiology 12
– volume: 143
  year: 2020
  ident: b0150
  article-title: Farm dust resistomes and bacterial microbiomes in European poultry and pig farms
  publication-title: Environ. Int.
– volume: 6
  start-page: 8452
  year: 2015
  ident: b0170
  article-title: Limited dissemination of the wastewater treatment plant core resistome
  publication-title: Nat. Commun.
– volume: 18
  start-page: 43
  year: 2015
  end-page: 69
  ident: b0200
  article-title: Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: a systematic review of occupational and community studies
  publication-title: J. Toxicol. Environ. Health B Crit. Rev.
– volume: 480
  year: 2024
  ident: b0265
  article-title: Airborne antibiotics, antimicrobial resistance, and bacterial pathogens in a commercial composting facility: transmission and exposure risk
  publication-title: J. Hazard. Mater.
– volume: 10
  start-page: 19
  year: 2022
  ident: b0245
  article-title: Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance, and environmental risks
  publication-title: Microbiome
– volume: 465
  year: 2024
  ident: b0025
  article-title: Comprehensive evaluation of antibiotics pollution the Yangtze River basin, China: emission, multimedia fate and risk assessment
  publication-title: J. Hazard. Mater.
– volume: 477
  start-page: 457
  year: 2011
  end-page: 461
  ident: b0030
  article-title: Antibiotic resistance is ancient
  publication-title: Nature
– volume: 106
  start-page: 62
  year: 2016
  end-page: 70
  ident: b0290
  article-title: Sludge bio-drying: effective to reduce both antibiotic resistance genes and mobile genetic elements
  publication-title: Water Res.
– volume: 601–602
  start-page: 1306
  year: 2017
  end-page: 1314
  ident: b0160
  article-title: A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 1553
  year: 2022
  ident: b0310
  article-title: Assessment of global health risk of antibiotic resistance genes
  publication-title: Nat. Commun.
– volume: 637–638
  start-page: 244
  year: 2018
  end-page: 252
  ident: b0140
  article-title: Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi'an, China
  publication-title: Science of the Total Environment s
– volume: 399
  start-page: 629
  year: 2022
  end-page: 655
  ident: b0175
  article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis
  publication-title: Lancet
– volume: 51
  start-page: 13061
  year: 2017
  end-page: 13069
  ident: b0230
  article-title: Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance
  publication-title: Environ. Sci. Tech.
– volume: 249
  year: 2024
  ident: b0080
  article-title: Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River
  publication-title: Water Res.
– volume: 94
  start-page: 79
  year: 2018
  ident: b0165
  article-title: MetaCompare: a computational pipeline for prioritizing environmental resistome risk
  publication-title: FEMS Microbiol. Ecol.
– volume: 172
  year: 2023
  ident: b0055
  article-title: Airborne bacterial community and antibiotic resistome in the swine farming environment: metagenomic insights into livestock relevance, pathogen hosts and public risks
  publication-title: Environ. Int.
– year: 2020
  ident: b0075
  article-title: Population genomics and antimicrobial resistance in Corynebacterium diphtheriae
– volume: 18
  year: 2024
  ident: b0090
  article-title: The atmosphere: a transport medium or an active microbial ecosystem?
  publication-title: Isme J
– volume: 52
  start-page: 266
  year: 2018
  end-page: 276
  ident: b0110
  article-title: Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and Mobile genetic elements in sewage sludge
  publication-title: Environ. Sci. Tech.
– volume: 20
  start-page: 257
  year: 2019
  ident: b0240
  article-title: Improved metagenomic analysis with kraken 2
  publication-title: Genome Biol.
– volume: 10
  year: 2019
  ident: b0085
  article-title: Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments
  publication-title: Nat. Commun.
– volume: 9
  start-page: 918
  year: 2020
  ident: b0225
  article-title: Global trends in antimicrobial use in food animals from 2017 to 2030
  publication-title: Antibiotics
– volume: 22
  start-page: 617
  year: 2024
  end-page: 635
  ident: b0050
  article-title: Drug-resistant tuberculosis: a persistent global health concern
  publication-title: Nat. Rev. Microbiol.
– volume: 40
  start-page: 1159
  year: 2006
  end-page: 1169
  ident: b0220
  article-title: Bioaerosol releases from compost facilities: evaluating passive and active source terms at a green waste facility for improved risk assessments
  publication-title: Atmos. Environ.
– year: 2015
  ident: 10.1016/j.envint.2025.109569_b0070
– volume: 3
  start-page: e104
  year: 2017
  ident: 10.1016/j.envint.2025.109569_b0130
  article-title: Bracken: estimating species abundance in metagenomics data
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.104
– volume: 51
  start-page: 2159
  year: 2021
  ident: 10.1016/j.envint.2025.109569_b0315
  article-title: Antibiotic resistome in the livestock and aquaculture industries: status and solutions
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2020.1777815
– volume: 9
  start-page: 918
  year: 2020
  ident: 10.1016/j.envint.2025.109569_b0225
  article-title: Global trends in antimicrobial use in food animals from 2017 to 2030
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9120918
– volume: 172
  year: 2023
  ident: 10.1016/j.envint.2025.109569_b0055
  article-title: Airborne bacterial community and antibiotic resistome in the swine farming environment: metagenomic insights into livestock relevance, pathogen hosts and public risks
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2023.107751
– volume: 10
  start-page: 337
  year: 2023
  ident: 10.1016/j.envint.2025.109569_b0215
  article-title: Fosfomycin resistance in bacteria isolated from companion animals (dogs and cats)
  publication-title: Veterinary Science
  doi: 10.3390/vetsci10050337
– volume: 20
  start-page: 257
  year: 2019
  ident: 10.1016/j.envint.2025.109569_b0240
  article-title: Improved metagenomic analysis with kraken 2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1891-0
– volume: 47
  start-page: 187
  year: 2003
  ident: 10.1016/j.envint.2025.109569_b0045
  article-title: Bioaerosol health effects and exposure assessment: progress and prospects
  publication-title: Ann. Occup. Hyg.
– volume: 32
  start-page: 2346
  year: 2016
  ident: 10.1016/j.envint.2025.109569_b0280
  article-title: ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw136
– volume: 6
  start-page: 8452
  year: 2015
  ident: 10.1016/j.envint.2025.109569_b0170
  article-title: Limited dissemination of the wastewater treatment plant core resistome
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9452
– volume: 94
  start-page: 79
  year: 2018
  ident: 10.1016/j.envint.2025.109569_b0165
  article-title: MetaCompare: a computational pipeline for prioritizing environmental resistome risk
  publication-title: FEMS Microbiol. Ecol.
– volume: 161
  year: 2022
  ident: 10.1016/j.envint.2025.109569_b0275
  article-title: Characteristics of airborne bacterial communities and antibiotic resistance genes under different air quality levels
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2022.107127
– volume: 477
  start-page: 457
  year: 2011
  ident: 10.1016/j.envint.2025.109569_b0030
  article-title: Antibiotic resistance is ancient
  publication-title: Nature
  doi: 10.1038/nature10388
– volume: 18
  year: 2024
  ident: 10.1016/j.envint.2025.109569_b0090
  article-title: The atmosphere: a transport medium or an active microbial ecosystem?
  publication-title: Isme J
  doi: 10.1093/ismejo/wrae092
– volume: 4
  start-page: 54
  year: 2016
  ident: 10.1016/j.envint.2025.109569_b0195
  article-title: The structure and diversity of human, animal and environmental resistomes
  publication-title: Microbiome
  doi: 10.1186/s40168-016-0199-5
– volume: 480
  year: 2024
  ident: 10.1016/j.envint.2025.109569_b0265
  article-title: Airborne antibiotics, antimicrobial resistance, and bacterial pathogens in a commercial composting facility: transmission and exposure risk
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2024.136226
– volume: 22
  start-page: 617
  year: 2024
  ident: 10.1016/j.envint.2025.109569_b0050
  article-title: Drug-resistant tuberculosis: a persistent global health concern
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-024-01025-1
– volume: 252
  start-page: 1277
  year: 2019
  ident: 10.1016/j.envint.2025.109569_b0145
  article-title: Synergistic effects of key parameters on the fate of antibiotic resistance genes during swine manure composting
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.06.073
– year: 2022
  ident: 10.1016/j.envint.2025.109569_b0115
  article-title: Drug resistant tuberculosis: implications for transmission, diagnosis, and disease management
– volume: 308
  year: 2022
  ident: 10.1016/j.envint.2025.109569_b0135
  article-title: Microbial community assembly and co-occurrence relationship in sediments of the river-dominated estuary and the adjacent shelf in the wet season
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.119572
– volume: 5
  start-page: 4306
  year: 2014
  ident: 10.1016/j.envint.2025.109569_b0180
  article-title: Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5306
– volume: 399
  start-page: 629
  year: 2022
  ident: 10.1016/j.envint.2025.109569_b0175
  article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)02724-0
– volume: 52
  start-page: 266
  year: 2018
  ident: 10.1016/j.envint.2025.109569_b0110
  article-title: Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and Mobile genetic elements in sewage sludge
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.7b04483
– volume: 24
  start-page: 3111
  year: 2024
  ident: 10.1016/j.envint.2025.109569_b0270
  article-title: global, regional, and national burden of tuberculosis and attributable risk factors for 204 countries and territories, 1990-2021: a systematic analysis for the global burden of diseases 2021 study
  publication-title: BMC public health
  doi: 10.1186/s12889-024-20664-w
– volume: 14
  start-page: 927
  year: 2003
  ident: 10.1016/j.envint.2025.109569_b0040
  article-title: VEGAN, a package of R functions for community ecology
  publication-title: J. Veg. Sci.
  doi: 10.1111/j.1654-1103.2003.tb02228.x
– year: 2020
  ident: 10.1016/j.envint.2025.109569_b0075
– volume: 131
  year: 2019
  ident: 10.1016/j.envint.2025.109569_b0205
  article-title: State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105026
– volume: 116
  start-page: 229
  year: 2018
  ident: 10.1016/j.envint.2025.109569_b0065
  article-title: The abundance and diversity of antibiotic resistance genes in the atmospheric environment of composting plants
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.04.028
– volume: 8
  start-page: 268
  year: 2020
  ident: 10.1016/j.envint.2025.109569_b0320
  article-title: Effects of composting different types of organic fertilizer on the microbial community structure and antibiotic resistance genes
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8020268
– volume: 174
  year: 2023
  ident: 10.1016/j.envint.2025.109569_b0010
  article-title: Emergent crisis of antibiotic resistance: a silent pandemic threat to 21st century
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2022.105923
– volume: 190
  year: 2024
  ident: 10.1016/j.envint.2025.109569_b0100
  article-title: Beyond water and soil: air emerges as a major reservoir of human pathogens
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2024.108869
– volume: 213
  start-page: 463
  year: 2018
  ident: 10.1016/j.envint.2025.109569_b0285
  article-title: Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.09.066
– volume: 10
  start-page: 19
  year: 2022
  ident: 10.1016/j.envint.2025.109569_b0245
  article-title: Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance, and environmental risks
  publication-title: Microbiome
  doi: 10.1186/s40168-021-01197-5
– volume: 11
  start-page: 1144
  year: 2014
  ident: 10.1016/j.envint.2025.109569_b0005
  article-title: Binning metagenomic contigs by coverage and composition
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3103
– volume: 11
  start-page: 2864
  year: 2017
  ident: 10.1016/j.envint.2025.109569_b0190
  article-title: dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication
  publication-title: ISME J.
  doi: 10.1038/ismej.2017.126
– year: 2014
  ident: 10.1016/j.envint.2025.109569_b0185
– volume: 102
  start-page: 3
  year: 2016
  ident: 10.1016/j.envint.2025.109569_b0095
  article-title: MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.02.020
– volume: 897
  year: 2023
  ident: 10.1016/j.envint.2025.109569_b0125
  article-title: Comparison of bioaerosol release characteristics between windrow and trough sludge composting plants: concentration distribution, community evolution, bioaerosolization behaviour, and exposure risk
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.164925
– volume: 56
  start-page: 7040
  year: 2022
  ident: 10.1016/j.envint.2025.109569_b0255
  article-title: Inhalable antibiotic resistome from wastewater treatment plants to urban areas: bacterial hosts, dissemination risks, and source contributions
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.1c07023
– volume: 220
  start-page: 1342
  year: 2017
  ident: 10.1016/j.envint.2025.109569_b0060
  article-title: Size-related bacterial diversity and tetracycline resistance gene abundance in the air of concentrated poultry feeding operations
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.10.101
– volume: 465
  year: 2024
  ident: 10.1016/j.envint.2025.109569_b0025
  article-title: Comprehensive evaluation of antibiotics pollution the Yangtze River basin, China: emission, multimedia fate and risk assessment
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.133247
– volume: 851
  year: 2022
  ident: 10.1016/j.envint.2025.109569_b0260
  article-title: Animal farms are hot spots for airborne antimicrobial resistance
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.158050
– volume: 18
  start-page: 43
  year: 2015
  ident: 10.1016/j.envint.2025.109569_b0200
  article-title: Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: a systematic review of occupational and community studies
  publication-title: J. Toxicol. Environ. Health B Crit. Rev.
  doi: 10.1080/10937404.2015.1009961
– volume: 601–602
  start-page: 1306
  year: 2017
  ident: 10.1016/j.envint.2025.109569_b0160
  article-title: A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.05.235
– volume: 57
  start-page: 19965
  year: 2023
  ident: 10.1016/j.envint.2025.109569_b0295
  article-title: Pathogenic bacteria are the primary determinants shaping PM2.5-borne resistomes in the municipal food waste treatment system
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.3c04681
– volume: 9
  start-page: 110
  year: 1987
  ident: 10.1016/j.envint.2025.109569_b0035
  article-title: Hospital outbreak of multi-resistant acinetobacter anitratus: an airborne mode of spread?
  publication-title: J. Hosp. Infect.
  doi: 10.1016/0195-6701(87)90048-X
– volume: 106
  start-page: 62
  year: 2016
  ident: 10.1016/j.envint.2025.109569_b0290
  article-title: Sludge bio-drying: effective to reduce both antibiotic resistance genes and mobile genetic elements
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.09.055
– volume: 12
  start-page: 59
  year: 2015
  ident: 10.1016/j.envint.2025.109569_b0015
  article-title: Fast and sensitive protein alignment using DIAMOND
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3176
– volume: 249
  year: 2024
  ident: 10.1016/j.envint.2025.109569_b0080
  article-title: Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120911
– volume: 49
  start-page: 6772
  year: 2015
  ident: 10.1016/j.envint.2025.109569_b0305
  article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.5b00729
– volume: 481
  year: 2025
  ident: 10.1016/j.envint.2025.109569_b0155
  article-title: Bioaerosol emission characteristics and potential risks during composting: focus on pathogens and antimicrobial resistance
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2024.136466
– volume: 110
  start-page: 160
  year: 2018
  ident: 10.1016/j.envint.2025.109569_b0210
  article-title: Review of antibiotic resistance in China and its environment
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2017.10.016
– volume: 51
  start-page: 13061
  year: 2017
  ident: 10.1016/j.envint.2025.109569_b0230
  article-title: Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.7b03623
– volume: 14
  start-page: 1463
  year: 2020
  ident: 10.1016/j.envint.2025.109569_b0120
  article-title: Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship
  publication-title: ISME J.
  doi: 10.1038/s41396-020-0621-7
– volume: 13
  start-page: 1553
  year: 2022
  ident: 10.1016/j.envint.2025.109569_b0310
  article-title: Assessment of global health risk of antibiotic resistance genes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29283-8
– volume: 637–638
  start-page: 244
  year: 2018
  ident: 10.1016/j.envint.2025.109569_b0140
  article-title: Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi'an, China
  publication-title: Science of the Total Environment s
  doi: 10.1016/j.scitotenv.2018.05.006
– volume: 136
  year: 2020
  ident: 10.1016/j.envint.2025.109569_b0300
  article-title: Variation of antibiotic resistome during commercial livestock manure composting
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105458
– volume: 143
  year: 2020
  ident: 10.1016/j.envint.2025.109569_b0150
  article-title: Farm dust resistomes and bacterial microbiomes in European poultry and pig farms
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105971
– volume: 10
  year: 2019
  ident: 10.1016/j.envint.2025.109569_b0085
  article-title: Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07992-3
– volume: 2
  start-page: 26
  year: 2014
  ident: 10.1016/j.envint.2025.109569_b0250
  article-title: MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm
  publication-title: Microbiome
  doi: 10.1186/2049-2618-2-26
– volume: 40
  start-page: 1159
  year: 2006
  ident: 10.1016/j.envint.2025.109569_b0220
  article-title: Bioaerosol releases from compost facilities: evaluating passive and active source terms at a green waste facility for improved risk assessments
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.11.010
– volume: 36
  start-page: 1925
  year: 2020
  ident: 10.1016/j.envint.2025.109569_b0020
  article-title: GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz848
– volume: 4
  start-page: 42
  year: 2014
  ident: 10.1016/j.envint.2025.109569_b0235
  article-title: Bioaerosols from composting facilities–a review
  publication-title: Front. Cell. Infect. Microbiol.
SSID ssj0002485
Score 2.477054
Snippet [Display omitted] •The first airborne HPARB in a composting facility were profiled.•Enhanced airborne HPARB carried increasing ARGs and VFGs than those in...
The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 109569
SubjectTerms Air Microbiology
Airborne antimicrobial resistance
Bacteria - genetics
Composting
Composting facility
Drug Resistance, Bacterial - genetics
Drug Resistance, Microbial - genetics
Enrichment
Human-pathogenic antibiotic-resistant bacteria
Humans
Metagenome-assembled genomes
Metagenomics
Microbiota
Virulence Factors - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwEB2hnooQgoXCUoqMxNUim9hxfCyoVVWpnKjUm-U4YxGkZlGT_QZ-mxk7KcsB9dKr4ySjzDjzJnnzDPApMLUihEIaa4JU6JX0NFM2XV10tkUbPTcKX32rL67V5Y2-2dvqizlhWR44P7jPhhLupm1L79ugDLdtdoHq9NjUVBnUbeC3L-W8pZia38Es1JVVvQupNmWxNM0lZhe3kA3Moyw1qylpJjvvJaWk3f9Pbvof9kw56PwFPJ_BozjNRr-EJzis4OmepOAKjs7-dq7R1Hnpjit4lj_Qidx39Ap-X-HkWaH1lgb9LE0iOgw9Cw2Mwvd3FB4DCt6zeEsTR8HfbAUOPxJpgM6Z-ts-6TjRjahqZyRKR-hAJ8iGXWpnEvOGPqIfBNPXtyPzrHmUSblUpr-G6_Oz718v5Lwrgwy0vidpNqiwjqgKFWNlUbclgZqgO1Wjt-QljATYbd2V2lMFvIlYNQ1SlcVYM8SmOoKDYTvgWxDBmgptUNaXlepCwiZFExvTahsrE9YgF7e4X1l8wy2stJ8uu9GxG1124xq-sO_u57J0dhqggHJzQLmHAmoNZvG8m1FIRhd0qf6B239cAsXRIuU_L37A7W50VUmwV1NlW6zhTY6geyMV63Uard89hvHHcMgGZT7xeziY7nZ4Qqhpaj-kBfIH7ooXCA
  priority: 102
  providerName: Directory of Open Access Journals
Title Metagenomic analysis deciphers airborne pathogens with enhanced antimicrobial resistance and virulence factors in composting facilities
URI https://dx.doi.org/10.1016/j.envint.2025.109569
https://www.ncbi.nlm.nih.gov/pubmed/40472755
https://www.proquest.com/docview/3216359980
https://doaj.org/article/75151bb2aabc477890dc390f864016bc
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcgEhBAuFhbIyEtew2cSO42OpWm1B7QUq9WY5zhhSqUm1yV658reZsZN-HFClHteZXVs7Y_uN8-aZsc-OqBXOpYnSyiUCrEgsWiZlXaS1rkB7S4XCp2fF-lx8u5AXO-xwqoUhWuW49sc1PazWY8ty_DeX102z_EHaaGKV0SZOt4CTJqgQiqL8y59bmgdJdkV97zQh66l8LnC8qJisJUZlJklXSRLt-c72FFT87-1S_0OhYTc6fslejDCSH8SRvmI70M7YszvigjO2d3Rbw4am4yTuZ-x5PKrjsQLpNft7CoMlrdYrbLSjSAmvwTUkOdBz22wwUFrgdHtxh4Y9p9NbDu3vQB_A7wzNVRMUnbAjzN8Jk-ITfFBzHMM2FDbx8Wof3rSciOxdT4xraiV6Libsb9j58dHPw3Uy3s-QOJzpQ6JWIKDwIFLhfa5BVhnCGydrUYDVtnLgEbrros6kxVx45SEvS8B8i1Cn82W-x3bbroV3jDutctBOaJvlonYBpaSlL1Ultc-Vm7Nkcou5jjIcZuKnXZroRkNuNNGNc_aVfHdjSyLaoaHb_DJjFBmFWG5VVZnFoQpFFcG1y3XqywKTzqLCTtXkeXMvJvGnmge6_zQFisHpSu9gbAvdtjd5hgBYYo6bztnbGEE3gxSk3KmkfP_ofj-wp_Qp0on32e6w2cJHBE1DtQizYsGeHJx8X58twtHDP7x2GvQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QEQQrBQWD6NxDXabGLH8bFUrba0uxdaqTfLcWwIUpNqk_0N_dudiZOlPSAkrrYTW5mx_cZ58wzw1RK1wto4kkraiDvDI4Mto7zM4lIVTnlDicKrdba85N-vxNUeHI25MESrHNb-sKb3q_VQMh--5vymquY_SBuNLxLaxOkWcP4I9kmdSkxg__D0bLneLcik2hUkvuOIHhgz6HqaF-WT1USqTARJKwliPt_boXoh_wcb1d-AaL8hnbyA5wOSZIdhsC9hz9VTeHpPX3AKB8d_0tiw6TCP2yk8C6d1LCQhvYLblesMybVeY6EZdEpY6WxFqgMtM9UGfaV2jC4wbrBhy-gAl7n6V88gwGe66rrqRZ2wIwzhCZZiDVaUDMew7XOb2HC7D6tqRlz2piXSNZUSQxdj9tdweXJ8cbSMhisaIouTvYvkwnGXecdj7n2qnCgSRDhWlDxzRpnCOo_oXWVlIgyGwwvv0jx3GHIR8LQ-Tw9gUje1ewvMKpk6ZbkyScpL2wOVOPe5LITyqbQziEaz6JugxKFHitpvHcyoyYw6mHEG38h2u7ako90XNJufenAkLRHOLYoiMThULikpuLSpin2eYdyZFdipHC2vH7glvqr6R_dfRkfROGPpN4ypXbNtdZogBhYY5sYzeBM8aDdITuKdUoh3_93vZ3i8vFid6_PT9dl7eEI1gV38ASbdZus-Iobqik_DHLkDsK8csA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metagenomic+analysis+deciphers+airborne+pathogens+with+enhanced+antimicrobial+resistance+and+virulence+factors+in+composting+facilities&rft.jtitle=Environment+international&rft.au=Chen%2C+Mo&rft.au=Xing%2C+Lijun&rft.au=Gao%2C+Shanshan&rft.au=Guo%2C+Yajie&rft.date=2025-07-01&rft.eissn=1873-6750&rft.volume=201&rft.spage=109569&rft_id=info:doi/10.1016%2Fj.envint.2025.109569&rft_id=info%3Apmid%2F40472755&rft.externalDocID=40472755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon