Metagenomic analysis deciphers airborne pathogens with enhanced antimicrobial resistance and virulence factors in composting facilities
[Display omitted] •The first airborne HPARB in a composting facility were profiled.•Enhanced airborne HPARB carried increasing ARGs and VFGs than those in compost.•Multiple antibiotic-resistant Mycobacterium tuberculosis was prevalent in the air.•A total of 23 core ARGs were enriched in the air, wit...
Saved in:
Published in | Environment international Vol. 201; p. 109569 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.07.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The first airborne HPARB in a composting facility were profiled.•Enhanced airborne HPARB carried increasing ARGs and VFGs than those in compost.•Multiple antibiotic-resistant Mycobacterium tuberculosis was prevalent in the air.•A total of 23 core ARGs were enriched in the air, with increases ranging from 2.16- to 13.36-fold.•Airborne AMR in the composting facility posed a higher risk than that in hospital and urban environment.
The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure. |
---|---|
AbstractList | The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harbored an increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure. The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure.The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure. The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure. [Display omitted] •The first airborne HPARB in a composting facility were profiled.•Enhanced airborne HPARB carried increasing ARGs and VFGs than those in compost.•Multiple antibiotic-resistant Mycobacterium tuberculosis was prevalent in the air.•A total of 23 core ARGs were enriched in the air, with increases ranging from 2.16- to 13.36-fold.•Airborne AMR in the composting facility posed a higher risk than that in hospital and urban environment. The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure. |
ArticleNumber | 109569 |
Author | Guo, Yajie Xing, Lijun Qiu, Tianlei Chen, Mo Gao, Min Gao, Shanshan Wang, Xuming |
Author_xml | – sequence: 1 givenname: Mo surname: Chen fullname: Chen, Mo organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China – sequence: 2 givenname: Lijun surname: Xing fullname: Xing, Lijun organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China – sequence: 3 givenname: Shanshan surname: Gao fullname: Gao, Shanshan organization: School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, PR China – sequence: 4 givenname: Yajie surname: Guo fullname: Guo, Yajie organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China – sequence: 5 givenname: Tianlei surname: Qiu fullname: Qiu, Tianlei organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China – sequence: 6 givenname: Xuming orcidid: 0000-0003-3590-562X surname: Wang fullname: Wang, Xuming email: wangxuming@baafs.net.cn organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China – sequence: 7 givenname: Min surname: Gao fullname: Gao, Min email: gaomin@baafs.net.cn organization: Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40472755$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu1DAURS1URKeFP0AoSzYZbMeO4w0SqmipVMQG1pbjvMy8UWIPtmdQv4DfxiGlS1aW3zv3Wr73ilz44IGQt4xuGWXth8MW_Bl93nLKZRlp2eoXZMM61dStkvSCbApGa8E4vSRXKR0opVx08hW5FFQorqTckN9fIdsd-DCjq6y302PCVA3g8LiHmCqLsQ_RQ3W0eR8KmKpfmPcV-L31DoaiyVi0MfRopypCkedlUxZDdcZ4mmC5jdblUPzQVy7Mx5Ay-t0yxQkzQnpNXo52SvDm6bwmP24_f7_5Uj98u7u_-fRQO8FlrhUDAe0I5QPj2GiQPReNdnIQLVhtewej4lq3A5dWsYaN0HQdcKlZo5Ubu-aa3K--Q7AHc4w42_hogkXzdxDiztiY0U1glGSS9T23xVYo1Wk6uEbTsWtFCbZ3xev96nWM4ecJUjYzJgfTZD2EUzINZ20jte5oQd89oad-huH54X9FFECsQEkypQjjM8KoWfo2B7P2bZa-zdp3kX1cZVAyOyNEkxwugQ8YweXyKfy_wR9JqLf5 |
Cites_doi | 10.7717/peerj-cs.104 10.1080/10643389.2020.1777815 10.3390/antibiotics9120918 10.1016/j.envint.2023.107751 10.3390/vetsci10050337 10.1186/s13059-019-1891-0 10.1093/bioinformatics/btw136 10.1038/ncomms9452 10.1016/j.envint.2022.107127 10.1038/nature10388 10.1093/ismejo/wrae092 10.1186/s40168-016-0199-5 10.1016/j.jhazmat.2024.136226 10.1038/s41579-024-01025-1 10.1016/j.envpol.2019.06.073 10.1016/j.envpol.2022.119572 10.1038/ncomms5306 10.1016/S0140-6736(21)02724-0 10.1021/acs.est.7b04483 10.1186/s12889-024-20664-w 10.1111/j.1654-1103.2003.tb02228.x 10.1016/j.envint.2019.105026 10.1016/j.envint.2018.04.028 10.3390/microorganisms8020268 10.1016/j.micpath.2022.105923 10.1016/j.envint.2024.108869 10.1016/j.chemosphere.2018.09.066 10.1186/s40168-021-01197-5 10.1038/nmeth.3103 10.1038/ismej.2017.126 10.1016/j.ymeth.2016.02.020 10.1016/j.scitotenv.2023.164925 10.1021/acs.est.1c07023 10.1016/j.envpol.2016.10.101 10.1016/j.jhazmat.2023.133247 10.1016/j.scitotenv.2022.158050 10.1080/10937404.2015.1009961 10.1016/j.scitotenv.2017.05.235 10.1021/acs.est.3c04681 10.1016/0195-6701(87)90048-X 10.1016/j.watres.2016.09.055 10.1038/nmeth.3176 10.1016/j.watres.2023.120911 10.1021/acs.est.5b00729 10.1016/j.jhazmat.2024.136466 10.1016/j.envint.2017.10.016 10.1021/acs.est.7b03623 10.1038/s41396-020-0621-7 10.1038/s41467-022-29283-8 10.1016/j.scitotenv.2018.05.006 10.1016/j.envint.2020.105458 10.1016/j.envint.2020.105971 10.1038/s41467-018-07992-3 10.1186/2049-2618-2-26 10.1016/j.atmosenv.2005.11.010 10.1093/bioinformatics/btz848 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. Copyright © 2025. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: Copyright © 2025. Published by Elsevier Ltd. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.envint.2025.109569 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health Environmental Sciences |
EISSN | 1873-6750 |
ExternalDocumentID | oai_doaj_org_article_75151bb2aabc477890dc390f864016bc 40472755 10_1016_j_envint_2025_109569 S0160412025003204 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEGFY AEIPS AEKER AENEX AEUPX AFJKZ AFPKN AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SEN SES SEW SSH SSJ SSZ T5K TN5 WUQ XPP ~02 ~G- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c425t-71e4e6fe404ff39e5b2439c5d46ea9abcef72996d25a7131fe388e2591397cf83 |
IEDL.DBID | .~1 |
ISSN | 0160-4120 1873-6750 |
IngestDate | Wed Aug 27 01:26:36 EDT 2025 Wed Jul 02 02:48:04 EDT 2025 Mon Jul 21 06:06:21 EDT 2025 Thu Jul 03 08:35:57 EDT 2025 Sat Jul 19 17:11:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Enrichment Metagenome-assembled genomes Airborne antimicrobial resistance Composting facility Human-pathogenic antibiotic-resistant bacteria |
Language | English |
License | This is an open access article under the CC BY-NC license. Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-71e4e6fe404ff39e5b2439c5d46ea9abcef72996d25a7131fe388e2591397cf83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3590-562X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0160412025003204 |
PMID | 40472755 |
PQID | 3216359980 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_75151bb2aabc477890dc390f864016bc proquest_miscellaneous_3216359980 pubmed_primary_40472755 crossref_primary_10_1016_j_envint_2025_109569 elsevier_sciencedirect_doi_10_1016_j_envint_2025_109569 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environment international |
PublicationTitleAlternate | Environ Int |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Wood, Lu, Langmead (b0240) 2019; 20 Gao, Qiu, Sun, Wang (b0065) 2018; 116 Buchfink, Xie, Huson (b0015) 2015; 12 O’Neill (b0185) 2014 Murray, Ikuta, Sharara, Swetschinski, Robles Aguilar, Gray, Han, Bisignano, Rao, Wool (b0175) 2022; 399 Tiseo, Huber, Gilbert, Robinson, Van Boeckel (b0225) 2020; 9 Farhat, Cox, Ghanem, Denkinger, Rodrigues, Abd El Aziz, Enkh-Amgalan, Vambe, Ugarte-Gil, Furin (b0050) 2024; 22 Akram, Imtiaz, Haq (b0010) 2023; 174 Yang, Ruan, Li, Xiong, Zheng (b0270) 2024; 24 Daschner, Habel (b0035) 1987; 9 Yan, Ma, Chen, Lei, Li, Han (b0275) 2022; 161 Dixon (b0040) 2003; 14 Gao, Jia, Qiu, Han, Wang (b0060) 2017; 220 Lappan, Thakar, Molares Moncayo, Besser, Bradley, Goordial, Trembath-Reichert, Greening (b0090) 2024; 18 Zhang, Sui, Tong, Buhe, Wang, Chen, Wei (b0290) 2016; 106 Chen, Duan, Zhang, Gao, Dai, Tu, Gao (b0025) 2024; 465 Lu, Breitwieser, Thielen, Salzberg (b0130) 2017; 3 Munck, Albertsen, Telke, Ellabaan, Nielsen, Sommer (b0170) 2015; 6 Gao, He, Bai, He, Zhang, Chen, Liu, Ying (b0055) 2023; 172 Taha, Drew, Longhurst, Smith, Pollard (b0220) 2006; 40 Wu, Tang, Tringe, Simmons, Singer (b0250) 2014; 2 Mbareche, Veillette, Bonifait, Dubuis, Benard, Marchand, Bilodeau, Duchaine (b0160) 2017; 601–602 Yang, Jiang, Chai, Ma, Li, Zhang, Cole, Tiedje, Zhang (b0280) 2016; 32 Zhao, Yang, Zhou, Wang, Muurinen, Virta, Brandt, Zhu (b0315) 2021; 51 Liu, Zhu, Liu, Yao, Ge, Zhang (b0120) 2020; 14 Chaumeil, Mussig, Hugenholtz, Parks (b0020) 2020; 36 Douwes, Thorne, Pearce, Heederik (b0045) 2003; 47 Grace (b0070) 2015 Lu, Li, Li, Xie, Fan, Liu, Deng (b0140) 2018; 637–638 Hennart, Panunzi, Rodrigues, Gaday, Brisse (b0075) 2020 Xin, Gao, Wang, Qiu, Guo, Zhang (b0260) 2022; 851 Li, Luo, Liu, Leung, Ting, Sadakane, Yamashita, Lam (b0095) 2016; 102 Liu, Ai, Lu, Tian (b0125) 2023; 897 Qiao, Ying, Singer, Zhu (b0210) 2018; 110 Ma, Peng, Tang, Jiang, Chang, Li, Wang, Yang, Yuan (b0155) 2025; 481 Min, Amy, Chaoqi, Heath, Kang, Liqing (b0165) 2018; 94 Zhou, Yao (b0320) 2020; 8 Lysitsas, Chatzipanagiotidou, Billinis (b0215) 2023; 10 Vikesland, Pruden, Alvarez, Aga, Burgmann, Li, Manaia, Nambi, Wigginton, Zhang (b0230) 2017; 51 Wu, Jin, Xie, Liu, Zhao, Ye, Li (b0245) 2022; 10 Xin, Qiu, Guo, Wang, Liu, Gao (b0265) 2024; 480 Zhang, Wang, Su, Wu, Wang, Li, Xie (b0295) 2023; 57 Li, Feng, Wang, Yang, Peng, Tu, Deng (b0100) 2024; 190 Yang, Zhou, Chen, Zhang, Hu, Zou (b0285) 2018; 213 Zhang, Zhang, Wang, Xu, Lu, Hong, Penuelas, Gillings, Wang, Gao (b0310) 2022; 13 Wéry (b0235) 2014; 4 D’Costa, King, Kalan, Morar, Sung, Schwarz, Froese, Zazula, Calmels, Debruyne (b0030) 2011; 477 Alneberg, Bjarnason, Bruijn, Schirmer, Quince (b0005) 2014; 11 Olm, Brown, Brooks, Banfield (b0190) 2017; 11 Liao, Lu, Rensing, Friman, Geisen, Chen, Yu, Wei, Zhou, Zhu (b0110) 2018; 52 Jiang, Zhao, Zhu, Pan, Yang (b0080) 2024; 249 Pal, Bengtsson-Palme, Kristiansson, Larsson (b0195) 2016; 4 Zhang, He, Liu, Zhao, Zhang, Chen, Zhang, Ying (b0300) 2020; 136 Zhang, Ying, Pan, Liu, Zhao (b0305) 2015; 49 Pearson, Littlewood, Douglas, Robertson, Hansell (b0200) 2015; 18 Liebenberg, Gordhan, Kana (b0115) 2022 Xie, Jin, Wu, Pruden, Li (b0255) 2022; 56 Pei, Zhang, He, Su, Gin, Lev, Shen, Hu (b0205) 2019; 131 Karkman, Pärnänen, Larsson (b0085) 2019; 10 Nandakumar, Nathan, Rhee (b0180) 2014; 5 Lu, Wang, Li, Jiao, Luo, Luo, Yu, Xiao, Li, Qiu (b0135) 2022; 308 Luiken, Van Gompel, Bossers, Munk, Joosten, Hansen, Knudsen, García-Cobos, Dewulf, Aarestrup (b0150) 2020; 143 Lu, Lu (b0145) 2019; 252 Liebenberg (10.1016/j.envint.2025.109569_b0115) 2022 Nandakumar (10.1016/j.envint.2025.109569_b0180) 2014; 5 Lysitsas (10.1016/j.envint.2025.109569_b0215) 2023; 10 Olm (10.1016/j.envint.2025.109569_b0190) 2017; 11 Xie (10.1016/j.envint.2025.109569_b0255) 2022; 56 Xin (10.1016/j.envint.2025.109569_b0260) 2022; 851 Zhang (10.1016/j.envint.2025.109569_b0290) 2016; 106 Karkman (10.1016/j.envint.2025.109569_b0085) 2019; 10 Pearson (10.1016/j.envint.2025.109569_b0200) 2015; 18 Daschner (10.1016/j.envint.2025.109569_b0035) 1987; 9 Yan (10.1016/j.envint.2025.109569_b0275) 2022; 161 Taha (10.1016/j.envint.2025.109569_b0220) 2006; 40 Dixon (10.1016/j.envint.2025.109569_b0040) 2003; 14 Lu (10.1016/j.envint.2025.109569_b0135) 2022; 308 Alneberg (10.1016/j.envint.2025.109569_b0005) 2014; 11 Jiang (10.1016/j.envint.2025.109569_b0080) 2024; 249 Zhou (10.1016/j.envint.2025.109569_b0320) 2020; 8 Li (10.1016/j.envint.2025.109569_b0095) 2016; 102 Buchfink (10.1016/j.envint.2025.109569_b0015) 2015; 12 Murray (10.1016/j.envint.2025.109569_b0175) 2022; 399 Chaumeil (10.1016/j.envint.2025.109569_b0020) 2020; 36 Mbareche (10.1016/j.envint.2025.109569_b0160) 2017; 601–602 Qiao (10.1016/j.envint.2025.109569_b0210) 2018; 110 Vikesland (10.1016/j.envint.2025.109569_b0230) 2017; 51 Gao (10.1016/j.envint.2025.109569_b0060) 2017; 220 Hennart (10.1016/j.envint.2025.109569_b0075) 2020 Liu (10.1016/j.envint.2025.109569_b0120) 2020; 14 Gao (10.1016/j.envint.2025.109569_b0055) 2023; 172 Lappan (10.1016/j.envint.2025.109569_b0090) 2024; 18 Yang (10.1016/j.envint.2025.109569_b0280) 2016; 32 Akram (10.1016/j.envint.2025.109569_b0010) 2023; 174 O’Neill (10.1016/j.envint.2025.109569_b0185) 2014 Douwes (10.1016/j.envint.2025.109569_b0045) 2003; 47 Pei (10.1016/j.envint.2025.109569_b0205) 2019; 131 Wu (10.1016/j.envint.2025.109569_b0250) 2014; 2 Wu (10.1016/j.envint.2025.109569_b0245) 2022; 10 Lu (10.1016/j.envint.2025.109569_b0140) 2018; 637–638 Yang (10.1016/j.envint.2025.109569_b0270) 2024; 24 Munck (10.1016/j.envint.2025.109569_b0170) 2015; 6 Grace (10.1016/j.envint.2025.109569_b0070) 2015 Zhang (10.1016/j.envint.2025.109569_b0310) 2022; 13 Luiken (10.1016/j.envint.2025.109569_b0150) 2020; 143 Zhang (10.1016/j.envint.2025.109569_b0305) 2015; 49 Min (10.1016/j.envint.2025.109569_b0165) 2018; 94 Ma (10.1016/j.envint.2025.109569_b0155) 2025; 481 Zhao (10.1016/j.envint.2025.109569_b0315) 2021; 51 Farhat (10.1016/j.envint.2025.109569_b0050) 2024; 22 D’Costa (10.1016/j.envint.2025.109569_b0030) 2011; 477 Gao (10.1016/j.envint.2025.109569_b0065) 2018; 116 Lu (10.1016/j.envint.2025.109569_b0130) 2017; 3 Yang (10.1016/j.envint.2025.109569_b0285) 2018; 213 Pal (10.1016/j.envint.2025.109569_b0195) 2016; 4 Wéry (10.1016/j.envint.2025.109569_b0235) 2014; 4 Li (10.1016/j.envint.2025.109569_b0100) 2024; 190 Lu (10.1016/j.envint.2025.109569_b0145) 2019; 252 Zhang (10.1016/j.envint.2025.109569_b0295) 2023; 57 Wood (10.1016/j.envint.2025.109569_b0240) 2019; 20 Liao (10.1016/j.envint.2025.109569_b0110) 2018; 52 Chen (10.1016/j.envint.2025.109569_b0025) 2024; 465 Zhang (10.1016/j.envint.2025.109569_b0300) 2020; 136 Liu (10.1016/j.envint.2025.109569_b0125) 2023; 897 Tiseo (10.1016/j.envint.2025.109569_b0225) 2020; 9 Xin (10.1016/j.envint.2025.109569_b0265) 2024; 480 |
References_xml | – volume: 220 start-page: 1342 year: 2017 end-page: 1348 ident: b0060 article-title: Size-related bacterial diversity and tetracycline resistance gene abundance in the air of concentrated poultry feeding operations publication-title: Environ. Pollut. – volume: 5 start-page: 4306 year: 2014 ident: b0180 article-title: Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis publication-title: Nat. Commun. – volume: 161 year: 2022 ident: b0275 article-title: Characteristics of airborne bacterial communities and antibiotic resistance genes under different air quality levels publication-title: Environ. Int. – volume: 8 start-page: 268 year: 2020 ident: b0320 article-title: Effects of composting different types of organic fertilizer on the microbial community structure and antibiotic resistance genes publication-title: Microorganisms – volume: 4 start-page: 42 year: 2014 ident: b0235 article-title: Bioaerosols from composting facilities–a review publication-title: Front. Cell. Infect. Microbiol. – volume: 116 start-page: 229 year: 2018 end-page: 238 ident: b0065 article-title: The abundance and diversity of antibiotic resistance genes in the atmospheric environment of composting plants publication-title: Environ. Int. – volume: 56 start-page: 7040 year: 2022 end-page: 7051 ident: b0255 article-title: Inhalable antibiotic resistome from wastewater treatment plants to urban areas: bacterial hosts, dissemination risks, and source contributions publication-title: Environ. Sci. Tech. – volume: 190 year: 2024 ident: b0100 article-title: Beyond water and soil: air emerges as a major reservoir of human pathogens publication-title: Environ. Int. – volume: 308 year: 2022 ident: b0135 article-title: Microbial community assembly and co-occurrence relationship in sediments of the river-dominated estuary and the adjacent shelf in the wet season publication-title: Environ. Pollut. – volume: 47 start-page: 187 year: 2003 end-page: 200 ident: b0045 article-title: Bioaerosol health effects and exposure assessment: progress and prospects publication-title: Ann. Occup. Hyg. – volume: 14 start-page: 1463 year: 2020 end-page: 1478 ident: b0120 article-title: Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship publication-title: ISME J. – volume: 174 year: 2023 ident: b0010 article-title: Emergent crisis of antibiotic resistance: a silent pandemic threat to 21st century publication-title: Microb. Pathog. – volume: 481 year: 2025 ident: b0155 article-title: Bioaerosol emission characteristics and potential risks during composting: focus on pathogens and antimicrobial resistance publication-title: J. Hazard. Mater. – volume: 57 start-page: 19965 year: 2023 end-page: 19978 ident: b0295 article-title: Pathogenic bacteria are the primary determinants shaping PM2.5-borne resistomes in the municipal food waste treatment system publication-title: Environ. Sci. Tech. – volume: 11 start-page: 2864 year: 2017 end-page: 2868 ident: b0190 article-title: dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication publication-title: ISME J. – volume: 2 start-page: 26 year: 2014 ident: b0250 article-title: MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm publication-title: Microbiome – volume: 24 start-page: 3111 year: 2024 ident: b0270 article-title: global, regional, and national burden of tuberculosis and attributable risk factors for 204 countries and territories, 1990-2021: a systematic analysis for the global burden of diseases 2021 study publication-title: BMC public health – volume: 213 start-page: 463 year: 2018 end-page: 471 ident: b0285 article-title: Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach publication-title: Chemosphere – volume: 32 start-page: 2346 year: 2016 end-page: 2351 ident: b0280 article-title: ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database publication-title: Bioinformatics – volume: 14 start-page: 927 year: 2003 end-page: 930 ident: b0040 article-title: VEGAN, a package of R functions for community ecology publication-title: J. Veg. Sci. – volume: 4 start-page: 54 year: 2016 ident: b0195 article-title: The structure and diversity of human, animal and environmental resistomes publication-title: Microbiome – volume: 12 start-page: 59 year: 2015 end-page: 60 ident: b0015 article-title: Fast and sensitive protein alignment using DIAMOND publication-title: Nat. Methods – volume: 36 start-page: 1925 year: 2020 end-page: 1927 ident: b0020 article-title: GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database publication-title: Bioinformatics – volume: 136 year: 2020 ident: b0300 article-title: Variation of antibiotic resistome during commercial livestock manure composting publication-title: Environ. Int. – volume: 3 start-page: e104 year: 2017 ident: b0130 article-title: Bracken: estimating species abundance in metagenomics data publication-title: PeerJ Comput. Sci. – volume: 11 start-page: 1144 year: 2014 end-page: 1146 ident: b0005 article-title: Binning metagenomic contigs by coverage and composition publication-title: Nat. Methods – volume: 110 start-page: 160 year: 2018 end-page: 172 ident: b0210 article-title: Review of antibiotic resistance in China and its environment publication-title: Environ. Int. – volume: 131 year: 2019 ident: b0205 article-title: State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants publication-title: Environ. Int. – volume: 102 start-page: 3 year: 2016 end-page: 11 ident: b0095 article-title: MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices publication-title: Methods – volume: 51 start-page: 2159 year: 2021 end-page: 2196 ident: b0315 article-title: Antibiotic resistome in the livestock and aquaculture industries: status and solutions publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 252 start-page: 1277 year: 2019 end-page: 1287 ident: b0145 article-title: Synergistic effects of key parameters on the fate of antibiotic resistance genes during swine manure composting publication-title: Environ. Pollut. – volume: 10 start-page: 337 year: 2023 ident: b0215 article-title: Fosfomycin resistance in bacteria isolated from companion animals (dogs and cats) publication-title: Veterinary Science – volume: 897 year: 2023 ident: b0125 article-title: Comparison of bioaerosol release characteristics between windrow and trough sludge composting plants: concentration distribution, community evolution, bioaerosolization behaviour, and exposure risk publication-title: Sci. Total Environ. – year: 2015 ident: b0070 article-title: Review of evidence on antimicrobial resistance and animal agriculture in developing countries – year: 2014 ident: b0185 article-title: Antimicrobial resistance: tackling a crisis for the health and wealth of nations – volume: 851 year: 2022 ident: b0260 article-title: Animal farms are hot spots for airborne antimicrobial resistance publication-title: Sci. Total Environ. – volume: 49 start-page: 6772 year: 2015 end-page: 6782 ident: b0305 article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Tech. – volume: 9 start-page: 110 year: 1987 end-page: 119 ident: b0035 article-title: Hospital outbreak of multi-resistant acinetobacter anitratus: an airborne mode of spread? publication-title: J. Hosp. Infect. – year: 2022 ident: b0115 article-title: Drug resistant tuberculosis: implications for transmission, diagnosis, and disease management publication-title: Frontiers in Cellular and Infection Microbiology 12 – volume: 143 year: 2020 ident: b0150 article-title: Farm dust resistomes and bacterial microbiomes in European poultry and pig farms publication-title: Environ. Int. – volume: 6 start-page: 8452 year: 2015 ident: b0170 article-title: Limited dissemination of the wastewater treatment plant core resistome publication-title: Nat. Commun. – volume: 18 start-page: 43 year: 2015 end-page: 69 ident: b0200 article-title: Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: a systematic review of occupational and community studies publication-title: J. Toxicol. Environ. Health B Crit. Rev. – volume: 480 year: 2024 ident: b0265 article-title: Airborne antibiotics, antimicrobial resistance, and bacterial pathogens in a commercial composting facility: transmission and exposure risk publication-title: J. Hazard. Mater. – volume: 10 start-page: 19 year: 2022 ident: b0245 article-title: Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance, and environmental risks publication-title: Microbiome – volume: 465 year: 2024 ident: b0025 article-title: Comprehensive evaluation of antibiotics pollution the Yangtze River basin, China: emission, multimedia fate and risk assessment publication-title: J. Hazard. Mater. – volume: 477 start-page: 457 year: 2011 end-page: 461 ident: b0030 article-title: Antibiotic resistance is ancient publication-title: Nature – volume: 106 start-page: 62 year: 2016 end-page: 70 ident: b0290 article-title: Sludge bio-drying: effective to reduce both antibiotic resistance genes and mobile genetic elements publication-title: Water Res. – volume: 601–602 start-page: 1306 year: 2017 end-page: 1314 ident: b0160 article-title: A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants publication-title: Sci. Total Environ. – volume: 13 start-page: 1553 year: 2022 ident: b0310 article-title: Assessment of global health risk of antibiotic resistance genes publication-title: Nat. Commun. – volume: 637–638 start-page: 244 year: 2018 end-page: 252 ident: b0140 article-title: Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi'an, China publication-title: Science of the Total Environment s – volume: 399 start-page: 629 year: 2022 end-page: 655 ident: b0175 article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis publication-title: Lancet – volume: 51 start-page: 13061 year: 2017 end-page: 13069 ident: b0230 article-title: Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance publication-title: Environ. Sci. Tech. – volume: 249 year: 2024 ident: b0080 article-title: Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River publication-title: Water Res. – volume: 94 start-page: 79 year: 2018 ident: b0165 article-title: MetaCompare: a computational pipeline for prioritizing environmental resistome risk publication-title: FEMS Microbiol. Ecol. – volume: 172 year: 2023 ident: b0055 article-title: Airborne bacterial community and antibiotic resistome in the swine farming environment: metagenomic insights into livestock relevance, pathogen hosts and public risks publication-title: Environ. Int. – year: 2020 ident: b0075 article-title: Population genomics and antimicrobial resistance in Corynebacterium diphtheriae – volume: 18 year: 2024 ident: b0090 article-title: The atmosphere: a transport medium or an active microbial ecosystem? publication-title: Isme J – volume: 52 start-page: 266 year: 2018 end-page: 276 ident: b0110 article-title: Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and Mobile genetic elements in sewage sludge publication-title: Environ. Sci. Tech. – volume: 20 start-page: 257 year: 2019 ident: b0240 article-title: Improved metagenomic analysis with kraken 2 publication-title: Genome Biol. – volume: 10 year: 2019 ident: b0085 article-title: Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments publication-title: Nat. Commun. – volume: 9 start-page: 918 year: 2020 ident: b0225 article-title: Global trends in antimicrobial use in food animals from 2017 to 2030 publication-title: Antibiotics – volume: 22 start-page: 617 year: 2024 end-page: 635 ident: b0050 article-title: Drug-resistant tuberculosis: a persistent global health concern publication-title: Nat. Rev. Microbiol. – volume: 40 start-page: 1159 year: 2006 end-page: 1169 ident: b0220 article-title: Bioaerosol releases from compost facilities: evaluating passive and active source terms at a green waste facility for improved risk assessments publication-title: Atmos. Environ. – year: 2015 ident: 10.1016/j.envint.2025.109569_b0070 – volume: 3 start-page: e104 year: 2017 ident: 10.1016/j.envint.2025.109569_b0130 article-title: Bracken: estimating species abundance in metagenomics data publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.104 – volume: 51 start-page: 2159 year: 2021 ident: 10.1016/j.envint.2025.109569_b0315 article-title: Antibiotic resistome in the livestock and aquaculture industries: status and solutions publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1777815 – volume: 9 start-page: 918 year: 2020 ident: 10.1016/j.envint.2025.109569_b0225 article-title: Global trends in antimicrobial use in food animals from 2017 to 2030 publication-title: Antibiotics doi: 10.3390/antibiotics9120918 – volume: 172 year: 2023 ident: 10.1016/j.envint.2025.109569_b0055 article-title: Airborne bacterial community and antibiotic resistome in the swine farming environment: metagenomic insights into livestock relevance, pathogen hosts and public risks publication-title: Environ. Int. doi: 10.1016/j.envint.2023.107751 – volume: 10 start-page: 337 year: 2023 ident: 10.1016/j.envint.2025.109569_b0215 article-title: Fosfomycin resistance in bacteria isolated from companion animals (dogs and cats) publication-title: Veterinary Science doi: 10.3390/vetsci10050337 – volume: 20 start-page: 257 year: 2019 ident: 10.1016/j.envint.2025.109569_b0240 article-title: Improved metagenomic analysis with kraken 2 publication-title: Genome Biol. doi: 10.1186/s13059-019-1891-0 – volume: 47 start-page: 187 year: 2003 ident: 10.1016/j.envint.2025.109569_b0045 article-title: Bioaerosol health effects and exposure assessment: progress and prospects publication-title: Ann. Occup. Hyg. – volume: 32 start-page: 2346 year: 2016 ident: 10.1016/j.envint.2025.109569_b0280 article-title: ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw136 – volume: 6 start-page: 8452 year: 2015 ident: 10.1016/j.envint.2025.109569_b0170 article-title: Limited dissemination of the wastewater treatment plant core resistome publication-title: Nat. Commun. doi: 10.1038/ncomms9452 – volume: 94 start-page: 79 year: 2018 ident: 10.1016/j.envint.2025.109569_b0165 article-title: MetaCompare: a computational pipeline for prioritizing environmental resistome risk publication-title: FEMS Microbiol. Ecol. – volume: 161 year: 2022 ident: 10.1016/j.envint.2025.109569_b0275 article-title: Characteristics of airborne bacterial communities and antibiotic resistance genes under different air quality levels publication-title: Environ. Int. doi: 10.1016/j.envint.2022.107127 – volume: 477 start-page: 457 year: 2011 ident: 10.1016/j.envint.2025.109569_b0030 article-title: Antibiotic resistance is ancient publication-title: Nature doi: 10.1038/nature10388 – volume: 18 year: 2024 ident: 10.1016/j.envint.2025.109569_b0090 article-title: The atmosphere: a transport medium or an active microbial ecosystem? publication-title: Isme J doi: 10.1093/ismejo/wrae092 – volume: 4 start-page: 54 year: 2016 ident: 10.1016/j.envint.2025.109569_b0195 article-title: The structure and diversity of human, animal and environmental resistomes publication-title: Microbiome doi: 10.1186/s40168-016-0199-5 – volume: 480 year: 2024 ident: 10.1016/j.envint.2025.109569_b0265 article-title: Airborne antibiotics, antimicrobial resistance, and bacterial pathogens in a commercial composting facility: transmission and exposure risk publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2024.136226 – volume: 22 start-page: 617 year: 2024 ident: 10.1016/j.envint.2025.109569_b0050 article-title: Drug-resistant tuberculosis: a persistent global health concern publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-024-01025-1 – volume: 252 start-page: 1277 year: 2019 ident: 10.1016/j.envint.2025.109569_b0145 article-title: Synergistic effects of key parameters on the fate of antibiotic resistance genes during swine manure composting publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.06.073 – year: 2022 ident: 10.1016/j.envint.2025.109569_b0115 article-title: Drug resistant tuberculosis: implications for transmission, diagnosis, and disease management – volume: 308 year: 2022 ident: 10.1016/j.envint.2025.109569_b0135 article-title: Microbial community assembly and co-occurrence relationship in sediments of the river-dominated estuary and the adjacent shelf in the wet season publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.119572 – volume: 5 start-page: 4306 year: 2014 ident: 10.1016/j.envint.2025.109569_b0180 article-title: Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis publication-title: Nat. Commun. doi: 10.1038/ncomms5306 – volume: 399 start-page: 629 year: 2022 ident: 10.1016/j.envint.2025.109569_b0175 article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis publication-title: Lancet doi: 10.1016/S0140-6736(21)02724-0 – volume: 52 start-page: 266 year: 2018 ident: 10.1016/j.envint.2025.109569_b0110 article-title: Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and Mobile genetic elements in sewage sludge publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.7b04483 – volume: 24 start-page: 3111 year: 2024 ident: 10.1016/j.envint.2025.109569_b0270 article-title: global, regional, and national burden of tuberculosis and attributable risk factors for 204 countries and territories, 1990-2021: a systematic analysis for the global burden of diseases 2021 study publication-title: BMC public health doi: 10.1186/s12889-024-20664-w – volume: 14 start-page: 927 year: 2003 ident: 10.1016/j.envint.2025.109569_b0040 article-title: VEGAN, a package of R functions for community ecology publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2003.tb02228.x – year: 2020 ident: 10.1016/j.envint.2025.109569_b0075 – volume: 131 year: 2019 ident: 10.1016/j.envint.2025.109569_b0205 article-title: State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105026 – volume: 116 start-page: 229 year: 2018 ident: 10.1016/j.envint.2025.109569_b0065 article-title: The abundance and diversity of antibiotic resistance genes in the atmospheric environment of composting plants publication-title: Environ. Int. doi: 10.1016/j.envint.2018.04.028 – volume: 8 start-page: 268 year: 2020 ident: 10.1016/j.envint.2025.109569_b0320 article-title: Effects of composting different types of organic fertilizer on the microbial community structure and antibiotic resistance genes publication-title: Microorganisms doi: 10.3390/microorganisms8020268 – volume: 174 year: 2023 ident: 10.1016/j.envint.2025.109569_b0010 article-title: Emergent crisis of antibiotic resistance: a silent pandemic threat to 21st century publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2022.105923 – volume: 190 year: 2024 ident: 10.1016/j.envint.2025.109569_b0100 article-title: Beyond water and soil: air emerges as a major reservoir of human pathogens publication-title: Environ. Int. doi: 10.1016/j.envint.2024.108869 – volume: 213 start-page: 463 year: 2018 ident: 10.1016/j.envint.2025.109569_b0285 article-title: Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.09.066 – volume: 10 start-page: 19 year: 2022 ident: 10.1016/j.envint.2025.109569_b0245 article-title: Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance, and environmental risks publication-title: Microbiome doi: 10.1186/s40168-021-01197-5 – volume: 11 start-page: 1144 year: 2014 ident: 10.1016/j.envint.2025.109569_b0005 article-title: Binning metagenomic contigs by coverage and composition publication-title: Nat. Methods doi: 10.1038/nmeth.3103 – volume: 11 start-page: 2864 year: 2017 ident: 10.1016/j.envint.2025.109569_b0190 article-title: dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication publication-title: ISME J. doi: 10.1038/ismej.2017.126 – year: 2014 ident: 10.1016/j.envint.2025.109569_b0185 – volume: 102 start-page: 3 year: 2016 ident: 10.1016/j.envint.2025.109569_b0095 article-title: MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices publication-title: Methods doi: 10.1016/j.ymeth.2016.02.020 – volume: 897 year: 2023 ident: 10.1016/j.envint.2025.109569_b0125 article-title: Comparison of bioaerosol release characteristics between windrow and trough sludge composting plants: concentration distribution, community evolution, bioaerosolization behaviour, and exposure risk publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.164925 – volume: 56 start-page: 7040 year: 2022 ident: 10.1016/j.envint.2025.109569_b0255 article-title: Inhalable antibiotic resistome from wastewater treatment plants to urban areas: bacterial hosts, dissemination risks, and source contributions publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.1c07023 – volume: 220 start-page: 1342 year: 2017 ident: 10.1016/j.envint.2025.109569_b0060 article-title: Size-related bacterial diversity and tetracycline resistance gene abundance in the air of concentrated poultry feeding operations publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.10.101 – volume: 465 year: 2024 ident: 10.1016/j.envint.2025.109569_b0025 article-title: Comprehensive evaluation of antibiotics pollution the Yangtze River basin, China: emission, multimedia fate and risk assessment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.133247 – volume: 851 year: 2022 ident: 10.1016/j.envint.2025.109569_b0260 article-title: Animal farms are hot spots for airborne antimicrobial resistance publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.158050 – volume: 18 start-page: 43 year: 2015 ident: 10.1016/j.envint.2025.109569_b0200 article-title: Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: a systematic review of occupational and community studies publication-title: J. Toxicol. Environ. Health B Crit. Rev. doi: 10.1080/10937404.2015.1009961 – volume: 601–602 start-page: 1306 year: 2017 ident: 10.1016/j.envint.2025.109569_b0160 article-title: A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.235 – volume: 57 start-page: 19965 year: 2023 ident: 10.1016/j.envint.2025.109569_b0295 article-title: Pathogenic bacteria are the primary determinants shaping PM2.5-borne resistomes in the municipal food waste treatment system publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.3c04681 – volume: 9 start-page: 110 year: 1987 ident: 10.1016/j.envint.2025.109569_b0035 article-title: Hospital outbreak of multi-resistant acinetobacter anitratus: an airborne mode of spread? publication-title: J. Hosp. Infect. doi: 10.1016/0195-6701(87)90048-X – volume: 106 start-page: 62 year: 2016 ident: 10.1016/j.envint.2025.109569_b0290 article-title: Sludge bio-drying: effective to reduce both antibiotic resistance genes and mobile genetic elements publication-title: Water Res. doi: 10.1016/j.watres.2016.09.055 – volume: 12 start-page: 59 year: 2015 ident: 10.1016/j.envint.2025.109569_b0015 article-title: Fast and sensitive protein alignment using DIAMOND publication-title: Nat. Methods doi: 10.1038/nmeth.3176 – volume: 249 year: 2024 ident: 10.1016/j.envint.2025.109569_b0080 article-title: Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River publication-title: Water Res. doi: 10.1016/j.watres.2023.120911 – volume: 49 start-page: 6772 year: 2015 ident: 10.1016/j.envint.2025.109569_b0305 article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.5b00729 – volume: 481 year: 2025 ident: 10.1016/j.envint.2025.109569_b0155 article-title: Bioaerosol emission characteristics and potential risks during composting: focus on pathogens and antimicrobial resistance publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2024.136466 – volume: 110 start-page: 160 year: 2018 ident: 10.1016/j.envint.2025.109569_b0210 article-title: Review of antibiotic resistance in China and its environment publication-title: Environ. Int. doi: 10.1016/j.envint.2017.10.016 – volume: 51 start-page: 13061 year: 2017 ident: 10.1016/j.envint.2025.109569_b0230 article-title: Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.7b03623 – volume: 14 start-page: 1463 year: 2020 ident: 10.1016/j.envint.2025.109569_b0120 article-title: Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship publication-title: ISME J. doi: 10.1038/s41396-020-0621-7 – volume: 13 start-page: 1553 year: 2022 ident: 10.1016/j.envint.2025.109569_b0310 article-title: Assessment of global health risk of antibiotic resistance genes publication-title: Nat. Commun. doi: 10.1038/s41467-022-29283-8 – volume: 637–638 start-page: 244 year: 2018 ident: 10.1016/j.envint.2025.109569_b0140 article-title: Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi'an, China publication-title: Science of the Total Environment s doi: 10.1016/j.scitotenv.2018.05.006 – volume: 136 year: 2020 ident: 10.1016/j.envint.2025.109569_b0300 article-title: Variation of antibiotic resistome during commercial livestock manure composting publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105458 – volume: 143 year: 2020 ident: 10.1016/j.envint.2025.109569_b0150 article-title: Farm dust resistomes and bacterial microbiomes in European poultry and pig farms publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105971 – volume: 10 year: 2019 ident: 10.1016/j.envint.2025.109569_b0085 article-title: Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments publication-title: Nat. Commun. doi: 10.1038/s41467-018-07992-3 – volume: 2 start-page: 26 year: 2014 ident: 10.1016/j.envint.2025.109569_b0250 article-title: MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm publication-title: Microbiome doi: 10.1186/2049-2618-2-26 – volume: 40 start-page: 1159 year: 2006 ident: 10.1016/j.envint.2025.109569_b0220 article-title: Bioaerosol releases from compost facilities: evaluating passive and active source terms at a green waste facility for improved risk assessments publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2005.11.010 – volume: 36 start-page: 1925 year: 2020 ident: 10.1016/j.envint.2025.109569_b0020 article-title: GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz848 – volume: 4 start-page: 42 year: 2014 ident: 10.1016/j.envint.2025.109569_b0235 article-title: Bioaerosols from composting facilities–a review publication-title: Front. Cell. Infect. Microbiol. |
SSID | ssj0002485 |
Score | 2.477054 |
Snippet | [Display omitted]
•The first airborne HPARB in a composting facility were profiled.•Enhanced airborne HPARB carried increasing ARGs and VFGs than those in... The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 109569 |
SubjectTerms | Air Microbiology Airborne antimicrobial resistance Bacteria - genetics Composting Composting facility Drug Resistance, Bacterial - genetics Drug Resistance, Microbial - genetics Enrichment Human-pathogenic antibiotic-resistant bacteria Humans Metagenome-assembled genomes Metagenomics Microbiota Virulence Factors - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwEB2hnooQgoXCUoqMxNUim9hxfCyoVVWpnKjUm-U4YxGkZlGT_QZ-mxk7KcsB9dKr4ySjzDjzJnnzDPApMLUihEIaa4JU6JX0NFM2XV10tkUbPTcKX32rL67V5Y2-2dvqizlhWR44P7jPhhLupm1L79ugDLdtdoHq9NjUVBnUbeC3L-W8pZia38Es1JVVvQupNmWxNM0lZhe3kA3Moyw1qylpJjvvJaWk3f9Pbvof9kw56PwFPJ_BozjNRr-EJzis4OmepOAKjs7-dq7R1Hnpjit4lj_Qidx39Ap-X-HkWaH1lgb9LE0iOgw9Cw2Mwvd3FB4DCt6zeEsTR8HfbAUOPxJpgM6Z-ts-6TjRjahqZyRKR-hAJ8iGXWpnEvOGPqIfBNPXtyPzrHmUSblUpr-G6_Oz718v5Lwrgwy0vidpNqiwjqgKFWNlUbclgZqgO1Wjt-QljATYbd2V2lMFvIlYNQ1SlcVYM8SmOoKDYTvgWxDBmgptUNaXlepCwiZFExvTahsrE9YgF7e4X1l8wy2stJ8uu9GxG1124xq-sO_u57J0dhqggHJzQLmHAmoNZvG8m1FIRhd0qf6B239cAsXRIuU_L37A7W50VUmwV1NlW6zhTY6geyMV63Uard89hvHHcMgGZT7xeziY7nZ4Qqhpaj-kBfIH7ooXCA priority: 102 providerName: Directory of Open Access Journals |
Title | Metagenomic analysis deciphers airborne pathogens with enhanced antimicrobial resistance and virulence factors in composting facilities |
URI | https://dx.doi.org/10.1016/j.envint.2025.109569 https://www.ncbi.nlm.nih.gov/pubmed/40472755 https://www.proquest.com/docview/3216359980 https://doaj.org/article/75151bb2aabc477890dc390f864016bc |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcgEhBAuFhbIyEtew2cSO42OpWm1B7QUq9WY5zhhSqUm1yV658reZsZN-HFClHteZXVs7Y_uN8-aZsc-OqBXOpYnSyiUCrEgsWiZlXaS1rkB7S4XCp2fF-lx8u5AXO-xwqoUhWuW49sc1PazWY8ty_DeX102z_EHaaGKV0SZOt4CTJqgQiqL8y59bmgdJdkV97zQh66l8LnC8qJisJUZlJklXSRLt-c72FFT87-1S_0OhYTc6fslejDCSH8SRvmI70M7YszvigjO2d3Rbw4am4yTuZ-x5PKrjsQLpNft7CoMlrdYrbLSjSAmvwTUkOdBz22wwUFrgdHtxh4Y9p9NbDu3vQB_A7wzNVRMUnbAjzN8Jk-ITfFBzHMM2FDbx8Wof3rSciOxdT4xraiV6Libsb9j58dHPw3Uy3s-QOJzpQ6JWIKDwIFLhfa5BVhnCGydrUYDVtnLgEbrros6kxVx45SEvS8B8i1Cn82W-x3bbroV3jDutctBOaJvlonYBpaSlL1Ultc-Vm7Nkcou5jjIcZuKnXZroRkNuNNGNc_aVfHdjSyLaoaHb_DJjFBmFWG5VVZnFoQpFFcG1y3XqywKTzqLCTtXkeXMvJvGnmge6_zQFisHpSu9gbAvdtjd5hgBYYo6bztnbGEE3gxSk3KmkfP_ofj-wp_Qp0on32e6w2cJHBE1DtQizYsGeHJx8X58twtHDP7x2GvQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QEQQrBQWD6NxDXabGLH8bFUrba0uxdaqTfLcWwIUpNqk_0N_dudiZOlPSAkrrYTW5mx_cZ58wzw1RK1wto4kkraiDvDI4Mto7zM4lIVTnlDicKrdba85N-vxNUeHI25MESrHNb-sKb3q_VQMh--5vymquY_SBuNLxLaxOkWcP4I9kmdSkxg__D0bLneLcik2hUkvuOIHhgz6HqaF-WT1USqTARJKwliPt_boXoh_wcb1d-AaL8hnbyA5wOSZIdhsC9hz9VTeHpPX3AKB8d_0tiw6TCP2yk8C6d1LCQhvYLblesMybVeY6EZdEpY6WxFqgMtM9UGfaV2jC4wbrBhy-gAl7n6V88gwGe66rrqRZ2wIwzhCZZiDVaUDMew7XOb2HC7D6tqRlz2piXSNZUSQxdj9tdweXJ8cbSMhisaIouTvYvkwnGXecdj7n2qnCgSRDhWlDxzRpnCOo_oXWVlIgyGwwvv0jx3GHIR8LQ-Tw9gUje1ewvMKpk6ZbkyScpL2wOVOPe5LITyqbQziEaz6JugxKFHitpvHcyoyYw6mHEG38h2u7ako90XNJufenAkLRHOLYoiMThULikpuLSpin2eYdyZFdipHC2vH7glvqr6R_dfRkfROGPpN4ypXbNtdZogBhYY5sYzeBM8aDdITuKdUoh3_93vZ3i8vFid6_PT9dl7eEI1gV38ASbdZus-Iobqik_DHLkDsK8csA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metagenomic+analysis+deciphers+airborne+pathogens+with+enhanced+antimicrobial+resistance+and+virulence+factors+in+composting+facilities&rft.jtitle=Environment+international&rft.au=Chen%2C+Mo&rft.au=Xing%2C+Lijun&rft.au=Gao%2C+Shanshan&rft.au=Guo%2C+Yajie&rft.date=2025-07-01&rft.eissn=1873-6750&rft.volume=201&rft.spage=109569&rft_id=info:doi/10.1016%2Fj.envint.2025.109569&rft_id=info%3Apmid%2F40472755&rft.externalDocID=40472755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon |