Electropolymerized Dopamine Film-Modified Optical Fiber LMR Biosensor for Immunoassay
In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions for antibody incubation. In this work, we designed optical fiber biosensors by electrochemical polymerization to enable low detection limit (LO...
Saved in:
Published in | Photonic sensors (Berlin) Vol. 15; no. 1; pp. 250133 - 15 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.03.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions for antibody incubation. In this work, we designed optical fiber biosensors by electrochemical polymerization to enable low detection limit (LOD) immunoassay. Based on the optical fiber lossy mode resonance (OF-LMR) achieved by In
2
O
3
-SnO
2
-90/10 wt% (ITO), we have simultaneously implemented the electropolymerized dopamine (ePDA) film on the ITO-coated fiber via the electrochemical method, utilizing the excellent electrical conductivity of ITO. After that, the immunoglobulin G (IgG) antibody layer was immobilized on the entire sensing region with the assistance of the ePDA film. The results of immunoassay were analyzed by recording the shift of the LMR resonance wavelength to verify the sensor performance. The LOD was evaluated as the lowest concentration of human IgG detected by the OF-LMR sensor, which was confirmed to be 4.20 ng·mL
−1
. Furthermore, the sensor achieved selective detection for specific antigens and exhibited a good recovery capability in chicken serum samples. The developed scheme provides a feasible opportunity to enhance the intersection of electrochemistry and optics subjects and also offers a new promising solution to achieve the immunoassay. |
---|---|
AbstractList | In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions for antibody incubation. In this work, we designed optical fiber biosensors by electrochemical polymerization to enable low detection limit (LOD) immunoassay. Based on the optical fiber lossy mode resonance (OF-LMR) achieved by In
2
O
3
-SnO
2
-90/10 wt% (ITO), we have simultaneously implemented the electropolymerized dopamine (ePDA) film on the ITO-coated fiber via the electrochemical method, utilizing the excellent electrical conductivity of ITO. After that, the immunoglobulin G (IgG) antibody layer was immobilized on the entire sensing region with the assistance of the ePDA film. The results of immunoassay were analyzed by recording the shift of the LMR resonance wavelength to verify the sensor performance. The LOD was evaluated as the lowest concentration of human IgG detected by the OF-LMR sensor, which was confirmed to be 4.20 ng·mL
−1
. Furthermore, the sensor achieved selective detection for specific antigens and exhibited a good recovery capability in chicken serum samples. The developed scheme provides a feasible opportunity to enhance the intersection of electrochemistry and optics subjects and also offers a new promising solution to achieve the immunoassay. Abstract In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions for antibody incubation. In this work, we designed optical fiber biosensors by electrochemical polymerization to enable low detection limit (LOD) immunoassay. Based on the optical fiber lossy mode resonance (OF-LMR) achieved by In2O3-SnO2-90/10 wt% (ITO), we have simultaneously implemented the electropolymerized dopamine (ePDA) film on the ITO-coated fiber via the electrochemical method, utilizing the excellent electrical conductivity of ITO. After that, the immunoglobulin G (IgG) antibody layer was immobilized on the entire sensing region with the assistance of the ePDA film. The results of immunoassay were analyzed by recording the shift of the LMR resonance wavelength to verify the sensor performance. The LOD was evaluated as the lowest concentration of human IgG detected by the OF-LMR sensor, which was confirmed to be 4.20 ng·mL−1. Furthermore, the sensor achieved selective detection for specific antigens and exhibited a good recovery capability in chicken serum samples. The developed scheme provides a feasible opportunity to enhance the intersection of electrochemistry and optics subjects and also offers a new promising solution to achieve the immunoassay. In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions for antibody incubation. In this work, we designed optical fiber biosensors by electrochemical polymerization to enable low detection limit (LOD) immunoassay. Based on the optical fiber lossy mode resonance (OF-LMR) achieved by In2O3-SnO2-90/10 wt% (ITO), we have simultaneously implemented the electropolymerized dopamine (ePDA) film on the ITO-coated fiber via the electrochemical method, utilizing the excellent electrical conductivity of ITO. After that, the immunoglobulin G (IgG) antibody layer was immobilized on the entire sensing region with the assistance of the ePDA film. The results of immunoassay were analyzed by recording the shift of the LMR resonance wavelength to verify the sensor performance. The LOD was evaluated as the lowest concentration of human IgG detected by the OF-LMR sensor, which was confirmed to be 4.20 ng·mL−1. Furthermore, the sensor achieved selective detection for specific antigens and exhibited a good recovery capability in chicken serum samples. The developed scheme provides a feasible opportunity to enhance the intersection of electrochemistry and optics subjects and also offers a new promising solution to achieve the immunoassay. |
ArticleNumber | 250133 |
Author | Li, Yongle Li, Zhiyuan Dai, Xiaoshuang Xu, Tianhua Liu, Tiegen Jiang, Junfeng Wang, Shuang Tan, Ke Liu, Hongyu |
Author_xml | – sequence: 1 givenname: Xiaoshuang surname: Dai fullname: Dai, Xiaoshuang organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University – sequence: 2 givenname: Shuang surname: Wang fullname: Wang, Shuang email: shuangwang@tju.edu.cn organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University – sequence: 3 givenname: Yongle surname: Li fullname: Li, Yongle email: liyongle@aliyun.com organization: Department of Cardiology, Tianjin Medical University General Hospital, Tianjin Medical University – sequence: 4 givenname: Junfeng surname: Jiang fullname: Jiang, Junfeng organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University – sequence: 5 givenname: Ke surname: Tan fullname: Tan, Ke organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University – sequence: 6 givenname: Hongyu surname: Liu fullname: Liu, Hongyu organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University – sequence: 7 givenname: Zhiyuan surname: Li fullname: Li, Zhiyuan organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University – sequence: 8 givenname: Tianhua surname: Xu fullname: Xu, Tianhua organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, School of Engineering, University of Warwick – sequence: 9 givenname: Tiegen surname: Liu fullname: Liu, Tiegen organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University |
BookMark | eNp9UU1r3DAUFCWBbtP8gN4MPat5-rKsY5smzcKGQGnOQl8OCrblSt7D9tdXjlsKhfbweDDMDPPevEFnU5oCQu8IfCAA8qoQxihgoByDJBzzV2hHiQIsOVNnaEdaybGigrxGl6VEW4mgOJFyhx5vhuCWnOY0nMaQ44_gm89pNmOcQnMbhxHfJx_7WOGHeYnODBW1ITeH-6_Np5hKmErKTV9nP47HKZlSzOktOu_NUMLlr32BHm9vvl3f4cPDl_31xwN2nIoFt-AltMQrZ6x14L3v-9aCUJSKXgATVgUhjfQdrQTmuQcaWA8dVKhewC7QfvP1yTzrOcfR5JNOJuoXIOUnbXJNPQRNqedWSAVSMN513ErjHFdgQNnei9Xr_eY15_T9GMqin9MxTzW-ZvW_XasoWVlyY7mcSsmh1y4uZolpWrKJgyag10r0Vomun9ZrJXpVkr-Uv_P-T0M3Tanc6SnkP5n-LfoJlGye5A |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2025_112731 |
Cites_doi | 10.1039/D2AN00043A 10.1002/lpor.202200554 10.1103/PhysRevLett.95.018101 10.1016/j.talanta.2022.123599 10.1364/PRJ.439861 10.3390/bios13010064 10.1016/j.bios.2023.115078 10.1364/OL.402177 10.1016/j.snb.2014.05.065 10.1109/ACCESS.2021.3106343 10.1364/OE.25.010743 10.1016/j.apsusc.2019.03.015 10.1016/j.snb.2020.129094 10.1016/j.bios.2005.05.017 10.1016/j.snb.2012.07.039 10.1109/JSEN.2020.2964262 10.1021/acs.analchem.2c02797 10.1016/j.bios.2020.112050 10.1016/j.bios.2022.114238 10.1016/j.electacta.2022.139869 10.1016/j.bios.2023.115184 10.1016/j.talanta.2007.06.042 10.1016/j.bios.2017.10.029 10.1016/j.snb.2010.12.037 10.1002/advs.202207437 10.1016/j.talanta.2022.123496 10.1016/j.snb.2022.132501 10.1002/pat.5970 10.1039/D0TA12624A 10.1016/j.bios.2022.114980 10.1016/j.snb.2018.10.059 10.1016/S0925-8388(02)00217-7 10.1109/JLT.2009.2036580 10.1016/j.bios.2016.09.020 10.1016/j.jfca.2022.104825 10.1364/OE.466170 10.1016/j.tsf.2005.10.048 10.1016/j.bios.2015.06.080 10.1016/j.sna.2020.112022 10.1021/acssensors.7b00918 10.1039/C6TC02149B 10.1109/JLT.2020.3027769 10.1016/j.bios.2019.111505 10.3390/nano11082137 10.1016/j.snb.2016.08.126 10.1515/nanoph-2022-0571 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/s13320-024-0714-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2190-7439 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_22d4b57907534884b7acc490a09bfd54 10_1007_s13320_024_0714_4 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 2VQ 4.4 40G 5VS 8FE 8FG AAFWJ AAKKN AAYZH ABEEZ ACACY ACGFS ACULB ADBBV ADDVE ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS BAPOH BCNDV BENPR BGLVJ C24 C6C CCPQU EBS EJD GROUPED_DOAJ H13 HCIFZ HF~ HZ~ IAO ITC KQ8 O9- OK1 P62 PIMPY PROAC RIG RSV SCL SOJ SPH U2A WK8 XT3 AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c425t-60d7061d9cabbc0dddff6b059225f5035b9e57a7d82abb3d4d02e3f0807d80943 |
IEDL.DBID | BENPR |
ISSN | 1674-9251 |
IngestDate | Wed Aug 27 01:33:02 EDT 2025 Fri Jul 25 23:32:31 EDT 2025 Tue Jul 01 01:28:36 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Fri Feb 21 02:38:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | lossy mode resonance Optical fiber biosensor electropolymerized dopamine ITO surface functionalization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-60d7061d9cabbc0dddff6b059225f5035b9e57a7d82abb3d4d02e3f0807d80943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3133869214?pq-origsite=%requestingapplication% |
PQID | 3133869214 |
PQPubID | 2034677 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_22d4b57907534884b7acc490a09bfd54 proquest_journals_3133869214 crossref_citationtrail_10_1007_s13320_024_0714_4 crossref_primary_10_1007_s13320_024_0714_4 springer_journals_10_1007_s13320_024_0714_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Photonic sensors (Berlin) |
PublicationTitleAbbrev | Photonic Sens |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Chang, Liu, Jiang, Xu, Zhang, Ma (CR17) 2020; 309 Villar, Arregui, Zamarreno, Corres, Bariain, Goicoechea (CR19) 2017; 240 Almeida, Correia, Marta, Squillaci, Morana, Cara (CR33) 2019; 480 Sanchez, Zamarreno, Hernaez, Matias, Arregui (CR30) 2014; 202 Shi, Wang, Wang, Huang, Ding, Su (CR44) 2016; 4 Liu, Sun, Guo, Liu, Liu, Meng (CR45) 2021; 9 Fuentes, Vaiano, Villar, Quero, Corres, Consales (CR22) 2020; 45 Li, Liu, Xiang, Xie, Yao (CR39) 2006; 497 Sharma, Shrivastav, Gupta (CR20) 2020; 20 Zhang, Zhang, Zhao, Li, Xu, Tong (CR29) 2022; 30 Li, Zhang, Bi, Olivo (CR1) 2022; 13 Kuswandi, Fikriyah, Gani (CR9) 2008; 74 Heidarnia, Parvizi, Khoshsima, Heidari (CR27) 2022; 371 Soyut, Kolcu, Kaya, Yasar (CR34) 2023; 34 Ko, Grant (CR8) 2006; 21 Usha, Gupta (CR31) 2018; 101 Shi, Wang, Su, Liu, Huang, Qi (CR32) 2015; 74 Nanjunda, Seshadri, Krishnan, Rath, Arunagiri, Bao (CR2) 2022; 11 Hu, Cao, Li, Liang, Luo, Feng (CR36) 2022; 94 Niu, Jiang, Liu, Wang, Jing, Xu (CR3) 2022; 208 Jing, Liu, Jiang, Xu, Wang, Ma (CR18) 2021; 11 Dong, Sang, Wang, Xu, Yu, Liu (CR47) 2020; 39 Zubiate, Zamarreno, Sanchez, Matias, Arregui (CR25) 2017; 93 Zhao, Wang (CR12) 2023; 17 Jing, Liu, Jiang, Xu, Wang, Ma (CR16) 2022; 10 Yang, Zhao, Zhang, Ma, Wang, Song (CR43) 2022; 246 Brewer, Franzen (CR38) 2002; 338 Hua, Ding, Liu, Guo, Pan, Zhang (CR6) 2023; 228 Kim, Uh, Jeong, Lee, Park, Lee (CR7) 2019; 280 Socorro, Corres, Del Villar, Arregui, Matias (CR13) 2012; 174 Lu, Zhu, Lin, Wang, Hong, Masson (CR46) 2021; 329 Chiavaioli, Zubiate, Villar, Zamarreno, Giannetti, Tombelli (CR26) 2018; 3 Jing, Liu, Jiang, Xu, Xiao, Zhan (CR41) 2023; 10 Razansky, Einziger, Adam (CR14) 2005; 95 Dezhakam, Khalilzadeh, Mahdipour, Isildak, Yousefi, Ahmadi (CR5) 2023; 222 Yi, Zhou, Ren, Hu, Long, Zhu (CR11) 2022; 147 Villar, Zamarreno, Hernaez, Arregui, Matias (CR15) 2009; 28 You, Park, Lee, Jang, Park, Na (CR35) 2023; 224 Smietana, Koba, Sezemsky, Szot-Karpinska, Burnat, Stranak (CR24) 2020; 154 Del, Zamarreño, Hernaez, Arregui, Matias (CR42) 2010; 28 Zamarreño, Hernáez, Villar, Matías, Arregui (CR21) 2011; 155 Li, Zhang, Zheng, Li, Zhao (CR10) 2022; 247 Villar, Zubiate, Zamarreno, Arregui, Matias (CR23) 2017; 25 Moloudi, Rahmanifar, Noori, Chang, Kaner, Mousavi (CR40) 2021; 9 Zhao, Tong, Xia, Peng (CR4) 2019; 142 Verma (CR28) 2022; 114 Wang, Wang, Zhang, Wang, Zhang, Li (CR37) 2022; 407 P Hua (714_CR6) 2023; 228 S Sharma (714_CR20) 2020; 20 J Jing (714_CR18) 2021; 11 I D Villar (714_CR23) 2017; 25 I D Villar (714_CR19) 2017; 240 Y Li (714_CR39) 2006; 497 L Li (714_CR10) 2022; 247 S H Brewer (714_CR38) 2002; 338 S P Usha (714_CR31) 2018; 101 M Smietana (714_CR24) 2020; 154 S B Nanjunda (714_CR2) 2022; 11 O Fuentes (714_CR22) 2020; 45 S Shi (714_CR32) 2015; 74 Q Wang (714_CR37) 2022; 407 A B Socorro (714_CR13) 2012; 174 B Kuswandi (714_CR9) 2008; 74 H Yang (714_CR43) 2022; 246 J Jing (714_CR16) 2022; 10 H Liu (714_CR45) 2021; 9 J Jing (714_CR41) 2023; 10 B Li (714_CR1) 2022; 13 S Ko (714_CR8) 2006; 21 W M Zhao (714_CR12) 2023; 17 M Moloudi (714_CR40) 2021; 9 M Lu (714_CR46) 2021; 329 H Soyut (714_CR34) 2023; 34 C R Zamarreño (714_CR21) 2011; 155 P Niu (714_CR3) 2022; 208 Z Heidarnia (714_CR27) 2022; 371 Z Yi (714_CR11) 2022; 147 P Zubiate (714_CR25) 2017; 93 E Dezhakam (714_CR5) 2023; 222 L C Almeida (714_CR33) 2019; 480 V I Del (714_CR42) 2010; 28 F Chiavaioli (714_CR26) 2018; 3 I D Villar (714_CR15) 2009; 28 J You (714_CR35) 2023; 224 Y Zhang (714_CR29) 2022; 30 Q Hu (714_CR36) 2022; 94 R K Verma (714_CR28) 2022; 114 P Sanchez (714_CR30) 2014; 202 Y Zhao (714_CR4) 2019; 142 D Razansky (714_CR14) 2005; 95 P Chang (714_CR17) 2020; 309 J Dong (714_CR47) 2020; 39 S Shi (714_CR44) 2016; 4 H M Kim (714_CR7) 2019; 280 |
References_xml | – volume: 147 start-page: 1467 issue: 7 year: 2022 end-page: 1477 ident: CR11 article-title: A novel sensitive DNAzyme-based optical fiber evanescent wave biosensor for rapid detection of Pb in human serum publication-title: Analyst doi: 10.1039/D2AN00043A – volume: 17 start-page: 2200554 issue: 1 year: 2023 ident: CR12 article-title: Analytical solutions to fundamental questions for lossy mode resonance publication-title: Laser & Photonics Reviews doi: 10.1002/lpor.202200554 – volume: 95 start-page: 018101 issue: 1 year: 2005 ident: CR14 article-title: Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.95.018101 – volume: 247 start-page: 123599 year: 2022 ident: CR10 article-title: Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection publication-title: Talanta doi: 10.1016/j.talanta.2022.123599 – volume: 10 start-page: 126 issue: 1 year: 2022 end-page: 147 ident: CR16 article-title: Performance improvement approaches for optical fiber SPR sensors and their sensing applications publication-title: Photonics Research doi: 10.1364/PRJ.439861 – volume: 13 start-page: 64 issue: 1 year: 2022 ident: CR1 article-title: Applications of optical fiber in label-free biosensors and bioimaging: a review publication-title: Biosensors doi: 10.3390/bios13010064 – volume: 224 start-page: 115078 year: 2023 ident: CR35 article-title: Sensitive and selective DNA detecting electrochemical sensor via double cleaving CRISPR Cas12a and dual polymerization on hyperbranched rolling circle amplification publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2023.115078 – volume: 45 start-page: 4738 issue: 17 year: 2020 end-page: 4741 ident: CR22 article-title: Improving the width of lossy mode resonances in a reflection configuration D-shaped fiber by nanocoating laser ablation publication-title: Optics Letters doi: 10.1364/OL.402177 – volume: 28 start-page: 3351 issue: 23 year: 2010 end-page: 3357 ident: CR42 article-title: Generation of lossy mode resonances with absorbing thin-films publication-title: Journal of Lightwave Technology – volume: 202 start-page: 154 year: 2014 end-page: 159 ident: CR30 article-title: Optical fiber refractometers based on lossy mode resonances by means of SnO sputtered coatings publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2014.05.065 – volume: 9 start-page: 116286 year: 2021 end-page: 116293 ident: CR45 article-title: Temperature-insensitive label-free sensors for human IgG based on S-tapered optical fiber sensors publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3106343 – volume: 25 start-page: 10743 issue: 10 year: 2017 end-page: 10756 ident: CR23 article-title: Optimization in nanocoated D-shaped optical fiber sensors publication-title: Optics Express doi: 10.1364/OE.25.010743 – volume: 480 start-page: 979 year: 2019 end-page: 989 ident: CR33 article-title: Electrosynthesis of polydopamine films-tailored matrices for laccase-based biosensors publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2019.03.015 – volume: 329 start-page: 129094 year: 2021 ident: CR46 article-title: Comparative study of block copolymer-templated localized surface plasmon resonance optical fiber biosensors: CTAB or citrate-stabilized gold nanorods publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2020.129094 – volume: 21 start-page: 1283 year: 2006 end-page: 1290 ident: CR8 article-title: A novel FRET-based optical fiber biosensor for rapid detection of salmonella typhimurium publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2005.05.017 – volume: 174 start-page: 263 year: 2012 end-page: 269 ident: CR13 article-title: Fiber-optic biosensor based on lossy mode resonances publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2012.07.039 – volume: 20 start-page: 4251 issue: 8 year: 2020 end-page: 4259 ident: CR20 article-title: Lossy mode resonance based fiber optic creatinine sensor fabricated using molecular imprinting over nanocomposite of MoS /SnO publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2020.2964262 – volume: 94 start-page: 13516 issue: 39 year: 2022 end-page: 13521 ident: CR36 article-title: Electrochemically controlled atom transfer radical polymerization for electrochemical aptasensing of tumor biomarkers publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.2c02797 – volume: 154 start-page: 112050 year: 2020 ident: CR24 article-title: Simultaneous optical and electrochemical label-free biosensing with ITO-coated lossy-mode resonance sensor publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2020.112050 – volume: 208 start-page: 114238 year: 2022 ident: CR3 article-title: Fiber-integrated WGM optofluidic chip enhanced by microwave photonic analyzer for cardiac biomarker detection with ultra-high resolution publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2022.114238 – volume: 407 start-page: 139869 year: 2022 ident: CR37 article-title: Electrochemical polymerization of polypyrrole on carbon cloth@ZIF67 using alizarin red S as redox dopant for flexible supercapacitors publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2022.139869 – volume: 228 start-page: 115184 year: 2023 ident: CR6 article-title: Distributed optical fiber biosensor based on optical frequency domain reflectometry publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2023.115184 – volume: 74 start-page: 613 issue: 4 year: 2008 end-page: 618 ident: CR9 article-title: An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue publication-title: Talanta doi: 10.1016/j.talanta.2007.06.042 – volume: 101 start-page: 135 year: 2018 end-page: 145 ident: CR31 article-title: Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS and molecular imprinted polymer on optical fiber based lossy mode resonance sensor publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2017.10.029 – volume: 155 start-page: 290 issue: 1 year: 2011 end-page: 297 ident: CR21 article-title: Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2010.12.037 – volume: 10 start-page: 2207437 issue: 15 year: 2023 ident: CR41 article-title: Optimally configured optical fiber near-field enhanced plasmonic resonance immunoprobe for the detection of alpha-fetoprotein publication-title: Advanced Science doi: 10.1002/advs.202207437 – volume: 246 start-page: 123496 year: 2022 ident: CR43 article-title: Biotin-streptavidin sandwich integrated PDA-ZnO@Au nanocomposite based SPR sensor for hIgG detection publication-title: Talanta doi: 10.1016/j.talanta.2022.123496 – volume: 371 start-page: 132501 year: 2022 ident: CR27 article-title: Distinct absorption transducing features of silica supported MoO /PANI hybrid coated optical fiber towards Malathion monitoring in food samples publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2022.132501 – volume: 34 start-page: 1293 issue: 4 year: 2023 end-page: 1306 ident: CR34 article-title: Influence of the enzymatic and the chemical oxidative polymerization of trifluoromethyl-substituted aromatic diamine on thermal and photophysical properties publication-title: Polymers for Advanced Technologies doi: 10.1002/pat.5970 – volume: 9 start-page: 7712 issue: 12 year: 2021 end-page: 7725 ident: CR40 article-title: Bioinspired polydopamine supported on oxygen-functionalized carbon cloth as a high-performance 1.2 V aqueous symmetric metal-free supercapacitor publication-title: Journal of Materials Chemistry A doi: 10.1039/D0TA12624A – volume: 222 start-page: 114980 year: 2023 ident: CR5 article-title: Electrochemical biosensors in exosome analysis; a short journey to the present and future trends in early-stage evaluation of cancers publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2022.114980 – volume: 280 start-page: 183 year: 2019 end-page: 191 ident: CR7 article-title: Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2018.10.059 – volume: 338 start-page: 73 issue: 1–2 year: 2002 end-page: 79 ident: CR38 article-title: Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity publication-title: Journal of Alloys and Compounds doi: 10.1016/S0925-8388(02)00217-7 – volume: 28 start-page: 111 issue: 1 year: 2009 end-page: 117 ident: CR15 article-title: Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications publication-title: Journal of Lightwave Technology doi: 10.1109/JLT.2009.2036580 – volume: 93 start-page: 176 year: 2017 end-page: 181 ident: CR25 article-title: High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2016.09.020 – volume: 114 start-page: 104825 year: 2022 ident: CR28 article-title: Selective detection of urea as milk adulterant using LMR based fiber optic probe publication-title: Journal of Food Composition and Analysis doi: 10.1016/j.jfca.2022.104825 – volume: 30 start-page: 32483 issue: 18 year: 2022 end-page: 32500 ident: CR29 article-title: Theoretical modeling and investigations of lossy mode resonance prism sensor based on TiO film publication-title: Optics Express doi: 10.1364/OE.466170 – volume: 497 start-page: 270 issue: 1–2 year: 2006 end-page: 278 ident: CR39 article-title: Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.10.048 – volume: 74 start-page: 454 year: 2015 end-page: 460 ident: CR32 article-title: A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2015.06.080 – volume: 309 start-page: 112022 year: 2020 ident: CR17 article-title: The temperature responsive mechanism of fiber surface plasmon resonance sensor publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2020.112022 – volume: 3 start-page: 936 issue: 5 year: 2018 end-page: 943 ident: CR26 article-title: Femtomolar detection by nanocoated fiber label-free biosensors publication-title: ACS Sensors doi: 10.1021/acssensors.7b00918 – volume: 4 start-page: 7554 issue: 32 year: 2016 end-page: 7562 ident: CR44 article-title: Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating publication-title: Journal of Materials Chemistry C doi: 10.1039/C6TC02149B – volume: 39 start-page: 4013 issue: 12 year: 2020 end-page: 4019 ident: CR47 article-title: Ultrasensitive label-free biosensor based on the graphene-oxide-coated-u-bent long-period fiber grating inscribed in a two-mode fiber publication-title: Journal of Lightwave Technology doi: 10.1109/JLT.2020.3027769 – volume: 142 start-page: 111505 year: 2019 ident: CR4 article-title: Current status of optical fiber biosensor based on surface plasmon resonance publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2019.111505 – volume: 11 start-page: 2137 issue: 8 year: 2021 ident: CR18 article-title: Double-antibody sandwich immunoassay and plasmonic coupling synergistically improved long-range SPR biosensor with low detection limit publication-title: Nanomaterials doi: 10.3390/nano11082137 – volume: 240 start-page: 174 year: 2017 end-page: 185 ident: CR19 article-title: Optical sensors based on lossy-mode resonances publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2016.08.126 – volume: 11 start-page: 5041 issue: 22 year: 2022 end-page: 5059 ident: CR2 article-title: Emerging nanophotonic biosensor technologies for virus detection publication-title: Nanophotonics doi: 10.1515/nanoph-2022-0571 – volume: 147 start-page: 1467 issue: 7 year: 2022 ident: 714_CR11 publication-title: Analyst doi: 10.1039/D2AN00043A – volume: 45 start-page: 4738 issue: 17 year: 2020 ident: 714_CR22 publication-title: Optics Letters doi: 10.1364/OL.402177 – volume: 25 start-page: 10743 issue: 10 year: 2017 ident: 714_CR23 publication-title: Optics Express doi: 10.1364/OE.25.010743 – volume: 155 start-page: 290 issue: 1 year: 2011 ident: 714_CR21 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2010.12.037 – volume: 338 start-page: 73 issue: 1–2 year: 2002 ident: 714_CR38 publication-title: Journal of Alloys and Compounds doi: 10.1016/S0925-8388(02)00217-7 – volume: 208 start-page: 114238 year: 2022 ident: 714_CR3 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2022.114238 – volume: 224 start-page: 115078 year: 2023 ident: 714_CR35 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2023.115078 – volume: 247 start-page: 123599 year: 2022 ident: 714_CR10 publication-title: Talanta doi: 10.1016/j.talanta.2022.123599 – volume: 309 start-page: 112022 year: 2020 ident: 714_CR17 publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2020.112022 – volume: 11 start-page: 5041 issue: 22 year: 2022 ident: 714_CR2 publication-title: Nanophotonics doi: 10.1515/nanoph-2022-0571 – volume: 11 start-page: 2137 issue: 8 year: 2021 ident: 714_CR18 publication-title: Nanomaterials doi: 10.3390/nano11082137 – volume: 154 start-page: 112050 year: 2020 ident: 714_CR24 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2020.112050 – volume: 480 start-page: 979 year: 2019 ident: 714_CR33 publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2019.03.015 – volume: 94 start-page: 13516 issue: 39 year: 2022 ident: 714_CR36 publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.2c02797 – volume: 142 start-page: 111505 year: 2019 ident: 714_CR4 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2019.111505 – volume: 21 start-page: 1283 year: 2006 ident: 714_CR8 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2005.05.017 – volume: 4 start-page: 7554 issue: 32 year: 2016 ident: 714_CR44 publication-title: Journal of Materials Chemistry C doi: 10.1039/C6TC02149B – volume: 497 start-page: 270 issue: 1–2 year: 2006 ident: 714_CR39 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.10.048 – volume: 407 start-page: 139869 year: 2022 ident: 714_CR37 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2022.139869 – volume: 9 start-page: 116286 year: 2021 ident: 714_CR45 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3106343 – volume: 114 start-page: 104825 year: 2022 ident: 714_CR28 publication-title: Journal of Food Composition and Analysis doi: 10.1016/j.jfca.2022.104825 – volume: 9 start-page: 7712 issue: 12 year: 2021 ident: 714_CR40 publication-title: Journal of Materials Chemistry A doi: 10.1039/D0TA12624A – volume: 202 start-page: 154 year: 2014 ident: 714_CR30 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2014.05.065 – volume: 246 start-page: 123496 year: 2022 ident: 714_CR43 publication-title: Talanta doi: 10.1016/j.talanta.2022.123496 – volume: 39 start-page: 4013 issue: 12 year: 2020 ident: 714_CR47 publication-title: Journal of Lightwave Technology doi: 10.1109/JLT.2020.3027769 – volume: 280 start-page: 183 year: 2019 ident: 714_CR7 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2018.10.059 – volume: 222 start-page: 114980 year: 2023 ident: 714_CR5 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2022.114980 – volume: 74 start-page: 613 issue: 4 year: 2008 ident: 714_CR9 publication-title: Talanta doi: 10.1016/j.talanta.2007.06.042 – volume: 34 start-page: 1293 issue: 4 year: 2023 ident: 714_CR34 publication-title: Polymers for Advanced Technologies doi: 10.1002/pat.5970 – volume: 10 start-page: 126 issue: 1 year: 2022 ident: 714_CR16 publication-title: Photonics Research doi: 10.1364/PRJ.439861 – volume: 13 start-page: 64 issue: 1 year: 2022 ident: 714_CR1 publication-title: Biosensors doi: 10.3390/bios13010064 – volume: 371 start-page: 132501 year: 2022 ident: 714_CR27 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2022.132501 – volume: 329 start-page: 129094 year: 2021 ident: 714_CR46 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2020.129094 – volume: 3 start-page: 936 issue: 5 year: 2018 ident: 714_CR26 publication-title: ACS Sensors doi: 10.1021/acssensors.7b00918 – volume: 101 start-page: 135 year: 2018 ident: 714_CR31 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2017.10.029 – volume: 20 start-page: 4251 issue: 8 year: 2020 ident: 714_CR20 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2020.2964262 – volume: 28 start-page: 3351 issue: 23 year: 2010 ident: 714_CR42 publication-title: Journal of Lightwave Technology – volume: 240 start-page: 174 year: 2017 ident: 714_CR19 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2016.08.126 – volume: 17 start-page: 2200554 issue: 1 year: 2023 ident: 714_CR12 publication-title: Laser & Photonics Reviews doi: 10.1002/lpor.202200554 – volume: 95 start-page: 018101 issue: 1 year: 2005 ident: 714_CR14 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.95.018101 – volume: 30 start-page: 32483 issue: 18 year: 2022 ident: 714_CR29 publication-title: Optics Express doi: 10.1364/OE.466170 – volume: 74 start-page: 454 year: 2015 ident: 714_CR32 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2015.06.080 – volume: 174 start-page: 263 year: 2012 ident: 714_CR13 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2012.07.039 – volume: 93 start-page: 176 year: 2017 ident: 714_CR25 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2016.09.020 – volume: 28 start-page: 111 issue: 1 year: 2009 ident: 714_CR15 publication-title: Journal of Lightwave Technology doi: 10.1109/JLT.2009.2036580 – volume: 228 start-page: 115184 year: 2023 ident: 714_CR6 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2023.115184 – volume: 10 start-page: 2207437 issue: 15 year: 2023 ident: 714_CR41 publication-title: Advanced Science doi: 10.1002/advs.202207437 |
SSID | ssib024094177 ssj0000779039 ssib050736673 |
Score | 2.3525028 |
Snippet | In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions... Abstract In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 250133 |
SubjectTerms | Biosensors Coated fibers Coupling agents Dopamine Electrical resistivity Electrochemistry electropolymerized dopamine Human performance IgG antibody Immunoassay Indium oxides ITO Lasers lossy mode resonance Measurement Science and Instrumentation Microwaves Optical Devices Optical fiber biosensor Optical fibers Optics Performance evaluation Photonics Physics Physics and Astronomy Regular Resonance RF and Optical Engineering Sensors surface functionalization Tin dioxide |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ9YXOXhSgttN0t0cfRUVqyAWvIW8Fgq1W9p6qL_emey2VUG9eE2yS3ZmwnyzmfmGkGObBSUCF8xJVTDhTM4Ml5blJjdNFfIsl1ic3Hlo3XTF3Yt8-dTqC3PCKnrgSnBnaeqFlRnEcJKDsQmbGeeESkyibOFlZAIFn_cpmAJLSjFqaS4qLAH0cOxvOf_7kiDNXmwzhln4TIGXn115xro6joXF8JpY38PEF6cVuf2_ANJvd6jRNbXXyVqNKel59S0bZCkMNslKzO104y3Sva5a3QzL_hTvZ96Dp1cQK78CwKTtXv-VdUrfKwCL0sdh_LUNozaM6H3niV70yjFEuuWIArqlt1hNUgLeNtNt0m1fP1_esLqbAnNwLieslfgMnLdXzljrEu99UbRANApOdCETUJAKMjOZz1NYwL3wSRp4AYgShjD_cIcsD8pB2CU0cOmNyUHOjguvUmt4XmCo5YwKwvkGSWbi0q6mGseOF329IElGCWuQsEYJa9EgJ_NHhhXPxm-LL1AH84VIkR0HwHB0bTj6L8NpkIOZBnV9bseaY8jeUmkTpk9nWl1M_7ijvf_Y0T5ZTbG7cMxwOyDLk9FbOATIM7FH0bo_AJXu9JQ priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLink dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyNBEG58IHgRHyvqRumDJ6VhMt2dmT5uVoOKURAD3pp-zRJIMiGJB_fXW9WZyeDiCl67ax5UTU191fUi5NxmQYnABXNSFUw4kzPDpWW5yU1bhTzLJRYn9x86NwNx9yJfqjrueZ3tXock45-6KXbjWO0LNiUW3TCxTjYluu4YoW1ajqfosLSb4krAOxxHW64OXhLssBcnjGECPlNg4Oto52dP-WCvYlv_D1j0n_BptEq9XbJTwUn6ayn_PbIWJvtkK6Z1uvkBGVwvp9xMy9Ebhmb-Bk-vwE0eA7akveFozPqlHxYAQ-njNJ5qw6oNM3rff6LdYTkHJ7ecUQC29BYLSUqA2ubtBxn0rp9_37BqkAJzoJIL1kl8BnbbK2esdYn3vig6wBoFylzIBGSjgsxM5vMUCLgXPkkDLwBMwhKmHh6SjUk5CUeEBi69MTnw2XHhVWoNzwv0spxRQTh_TJKaXdpVXcZx2MVIN_2RkcMaOKyRw1ock4vVJdNli42viLsogxUhdseOC-Xsj66UTaepF1aCmMEXgx-UsJlxTqjEJMoWXsJNWrUEdaWyc83RW--otA3bl7VUm-3_vtHJt6h_ku0UJwjHLLYW2VjMXsMpwJqFPYuf8Tu7meji priority: 102 providerName: Springer Nature |
Title | Electropolymerized Dopamine Film-Modified Optical Fiber LMR Biosensor for Immunoassay |
URI | https://link.springer.com/article/10.1007/s13320-024-0714-4 https://www.proquest.com/docview/3133869214 https://doaj.org/article/22d4b57907534884b7acc490a09bfd54 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bixMxFA5uF8EX8YrVdcmDT0owzWUmeZJtbV3FrrJY2Lcht5FCt1Pb-rD-es9JZ1pWcF8Ck8mE4ZxcvnMn5I0vk1VJKha0rZkKzjAntWfGGTewyZRGY3Dy9KI4n6kvV_qqVbhtWrfK7kzMB3VsAurI30sUpgorBurD6hfDqlFoXW1LaByRYziCjemR4-H44vtlt6IESi-DQ6QlgB-JdS73WhiO6fZyuTH0xmcWbvvO9Jnj6yQGGMM0Oc6HqVuXV87xfwuY_mNLzVfU5BF52GJLerZbDI_JvbR8Qu5nH8-weUpm413Jm1WzuEE7zZ8U6UeQma8BaNLJfHHNpk2c14BJ6bdVVnFDr09r-nV6SYfzZgMSb7OmgHLpZ4wqaQB3u5tnZDYZ_xids7aqAguwP7es4LGESzza4LwPPMZY1wWQxsLOrjUHRtmkS1dGI2CAjCpykWQNyBK60A_xOektm2V6QWiSOjpngM5BqmiFd9LUKHIFZ5MKsU94R64qtCnHsfLFojokS0YKV0DhCilcqT55u_9ktcu3cdfgIfJgPxBTZeeOZv2zandeJURUXgObQTCD00r50oWgLHfc-jpqmOSk42DV7t9NdVhtffKu4-rh9X__6OXdk70iDwTWD84-bCekt13_Tq8B1Gz9KTlS_BO0ZgLtbhXD00gobIvRaVYWQDsTZ38BtWzzTQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYJLxVMNLeADXEAWGz-y6wNClDYkNCkSaqTejF-LIqXZkASh8KP4jcw4u4mKRG-9er2WNTO2v7Fn5iPkpcujllFI5pUumfS2YFYoxwpb2LaORV4oTE4ennV6I_n5Ql3skD9NLgyGVTZ7YtqoQ-XxjvytQGeqo3lbvp_9YMgaha-rDYXG2ixO4-oXuGyLd_1j0O8rzrsn5x97rGYVYB7sc8k6WcjhEAvaW-d8FkIoy44DlAGWXaoMJqqjym0eCg4dRJAh41GUgKygCePwYNxb5LYUcJJjZnr3U2O_HH2l9javE6CWQFbNzZ1PhsX9ErkZxv4zDdiieWhN2XwC05lhmJRVxOSVozIxClyBwf-83KYDsXuf7NVIln5Ym94DshOnD8mdFFHqF4_I6GRNsDOrJit8FfodAz0GD_0SYC3tjieXbFiFcQkImH6ZpQt1aHVxTgfDr_RoXC3Av67mFDA17WMOSwUo364ek9GNSPsJ2Z1W07hPaBQqWFuAnL2QQXNnRVGig-etjtKHFskacRlfFzhHno2J2ZZmRgkbkLBBCRvZIq83v8zW1T2u63yEOth0xMLcqaGafzf1OjecB-kUqBncQNgbpcut91JnNtOuDAoGOWw0aOrdYmG2tt0ibxqtbj__d0ZPrx_sBbnbOx8OzKB_dnpA7nFkLk7Rc4dkdzn_GZ8BnFq658mGKfl204vmL2vwKg8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxFOEFvABLiCrG9ubXR8QIiRRQ5tQVUTqzfi1KFKaTZMgFH4av44ZZzdRkeitV6_XsmbG9jf2zHyEvLFZUDIIyVyqCiadyZkRqWW5yU1LhTzLU0xOHo7ax2P55SK92CN_6lwYDKus98S4UfvS4R35kUBnqq14Sx4VVVjEWbf_cX7FkEEKX1prOo2NiZyE9S9w35YfBl3Q9VvO-71vn49ZxTDAHNjqirUTn8GB5pUz1rrEe18UbQuIA6y8SBOYtAppZjKfc-ggvPQJD6IAlAVNGJMH494h-xl6RQ2y3-mNzs5ra-boObV2WZ4AvARybG5vgBIs9RepzjATgClAGvWza8ztE5jcDMPEHCMmrx2ckV_gGij-5x03Ho_9h-RBhWvpp40hPiJ7YfaY3I3xpW75hIx7G7qdeTld4xvR7-BpF_z1SwC5tD-ZXrJh6ScF4GH6dR6v16HVhgU9HZ7TzqRcgrddLiggbDrAjJYSML9ZPyXjW5H3M9KYlbPwnNAgUm9MDnJ2QnrFrRF5ge6eMypI55skqcWlXVXuHFk3pnpXqBklrEHCGiWsZZO82_4y39T6uKlzB3Ww7YhlumNDufihq1WvOffSpqBmcAphp5Q2M85JlZhE2cKnMMhhrUFd7R1LvbP0Jnlfa3X3-b8zenHzYK_JPVgw-nQwOjkg9znSGMdQukPSWC1-hpeArVb2VWXElHy_7XXzF7MRL6E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electropolymerized+Dopamine+Film-Modified+Optical+Fiber+LMR+Biosensor+for+Immunoassay&rft.jtitle=Photonic+sensors+%28Berlin%29&rft.au=Dai%2C+Xiaoshuang&rft.au=Wang%2C+Shuang&rft.au=Li%2C+Yongle&rft.au=Jiang%2C+Junfeng&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-9251&rft.eissn=2190-7439&rft.volume=15&rft.issue=1&rft.spage=250133&rft_id=info:doi/10.1007%2Fs13320-024-0714-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-9251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-9251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-9251&client=summon |