Electropolymerized Dopamine Film-Modified Optical Fiber LMR Biosensor for Immunoassay

In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions for antibody incubation. In this work, we designed optical fiber biosensors by electrochemical polymerization to enable low detection limit (LO...

Full description

Saved in:
Bibliographic Details
Published inPhotonic sensors (Berlin) Vol. 15; no. 1; pp. 250133 - 15
Main Authors Dai, Xiaoshuang, Wang, Shuang, Li, Yongle, Jiang, Junfeng, Tan, Ke, Liu, Hongyu, Li, Zhiyuan, Xu, Tianhua, Liu, Tiegen
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.03.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions for antibody incubation. In this work, we designed optical fiber biosensors by electrochemical polymerization to enable low detection limit (LOD) immunoassay. Based on the optical fiber lossy mode resonance (OF-LMR) achieved by In 2 O 3 -SnO 2 -90/10 wt% (ITO), we have simultaneously implemented the electropolymerized dopamine (ePDA) film on the ITO-coated fiber via the electrochemical method, utilizing the excellent electrical conductivity of ITO. After that, the immunoglobulin G (IgG) antibody layer was immobilized on the entire sensing region with the assistance of the ePDA film. The results of immunoassay were analyzed by recording the shift of the LMR resonance wavelength to verify the sensor performance. The LOD was evaluated as the lowest concentration of human IgG detected by the OF-LMR sensor, which was confirmed to be 4.20 ng·mL −1 . Furthermore, the sensor achieved selective detection for specific antigens and exhibited a good recovery capability in chicken serum samples. The developed scheme provides a feasible opportunity to enhance the intersection of electrochemistry and optics subjects and also offers a new promising solution to achieve the immunoassay.
AbstractList In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions for antibody incubation. In this work, we designed optical fiber biosensors by electrochemical polymerization to enable low detection limit (LOD) immunoassay. Based on the optical fiber lossy mode resonance (OF-LMR) achieved by In 2 O 3 -SnO 2 -90/10 wt% (ITO), we have simultaneously implemented the electropolymerized dopamine (ePDA) film on the ITO-coated fiber via the electrochemical method, utilizing the excellent electrical conductivity of ITO. After that, the immunoglobulin G (IgG) antibody layer was immobilized on the entire sensing region with the assistance of the ePDA film. The results of immunoassay were analyzed by recording the shift of the LMR resonance wavelength to verify the sensor performance. The LOD was evaluated as the lowest concentration of human IgG detected by the OF-LMR sensor, which was confirmed to be 4.20 ng·mL −1 . Furthermore, the sensor achieved selective detection for specific antigens and exhibited a good recovery capability in chicken serum samples. The developed scheme provides a feasible opportunity to enhance the intersection of electrochemistry and optics subjects and also offers a new promising solution to achieve the immunoassay.
Abstract In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions for antibody incubation. In this work, we designed optical fiber biosensors by electrochemical polymerization to enable low detection limit (LOD) immunoassay. Based on the optical fiber lossy mode resonance (OF-LMR) achieved by In2O3-SnO2-90/10 wt% (ITO), we have simultaneously implemented the electropolymerized dopamine (ePDA) film on the ITO-coated fiber via the electrochemical method, utilizing the excellent electrical conductivity of ITO. After that, the immunoglobulin G (IgG) antibody layer was immobilized on the entire sensing region with the assistance of the ePDA film. The results of immunoassay were analyzed by recording the shift of the LMR resonance wavelength to verify the sensor performance. The LOD was evaluated as the lowest concentration of human IgG detected by the OF-LMR sensor, which was confirmed to be 4.20 ng·mL−1. Furthermore, the sensor achieved selective detection for specific antigens and exhibited a good recovery capability in chicken serum samples. The developed scheme provides a feasible opportunity to enhance the intersection of electrochemistry and optics subjects and also offers a new promising solution to achieve the immunoassay.
In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions for antibody incubation. In this work, we designed optical fiber biosensors by electrochemical polymerization to enable low detection limit (LOD) immunoassay. Based on the optical fiber lossy mode resonance (OF-LMR) achieved by In2O3-SnO2-90/10 wt% (ITO), we have simultaneously implemented the electropolymerized dopamine (ePDA) film on the ITO-coated fiber via the electrochemical method, utilizing the excellent electrical conductivity of ITO. After that, the immunoglobulin G (IgG) antibody layer was immobilized on the entire sensing region with the assistance of the ePDA film. The results of immunoassay were analyzed by recording the shift of the LMR resonance wavelength to verify the sensor performance. The LOD was evaluated as the lowest concentration of human IgG detected by the OF-LMR sensor, which was confirmed to be 4.20 ng·mL−1. Furthermore, the sensor achieved selective detection for specific antigens and exhibited a good recovery capability in chicken serum samples. The developed scheme provides a feasible opportunity to enhance the intersection of electrochemistry and optics subjects and also offers a new promising solution to achieve the immunoassay.
ArticleNumber 250133
Author Li, Yongle
Li, Zhiyuan
Dai, Xiaoshuang
Xu, Tianhua
Liu, Tiegen
Jiang, Junfeng
Wang, Shuang
Tan, Ke
Liu, Hongyu
Author_xml – sequence: 1
  givenname: Xiaoshuang
  surname: Dai
  fullname: Dai, Xiaoshuang
  organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University
– sequence: 2
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
  email: shuangwang@tju.edu.cn
  organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University
– sequence: 3
  givenname: Yongle
  surname: Li
  fullname: Li, Yongle
  email: liyongle@aliyun.com
  organization: Department of Cardiology, Tianjin Medical University General Hospital, Tianjin Medical University
– sequence: 4
  givenname: Junfeng
  surname: Jiang
  fullname: Jiang, Junfeng
  organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University
– sequence: 5
  givenname: Ke
  surname: Tan
  fullname: Tan, Ke
  organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University
– sequence: 6
  givenname: Hongyu
  surname: Liu
  fullname: Liu, Hongyu
  organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University
– sequence: 7
  givenname: Zhiyuan
  surname: Li
  fullname: Li, Zhiyuan
  organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University
– sequence: 8
  givenname: Tianhua
  surname: Xu
  fullname: Xu, Tianhua
  organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, School of Engineering, University of Warwick
– sequence: 9
  givenname: Tiegen
  surname: Liu
  fullname: Liu, Tiegen
  organization: School of Precision Instrument and Opto-Electronics Engineering, Tianjin University
BookMark eNp9UU1r3DAUFCWBbtP8gN4MPat5-rKsY5smzcKGQGnOQl8OCrblSt7D9tdXjlsKhfbweDDMDPPevEFnU5oCQu8IfCAA8qoQxihgoByDJBzzV2hHiQIsOVNnaEdaybGigrxGl6VEW4mgOJFyhx5vhuCWnOY0nMaQ44_gm89pNmOcQnMbhxHfJx_7WOGHeYnODBW1ITeH-6_Np5hKmErKTV9nP47HKZlSzOktOu_NUMLlr32BHm9vvl3f4cPDl_31xwN2nIoFt-AltMQrZ6x14L3v-9aCUJSKXgATVgUhjfQdrQTmuQcaWA8dVKhewC7QfvP1yTzrOcfR5JNOJuoXIOUnbXJNPQRNqedWSAVSMN513ErjHFdgQNnei9Xr_eY15_T9GMqin9MxTzW-ZvW_XasoWVlyY7mcSsmh1y4uZolpWrKJgyag10r0Vomun9ZrJXpVkr-Uv_P-T0M3Tanc6SnkP5n-LfoJlGye5A
CitedBy_id crossref_primary_10_1016_j_optlastec_2025_112731
Cites_doi 10.1039/D2AN00043A
10.1002/lpor.202200554
10.1103/PhysRevLett.95.018101
10.1016/j.talanta.2022.123599
10.1364/PRJ.439861
10.3390/bios13010064
10.1016/j.bios.2023.115078
10.1364/OL.402177
10.1016/j.snb.2014.05.065
10.1109/ACCESS.2021.3106343
10.1364/OE.25.010743
10.1016/j.apsusc.2019.03.015
10.1016/j.snb.2020.129094
10.1016/j.bios.2005.05.017
10.1016/j.snb.2012.07.039
10.1109/JSEN.2020.2964262
10.1021/acs.analchem.2c02797
10.1016/j.bios.2020.112050
10.1016/j.bios.2022.114238
10.1016/j.electacta.2022.139869
10.1016/j.bios.2023.115184
10.1016/j.talanta.2007.06.042
10.1016/j.bios.2017.10.029
10.1016/j.snb.2010.12.037
10.1002/advs.202207437
10.1016/j.talanta.2022.123496
10.1016/j.snb.2022.132501
10.1002/pat.5970
10.1039/D0TA12624A
10.1016/j.bios.2022.114980
10.1016/j.snb.2018.10.059
10.1016/S0925-8388(02)00217-7
10.1109/JLT.2009.2036580
10.1016/j.bios.2016.09.020
10.1016/j.jfca.2022.104825
10.1364/OE.466170
10.1016/j.tsf.2005.10.048
10.1016/j.bios.2015.06.080
10.1016/j.sna.2020.112022
10.1021/acssensors.7b00918
10.1039/C6TC02149B
10.1109/JLT.2020.3027769
10.1016/j.bios.2019.111505
10.3390/nano11082137
10.1016/j.snb.2016.08.126
10.1515/nanoph-2022-0571
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s13320-024-0714-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2190-7439
EndPage 15
ExternalDocumentID oai_doaj_org_article_22d4b57907534884b7acc490a09bfd54
10_1007_s13320_024_0714_4
GroupedDBID -5F
-5G
-A0
-BR
0R~
2VQ
4.4
40G
5VS
8FE
8FG
AAFWJ
AAKKN
AAYZH
ABEEZ
ACACY
ACGFS
ACULB
ADBBV
ADDVE
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
H13
HCIFZ
HF~
HZ~
IAO
ITC
KQ8
O9-
OK1
P62
PIMPY
PROAC
RIG
RSV
SCL
SOJ
SPH
U2A
WK8
XT3
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c425t-60d7061d9cabbc0dddff6b059225f5035b9e57a7d82abb3d4d02e3f0807d80943
IEDL.DBID BENPR
ISSN 1674-9251
IngestDate Wed Aug 27 01:33:02 EDT 2025
Fri Jul 25 23:32:31 EDT 2025
Tue Jul 01 01:28:36 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Fri Feb 21 02:38:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords lossy mode resonance
Optical fiber biosensor
electropolymerized dopamine
ITO
surface functionalization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-60d7061d9cabbc0dddff6b059225f5035b9e57a7d82abb3d4d02e3f0807d80943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3133869214?pq-origsite=%requestingapplication%
PQID 3133869214
PQPubID 2034677
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_22d4b57907534884b7acc490a09bfd54
proquest_journals_3133869214
crossref_citationtrail_10_1007_s13320_024_0714_4
crossref_primary_10_1007_s13320_024_0714_4
springer_journals_10_1007_s13320_024_0714_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Photonic sensors (Berlin)
PublicationTitleAbbrev Photonic Sens
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Chang, Liu, Jiang, Xu, Zhang, Ma (CR17) 2020; 309
Villar, Arregui, Zamarreno, Corres, Bariain, Goicoechea (CR19) 2017; 240
Almeida, Correia, Marta, Squillaci, Morana, Cara (CR33) 2019; 480
Sanchez, Zamarreno, Hernaez, Matias, Arregui (CR30) 2014; 202
Shi, Wang, Wang, Huang, Ding, Su (CR44) 2016; 4
Liu, Sun, Guo, Liu, Liu, Meng (CR45) 2021; 9
Fuentes, Vaiano, Villar, Quero, Corres, Consales (CR22) 2020; 45
Li, Liu, Xiang, Xie, Yao (CR39) 2006; 497
Sharma, Shrivastav, Gupta (CR20) 2020; 20
Zhang, Zhang, Zhao, Li, Xu, Tong (CR29) 2022; 30
Li, Zhang, Bi, Olivo (CR1) 2022; 13
Kuswandi, Fikriyah, Gani (CR9) 2008; 74
Heidarnia, Parvizi, Khoshsima, Heidari (CR27) 2022; 371
Soyut, Kolcu, Kaya, Yasar (CR34) 2023; 34
Ko, Grant (CR8) 2006; 21
Usha, Gupta (CR31) 2018; 101
Shi, Wang, Su, Liu, Huang, Qi (CR32) 2015; 74
Nanjunda, Seshadri, Krishnan, Rath, Arunagiri, Bao (CR2) 2022; 11
Hu, Cao, Li, Liang, Luo, Feng (CR36) 2022; 94
Niu, Jiang, Liu, Wang, Jing, Xu (CR3) 2022; 208
Jing, Liu, Jiang, Xu, Wang, Ma (CR18) 2021; 11
Dong, Sang, Wang, Xu, Yu, Liu (CR47) 2020; 39
Zubiate, Zamarreno, Sanchez, Matias, Arregui (CR25) 2017; 93
Zhao, Wang (CR12) 2023; 17
Jing, Liu, Jiang, Xu, Wang, Ma (CR16) 2022; 10
Yang, Zhao, Zhang, Ma, Wang, Song (CR43) 2022; 246
Brewer, Franzen (CR38) 2002; 338
Hua, Ding, Liu, Guo, Pan, Zhang (CR6) 2023; 228
Kim, Uh, Jeong, Lee, Park, Lee (CR7) 2019; 280
Socorro, Corres, Del Villar, Arregui, Matias (CR13) 2012; 174
Lu, Zhu, Lin, Wang, Hong, Masson (CR46) 2021; 329
Chiavaioli, Zubiate, Villar, Zamarreno, Giannetti, Tombelli (CR26) 2018; 3
Jing, Liu, Jiang, Xu, Xiao, Zhan (CR41) 2023; 10
Razansky, Einziger, Adam (CR14) 2005; 95
Dezhakam, Khalilzadeh, Mahdipour, Isildak, Yousefi, Ahmadi (CR5) 2023; 222
Yi, Zhou, Ren, Hu, Long, Zhu (CR11) 2022; 147
Villar, Zamarreno, Hernaez, Arregui, Matias (CR15) 2009; 28
You, Park, Lee, Jang, Park, Na (CR35) 2023; 224
Smietana, Koba, Sezemsky, Szot-Karpinska, Burnat, Stranak (CR24) 2020; 154
Del, Zamarreño, Hernaez, Arregui, Matias (CR42) 2010; 28
Zamarreño, Hernáez, Villar, Matías, Arregui (CR21) 2011; 155
Li, Zhang, Zheng, Li, Zhao (CR10) 2022; 247
Villar, Zubiate, Zamarreno, Arregui, Matias (CR23) 2017; 25
Moloudi, Rahmanifar, Noori, Chang, Kaner, Mousavi (CR40) 2021; 9
Zhao, Tong, Xia, Peng (CR4) 2019; 142
Verma (CR28) 2022; 114
Wang, Wang, Zhang, Wang, Zhang, Li (CR37) 2022; 407
P Hua (714_CR6) 2023; 228
S Sharma (714_CR20) 2020; 20
J Jing (714_CR18) 2021; 11
I D Villar (714_CR23) 2017; 25
I D Villar (714_CR19) 2017; 240
Y Li (714_CR39) 2006; 497
L Li (714_CR10) 2022; 247
S H Brewer (714_CR38) 2002; 338
S P Usha (714_CR31) 2018; 101
M Smietana (714_CR24) 2020; 154
S B Nanjunda (714_CR2) 2022; 11
O Fuentes (714_CR22) 2020; 45
S Shi (714_CR32) 2015; 74
Q Wang (714_CR37) 2022; 407
A B Socorro (714_CR13) 2012; 174
B Kuswandi (714_CR9) 2008; 74
H Yang (714_CR43) 2022; 246
J Jing (714_CR16) 2022; 10
H Liu (714_CR45) 2021; 9
J Jing (714_CR41) 2023; 10
B Li (714_CR1) 2022; 13
S Ko (714_CR8) 2006; 21
W M Zhao (714_CR12) 2023; 17
M Moloudi (714_CR40) 2021; 9
M Lu (714_CR46) 2021; 329
H Soyut (714_CR34) 2023; 34
C R Zamarreño (714_CR21) 2011; 155
P Niu (714_CR3) 2022; 208
Z Heidarnia (714_CR27) 2022; 371
Z Yi (714_CR11) 2022; 147
P Zubiate (714_CR25) 2017; 93
E Dezhakam (714_CR5) 2023; 222
L C Almeida (714_CR33) 2019; 480
V I Del (714_CR42) 2010; 28
F Chiavaioli (714_CR26) 2018; 3
I D Villar (714_CR15) 2009; 28
J You (714_CR35) 2023; 224
Y Zhang (714_CR29) 2022; 30
Q Hu (714_CR36) 2022; 94
R K Verma (714_CR28) 2022; 114
P Sanchez (714_CR30) 2014; 202
Y Zhao (714_CR4) 2019; 142
D Razansky (714_CR14) 2005; 95
P Chang (714_CR17) 2020; 309
J Dong (714_CR47) 2020; 39
S Shi (714_CR44) 2016; 4
H M Kim (714_CR7) 2019; 280
References_xml – volume: 147
  start-page: 1467
  issue: 7
  year: 2022
  end-page: 1477
  ident: CR11
  article-title: A novel sensitive DNAzyme-based optical fiber evanescent wave biosensor for rapid detection of Pb in human serum
  publication-title: Analyst
  doi: 10.1039/D2AN00043A
– volume: 17
  start-page: 2200554
  issue: 1
  year: 2023
  ident: CR12
  article-title: Analytical solutions to fundamental questions for lossy mode resonance
  publication-title: Laser & Photonics Reviews
  doi: 10.1002/lpor.202200554
– volume: 95
  start-page: 018101
  issue: 1
  year: 2005
  ident: CR14
  article-title: Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.95.018101
– volume: 247
  start-page: 123599
  year: 2022
  ident: CR10
  article-title: Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123599
– volume: 10
  start-page: 126
  issue: 1
  year: 2022
  end-page: 147
  ident: CR16
  article-title: Performance improvement approaches for optical fiber SPR sensors and their sensing applications
  publication-title: Photonics Research
  doi: 10.1364/PRJ.439861
– volume: 13
  start-page: 64
  issue: 1
  year: 2022
  ident: CR1
  article-title: Applications of optical fiber in label-free biosensors and bioimaging: a review
  publication-title: Biosensors
  doi: 10.3390/bios13010064
– volume: 224
  start-page: 115078
  year: 2023
  ident: CR35
  article-title: Sensitive and selective DNA detecting electrochemical sensor via double cleaving CRISPR Cas12a and dual polymerization on hyperbranched rolling circle amplification
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2023.115078
– volume: 45
  start-page: 4738
  issue: 17
  year: 2020
  end-page: 4741
  ident: CR22
  article-title: Improving the width of lossy mode resonances in a reflection configuration D-shaped fiber by nanocoating laser ablation
  publication-title: Optics Letters
  doi: 10.1364/OL.402177
– volume: 28
  start-page: 3351
  issue: 23
  year: 2010
  end-page: 3357
  ident: CR42
  article-title: Generation of lossy mode resonances with absorbing thin-films
  publication-title: Journal of Lightwave Technology
– volume: 202
  start-page: 154
  year: 2014
  end-page: 159
  ident: CR30
  article-title: Optical fiber refractometers based on lossy mode resonances by means of SnO sputtered coatings
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2014.05.065
– volume: 9
  start-page: 116286
  year: 2021
  end-page: 116293
  ident: CR45
  article-title: Temperature-insensitive label-free sensors for human IgG based on S-tapered optical fiber sensors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3106343
– volume: 25
  start-page: 10743
  issue: 10
  year: 2017
  end-page: 10756
  ident: CR23
  article-title: Optimization in nanocoated D-shaped optical fiber sensors
  publication-title: Optics Express
  doi: 10.1364/OE.25.010743
– volume: 480
  start-page: 979
  year: 2019
  end-page: 989
  ident: CR33
  article-title: Electrosynthesis of polydopamine films-tailored matrices for laccase-based biosensors
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2019.03.015
– volume: 329
  start-page: 129094
  year: 2021
  ident: CR46
  article-title: Comparative study of block copolymer-templated localized surface plasmon resonance optical fiber biosensors: CTAB or citrate-stabilized gold nanorods
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2020.129094
– volume: 21
  start-page: 1283
  year: 2006
  end-page: 1290
  ident: CR8
  article-title: A novel FRET-based optical fiber biosensor for rapid detection of salmonella typhimurium
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2005.05.017
– volume: 174
  start-page: 263
  year: 2012
  end-page: 269
  ident: CR13
  article-title: Fiber-optic biosensor based on lossy mode resonances
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2012.07.039
– volume: 20
  start-page: 4251
  issue: 8
  year: 2020
  end-page: 4259
  ident: CR20
  article-title: Lossy mode resonance based fiber optic creatinine sensor fabricated using molecular imprinting over nanocomposite of MoS /SnO
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2020.2964262
– volume: 94
  start-page: 13516
  issue: 39
  year: 2022
  end-page: 13521
  ident: CR36
  article-title: Electrochemically controlled atom transfer radical polymerization for electrochemical aptasensing of tumor biomarkers
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.2c02797
– volume: 154
  start-page: 112050
  year: 2020
  ident: CR24
  article-title: Simultaneous optical and electrochemical label-free biosensing with ITO-coated lossy-mode resonance sensor
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2020.112050
– volume: 208
  start-page: 114238
  year: 2022
  ident: CR3
  article-title: Fiber-integrated WGM optofluidic chip enhanced by microwave photonic analyzer for cardiac biomarker detection with ultra-high resolution
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2022.114238
– volume: 407
  start-page: 139869
  year: 2022
  ident: CR37
  article-title: Electrochemical polymerization of polypyrrole on carbon cloth@ZIF67 using alizarin red S as redox dopant for flexible supercapacitors
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2022.139869
– volume: 228
  start-page: 115184
  year: 2023
  ident: CR6
  article-title: Distributed optical fiber biosensor based on optical frequency domain reflectometry
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2023.115184
– volume: 74
  start-page: 613
  issue: 4
  year: 2008
  end-page: 618
  ident: CR9
  article-title: An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue
  publication-title: Talanta
  doi: 10.1016/j.talanta.2007.06.042
– volume: 101
  start-page: 135
  year: 2018
  end-page: 145
  ident: CR31
  article-title: Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS and molecular imprinted polymer on optical fiber based lossy mode resonance sensor
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2017.10.029
– volume: 155
  start-page: 290
  issue: 1
  year: 2011
  end-page: 297
  ident: CR21
  article-title: Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2010.12.037
– volume: 10
  start-page: 2207437
  issue: 15
  year: 2023
  ident: CR41
  article-title: Optimally configured optical fiber near-field enhanced plasmonic resonance immunoprobe for the detection of alpha-fetoprotein
  publication-title: Advanced Science
  doi: 10.1002/advs.202207437
– volume: 246
  start-page: 123496
  year: 2022
  ident: CR43
  article-title: Biotin-streptavidin sandwich integrated PDA-ZnO@Au nanocomposite based SPR sensor for hIgG detection
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123496
– volume: 371
  start-page: 132501
  year: 2022
  ident: CR27
  article-title: Distinct absorption transducing features of silica supported MoO /PANI hybrid coated optical fiber towards Malathion monitoring in food samples
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2022.132501
– volume: 34
  start-page: 1293
  issue: 4
  year: 2023
  end-page: 1306
  ident: CR34
  article-title: Influence of the enzymatic and the chemical oxidative polymerization of trifluoromethyl-substituted aromatic diamine on thermal and photophysical properties
  publication-title: Polymers for Advanced Technologies
  doi: 10.1002/pat.5970
– volume: 9
  start-page: 7712
  issue: 12
  year: 2021
  end-page: 7725
  ident: CR40
  article-title: Bioinspired polydopamine supported on oxygen-functionalized carbon cloth as a high-performance 1.2 V aqueous symmetric metal-free supercapacitor
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/D0TA12624A
– volume: 222
  start-page: 114980
  year: 2023
  ident: CR5
  article-title: Electrochemical biosensors in exosome analysis; a short journey to the present and future trends in early-stage evaluation of cancers
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2022.114980
– volume: 280
  start-page: 183
  year: 2019
  end-page: 191
  ident: CR7
  article-title: Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2018.10.059
– volume: 338
  start-page: 73
  issue: 1–2
  year: 2002
  end-page: 79
  ident: CR38
  article-title: Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/S0925-8388(02)00217-7
– volume: 28
  start-page: 111
  issue: 1
  year: 2009
  end-page: 117
  ident: CR15
  article-title: Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications
  publication-title: Journal of Lightwave Technology
  doi: 10.1109/JLT.2009.2036580
– volume: 93
  start-page: 176
  year: 2017
  end-page: 181
  ident: CR25
  article-title: High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2016.09.020
– volume: 114
  start-page: 104825
  year: 2022
  ident: CR28
  article-title: Selective detection of urea as milk adulterant using LMR based fiber optic probe
  publication-title: Journal of Food Composition and Analysis
  doi: 10.1016/j.jfca.2022.104825
– volume: 30
  start-page: 32483
  issue: 18
  year: 2022
  end-page: 32500
  ident: CR29
  article-title: Theoretical modeling and investigations of lossy mode resonance prism sensor based on TiO film
  publication-title: Optics Express
  doi: 10.1364/OE.466170
– volume: 497
  start-page: 270
  issue: 1–2
  year: 2006
  end-page: 278
  ident: CR39
  article-title: Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.10.048
– volume: 74
  start-page: 454
  year: 2015
  end-page: 460
  ident: CR32
  article-title: A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2015.06.080
– volume: 309
  start-page: 112022
  year: 2020
  ident: CR17
  article-title: The temperature responsive mechanism of fiber surface plasmon resonance sensor
  publication-title: Sensors and Actuators A: Physical
  doi: 10.1016/j.sna.2020.112022
– volume: 3
  start-page: 936
  issue: 5
  year: 2018
  end-page: 943
  ident: CR26
  article-title: Femtomolar detection by nanocoated fiber label-free biosensors
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.7b00918
– volume: 4
  start-page: 7554
  issue: 32
  year: 2016
  end-page: 7562
  ident: CR44
  article-title: Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating
  publication-title: Journal of Materials Chemistry C
  doi: 10.1039/C6TC02149B
– volume: 39
  start-page: 4013
  issue: 12
  year: 2020
  end-page: 4019
  ident: CR47
  article-title: Ultrasensitive label-free biosensor based on the graphene-oxide-coated-u-bent long-period fiber grating inscribed in a two-mode fiber
  publication-title: Journal of Lightwave Technology
  doi: 10.1109/JLT.2020.3027769
– volume: 142
  start-page: 111505
  year: 2019
  ident: CR4
  article-title: Current status of optical fiber biosensor based on surface plasmon resonance
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2019.111505
– volume: 11
  start-page: 2137
  issue: 8
  year: 2021
  ident: CR18
  article-title: Double-antibody sandwich immunoassay and plasmonic coupling synergistically improved long-range SPR biosensor with low detection limit
  publication-title: Nanomaterials
  doi: 10.3390/nano11082137
– volume: 240
  start-page: 174
  year: 2017
  end-page: 185
  ident: CR19
  article-title: Optical sensors based on lossy-mode resonances
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2016.08.126
– volume: 11
  start-page: 5041
  issue: 22
  year: 2022
  end-page: 5059
  ident: CR2
  article-title: Emerging nanophotonic biosensor technologies for virus detection
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2022-0571
– volume: 147
  start-page: 1467
  issue: 7
  year: 2022
  ident: 714_CR11
  publication-title: Analyst
  doi: 10.1039/D2AN00043A
– volume: 45
  start-page: 4738
  issue: 17
  year: 2020
  ident: 714_CR22
  publication-title: Optics Letters
  doi: 10.1364/OL.402177
– volume: 25
  start-page: 10743
  issue: 10
  year: 2017
  ident: 714_CR23
  publication-title: Optics Express
  doi: 10.1364/OE.25.010743
– volume: 155
  start-page: 290
  issue: 1
  year: 2011
  ident: 714_CR21
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2010.12.037
– volume: 338
  start-page: 73
  issue: 1–2
  year: 2002
  ident: 714_CR38
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/S0925-8388(02)00217-7
– volume: 208
  start-page: 114238
  year: 2022
  ident: 714_CR3
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2022.114238
– volume: 224
  start-page: 115078
  year: 2023
  ident: 714_CR35
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2023.115078
– volume: 247
  start-page: 123599
  year: 2022
  ident: 714_CR10
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123599
– volume: 309
  start-page: 112022
  year: 2020
  ident: 714_CR17
  publication-title: Sensors and Actuators A: Physical
  doi: 10.1016/j.sna.2020.112022
– volume: 11
  start-page: 5041
  issue: 22
  year: 2022
  ident: 714_CR2
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2022-0571
– volume: 11
  start-page: 2137
  issue: 8
  year: 2021
  ident: 714_CR18
  publication-title: Nanomaterials
  doi: 10.3390/nano11082137
– volume: 154
  start-page: 112050
  year: 2020
  ident: 714_CR24
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2020.112050
– volume: 480
  start-page: 979
  year: 2019
  ident: 714_CR33
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2019.03.015
– volume: 94
  start-page: 13516
  issue: 39
  year: 2022
  ident: 714_CR36
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.2c02797
– volume: 142
  start-page: 111505
  year: 2019
  ident: 714_CR4
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2019.111505
– volume: 21
  start-page: 1283
  year: 2006
  ident: 714_CR8
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2005.05.017
– volume: 4
  start-page: 7554
  issue: 32
  year: 2016
  ident: 714_CR44
  publication-title: Journal of Materials Chemistry C
  doi: 10.1039/C6TC02149B
– volume: 497
  start-page: 270
  issue: 1–2
  year: 2006
  ident: 714_CR39
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.10.048
– volume: 407
  start-page: 139869
  year: 2022
  ident: 714_CR37
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2022.139869
– volume: 9
  start-page: 116286
  year: 2021
  ident: 714_CR45
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3106343
– volume: 114
  start-page: 104825
  year: 2022
  ident: 714_CR28
  publication-title: Journal of Food Composition and Analysis
  doi: 10.1016/j.jfca.2022.104825
– volume: 9
  start-page: 7712
  issue: 12
  year: 2021
  ident: 714_CR40
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/D0TA12624A
– volume: 202
  start-page: 154
  year: 2014
  ident: 714_CR30
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2014.05.065
– volume: 246
  start-page: 123496
  year: 2022
  ident: 714_CR43
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123496
– volume: 39
  start-page: 4013
  issue: 12
  year: 2020
  ident: 714_CR47
  publication-title: Journal of Lightwave Technology
  doi: 10.1109/JLT.2020.3027769
– volume: 280
  start-page: 183
  year: 2019
  ident: 714_CR7
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2018.10.059
– volume: 222
  start-page: 114980
  year: 2023
  ident: 714_CR5
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2022.114980
– volume: 74
  start-page: 613
  issue: 4
  year: 2008
  ident: 714_CR9
  publication-title: Talanta
  doi: 10.1016/j.talanta.2007.06.042
– volume: 34
  start-page: 1293
  issue: 4
  year: 2023
  ident: 714_CR34
  publication-title: Polymers for Advanced Technologies
  doi: 10.1002/pat.5970
– volume: 10
  start-page: 126
  issue: 1
  year: 2022
  ident: 714_CR16
  publication-title: Photonics Research
  doi: 10.1364/PRJ.439861
– volume: 13
  start-page: 64
  issue: 1
  year: 2022
  ident: 714_CR1
  publication-title: Biosensors
  doi: 10.3390/bios13010064
– volume: 371
  start-page: 132501
  year: 2022
  ident: 714_CR27
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2022.132501
– volume: 329
  start-page: 129094
  year: 2021
  ident: 714_CR46
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2020.129094
– volume: 3
  start-page: 936
  issue: 5
  year: 2018
  ident: 714_CR26
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.7b00918
– volume: 101
  start-page: 135
  year: 2018
  ident: 714_CR31
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2017.10.029
– volume: 20
  start-page: 4251
  issue: 8
  year: 2020
  ident: 714_CR20
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2020.2964262
– volume: 28
  start-page: 3351
  issue: 23
  year: 2010
  ident: 714_CR42
  publication-title: Journal of Lightwave Technology
– volume: 240
  start-page: 174
  year: 2017
  ident: 714_CR19
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2016.08.126
– volume: 17
  start-page: 2200554
  issue: 1
  year: 2023
  ident: 714_CR12
  publication-title: Laser & Photonics Reviews
  doi: 10.1002/lpor.202200554
– volume: 95
  start-page: 018101
  issue: 1
  year: 2005
  ident: 714_CR14
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.95.018101
– volume: 30
  start-page: 32483
  issue: 18
  year: 2022
  ident: 714_CR29
  publication-title: Optics Express
  doi: 10.1364/OE.466170
– volume: 74
  start-page: 454
  year: 2015
  ident: 714_CR32
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2015.06.080
– volume: 174
  start-page: 263
  year: 2012
  ident: 714_CR13
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2012.07.039
– volume: 93
  start-page: 176
  year: 2017
  ident: 714_CR25
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2016.09.020
– volume: 28
  start-page: 111
  issue: 1
  year: 2009
  ident: 714_CR15
  publication-title: Journal of Lightwave Technology
  doi: 10.1109/JLT.2009.2036580
– volume: 228
  start-page: 115184
  year: 2023
  ident: 714_CR6
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2023.115184
– volume: 10
  start-page: 2207437
  issue: 15
  year: 2023
  ident: 714_CR41
  publication-title: Advanced Science
  doi: 10.1002/advs.202207437
SSID ssib024094177
ssj0000779039
ssib050736673
Score 2.3525028
Snippet In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions...
Abstract In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 250133
SubjectTerms Biosensors
Coated fibers
Coupling agents
Dopamine
Electrical resistivity
Electrochemistry
electropolymerized dopamine
Human performance
IgG antibody
Immunoassay
Indium oxides
ITO
Lasers
lossy mode resonance
Measurement Science and Instrumentation
Microwaves
Optical Devices
Optical fiber biosensor
Optical fibers
Optics
Performance evaluation
Photonics
Physics
Physics and Astronomy
Regular
Resonance
RF and Optical Engineering
Sensors
surface functionalization
Tin dioxide
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ9YXOXhSgttN0t0cfRUVqyAWvIW8Fgq1W9p6qL_emey2VUG9eE2yS3ZmwnyzmfmGkGObBSUCF8xJVTDhTM4Ml5blJjdNFfIsl1ic3Hlo3XTF3Yt8-dTqC3PCKnrgSnBnaeqFlRnEcJKDsQmbGeeESkyibOFlZAIFn_cpmAJLSjFqaS4qLAH0cOxvOf_7kiDNXmwzhln4TIGXn115xro6joXF8JpY38PEF6cVuf2_ANJvd6jRNbXXyVqNKel59S0bZCkMNslKzO104y3Sva5a3QzL_hTvZ96Dp1cQK78CwKTtXv-VdUrfKwCL0sdh_LUNozaM6H3niV70yjFEuuWIArqlt1hNUgLeNtNt0m1fP1_esLqbAnNwLieslfgMnLdXzljrEu99UbRANApOdCETUJAKMjOZz1NYwL3wSRp4AYgShjD_cIcsD8pB2CU0cOmNyUHOjguvUmt4XmCo5YwKwvkGSWbi0q6mGseOF329IElGCWuQsEYJa9EgJ_NHhhXPxm-LL1AH84VIkR0HwHB0bTj6L8NpkIOZBnV9bseaY8jeUmkTpk9nWl1M_7ijvf_Y0T5ZTbG7cMxwOyDLk9FbOATIM7FH0bo_AJXu9JQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyNBEG58IHgRHyvqRumDJ6VhMt2dmT5uVoOKURAD3pp-zRJIMiGJB_fXW9WZyeDiCl67ax5UTU191fUi5NxmQYnABXNSFUw4kzPDpWW5yU1bhTzLJRYn9x86NwNx9yJfqjrueZ3tXock45-6KXbjWO0LNiUW3TCxTjYluu4YoW1ajqfosLSb4krAOxxHW64OXhLssBcnjGECPlNg4Oto52dP-WCvYlv_D1j0n_BptEq9XbJTwUn6ayn_PbIWJvtkK6Z1uvkBGVwvp9xMy9Ebhmb-Bk-vwE0eA7akveFozPqlHxYAQ-njNJ5qw6oNM3rff6LdYTkHJ7ecUQC29BYLSUqA2ubtBxn0rp9_37BqkAJzoJIL1kl8BnbbK2esdYn3vig6wBoFylzIBGSjgsxM5vMUCLgXPkkDLwBMwhKmHh6SjUk5CUeEBi69MTnw2XHhVWoNzwv0spxRQTh_TJKaXdpVXcZx2MVIN_2RkcMaOKyRw1ock4vVJdNli42viLsogxUhdseOC-Xsj66UTaepF1aCmMEXgx-UsJlxTqjEJMoWXsJNWrUEdaWyc83RW--otA3bl7VUm-3_vtHJt6h_ku0UJwjHLLYW2VjMXsMpwJqFPYuf8Tu7meji
  priority: 102
  providerName: Springer Nature
Title Electropolymerized Dopamine Film-Modified Optical Fiber LMR Biosensor for Immunoassay
URI https://link.springer.com/article/10.1007/s13320-024-0714-4
https://www.proquest.com/docview/3133869214
https://doaj.org/article/22d4b57907534884b7acc490a09bfd54
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bixMxFA5uF8EX8YrVdcmDT0owzWUmeZJtbV3FrrJY2Lcht5FCt1Pb-rD-es9JZ1pWcF8Ck8mE4ZxcvnMn5I0vk1VJKha0rZkKzjAntWfGGTewyZRGY3Dy9KI4n6kvV_qqVbhtWrfK7kzMB3VsAurI30sUpgorBurD6hfDqlFoXW1LaByRYziCjemR4-H44vtlt6IESi-DQ6QlgB-JdS73WhiO6fZyuTH0xmcWbvvO9Jnj6yQGGMM0Oc6HqVuXV87xfwuY_mNLzVfU5BF52GJLerZbDI_JvbR8Qu5nH8-weUpm413Jm1WzuEE7zZ8U6UeQma8BaNLJfHHNpk2c14BJ6bdVVnFDr09r-nV6SYfzZgMSb7OmgHLpZ4wqaQB3u5tnZDYZ_xids7aqAguwP7es4LGESzza4LwPPMZY1wWQxsLOrjUHRtmkS1dGI2CAjCpykWQNyBK60A_xOektm2V6QWiSOjpngM5BqmiFd9LUKHIFZ5MKsU94R64qtCnHsfLFojokS0YKV0DhCilcqT55u_9ktcu3cdfgIfJgPxBTZeeOZv2zandeJURUXgObQTCD00r50oWgLHfc-jpqmOSk42DV7t9NdVhtffKu4-rh9X__6OXdk70iDwTWD84-bCekt13_Tq8B1Gz9KTlS_BO0ZgLtbhXD00gobIvRaVYWQDsTZ38BtWzzTQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYJLxVMNLeADXEAWGz-y6wNClDYkNCkSaqTejF-LIqXZkASh8KP4jcw4u4mKRG-9er2WNTO2v7Fn5iPkpcujllFI5pUumfS2YFYoxwpb2LaORV4oTE4ennV6I_n5Ql3skD9NLgyGVTZ7YtqoQ-XxjvytQGeqo3lbvp_9YMgaha-rDYXG2ixO4-oXuGyLd_1j0O8rzrsn5x97rGYVYB7sc8k6WcjhEAvaW-d8FkIoy44DlAGWXaoMJqqjym0eCg4dRJAh41GUgKygCePwYNxb5LYUcJJjZnr3U2O_HH2l9javE6CWQFbNzZ1PhsX9ErkZxv4zDdiieWhN2XwC05lhmJRVxOSVozIxClyBwf-83KYDsXuf7NVIln5Ym94DshOnD8mdFFHqF4_I6GRNsDOrJit8FfodAz0GD_0SYC3tjieXbFiFcQkImH6ZpQt1aHVxTgfDr_RoXC3Av67mFDA17WMOSwUo364ek9GNSPsJ2Z1W07hPaBQqWFuAnL2QQXNnRVGig-etjtKHFskacRlfFzhHno2J2ZZmRgkbkLBBCRvZIq83v8zW1T2u63yEOth0xMLcqaGafzf1OjecB-kUqBncQNgbpcut91JnNtOuDAoGOWw0aOrdYmG2tt0ibxqtbj__d0ZPrx_sBbnbOx8OzKB_dnpA7nFkLk7Rc4dkdzn_GZ8BnFq658mGKfl204vmL2vwKg8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxFOEFvABLiCrG9ubXR8QIiRRQ5tQVUTqzfi1KFKaTZMgFH4av44ZZzdRkeitV6_XsmbG9jf2zHyEvLFZUDIIyVyqCiadyZkRqWW5yU1LhTzLU0xOHo7ax2P55SK92CN_6lwYDKus98S4UfvS4R35kUBnqq14Sx4VVVjEWbf_cX7FkEEKX1prOo2NiZyE9S9w35YfBl3Q9VvO-71vn49ZxTDAHNjqirUTn8GB5pUz1rrEe18UbQuIA6y8SBOYtAppZjKfc-ggvPQJD6IAlAVNGJMH494h-xl6RQ2y3-mNzs5ra-boObV2WZ4AvARybG5vgBIs9RepzjATgClAGvWza8ztE5jcDMPEHCMmrx2ckV_gGij-5x03Ho_9h-RBhWvpp40hPiJ7YfaY3I3xpW75hIx7G7qdeTld4xvR7-BpF_z1SwC5tD-ZXrJh6ScF4GH6dR6v16HVhgU9HZ7TzqRcgrddLiggbDrAjJYSML9ZPyXjW5H3M9KYlbPwnNAgUm9MDnJ2QnrFrRF5ge6eMypI55skqcWlXVXuHFk3pnpXqBklrEHCGiWsZZO82_4y39T6uKlzB3Ww7YhlumNDufihq1WvOffSpqBmcAphp5Q2M85JlZhE2cKnMMhhrUFd7R1LvbP0Jnlfa3X3-b8zenHzYK_JPVgw-nQwOjkg9znSGMdQukPSWC1-hpeArVb2VWXElHy_7XXzF7MRL6E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electropolymerized+Dopamine+Film-Modified+Optical+Fiber+LMR+Biosensor+for+Immunoassay&rft.jtitle=Photonic+sensors+%28Berlin%29&rft.au=Dai%2C+Xiaoshuang&rft.au=Wang%2C+Shuang&rft.au=Li%2C+Yongle&rft.au=Jiang%2C+Junfeng&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-9251&rft.eissn=2190-7439&rft.volume=15&rft.issue=1&rft.spage=250133&rft_id=info:doi/10.1007%2Fs13320-024-0714-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-9251&client=summon