Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO) produced by high-pressure torsion

Photocatalysis on semiconductors using solar energy sources provides a clean technology to produce hydrogen from water splitting. Although zirconia (ZrO 2 ) is a semiconductor oxide, it is not generally considered as a photocatalyst owing to its poor light absorbance and wide bandgap (over 5 eV). In...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 7; pp. 3643 - 365
Main Authors Wang, Qing, Edalati, Kaveh, Koganemaru, Yuta, Nakamura, Shohei, Watanabe, Motonori, Ishihara, Tatsumi, Horita, Zenji
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photocatalysis on semiconductors using solar energy sources provides a clean technology to produce hydrogen from water splitting. Although zirconia (ZrO 2 ) is a semiconductor oxide, it is not generally considered as a photocatalyst owing to its poor light absorbance and wide bandgap (over 5 eV). In this study, black ZrO 2 with a large concentration of lattice defects such as oxygen vacancies, dislocations and nanograin boundaries is stabilized by high-pressure torsion (HPT) straining. The black ZrO 2 , which experiences monoclinic-tetragonal phase transformations during the HPT process, shows large light absorption, a small bandgap, reduced conduction band energy and high photocatalytic activity for hydrogen evolution due the presence of oxygen vacancies. These results confirm that the introduction of strain-induced oxygen vacancies is a potential method to produce low-bandgap photocatalysts. Photocatalytic hydrogen generation on low-bandgap black ZrO 2 produced by high-pressure torsion.
AbstractList Photocatalysis on semiconductors using solar energy sources provides a clean technology to produce hydrogen from water splitting. Although zirconia (ZrO 2 ) is a semiconductor oxide, it is not generally considered as a photocatalyst owing to its poor light absorbance and wide bandgap (over 5 eV). In this study, black ZrO 2 with a large concentration of lattice defects such as oxygen vacancies, dislocations and nanograin boundaries is stabilized by high-pressure torsion (HPT) straining. The black ZrO 2 , which experiences monoclinic–tetragonal phase transformations during the HPT process, shows large light absorption, a small bandgap, reduced conduction band energy and high photocatalytic activity for hydrogen evolution due the presence of oxygen vacancies. These results confirm that the introduction of strain-induced oxygen vacancies is a potential method to produce low-bandgap photocatalysts.
Photocatalysis on semiconductors using solar energy sources provides a clean technology to produce hydrogen from water splitting. Although zirconia (ZrO 2 ) is a semiconductor oxide, it is not generally considered as a photocatalyst owing to its poor light absorbance and wide bandgap (over 5 eV). In this study, black ZrO 2 with a large concentration of lattice defects such as oxygen vacancies, dislocations and nanograin boundaries is stabilized by high-pressure torsion (HPT) straining. The black ZrO 2 , which experiences monoclinic-tetragonal phase transformations during the HPT process, shows large light absorption, a small bandgap, reduced conduction band energy and high photocatalytic activity for hydrogen evolution due the presence of oxygen vacancies. These results confirm that the introduction of strain-induced oxygen vacancies is a potential method to produce low-bandgap photocatalysts. Photocatalytic hydrogen generation on low-bandgap black ZrO 2 produced by high-pressure torsion.
Photocatalysis on semiconductors using solar energy sources provides a clean technology to produce hydrogen from water splitting. Although zirconia (ZrO2) is a semiconductor oxide, it is not generally considered as a photocatalyst owing to its poor light absorbance and wide bandgap (over 5 eV). In this study, black ZrO2 with a large concentration of lattice defects such as oxygen vacancies, dislocations and nanograin boundaries is stabilized by high-pressure torsion (HPT) straining. The black ZrO2, which experiences monoclinic–tetragonal phase transformations during the HPT process, shows large light absorption, a small bandgap, reduced conduction band energy and high photocatalytic activity for hydrogen evolution due the presence of oxygen vacancies. These results confirm that the introduction of strain-induced oxygen vacancies is a potential method to produce low-bandgap photocatalysts.
Author Nakamura, Shohei
Ishihara, Tatsumi
Wang, Qing
Edalati, Kaveh
Koganemaru, Yuta
Watanabe, Motonori
Horita, Zenji
AuthorAffiliation 2
Faculty of Engineering
Department of Applied Chemistry
CNER
Kyushu Institute of Technology
WPI, International Institute for Carbon-Neutral Energy Research (WPI-I
School of Engineering
Kyushu University
AuthorAffiliation_xml – name: Faculty of Engineering
– name: CNER
– name: Kyushu University
– name: WPI, International Institute for Carbon-Neutral Energy Research (WPI-I
– name: Kyushu Institute of Technology
– name: Department of Applied Chemistry
– name: School of Engineering
– name: 2
Author_xml – sequence: 1
  givenname: Qing
  surname: Wang
  fullname: Wang, Qing
– sequence: 2
  givenname: Kaveh
  surname: Edalati
  fullname: Edalati, Kaveh
– sequence: 3
  givenname: Yuta
  surname: Koganemaru
  fullname: Koganemaru, Yuta
– sequence: 4
  givenname: Shohei
  surname: Nakamura
  fullname: Nakamura, Shohei
– sequence: 5
  givenname: Motonori
  surname: Watanabe
  fullname: Watanabe, Motonori
– sequence: 6
  givenname: Tatsumi
  surname: Ishihara
  fullname: Ishihara, Tatsumi
– sequence: 7
  givenname: Zenji
  surname: Horita
  fullname: Horita, Zenji
BookMark eNpFkE1LAzEQhoNUsNZevAsBLyqs5mM3TY6l-EmhHurFy5JNst2t62ZNssj6641W6jDDDMPDO8N7DEatbQ0ApxhdY0TFjRJBYsyp2B6AMUEZSmapYKP9zPkRmHq_RTE4QkyIMaieKxuskkE2Q6gVrAbt7Ma0MJZxMtS2hTEb-5kUstUb2cGikeoNftVO2baW8OLVrS5h56zuldGwGGBVb6qkc8b73hkYrPNR5QQclrLxZvrXJ-Dl7na9eEiWq_vHxXyZqJRkIWGIGC25ogQTwWYpxVplFPGUzqikDMddxnDJixQRqlNaMCowK6XQWHKqCjoB5zvd-NFHb3zIt7Z3bTyZE5oxFmUxjtTVjlLOeu9MmXeufpduyDHKf8zMF2I9_zXzKcJnO9h5tef-zabfEZByRg
CitedBy_id crossref_primary_10_1039_D2NJ00905F
crossref_primary_10_1039_D3TA04198K
crossref_primary_10_1080_21663831_2022_2057821
crossref_primary_10_1016_j_mseb_2024_117267
crossref_primary_10_2320_matertrans_MT_MF2022011
crossref_primary_10_1038_s41598_022_14590_3
crossref_primary_10_1021_acs_jpclett_3c02409
crossref_primary_10_1039_D3CC03329E
crossref_primary_10_3390_molecules25174008
crossref_primary_10_1016_j_jallcom_2021_162582
crossref_primary_10_1007_s10876_021_02071_y
crossref_primary_10_1016_j_apcatb_2021_120566
crossref_primary_10_1039_D1TA03861C
crossref_primary_10_2320_matertrans_MT_MF2022004
crossref_primary_10_3389_fchem_2022_1018124
crossref_primary_10_2320_matertrans_MT_MF2022043
crossref_primary_10_4028_p_oz9xJS
crossref_primary_10_1016_j_cej_2023_148489
crossref_primary_10_1021_acsami_0c16543
crossref_primary_10_1038_s41598_022_19382_3
crossref_primary_10_1007_s12274_022_4858_5
crossref_primary_10_1039_D3CY01470C
crossref_primary_10_1111_jace_17362
crossref_primary_10_1021_acs_jpcc_0c03923
crossref_primary_10_1007_s10008_022_05118_w
crossref_primary_10_1016_j_scriptamat_2020_06_052
crossref_primary_10_1039_D0TA12101K
crossref_primary_10_1016_j_matchemphys_2023_127410
crossref_primary_10_1080_21663831_2022_2029779
crossref_primary_10_1002_adem_202200105
crossref_primary_10_1016_j_jphotochem_2023_115409
crossref_primary_10_1039_D2RA07070G
crossref_primary_10_2320_matertrans_MT_MF2022036
crossref_primary_10_1016_j_mtla_2020_100670
crossref_primary_10_1039_D0TA10024B
crossref_primary_10_1002_solr_202000403
crossref_primary_10_1111_jace_18309
crossref_primary_10_1016_j_apcata_2020_117966
crossref_primary_10_1016_j_jre_2024_03_022
crossref_primary_10_1021_acs_analchem_3c03823
crossref_primary_10_14356_kona_2024003
crossref_primary_10_1039_D1TC03914H
crossref_primary_10_1016_j_actamat_2023_119457
crossref_primary_10_3390_chemengineering6030043
crossref_primary_10_1016_j_jmrt_2024_02_111
crossref_primary_10_1016_j_scriptamat_2024_115991
crossref_primary_10_1021_acssuschemeng_0c04380
crossref_primary_10_1016_j_physb_2022_414626
crossref_primary_10_1002_adma_202200868
crossref_primary_10_1016_j_apcatb_2022_122308
crossref_primary_10_1016_j_ijhydene_2021_03_094
crossref_primary_10_1002_adma_202302858
crossref_primary_10_1016_j_cej_2021_130393
crossref_primary_10_3390_ma16031081
crossref_primary_10_1021_acsami_2c01209
crossref_primary_10_1007_s10971_022_05936_4
crossref_primary_10_1016_j_jallcom_2024_174667
crossref_primary_10_1016_j_clay_2021_106328
crossref_primary_10_1021_acs_jpcc_2c05862
crossref_primary_10_1007_s10853_023_09206_8
crossref_primary_10_1016_j_apcatb_2023_122692
crossref_primary_10_2320_matertrans_MT_MF2022059
crossref_primary_10_1016_j_apcatb_2021_120633
crossref_primary_10_1016_j_ijhydene_2021_03_248
crossref_primary_10_2320_matertrans_MT_M2020134
crossref_primary_10_1016_j_scitotenv_2024_171988
crossref_primary_10_2320_matertrans_MT_L2023022
crossref_primary_10_1016_j_apsusc_2020_147291
crossref_primary_10_1016_j_jphotochem_2022_113970
Cites_doi 10.1016/j.cej.2018.01.069
10.1002/cctc.201200440
10.1021/am5051907
10.1016/j.apcatb.2017.01.025
10.1111/j.1151-2916.2000.tb01221.x
10.1049/el:19981048
10.1063/1.4999093
10.1021/jp027593f
10.1039/C7TA05262F
10.1038/s41377-018-0088-8
10.1016/j.pmatsci.2008.03.002
10.1039/c3ee41817k
10.1021/acsenergylett.8b00518
10.1080/21663831.2019.1609111
10.1080/21663831.2015.1065454
10.1002/ange.200704788
10.1016/j.actamat.2019.12.007
10.1021/jz1007966
10.1021/ie200350f
10.1021/acs.inorgchem.6b02725
10.1039/C3NR05044K
10.1126/science.1200448
10.1039/C5TA01544H
10.1016/j.scriptamat.2009.09.025
10.1039/c3ta01589k
10.2320/matertrans.MF201937
10.1038/srep01510
10.1103/PhysRev.48.825
10.1021/acsaem.9b02197
10.1038/asiamat.2010.137
10.1021/cm400728j
10.1039/C6RA25823A
10.1039/C5DT04578A
10.1016/j.nanoen.2013.02.005
10.1038/srep27218
10.2320/matertrans.MF201923
10.1016/j.jphotochemrev.2011.02.001
10.1016/j.jlumin.2016.10.035
10.1186/s11671-015-0780-z
10.1021/acs.chemmater.5b04845
10.1103/PhysRevB.57.7027
10.1039/C5TA02109J
10.1016/j.jlumin.2012.05.039
10.1016/j.ijhydene.2014.01.080
10.1021/acsami.5b01598
10.1007/s10853-014-8262-8
10.1021/nl402810d
10.1016/j.scriptamat.2004.05.007
10.1016/j.scriptamat.2011.08.024
10.1039/C5SC04076K
10.1103/PhysRevB.62.8731
10.1016/0022-3697(83)90098-7
10.1021/acs.jpcc.7b06455
10.1146/annurev-matsci-070909-104445
10.1016/j.scriptamat.2019.08.011
10.1016/j.ceramint.2014.10.047
10.1016/j.ijplas.2019.08.010
10.1016/j.scriptamat.2010.05.007
10.1103/PhysRevB.64.224108
10.1038/ncomms2401
10.1021/acs.jpcc.5b12185
10.1016/S0360-3199(02)00022-8
10.1039/C5NR00271K
10.1039/C4RA04826A
10.1021/acscatal.6b01482
10.1021/acsaem.8b00944
10.1016/j.molcata.2005.01.038
10.1016/j.mtphys.2018.04.001
10.1007/s11837-006-0213-7
10.1073/pnas.1214976109
10.1002/adem.201800272
10.1016/j.pecs.2016.09.001
10.1038/238037a0
10.1002/adem.201400065
10.1002/adma.201303088
10.1021/ja01269a023
10.2320/matertrans.MF201938
10.1103/PhysRevB.81.085119
10.1039/C5CY00330J
10.1039/C2CS35266D
10.1021/jp8103497
10.1016/j.rser.2005.01.009
10.1023/B:JMSC.0000034135.52164.6b
10.1016/j.msea.2015.11.074
10.1002/anie.201004976
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/c9ta11839j
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 365
ExternalDocumentID 10_1039_C9TA11839J
c9ta11839j
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
-JG
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AGRSR
AHGCF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c425t-602eda8c3212967431dc53084373a361967561f8b4023d43b63916fa9d1a83cb3
ISSN 2050-7488
IngestDate Fri Sep 13 05:10:42 EDT 2024
Fri Aug 23 01:29:18 EDT 2024
Sat Jan 08 11:09:58 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c425t-602eda8c3212967431dc53084373a361967561f8b4023d43b63916fa9d1a83cb3
ORCID 0000-0003-3621-4361
0000-0002-3771-3456
0000-0002-7434-3773
PQID 2356612911
PQPubID 2047523
PageCount 8
ParticipantIDs rsc_primary_c9ta11839j
proquest_journals_2356612911
crossref_primary_10_1039_C9TA11839J
PublicationCentury 2000
PublicationDate 20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 20200101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sapountzi (C9TA11839J-(cit2)/*[position()=1]) 2017; 58
Ullattil (C9TA11839J-(cit28)/*[position()=1]) 2018; 343
Ferreira (C9TA11839J-(cit70)/*[position()=1]) 2017; 147
Čížek (C9TA11839J-(cit43)/*[position()=1]) 2019; 60
Zhao (C9TA11839J-(cit31)/*[position()=1]) 2016; 45
Edalati (C9TA11839J-(cit50)/*[position()=1]) 2011; 65
Kim (C9TA11839J-(cit24)/*[position()=1]) 2016; 28
Králik (C9TA11839J-(cit65)/*[position()=1]) 1998; 57
Razavi-Khosroshahi (C9TA11839J-(cit45)/*[position()=1]) 2016; 6
Levitas (C9TA11839J-(cit73)/*[position()=1]) 2014; 6
Chen (C9TA11839J-(cit29)/*[position()=1]) 2011; 331
Edalati (C9TA11839J-(cit57)/*[position()=1]) 2019; 21
Kawasaki (C9TA11839J-(cit83)/*[position()=1]) 2014; 49
Karunakaran (C9TA11839J-(cit16)/*[position()=1]) 2005; 233
Polisetti (C9TA11839J-(cit20)/*[position()=1]) 2011; 50
Ungár (C9TA11839J-(cit55)/*[position()=1]) 2004; 51
Krystian (C9TA11839J-(cit42)/*[position()=1]) 2010; 62
Ni (C9TA11839J-(cit7)/*[position()=1]) 2007; 11
Gurushantha (C9TA11839J-(cit19)/*[position()=1]) 2017; 7
Cui (C9TA11839J-(cit22)/*[position()=1]) 2015; 3
Bridgman (C9TA11839J-(cit48)/*[position()=1]) 1935; 48
Xia (C9TA11839J-(cit85)/*[position()=1]) 2013; 1
Xia (C9TA11839J-(cit87)/*[position()=1]) 2013; 13
Craciun (C9TA11839J-(cit10)/*[position()=1]) 1998; 34
Edalati (C9TA11839J-(cit47)/*[position()=1]) 2020; 185
Bak (C9TA11839J-(cit1)/*[position()=1]) 2002; 27
Edalati (C9TA11839J-(cit40)/*[position()=1]) 2016; 652
Guan (C9TA11839J-(cit77)/*[position()=1]) 2018; 1
Mazilkin (C9TA11839J-(cit84)/*[position()=1]) 2019; 60
Jiang (C9TA11839J-(cit9)/*[position()=1]) 2015; 17
Hidalgo-Jimenez (C9TA11839J-(cit51)/*[position()=1]) 2020; 124
Xia (C9TA11839J-(cit36)/*[position()=1]) 2014; 4
Zhilyaev (C9TA11839J-(cit39)/*[position()=1]) 2008; 53
Chun (C9TA11839J-(cit64)/*[position()=1]) 2003; 107
Li (C9TA11839J-(cit80)/*[position()=1]) 2013; 4
Sheng (C9TA11839J-(cit78)/*[position()=1]) 2016; 7
Guo (C9TA11839J-(cit26)/*[position()=1]) 2015; 7
Zhang (C9TA11839J-(cit75)/*[position()=1]) 2008; 120
Ji (C9TA11839J-(cit72)/*[position()=1]) 2012; 109
Kouva (C9TA11839J-(cit8)/*[position()=1]) 2015; 5
Sinhamahapatra (C9TA11839J-(cit21)/*[position()=1]) 2016; 6
Edalati (C9TA11839J-(cit37)/*[position()=1]) 2019; 173
Jiang (C9TA11839J-(cit13)/*[position()=1]) 2004; 39
Green (C9TA11839J-(cit89)/*[position()=1]) 2018; 4
Mettenbörger (C9TA11839J-(cit23)/*[position()=1]) 2014; 39
Edalati (C9TA11839J-(cit52)/*[position()=1]) 2020
Puigdollers (C9TA11839J-(cit68)/*[position()=1]) 2016; 120
Tan (C9TA11839J-(cit25)/*[position()=1]) 2014; 6
Gionco (C9TA11839J-(cit62)/*[position()=1]) 2013; 25
Xia (C9TA11839J-(cit27)/*[position()=1]) 2014; 4
Oberdorfer (C9TA11839J-(cit41)/*[position()=1]) 2010; 63
Morinaga (C9TA11839J-(cit67)/*[position()=1]) 1983; 44
Maeda (C9TA11839J-(cit5)/*[position()=1]) 2010; 1
Huang (C9TA11839J-(cit81)/*[position()=1]) 2017; 121
Wang (C9TA11839J-(cit30)/*[position()=1]) 2013; 6
Mettenbörger (C9TA11839J-(cit33)/*[position()=1]) 2014; 39
Edalati (C9TA11839J-(cit44)/*[position()=1]) 2015; 3
Jiang (C9TA11839J-(cit69)/*[position()=1]) 2010; 81
Larina (C9TA11839J-(cit15)/*[position()=1]) 2019; 10
Tachikawa (C9TA11839J-(cit79)/*[position()=1]) 2010; 49
Zhang (C9TA11839J-(cit14)/*[position()=1]) 2015; 41
Xia (C9TA11839J-(cit90)/*[position()=1]) 2015; 7
Bouvier (C9TA11839J-(cit49)/*[position()=1]) 2008; 62
Xia (C9TA11839J-(cit93)/*[position()=1]) 2013; 25
Hannink (C9TA11839J-(cit54)/*[position()=1]) 2000; 83
Guo (C9TA11839J-(cit35)/*[position()=1]) 2015; 7
Edalati (C9TA11839J-(cit76)/*[position()=1]) 2019; 7
Salari (C9TA11839J-(cit59)/*[position()=1]) 2017; 182
Brunauer (C9TA11839J-(cit53)/*[position()=1]) 1938; 60
Tan (C9TA11839J-(cit34)/*[position()=1]) 2014; 6
Li (C9TA11839J-(cit82)/*[position()=1]) 2017; 206
Cui (C9TA11839J-(cit32)/*[position()=1]) 2015; 3
Cong (C9TA11839J-(cit60)/*[position()=1]) 2009; 113
Valiev (C9TA11839J-(cit38)/*[position()=1]) 2006; 58
Razavi-Khosroshahi (C9TA11839J-(cit58)/*[position()=1]) 2017; 56
Green (C9TA11839J-(cit92)/*[position()=1]) 2018; 7
Fujishima (C9TA11839J-(cit4)/*[position()=1]) 1972; 238
Xia (C9TA11839J-(cit88)/*[position()=1]) 2013; 2
Solanki (C9TA11839J-(cit11)/*[position()=1]) 2011; 3
Pippan (C9TA11839J-(cit56)/*[position()=1]) 2010; 40
Chen (C9TA11839J-(cit86)/*[position()=1]) 2013; 3
Tian (C9TA11839J-(cit91)/*[position()=1]) 2015; 3
Sinhamahapatra (C9TA11839J-(cit12)/*[position()=1]) 2013; 5
Ohtani (C9TA11839J-(cit3)/*[position()=1]) 2010; 11
Wang (C9TA11839J-(cit61)/*[position()=1]) 2012; 132
Osterloh (C9TA11839J-(cit6)/*[position()=1]) 2013; 42
Razavi-Khosroshahi (C9TA11839J-(cit46)/*[position()=1]) 2017; 5
Kadi (C9TA11839J-(cit18)/*[position()=1]) 2013
Kubelka (C9TA11839J-(cit63)/*[position()=1]) 1931; 12
Foster (C9TA11839J-(cit66)/*[position()=1]) 2001; 64
Basahel (C9TA11839J-(cit17)/*[position()=1]) 2015; 10
Abeysinghe (C9TA11839J-(cit71)/*[position()=1]) 2018; 3
Levitas (C9TA11839J-(cit74)/*[position()=1]) 2019; 60
References_xml – volume: 343
  start-page: 708
  year: 2018
  ident: C9TA11839J-(cit28)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.069
  contributor:
    fullname: Ullattil
– volume: 5
  start-page: 331
  year: 2013
  ident: C9TA11839J-(cit12)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201200440
  contributor:
    fullname: Sinhamahapatra
– volume: 6
  start-page: 19184
  year: 2014
  ident: C9TA11839J-(cit25)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5051907
  contributor:
    fullname: Tan
– volume: 12
  start-page: 593
  year: 1931
  ident: C9TA11839J-(cit63)/*[position()=1]
  publication-title: Zeit. Für Teken. Physik
  contributor:
    fullname: Kubelka
– volume: 206
  start-page: 300
  year: 2017
  ident: C9TA11839J-(cit82)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.01.025
  contributor:
    fullname: Li
– volume: 83
  start-page: 461
  year: 2000
  ident: C9TA11839J-(cit54)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2000.tb01221.x
  contributor:
    fullname: Hannink
– volume: 34
  start-page: 1527
  year: 1998
  ident: C9TA11839J-(cit10)/*[position()=1]
  publication-title: Electron. Lett.
  doi: 10.1049/el:19981048
  contributor:
    fullname: Craciun
– volume: 147
  start-page: 154102
  year: 2017
  ident: C9TA11839J-(cit70)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4999093
  contributor:
    fullname: Ferreira
– volume: 107
  start-page: 1798
  year: 2003
  ident: C9TA11839J-(cit64)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp027593f
  contributor:
    fullname: Chun
– volume: 10
  start-page: 70
  year: 2019
  ident: C9TA11839J-(cit15)/*[position()=1]
  publication-title: Nanosyst.: Phys., Chem., Math.
  contributor:
    fullname: Larina
– volume: 5
  start-page: 20298
  year: 2017
  ident: C9TA11839J-(cit46)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05262F
  contributor:
    fullname: Razavi-Khosroshahi
– volume: 7
  start-page: 87
  year: 2018
  ident: C9TA11839J-(cit92)/*[position()=1]
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-018-0088-8
  contributor:
    fullname: Green
– volume: 53
  start-page: 893
  year: 2008
  ident: C9TA11839J-(cit39)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2008.03.002
  contributor:
    fullname: Zhilyaev
– volume: 6
  start-page: 3007
  year: 2013
  ident: C9TA11839J-(cit30)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41817k
  contributor:
    fullname: Wang
– volume: 3
  start-page: 1331
  year: 2018
  ident: C9TA11839J-(cit71)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00518
  contributor:
    fullname: Abeysinghe
– volume: 7
  start-page: 334
  year: 2019
  ident: C9TA11839J-(cit76)/*[position()=1]
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2019.1609111
  contributor:
    fullname: Edalati
– volume: 3
  start-page: 216
  year: 2015
  ident: C9TA11839J-(cit44)/*[position()=1]
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2015.1065454
  contributor:
    fullname: Edalati
– volume: 120
  start-page: 1790
  year: 2008
  ident: C9TA11839J-(cit75)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200704788
  contributor:
    fullname: Zhang
– volume: 185
  start-page: 149
  year: 2020
  ident: C9TA11839J-(cit47)/*[position()=1]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.12.007
  contributor:
    fullname: Edalati
– volume: 1
  start-page: 2655
  year: 2010
  ident: C9TA11839J-(cit5)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1007966
  contributor:
    fullname: Maeda
– volume: 50
  start-page: 12915
  year: 2011
  ident: C9TA11839J-(cit20)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie200350f
  contributor:
    fullname: Polisetti
– volume: 56
  start-page: 2576
  year: 2017
  ident: C9TA11839J-(cit58)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b02725
  contributor:
    fullname: Razavi-Khosroshahi
– volume: 6
  start-page: 162
  year: 2014
  ident: C9TA11839J-(cit73)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C3NR05044K
  contributor:
    fullname: Levitas
– volume: 331
  start-page: 746
  year: 2011
  ident: C9TA11839J-(cit29)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1200448
  contributor:
    fullname: Chen
– volume: 6
  start-page: 19184
  year: 2014
  ident: C9TA11839J-(cit34)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5051907
  contributor:
    fullname: Tan
– volume: 3
  start-page: 11830
  year: 2015
  ident: C9TA11839J-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01544H
  contributor:
    fullname: Cui
– volume: 62
  start-page: 49
  year: 2010
  ident: C9TA11839J-(cit42)/*[position()=1]
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2009.09.025
  contributor:
    fullname: Krystian
– volume: 1
  start-page: 2983
  year: 2013
  ident: C9TA11839J-(cit85)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta01589k
  contributor:
    fullname: Xia
– volume: 60
  start-page: 1533
  year: 2019
  ident: C9TA11839J-(cit43)/*[position()=1]
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.MF201937
  contributor:
    fullname: Čížek
– volume: 3
  start-page: 1510
  year: 2013
  ident: C9TA11839J-(cit86)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep01510
  contributor:
    fullname: Chen
– volume: 48
  start-page: 825
  year: 1935
  ident: C9TA11839J-(cit48)/*[position()=1]
  publication-title: Physiol. Rev.
  doi: 10.1103/PhysRev.48.825
  contributor:
    fullname: Bridgman
– year: 2020
  ident: C9TA11839J-(cit52)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b02197
  contributor:
    fullname: Edalati
– volume: 3
  start-page: 17
  year: 2011
  ident: C9TA11839J-(cit11)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/asiamat.2010.137
  contributor:
    fullname: Solanki
– volume: 25
  start-page: 2243
  year: 2013
  ident: C9TA11839J-(cit62)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm400728j
  contributor:
    fullname: Gionco
– volume: 7
  start-page: 12690
  year: 2017
  ident: C9TA11839J-(cit19)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA25823A
  contributor:
    fullname: Gurushantha
– volume: 45
  start-page: 3888
  year: 2016
  ident: C9TA11839J-(cit31)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT04578A
  contributor:
    fullname: Zhao
– volume: 2
  start-page: 826
  year: 2013
  ident: C9TA11839J-(cit88)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.02.005
  contributor:
    fullname: Xia
– volume: 6
  start-page: 27218
  year: 2016
  ident: C9TA11839J-(cit21)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep27218
  contributor:
    fullname: Sinhamahapatra
– volume: 60
  start-page: 1294
  year: 2019
  ident: C9TA11839J-(cit74)/*[position()=1]
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.MF201923
  contributor:
    fullname: Levitas
– volume: 11
  start-page: 157
  year: 2010
  ident: C9TA11839J-(cit3)/*[position()=1]
  publication-title: J. Photochem. Photobiol., C
  doi: 10.1016/j.jphotochemrev.2011.02.001
  contributor:
    fullname: Ohtani
– volume: 182
  start-page: 289
  year: 2017
  ident: C9TA11839J-(cit59)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2016.10.035
  contributor:
    fullname: Salari
– volume: 10
  start-page: 73
  year: 2015
  ident: C9TA11839J-(cit17)/*[position()=1]
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-015-0780-z
  contributor:
    fullname: Basahel
– volume: 28
  start-page: 1453
  year: 2016
  ident: C9TA11839J-(cit24)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04845
  contributor:
    fullname: Kim
– volume: 57
  start-page: 7027
  year: 1998
  ident: C9TA11839J-(cit65)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.57.7027
  contributor:
    fullname: Králik
– volume: 3
  start-page: 12550
  year: 2015
  ident: C9TA11839J-(cit91)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02109J
  contributor:
    fullname: Tian
– volume: 132
  start-page: 2817
  year: 2012
  ident: C9TA11839J-(cit61)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2012.05.039
  contributor:
    fullname: Wang
– volume: 39
  start-page: 4828
  year: 2014
  ident: C9TA11839J-(cit23)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.080
  contributor:
    fullname: Mettenbörger
– volume: 7
  start-page: 10407
  year: 2015
  ident: C9TA11839J-(cit90)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01598
  contributor:
    fullname: Xia
– volume: 49
  start-page: 6586
  year: 2014
  ident: C9TA11839J-(cit83)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-014-8262-8
  contributor:
    fullname: Kawasaki
– volume: 13
  start-page: 5289
  year: 2013
  ident: C9TA11839J-(cit87)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl402810d
  contributor:
    fullname: Xia
– volume: 51
  start-page: 777
  year: 2004
  ident: C9TA11839J-(cit55)/*[position()=1]
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2004.05.007
  contributor:
    fullname: Ungár
– volume: 65
  start-page: 974
  year: 2011
  ident: C9TA11839J-(cit50)/*[position()=1]
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.08.024
  contributor:
    fullname: Edalati
– volume: 7
  start-page: 1910
  year: 2016
  ident: C9TA11839J-(cit78)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC04076K
  contributor:
    fullname: Sheng
– volume: 62
  start-page: 8731
  year: 2008
  ident: C9TA11839J-(cit49)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.62.8731
  contributor:
    fullname: Bouvier
– volume: 44
  start-page: 301
  year: 1983
  ident: C9TA11839J-(cit67)/*[position()=1]
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(83)90098-7
  contributor:
    fullname: Morinaga
– volume: 121
  start-page: 23249
  year: 2017
  ident: C9TA11839J-(cit81)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b06455
  contributor:
    fullname: Huang
– volume: 3
  start-page: 11830
  year: 2015
  ident: C9TA11839J-(cit32)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01544H
  contributor:
    fullname: Cui
– volume: 40
  start-page: 319
  year: 2010
  ident: C9TA11839J-(cit56)/*[position()=1]
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070909-104445
  contributor:
    fullname: Pippan
– volume: 173
  start-page: 120
  year: 2019
  ident: C9TA11839J-(cit37)/*[position()=1]
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.08.011
  contributor:
    fullname: Edalati
– volume: 41
  start-page: 2626
  year: 2015
  ident: C9TA11839J-(cit14)/*[position()=1]
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2014.10.047
  contributor:
    fullname: Zhang
– volume: 124
  start-page: 170
  year: 2020
  ident: C9TA11839J-(cit51)/*[position()=1]
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.08.010
  contributor:
    fullname: Hidalgo-Jimenez
– volume: 63
  start-page: 452
  year: 2010
  ident: C9TA11839J-(cit41)/*[position()=1]
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2010.05.007
  contributor:
    fullname: Oberdorfer
– volume: 64
  start-page: 224108
  year: 2001
  ident: C9TA11839J-(cit66)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.64.224108
  contributor:
    fullname: Foster
– volume: 4
  start-page: 1432
  year: 2013
  ident: C9TA11839J-(cit80)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2401
  contributor:
    fullname: Li
– volume: 120
  start-page: 4392
  year: 2016
  ident: C9TA11839J-(cit68)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b12185
  contributor:
    fullname: Puigdollers
– volume: 27
  start-page: 991
  year: 2002
  ident: C9TA11839J-(cit1)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(02)00022-8
  contributor:
    fullname: Bak
– volume: 7
  start-page: 7216
  year: 2015
  ident: C9TA11839J-(cit26)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR00271K
  contributor:
    fullname: Guo
– volume: 4
  start-page: 41654
  year: 2014
  ident: C9TA11839J-(cit27)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA04826A
  contributor:
    fullname: Xia
– volume: 6
  start-page: 5103
  year: 2016
  ident: C9TA11839J-(cit45)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01482
  contributor:
    fullname: Razavi-Khosroshahi
– start-page: 812097
  year: 2013
  ident: C9TA11839J-(cit18)/*[position()=1]
  publication-title: Int. J. Photoenergy
  contributor:
    fullname: Kadi
– volume: 1
  start-page: 4313
  year: 2018
  ident: C9TA11839J-(cit77)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00944
  contributor:
    fullname: Guan
– volume: 233
  start-page: 1
  year: 2005
  ident: C9TA11839J-(cit16)/*[position()=1]
  publication-title: J. Mol. Catal. Chem.
  doi: 10.1016/j.molcata.2005.01.038
  contributor:
    fullname: Karunakaran
– volume: 4
  start-page: 64
  year: 2018
  ident: C9TA11839J-(cit89)/*[position()=1]
  publication-title: Materials Today Physics
  doi: 10.1016/j.mtphys.2018.04.001
  contributor:
    fullname: Green
– volume: 58
  start-page: 33
  year: 2006
  ident: C9TA11839J-(cit38)/*[position()=1]
  publication-title: JOM
  doi: 10.1007/s11837-006-0213-7
  contributor:
    fullname: Valiev
– volume: 109
  start-page: 19108
  year: 2012
  ident: C9TA11839J-(cit72)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1214976109
  contributor:
    fullname: Ji
– volume: 4
  start-page: 41654
  year: 2014
  ident: C9TA11839J-(cit36)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA04826A
  contributor:
    fullname: Xia
– volume: 7
  start-page: 7216
  year: 2015
  ident: C9TA11839J-(cit35)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR00271K
  contributor:
    fullname: Guo
– volume: 21
  start-page: 1800272
  year: 2019
  ident: C9TA11839J-(cit57)/*[position()=1]
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201800272
  contributor:
    fullname: Edalati
– volume: 39
  start-page: 4828
  year: 2014
  ident: C9TA11839J-(cit33)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.080
  contributor:
    fullname: Mettenbörger
– volume: 58
  start-page: 1
  year: 2017
  ident: C9TA11839J-(cit2)/*[position()=1]
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2016.09.001
  contributor:
    fullname: Sapountzi
– volume: 238
  start-page: 37
  year: 1972
  ident: C9TA11839J-(cit4)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/238037a0
  contributor:
    fullname: Fujishima
– volume: 17
  start-page: 21
  year: 2015
  ident: C9TA11839J-(cit9)/*[position()=1]
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201400065
  contributor:
    fullname: Jiang
– volume: 25
  start-page: 6905
  year: 2013
  ident: C9TA11839J-(cit93)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303088
  contributor:
    fullname: Xia
– volume: 60
  start-page: 309
  year: 1938
  ident: C9TA11839J-(cit53)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
  contributor:
    fullname: Brunauer
– volume: 60
  start-page: 1489
  year: 2019
  ident: C9TA11839J-(cit84)/*[position()=1]
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.MF201938
  contributor:
    fullname: Mazilkin
– volume: 81
  start-page: 085119
  year: 2010
  ident: C9TA11839J-(cit69)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.085119
  contributor:
    fullname: Jiang
– volume: 5
  start-page: 3473
  year: 2015
  ident: C9TA11839J-(cit8)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY00330J
  contributor:
    fullname: Kouva
– volume: 42
  start-page: 2294
  year: 2013
  ident: C9TA11839J-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35266D
  contributor:
    fullname: Osterloh
– volume: 113
  start-page: 13974
  year: 2009
  ident: C9TA11839J-(cit60)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8103497
  contributor:
    fullname: Cong
– volume: 11
  start-page: 401
  year: 2007
  ident: C9TA11839J-(cit7)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2005.01.009
  contributor:
    fullname: Ni
– volume: 39
  start-page: 4405
  year: 2004
  ident: C9TA11839J-(cit13)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1023/B:JMSC.0000034135.52164.6b
  contributor:
    fullname: Jiang
– volume: 652
  start-page: 325
  year: 2016
  ident: C9TA11839J-(cit40)/*[position()=1]
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2015.11.074
  contributor:
    fullname: Edalati
– volume: 49
  start-page: 8593
  year: 2010
  ident: C9TA11839J-(cit79)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201004976
  contributor:
    fullname: Tachikawa
SSID ssj0000800699
Score 2.5490346
Snippet Photocatalysis on semiconductors using solar energy sources provides a clean technology to produce hydrogen from water splitting. Although zirconia (ZrO 2 ) is...
Photocatalysis on semiconductors using solar energy sources provides a clean technology to produce hydrogen from water splitting. Although zirconia (ZrO2) is a...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 3643
SubjectTerms Catalytic activity
Clean energy
Clean technology
Conduction
Conduction bands
Crystal defects
Electromagnetic absorption
Electronics industry
Energy gap
Energy sources
Hydrogen
Hydrogen evolution
Hydrogen production
Lattice vacancies
Oxygen
Phase transitions
Photocatalysis
Photocatalysts
Pressure
Solar energy
Water splitting
Zirconia
Zirconium dioxide
Title Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO) produced by high-pressure torsion
URI https://www.proquest.com/docview/2356612911/abstract/
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QUOiFdFoKCV4ACyXGyv7XiPUVVUChQQqVRxifaVOoXakbFB6Q_idzK767UdFSRAsqxonVjOzpeZbybzQOhZyAMBlon7LF1QP5ZU-lwsYj9hKQtVNuHETG94d5IencbHZ8nZaPRzkLXU1HxfXP22ruR_pAprIFddJfsPku1uCgvwGuQLZ5AwnP9Kxh_ysi5NAGat-67ma1mV8GY9Flm1koXja_nD56yQ52zlcR2v866WFbjBS6bp5efqvY4MrEznV0tHdQtj3yTI6n8X9DgeJ7zrLBYIr_2mnnCj4_a9qa0CcldMV3FbY2jC9K5mS6flDiL6Vut8dLZU03zJdKqezfr4rrrI9ZvynBXqklWNsSBN3dmWE_aFXTZmdpL3KS9ztRyGNaJgENYw2i8KkkA3OrXKWQ3X7Ahcp76zAUonA1VMUtv_qTXrxI6kuGYxAqIbrgpas1CTxYveLnbZiv3FLbQTTWgCTv7O9HD2-m0XzdO8OzXDSrvndr1wCX3Z32CT_fQuzVbl5s0YXjO7jW61osRTi647aKSKu-jmoE3lPZRv4gw7nOEeZxiOAc6wwRl2OMPPAWUvsMMY5mu8gTHcYuw-On11ODs48tsJHb4AXV_7aRApyTJBgABRXc4SSpGQINP9shgB3xzc0TRcZDwGaihjwlNd571gVIYsI4KTXbRdlIV6gDAFZq54EKuJSGLgjTSjkaQ8kRScBCaDMXrqdm6-so1Y5iaBgtD5AZ1Nzf4ej9Ge29R5-0P9No8I-CzwgGE4Rruw0d3ne7k8_NOFR-hGj849tF1XjXoMNLTmT1oM_ALRpo1V
link.rule.ids 315,786,790,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+hydrogen+generation+on+low-bandgap+black+zirconia+%28ZrO%29+produced+by+high-pressure+torsion&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Wang%2C+Qing&rft.au=Edalati%2C+Kaveh&rft.au=Koganemaru%2C+Yuta&rft.au=Nakamura%2C+Shohei&rft.date=2020-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=7&rft.spage=3643&rft.epage=365&rft_id=info:doi/10.1039%2Fc9ta11839j&rft.externalDocID=c9ta11839j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon