Communication and knowledge sharing in human–robot interaction and learning from demonstration

Inexpensive personal robots will soon become available to a large portion of the population. Currently, most consumer robots are relatively simple single-purpose machines or toys. In order to be cost effective and thus widely accepted, robots will need to be able to accomplish a wide range of tasks...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 23; no. 8; pp. 1104 - 1112
Main Authors Koenig, Nathan, Takayama, Leila, Matarić, Maja
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inexpensive personal robots will soon become available to a large portion of the population. Currently, most consumer robots are relatively simple single-purpose machines or toys. In order to be cost effective and thus widely accepted, robots will need to be able to accomplish a wide range of tasks in diverse conditions. Learning these tasks from demonstrations offers a convenient mechanism to customize and train a robot by transferring task related knowledge from a user to a robot. This avoids the time-consuming and complex process of manual programming. The way in which the user interacts with a robot during a demonstration plays a vital role in terms of how effectively and accurately the user is able to provide a demonstration. Teaching through demonstrations is a social activity, one that requires bidirectional communication between a teacher and a student. The work described in this paper studies how the user’s visual observation of the robot and the robot’s auditory cues affect the user’s ability to teach the robot in a social setting. Results show that auditory cues provide important knowledge about the robot’s internal state, while visual observation of a robot can hinder an instructor due to incorrect mental models of the robot and distractions from the robot’s movements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2010.06.005