Elucidating the dynamics of polymer transport through nanopores using asymmetric salt concentrations

While notable progress has been made in recent years both experimentally and theoretically in understanding the highly complex dynamics of polymer capture and transport through nanopores, there remains significant disagreement between experimental observation and theoretical prediction that needs to...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 15; no. 11; pp. 9943 - 9953
Main Authors Charron, Martin, Philipp, Lucas, He, Liqun, Tabard-Cossa, Vincent
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While notable progress has been made in recent years both experimentally and theoretically in understanding the highly complex dynamics of polymer capture and transport through nanopores, there remains significant disagreement between experimental observation and theoretical prediction that needs to be resolved. Asymmetric salt concentrations, where the concentrations of ions on each side of the membrane are different, can be used to enhance capture rates and prolong translocation times of electrophoretically driven polymers translocating through a nanopore from the low salt concentration reservoir, which are both attractive features for single-molecule analysis. However, since asymmetric salt concentrations affect the electrophoretic pull inside and outside the pore differently, it also offers a useful control parameter to elucidate the otherwise inseparable physics of the capture and translocation process. In this work, we attempt to paint a complete picture of the dynamics of polymer capture and translocation in both symmetric and asymmetric salt concentration conditions by reporting the dependence of multiple translocation metrics on voltage, polymer length, and salt concentration gradient. Using asymmetric salt concentration conditions, we experimentally observe the predictions of tension propagation theory, and infer the significant impact of the electric field outside the pore in capturing polymers and in altering polymer conformations prior to translocation.
AbstractList While notable progress has been made in recent years both experimentally and theoretically in understanding the highly complex dynamics of polymer capture and transport through nanopores, there remains significant disagreement between experimental observation and theoretical prediction that needs to be resolved. Asymmetric salt concentrations, where the concentrations of ions on each side of the membrane are different, can be used to enhance capture rates and prolong translocation times of electrophoretically driven polymers translocating through a nanopore from the low salt concentration reservoir, which are both attractive features for single-molecule analysis. However, since asymmetric salt concentrations affect the electrophoretic pull inside and outside the pore differently, it also offers a useful control parameter to elucidate the otherwise inseparable physics of the capture and translocation process. In this work, we attempt to paint a complete picture of the dynamics of polymer capture and translocation in both symmetric and asymmetric salt concentration conditions by reporting the dependence of multiple translocation metrics on voltage, polymer length, and salt concentration gradient. Using asymmetric salt concentration conditions, we experimentally observe the predictions of tension propagation theory, and infer the significant impact of the electric field outside the pore in capturing polymers and in altering polymer conformations prior to translocation.
Author Charron, Martin
Philipp, Lucas
Tabard-Cossa, Vincent
He, Liqun
Author_xml – sequence: 1
  givenname: Martin
  surname: Charron
  fullname: Charron, Martin
  organization: Department of Physics, University of Ottawa
– sequence: 2
  givenname: Lucas
  surname: Philipp
  fullname: Philipp, Lucas
  organization: Department of Physics, University of Ottawa
– sequence: 3
  givenname: Liqun
  surname: He
  fullname: He, Liqun
  organization: Department of Physics, University of Ottawa
– sequence: 4
  givenname: Vincent
  surname: Tabard-Cossa
  fullname: Tabard-Cossa, Vincent
  email: tcossa@uottawa.ca
  organization: Department of Physics, University of Ottawa
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz6v52mz2KKV-QMGLnkOaZtuU3WRNsof-e7OuIgg6lxmG95l5eRdg5rwzAFxjdIsRqu4iJqRiBSKkYELwgp6BOa5rUaBcs-8ZE3YBFjEeEeIEMzEHu3U7aLtTybo9TAcDdyenOqsj9A3sfXvqTIApKBd7H1JWBD_sD9Ap5_PCRDjEkVTx1HUmBathVG2C2jttXOaS9S5egvNGtdFcffUleHtYv66eis3L4_PqflNoRspUlMwIrmpjlOCUVLpGW6MRQ7TBdYkMKllFS8YrrohAmNMmj2jbYIoZI6Yp6RLcTHf74N8HE5M8-iG4_FKSilAiGOWjqppUOvgYg2mktunTaPZrW4mRHCOVU6QyRyrHSCXNJP5F9sF2Kpz-ZcjExKx1exN-PP0NfQCUC4ut
CitedBy_id crossref_primary_10_1002_smtd_202301523
crossref_primary_10_3390_ijms24076153
crossref_primary_10_1021_acsami_2c19485
crossref_primary_10_1039_D4SD00159A
crossref_primary_10_1021_acs_biomac_3c00473
crossref_primary_10_1039_D3NR01873C
Cites_doi 10.1038/s41467-017-01584-3
10.1021/nl100861c
10.1021/acs.analchem.7b01246
10.1103/PhysRevLett.112.244501
10.1016/j.bpj.2013.05.065
10.1126/science.abl4381
10.1021/acsami.9b08004
10.1038/s41598-022-08533-1
10.1088/0957-4484/26/23/234004
10.1038/s41467-021-26046-9
10.1002/elps.201400418
10.1002/elps.201800426
10.1002/(SICI)1097-0282(199711)42:6<687::AID-BIP7>3.0.CO;2-Q
10.1038/nnano.2009.379
10.1038/s41598-017-07227-3
10.1039/C9NR05367K
10.1002/1522-2683(200208)23:16<2592::AID-ELPS2592>3.0.CO;2-L
10.1021/nl048030d
10.1063/1.4742188
10.1021/acs.analchem.9b01900
10.1103/PhysRevLett.110.028102
10.1063/1.2723088
10.1039/C8CS00106E
10.1063/1.3170952
10.1021/jp204014r
10.1038/s41467-020-18132-1
10.1039/c2sm27416g
10.1063/1.3429882
10.1038/s41592-021-01143-1
10.1103/PhysRevE.85.051803
10.1038/s41467-019-10147-7
10.1126/sciadv.abc2661
10.1038/nphys1230
10.1038/s41598-019-51049-4
10.1088/0957-4484/23/40/405301
10.1038/s41598-018-33086-7
10.1103/PhysRevE.98.022501
10.1038/s41467-017-00423-9
10.1063/1.4855075
10.1038/nbt.3423
10.1063/5.0094221
10.1038/s41587-019-0345-2
10.3390/polym8120424
10.1038/s41576-020-0236-x
10.1209/0295-5075/103/38001
10.1021/acs.nanolett.7b03987
10.1021/nl204273h
10.1063/1.4964630
10.1103/PhysRevLett.86.3435
10.1515/zna-1991-1-223
10.1038/nbt.2503
10.1021/acs.nanolett.8b04715
10.1016/j.bpj.2011.05.034
10.1038/s41596-019-0255-2
10.1103/PhysRevE.87.042722
10.1021/acssensors.6b00176
10.1038/s41567-021-01268-2
10.1038/nnano.2016.9
10.1039/C4SM01819B
10.1038/s41578-020-0229-6
10.1063/1.5108700
10.1038/nnano.2016.267
10.1103/PhysRevE.93.022401
10.1002/marc.201700680
10.1038/nbt.1495
10.1021/acs.analchem.6b03725
10.1140/epje/i2011-11135-3
10.1063/1.4903176
10.1021/nn303126n
10.1038/s41565-021-00958-5
10.1371/journal.pone.0181599
10.1146/annurev.fl.21.010189.000425
10.1038/nmeth.4577
10.1103/PhysRevE.85.041801
10.1038/nnano.2016.50
10.1016/j.bpj.2014.10.017
10.1038/nnano.2007.381
10.1021/acsnano.9b01357
10.1039/C9NR04566J
10.48550/arXiv.2101.12712
ContentType Journal Article
Copyright Tsinghua University Press 2022, corrected publication 2024
Tsinghua University Press 2022, corrected publication 2024.
Copyright_xml – notice: Tsinghua University Press 2022, corrected publication 2024
– notice: Tsinghua University Press 2022, corrected publication 2024.
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12274-022-4886-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1998-0000
EndPage 9953
ExternalDocumentID 10_1007_s12274_022_4886_3
GroupedDBID 06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
95-
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABBBX
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSTC
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AIAKS
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TGP
TSG
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
ZMTXR
~A9
AAYXX
ACMFV
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c425t-54e86a9eea86327c90bec0403f1950e0547354676a280163f6760bf131442ef53
IEDL.DBID 7X7
ISSN 1998-0124
IngestDate Sat Aug 23 14:32:33 EDT 2025
Tue Jul 01 01:47:06 EDT 2025
Thu Apr 24 22:51:20 EDT 2025
Mon Jul 21 06:07:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords polymer transport
DNA translocation
nanopore
salt gradient
tension propagation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-54e86a9eea86327c90bec0403f1950e0547354676a280163f6760bf131442ef53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s12274-022-4886-3.pdf
PQID 2723284365
PQPubID 326270
PageCount 11
ParticipantIDs proquest_journals_2723284365
crossref_citationtrail_10_1007_s12274_022_4886_3
crossref_primary_10_1007_s12274_022_4886_3
springer_journals_10_1007_s12274_022_4886_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationYear 2022
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Rowghanian, Grosberg (CR24) 2013; 87
Ikonen, Bhattacharya, Ala-Nissila, Sung (CR27) 2012; 137
Muthukumar (CR23) 2010; 132
Sean, De Haan, Slater (CR73) 2015; 36
Tanaka, Tamamushi (CR65) 1991; 46
Briggs, Madejski, Magill, Kastritis, De Haan, Mcgrath, Tabard-Cossa (CR67) 2018; 18
Garalde, Snell, Jachimowicz, Sipos, Lloyd, Bruce, Pantic, Admassu, James, Warland (CR3) 2018; 15
Davenport, Healy, Pevarnik, Teslich, Cabrini, Morrison, Siwy, Létant (CR31) 2012; 6
Van Dorp, Keyser, Dekker, Dekker, Lemay (CR35) 2009; 5
Lucas, Versloot, Yakovlieva, Walvoort, Maglia (CR19) 2021; 12
Storm, Storm, Chen, Zandbergen, Joanny, Dekker (CR34) 2005; 5
Sarabadani, Ikonen, Mökkönen, Ala-Nissila, Carson, Wanunu (CR70) 2017; 7
Verschueren, Jonsson, Dekker (CR48) 2015; 26
Rowghanian, Grosberg (CR25) 2011; 115
He, Tsutsui, Scheicher, Miao, Taniguchi (CR45) 2016; 1
Sarabadani, Ikonen, Ala-Nissila (CR28) 2014; 141
Saito, Sakaue (CR26) 2011; 34
Chen, Jou, Ermann, Muthukumar, Keyser, Bell (CR38) 2021; 17
Vollmer, De Haan (CR50) 2016; 145
Bell, Chen, Ghosal, Ricci, Keyser (CR69) 2017; 5
Meller, Nivon, Branton (CR63) 2001; 86
Farahpour, Maleknejad, Varnik, Ejtehadi (CR49) 2013; 9
Chuah, Wu, Vivekchand, Gaus, Reece, Micolich, Gooding (CR8) 2019; 10
Cao, Krapp, Al Ouahabi, König, Cirauqui, Radenovic, Lutz, Peraro (CR21) 2020; 6
Morin, Mckenna, Shropshire, Wride, Deschamps, Liu, Stamm, Wang, Dunbar (CR11) 2018; 8
Lee, Cottin-Bizonne, Biance, Joseph, Bocquet, Ybert (CR58) 2014; 112
Lin, Acar, Polster, Lin, Hsu, Siwy (CR78) 2019; 13
Wong, Muthukumar (CR55) 2007; 126
Seth, Bhattacharya (CR52) 2022; 156
Carson, Wilson, Aksimentiev, Wanunu (CR36) 2014; 107
Ivica, Williamson, De Planque (CR40) 2017; 89
Nakane, Akeson, Marziali (CR53) 2002; 23
Ikonen, Bhattacharya, Ala-Nissila, Sung (CR60) 2013; 103
Bello, Mowla, Troise, Soyring, Borgesi, Shim (CR42) 2019; 40
Kowalczyk, Wells, Aksimentiev, Dekker (CR46) 2012; 12
Bandara, Karawdeniya, Hagan, Chevalier, Dwyer (CR74) 2019; 11
Gershow, Golovchenko (CR54) 2007; 2
Yusko, Bruhn, Eggenberger, Houghtaling, Rollings, Walsh, Nandivada, Pindrus, Hall, Sept (CR13) 2017; 12
Palyulin, Ala-Nissila, Metzler (CR29) 2014; 10
He, Tsutsui, Scheicher, Fan, Taniguchi, Kawai (CR43) 2013; 105
Ikonen, Bhattacharya, Ala-Nissila, Sung (CR61) 2012; 85
Beamish, Kwok, Tabard-Cossa, Godin (CR77) 2012; 23
Jeon, Muthukumar (CR39) 2014; 140
Bell, Keyser (CR7) 2016; 11
Nivala, Marks, Akeson (CR15) 2013; 31
Brinkerhoff, Kang, Liu, Aksimentiev, Dekker (CR17) 2021; 374
Sakaue (CR62) 2016; 8
Varongchayakul, Song, Meller, Grinstaff (CR12) 2018; 47
Xue, Yamazaki, Ren, Wanunu, Ivanov, Edel (CR6) 2020; 5
Charron, Briggs, King, Waugh, Tabard-Cossa (CR33) 2019; 91
Chou (CR44) 2009; 131
Chen, Kong, Zhu, Ermann, Predki, Keyser (CR20) 2019; 19
He, Karau, Tabard-Cossa (CR66) 2019; 11
CR51
Wanunu, Morrison, Rabin, Grosberg, Meller (CR37) 2010; 5
Anderson (CR59) 1989; 21
Logsdon, Vollger, Eichler (CR2) 2020; 21
Boukhet, König, Ouahabi, Baaken, Lutz, Behrends (CR22) 2017; 38
Stellwagen, Gelfi, Righetti (CR64) 1997; 42
Raveendran, Lee, Sharma, Wälti, Actis (CR10) 2020; 11
Eggenberger, Ying, Mayer (CR75) 2019; 11
Firnkes, Pedone, Knezevic, Döblinger, Rant (CR79) 2010; 10
Forstater, Briggs, Robertson, Ettedgui, Marie-Rose, Vaz, Kasianowicz, Tabard-Cossa, Balijepalli (CR80) 2016; 88
De Haan, Sean, Slater (CR72) 2018; 98
Deamer, Akeson, Branton (CR1) 2016; 34
McMullen, Araujo, Winter, Stein (CR56) 2019; 9
Branton, Deamer, Marziali, Bayley, Benner, Butler, Di Ventra, Garaj, Hibbs, Huang (CR4) 2008; 26
Lindsay (CR5) 2016; 11
Bell, Muthukumar, Keyser (CR32) 2016; 93
Rankin, Bocquet, Huang (CR57) 2019; 151
Schmid, Stömmer, Dietz, Dekker (CR18) 2021; 16
Dubbeldam, Rostiashvili, Milchev, Vilgis (CR30) 2012; 85
Lu, Albertorio, Hoogerheide, Golovchenko (CR71) 2011; 101
Ouldali, Sarthak, Ensslen, Piguet, Manivet, Pelta, Behrends, Aksimentiev, Oukhaled (CR14) 2020; 38
Sze, Ivanov, Cass, Edel (CR9) 2017; 8
Nova, Derrington, Craig, Noakes, Tickman, Doering, Higinbotham, Laszlo, Gundlach (CR41) 2017; 12
Alfaro, Bohländer, Dai, Filius, Howard, Van Kooten, Ohayon, Pomorski, Schmid, Aksimentiev (CR16) 2021; 18
Waugh, Briggs, Gunn, Gibeault, King, Ingram, Jimenez, Berryman, Lomovtsev, Andrzejewski (CR76) 2020; 15
Mihovilovic, Hagerty, Stein (CR68) 2013; 110
Rivas, DeAngelis, Rahbar, Hall (CR47) 2022; 12
M Waugh (4886_CR76) 2020; 15
S C Vollmer (4886_CR50) 2016; 145
D V Verschueren (4886_CR48) 2015; 26
K Briggs (4886_CR67) 2018; 18
J A Alfaro (4886_CR16) 2021; 18
J H Forstater (4886_CR80) 2016; 88
L Xue (4886_CR6) 2020; 5
J L A Dubbeldam (4886_CR30) 2012; 85
M Firnkes (4886_CR79) 2010; 10
M Mihovilovic (4886_CR68) 2013; 110
M Wanunu (4886_CR37) 2010; 5
H Brinkerhoff (4886_CR17) 2021; 374
S Carson (4886_CR36) 2014; 107
O M Eggenberger (4886_CR75) 2019; 11
T Ikonen (4886_CR27) 2012; 137
A J Storm (4886_CR34) 2005; 5
K K Chen (4886_CR38) 2021; 17
C Y Lin (4886_CR78) 2019; 13
K Tanaka (4886_CR65) 1991; 46
Y M N D Y Bandara (4886_CR74) 2019; 11
D J Rankin (4886_CR57) 2019; 151
D Deamer (4886_CR1) 2016; 34
M Gershow (4886_CR54) 2007; 2
J L Anderson (4886_CR59) 1989; 21
H W De Haan (4886_CR72) 2018; 98
J Nakane (4886_CR53) 2002; 23
C T A Wong (4886_CR55) 2007; 126
J Nivala (4886_CR15) 2013; 31
B Lu (4886_CR71) 2011; 101
J Bello (4886_CR42) 2019; 40
L Q He (4886_CR66) 2019; 11
S Seth (4886_CR52) 2022; 156
D Sean (4886_CR73) 2015; 36
J Ivica (4886_CR40) 2017; 89
M Raveendran (4886_CR10) 2020; 11
T Chou (4886_CR44) 2009; 131
C Lee (4886_CR58) 2014; 112
A Meller (4886_CR63) 2001; 86
T Saito (4886_CR26) 2011; 34
T Ikonen (4886_CR61) 2012; 85
M Boukhet (4886_CR22) 2017; 38
J Y Y Sze (4886_CR9) 2017; 8
N A W Bell (4886_CR7) 2016; 11
H Ouldali (4886_CR14) 2020; 38
J Sarabadani (4886_CR70) 2017; 7
M Charron (4886_CR33) 2019; 91
S Lindsay (4886_CR5) 2016; 11
S Van Dorp (4886_CR35) 2009; 5
J Sarabadani (4886_CR28) 2014; 141
D Branton (4886_CR4) 2008; 26
P Rowghanian (4886_CR25) 2011; 115
N C Stellwagen (4886_CR64) 1997; 42
P Rowghanian (4886_CR24) 2013; 87
F Farahpour (4886_CR49) 2013; 9
A McMullen (4886_CR56) 2019; 9
M Davenport (4886_CR31) 2012; 6
T J Morin (4886_CR11) 2018; 8
K K Chen (4886_CR20) 2019; 19
V V Palyulin (4886_CR29) 2014; 10
F L R Lucas (4886_CR19) 2021; 12
Y H He (4886_CR43) 2013; 105
4886_CR51
K Chuah (4886_CR8) 2019; 10
S W Kowalczyk (4886_CR46) 2012; 12
S Schmid (4886_CR18) 2021; 16
T Sakaue (4886_CR62) 2016; 8
N A W Bell (4886_CR32) 2016; 93
D R Garalde (4886_CR3) 2018; 15
T Ikonen (4886_CR60) 2013; 103
I C Nova (4886_CR41) 2017; 12
N A W Bell (4886_CR69) 2017; 5
G A Logsdon (4886_CR2) 2020; 21
B J Jeon (4886_CR39) 2014; 140
E Beamish (4886_CR77) 2012; 23
N Varongchayakul (4886_CR12) 2018; 47
M Muthukumar (4886_CR23) 2010; 132
Y H He (4886_CR45) 2016; 1
E C Yusko (4886_CR13) 2017; 12
C Cao (4886_CR21) 2020; 6
F Rivas (4886_CR47) 2022; 12
References_xml – volume: 8
  start-page: 1552
  year: 2017
  ident: CR9
  article-title: Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01584-3
– volume: 10
  start-page: 2162
  year: 2010
  end-page: 2167
  ident: CR79
  article-title: Electrically facilitated translocations of proteins through silicon nitride nanopores: Conjoint and competitive action of diffusion, electrophoresis, and electroosmosis
  publication-title: Nano Lett.
  doi: 10.1021/nl100861c
– volume: 89
  start-page: 8822
  year: 2017
  end-page: 8829
  ident: CR40
  article-title: Salt gradient modulation of microRNA translocation through a biological nanopore
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01246
– volume: 112
  start-page: 244501
  year: 2014
  ident: CR58
  article-title: Osmotic flow through fully permeable nanochannels
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.244501
– volume: 105
  start-page: 776
  year: 2013
  end-page: 782
  ident: CR43
  article-title: Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.05.065
– ident: CR51
– volume: 374
  start-page: 1509
  year: 2021
  end-page: 1513
  ident: CR17
  article-title: Multiple rereads of single proteins at single-amino acid resolution using nanopores
  publication-title: Science
  doi: 10.1126/science.abl4381
– volume: 11
  start-page: 30411
  year: 2019
  end-page: 30420
  ident: CR74
  article-title: Chemically functionalizing controlled dielectric breakdown silicon nitride nanopores by direct photohydrosilylation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b08004
– volume: 12
  start-page: 4469
  year: 2022
  ident: CR47
  article-title: Optimizing the sensitivity and resolution of hyaluronan analysis with solid-state nanopores
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-08533-1
– volume: 26
  start-page: 234004
  year: 2015
  ident: CR48
  article-title: Temperature dependence of DNA translocations through solid-state nanopores
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/23/234004
– volume: 12
  start-page: 5795
  year: 2021
  ident: CR19
  article-title: Protein identification by nanopore peptide profiling
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26046-9
– volume: 36
  start-page: 682
  year: 2015
  end-page: 691
  ident: CR73
  article-title: Translocation of a polymer through a nanopore starting from a confining nanotube
  publication-title: Electrophoresis
  doi: 10.1002/elps.201400418
– volume: 40
  start-page: 1082
  year: 2019
  end-page: 1090
  ident: CR42
  article-title: Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients
  publication-title: Electrophoresis
  doi: 10.1002/elps.201800426
– volume: 42
  start-page: 687
  year: 1997
  end-page: 703
  ident: CR64
  article-title: The free solution mobility of DNA
  publication-title: Biopolymers
  doi: 10.1002/(SICI)1097-0282(199711)42:6<687::AID-BIP7>3.0.CO;2-Q
– volume: 5
  start-page: 160
  year: 2010
  end-page: 165
  ident: CR37
  article-title: Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.379
– volume: 7
  start-page: 7423
  year: 2017
  ident: CR70
  article-title: Driven translocation of a semi-flexible polymer through a nanopore
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07227-3
– volume: 11
  start-page: 19636
  year: 2019
  end-page: 19657
  ident: CR75
  article-title: Surface coatings for solid-state nanopores
  publication-title: Nanoscale
  doi: 10.1039/C9NR05367K
– volume: 23
  start-page: 2592
  year: 2002
  end-page: 2601
  ident: CR53
  article-title: Evaluation of nanopores as candidates for electronic analyte detection
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200208)23:16<2592::AID-ELPS2592>3.0.CO;2-L
– volume: 5
  start-page: 1193
  year: 2005
  end-page: 1197
  ident: CR34
  article-title: Fast DNA translocation through a solid-state nanopore
  publication-title: Nano Lett.
  doi: 10.1021/nl048030d
– volume: 137
  start-page: 085101
  year: 2012
  ident: CR27
  article-title: Influence of non-universal effects on dynamical scaling in driven polymer translocation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4742188
– volume: 91
  start-page: 12228
  year: 2019
  end-page: 12237
  ident: CR33
  article-title: Precise DNA concentration measurements with nanopores by controlled counting
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b01900
– volume: 110
  start-page: 028102
  year: 2013
  ident: CR68
  article-title: Statistics of DNA capture by a solid-state nanopore
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.028102
– volume: 126
  start-page: 164903
  year: 2007
  ident: CR55
  article-title: Polymer capture by electro-osmotic flow of oppositely charged nanopores
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2723088
– volume: 47
  start-page: 8512
  year: 2018
  end-page: 8524
  ident: CR12
  article-title: Single-molecule protein sensing in a nanopore: A tutorial
  publication-title: Chem. Soc. Rev
  doi: 10.1039/C8CS00106E
– volume: 131
  start-page: 034703
  year: 2009
  ident: CR44
  article-title: Enhancement of charged macromolecule capture by nanopores in a salt gradient
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3170952
– volume: 115
  start-page: 14127
  year: 2011
  end-page: 14135
  ident: CR25
  article-title: Force-driven polymer translocation through a nanopore: An old problem revisited
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp204014r
– volume: 11
  start-page: 4384
  year: 2020
  ident: CR10
  article-title: Rational design of DNA nanostructures for single molecule biosensing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18132-1
– volume: 9
  start-page: 2750
  year: 2013
  end-page: 2759
  ident: CR49
  article-title: Chain deformation in translocation phenomena
  publication-title: Soft Matter
  doi: 10.1039/c2sm27416g
– volume: 132
  start-page: 195101
  year: 2010
  ident: CR23
  article-title: Theory of capture rate in polymer translocation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3429882
– volume: 18
  start-page: 604
  year: 2021
  end-page: 617
  ident: CR16
  article-title: The emerging landscape of single-molecule protein sequencing technologies
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01143-1
– volume: 85
  start-page: 051803
  year: 2012
  ident: CR61
  article-title: Unifying model of driven polymer translocation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.051803
– volume: 10
  start-page: 2109
  year: 2019
  ident: CR8
  article-title: Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10147-7
– volume: 6
  start-page: eabc2661
  year: 2020
  ident: CR21
  article-title: Aerolysin nanopores decode digital information stored in tailored macromolecular analytes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc2661
– volume: 5
  start-page: 347
  year: 2009
  end-page: 351
  ident: CR35
  article-title: Origin of the electrophoretic force on DNA in solid-state nanopores
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1230
– volume: 9
  start-page: 15065
  year: 2019
  ident: CR56
  article-title: Osmotically driven and detected DNA translocations
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51049-4
– volume: 23
  start-page: 405301
  year: 2012
  ident: CR77
  article-title: Precise control of the size and noise of solid-state nanopores using high electric fields
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/40/405301
– volume: 8
  start-page: 14834
  year: 2018
  ident: CR11
  article-title: A handheld platform for target protein detection and quantification using disposable nanopore strips
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33086-7
– volume: 98
  start-page: 022501
  year: 2018
  ident: CR72
  article-title: Reducing the variance in the translocation times by prestretching the polymer
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.022501
– volume: 5
  start-page: 380
  year: 2017
  ident: CR69
  article-title: Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00423-9
– volume: 140
  start-page: 015101
  year: 2014
  ident: CR39
  article-title: Polymer capture by α-hemolysin pore upon salt concentration gradient
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4855075
– volume: 34
  start-page: 518
  year: 2016
  end-page: 524
  ident: CR1
  article-title: Three decades of nanopore sequencing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3423
– volume: 156
  start-page: 244902
  year: 2022
  ident: CR52
  article-title: How capture affects polymer translocation in a solitary nanopore
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0094221
– volume: 38
  start-page: 176
  year: 2020
  end-page: 181
  ident: CR14
  article-title: Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0345-2
– volume: 8
  start-page: 424
  year: 2016
  ident: CR62
  article-title: Dynamics of polymer translocation: A short review with an introduction of weakly-driven regime
  publication-title: Polymers (Basel)
  doi: 10.3390/polym8120424
– volume: 21
  start-page: 597
  year: 2020
  end-page: 614
  ident: CR2
  article-title: Long-read human genome sequencing and its applications
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-0236-x
– volume: 103
  start-page: 38001
  year: 2013
  ident: CR60
  article-title: Influence of pore friction on the universal aspects of driven polymer translocation
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/103/38001
– volume: 18
  start-page: 660
  year: 2018
  end-page: 668
  ident: CR67
  article-title: DNA translocations through nanopores under nanoscale preconfinement
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.7b03987
– volume: 12
  start-page: 1038
  year: 2012
  end-page: 1044
  ident: CR46
  article-title: Slowing down DNA translocation through a nanopore in lithium chloride
  publication-title: Nano Lett.
  doi: 10.1021/nl204273h
– volume: 145
  start-page: 154902
  year: 2016
  ident: CR50
  article-title: Translocation is a nonequilibrium process at all stages: Simulating the capture and translocation of a polymer by a nanopore
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4964630
– volume: 86
  start-page: 3435
  year: 2001
  end-page: 3438
  ident: CR63
  article-title: Voltage-driven DNA translocations through a nanopore
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.3435
– volume: 46
  start-page: 141
  year: 1991
  end-page: 147
  ident: CR65
  article-title: A Physico-chemical study of concentrated aqueous solutions of lithium chloride
  publication-title: Z. Naturforsch. A
  doi: 10.1515/zna-1991-1-223
– volume: 31
  start-page: 247
  year: 2013
  end-page: 250
  ident: CR15
  article-title: Unfoldase-mediated protein translocation through an α-hemolysin nanopore
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2503
– volume: 19
  start-page: 1210
  year: 2019
  end-page: 1215
  ident: CR20
  article-title: Digital data storage using DNA nanostructures and solid-state nanopores
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04715
– volume: 101
  start-page: 70
  year: 2011
  end-page: 79
  ident: CR71
  article-title: Origins and consequences of velocity fluctuations during DNA passage through a nanopore
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.05.034
– volume: 15
  start-page: 122
  year: 2020
  end-page: 143
  ident: CR76
  article-title: Solid-state nanopore fabrication by automated controlled breakdown
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-019-0255-2
– volume: 87
  start-page: 042722
  year: 2013
  ident: CR24
  article-title: Electrophoretic capture of a DNA chain into a nanopore
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.042722
– volume: 1
  start-page: 807
  year: 2016
  end-page: 816
  ident: CR45
  article-title: Salt-gradient approach for regulating capture-to-translocation dynamics of DNA with nanochannel sensors
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.6b00176
– volume: 17
  start-page: 1043
  year: 2021
  end-page: 1049
  ident: CR38
  article-title: Dynamics of driven polymer transport through a nanopore
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01268-2
– volume: 11
  start-page: 109
  year: 2016
  end-page: 111
  ident: CR5
  article-title: The promises and challenges of solid-state sequencing
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.9
– volume: 10
  start-page: 9016
  year: 2014
  end-page: 9037
  ident: CR29
  article-title: Polymer translocation: The first two decades and the recent diversification
  publication-title: Soft Matter
  doi: 10.1039/C4SM01819B
– volume: 5
  start-page: 931
  year: 2020
  end-page: 951
  ident: CR6
  article-title: Solid-state nanopore sensors
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0229-6
– volume: 151
  start-page: 044705
  year: 2019
  ident: CR57
  article-title: Entrance effects in concentration-gradient-driven flow through an ultrathin porous membrane
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5108700
– volume: 12
  start-page: 360
  year: 2017
  end-page: 367
  ident: CR13
  article-title: Real-time shape approximation and fingerprinting of single proteins using a nanopore
  publication-title: Nat. Nanotechnol
  doi: 10.1038/nnano.2016.267
– volume: 93
  start-page: 022401
  year: 2016
  ident: CR32
  article-title: Translocation frequency of double-stranded DNA through a solid-state nanopore
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.022401
– volume: 38
  start-page: 1700680
  year: 2017
  ident: CR22
  article-title: Translocation of precision polymers through biological nanopores
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201700680
– volume: 26
  start-page: 1146
  year: 2008
  end-page: 1153
  ident: CR4
  article-title: The potential and challenges of nanopore sequencing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1495
– volume: 88
  start-page: 11900
  year: 2016
  end-page: 11907
  ident: CR80
  article-title: MOSAIC: A modular single-molecule analysis interface for decoding multistate nanopore data
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b03725
– volume: 34
  start-page: 135
  year: 2011
  ident: CR26
  article-title: Dynamical diagram and scaling in polymer driven translocation
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2011-11135-3
– volume: 141
  start-page: 214907
  year: 2014
  ident: CR28
  article-title: Iso-flux tension propagation theory of driven polymer translocation: The role of initial configurations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4903176
– volume: 6
  start-page: 8366
  year: 2012
  end-page: 8380
  ident: CR31
  article-title: The role of pore geometry in single nanoparticle detection
  publication-title: ACS Nano
  doi: 10.1021/nn303126n
– volume: 16
  start-page: 1244
  year: 2021
  end-page: 1250
  ident: CR18
  article-title: Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00958-5
– volume: 12
  start-page: e0181599
  year: 2017
  ident: CR41
  article-title: Investigating asymmetric salt profiles for nanopore DNA sequencing with biological porin MspA
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0181599
– volume: 21
  start-page: 61
  year: 1989
  end-page: 99
  ident: CR59
  article-title: Colloid transport by interfacial forces
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.21.010189.000425
– volume: 15
  start-page: 201
  year: 2018
  end-page: 206
  ident: CR3
  article-title: Highly parallel direct RNA sequencing on an array of nanopores
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4577
– volume: 85
  start-page: 041801
  year: 2012
  ident: CR30
  article-title: Forced translocation of a polymer: Dynamical scaling versus molecular dynamics simulation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.041801
– volume: 11
  start-page: 645
  year: 2016
  end-page: 651
  ident: CR7
  article-title: Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.50
– volume: 107
  start-page: 2381
  year: 2014
  end-page: 2393
  ident: CR36
  article-title: Smooth DNA transport through a narrowed pore geometry
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.10.017
– volume: 2
  start-page: 775
  year: 2007
  end-page: 779
  ident: CR54
  article-title: Recapturing and trapping single molecules with a solid-state nanopore
  publication-title: Nat. Nanotechnol
  doi: 10.1038/nnano.2007.381
– volume: 13
  start-page: 9868
  year: 2019
  end-page: 9879
  ident: CR78
  article-title: Modulation of charge density and charge polarity of nanopore wall by salt gradient and voltage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01357
– volume: 11
  start-page: 16342
  year: 2019
  end-page: 16350
  ident: CR66
  article-title: Fast capture and multiplexed detection of short multi-arm DNA stars in solid-state nanopores
  publication-title: Nanoscale
  doi: 10.1039/C9NR04566J
– volume: 18
  start-page: 660
  year: 2018
  ident: 4886_CR67
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.7b03987
– volume: 21
  start-page: 61
  year: 1989
  ident: 4886_CR59
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.21.010189.000425
– volume: 8
  start-page: 424
  year: 2016
  ident: 4886_CR62
  publication-title: Polymers (Basel)
  doi: 10.3390/polym8120424
– volume: 85
  start-page: 041801
  year: 2012
  ident: 4886_CR30
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.041801
– ident: 4886_CR51
  doi: 10.48550/arXiv.2101.12712
– volume: 36
  start-page: 682
  year: 2015
  ident: 4886_CR73
  publication-title: Electrophoresis
  doi: 10.1002/elps.201400418
– volume: 126
  start-page: 164903
  year: 2007
  ident: 4886_CR55
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2723088
– volume: 17
  start-page: 1043
  year: 2021
  ident: 4886_CR38
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01268-2
– volume: 16
  start-page: 1244
  year: 2021
  ident: 4886_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00958-5
– volume: 137
  start-page: 085101
  year: 2012
  ident: 4886_CR27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4742188
– volume: 26
  start-page: 234004
  year: 2015
  ident: 4886_CR48
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/23/234004
– volume: 19
  start-page: 1210
  year: 2019
  ident: 4886_CR20
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04715
– volume: 1
  start-page: 807
  year: 2016
  ident: 4886_CR45
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.6b00176
– volume: 8
  start-page: 14834
  year: 2018
  ident: 4886_CR11
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33086-7
– volume: 11
  start-page: 19636
  year: 2019
  ident: 4886_CR75
  publication-title: Nanoscale
  doi: 10.1039/C9NR05367K
– volume: 374
  start-page: 1509
  year: 2021
  ident: 4886_CR17
  publication-title: Science
  doi: 10.1126/science.abl4381
– volume: 10
  start-page: 9016
  year: 2014
  ident: 4886_CR29
  publication-title: Soft Matter
  doi: 10.1039/C4SM01819B
– volume: 140
  start-page: 015101
  year: 2014
  ident: 4886_CR39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4855075
– volume: 12
  start-page: 1038
  year: 2012
  ident: 4886_CR46
  publication-title: Nano Lett.
  doi: 10.1021/nl204273h
– volume: 15
  start-page: 122
  year: 2020
  ident: 4886_CR76
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-019-0255-2
– volume: 141
  start-page: 214907
  year: 2014
  ident: 4886_CR28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4903176
– volume: 5
  start-page: 380
  year: 2017
  ident: 4886_CR69
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00423-9
– volume: 115
  start-page: 14127
  year: 2011
  ident: 4886_CR25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp204014r
– volume: 12
  start-page: e0181599
  year: 2017
  ident: 4886_CR41
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0181599
– volume: 12
  start-page: 5795
  year: 2021
  ident: 4886_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26046-9
– volume: 21
  start-page: 597
  year: 2020
  ident: 4886_CR2
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-0236-x
– volume: 26
  start-page: 1146
  year: 2008
  ident: 4886_CR4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1495
– volume: 10
  start-page: 2162
  year: 2010
  ident: 4886_CR79
  publication-title: Nano Lett.
  doi: 10.1021/nl100861c
– volume: 23
  start-page: 405301
  year: 2012
  ident: 4886_CR77
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/40/405301
– volume: 2
  start-page: 775
  year: 2007
  ident: 4886_CR54
  publication-title: Nat. Nanotechnol
  doi: 10.1038/nnano.2007.381
– volume: 42
  start-page: 687
  year: 1997
  ident: 4886_CR64
  publication-title: Biopolymers
  doi: 10.1002/(SICI)1097-0282(199711)42:6<687::AID-BIP7>3.0.CO;2-Q
– volume: 132
  start-page: 195101
  year: 2010
  ident: 4886_CR23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3429882
– volume: 9
  start-page: 15065
  year: 2019
  ident: 4886_CR56
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51049-4
– volume: 11
  start-page: 30411
  year: 2019
  ident: 4886_CR74
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b08004
– volume: 85
  start-page: 051803
  year: 2012
  ident: 4886_CR61
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.051803
– volume: 12
  start-page: 360
  year: 2017
  ident: 4886_CR13
  publication-title: Nat. Nanotechnol
  doi: 10.1038/nnano.2016.267
– volume: 38
  start-page: 176
  year: 2020
  ident: 4886_CR14
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0345-2
– volume: 107
  start-page: 2381
  year: 2014
  ident: 4886_CR36
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.10.017
– volume: 5
  start-page: 160
  year: 2010
  ident: 4886_CR37
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.379
– volume: 13
  start-page: 9868
  year: 2019
  ident: 4886_CR78
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01357
– volume: 10
  start-page: 2109
  year: 2019
  ident: 4886_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10147-7
– volume: 12
  start-page: 4469
  year: 2022
  ident: 4886_CR47
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-08533-1
– volume: 9
  start-page: 2750
  year: 2013
  ident: 4886_CR49
  publication-title: Soft Matter
  doi: 10.1039/c2sm27416g
– volume: 93
  start-page: 022401
  year: 2016
  ident: 4886_CR32
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.022401
– volume: 86
  start-page: 3435
  year: 2001
  ident: 4886_CR63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.3435
– volume: 89
  start-page: 8822
  year: 2017
  ident: 4886_CR40
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01246
– volume: 31
  start-page: 247
  year: 2013
  ident: 4886_CR15
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2503
– volume: 145
  start-page: 154902
  year: 2016
  ident: 4886_CR50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4964630
– volume: 5
  start-page: 931
  year: 2020
  ident: 4886_CR6
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0229-6
– volume: 34
  start-page: 518
  year: 2016
  ident: 4886_CR1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3423
– volume: 110
  start-page: 028102
  year: 2013
  ident: 4886_CR68
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.028102
– volume: 5
  start-page: 1193
  year: 2005
  ident: 4886_CR34
  publication-title: Nano Lett.
  doi: 10.1021/nl048030d
– volume: 87
  start-page: 042722
  year: 2013
  ident: 4886_CR24
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.042722
– volume: 101
  start-page: 70
  year: 2011
  ident: 4886_CR71
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.05.034
– volume: 131
  start-page: 034703
  year: 2009
  ident: 4886_CR44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3170952
– volume: 11
  start-page: 645
  year: 2016
  ident: 4886_CR7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.50
– volume: 38
  start-page: 1700680
  year: 2017
  ident: 4886_CR22
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201700680
– volume: 103
  start-page: 38001
  year: 2013
  ident: 4886_CR60
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/103/38001
– volume: 88
  start-page: 11900
  year: 2016
  ident: 4886_CR80
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b03725
– volume: 11
  start-page: 16342
  year: 2019
  ident: 4886_CR66
  publication-title: Nanoscale
  doi: 10.1039/C9NR04566J
– volume: 6
  start-page: 8366
  year: 2012
  ident: 4886_CR31
  publication-title: ACS Nano
  doi: 10.1021/nn303126n
– volume: 7
  start-page: 7423
  year: 2017
  ident: 4886_CR70
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07227-3
– volume: 112
  start-page: 244501
  year: 2014
  ident: 4886_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.244501
– volume: 47
  start-page: 8512
  year: 2018
  ident: 4886_CR12
  publication-title: Chem. Soc. Rev
  doi: 10.1039/C8CS00106E
– volume: 40
  start-page: 1082
  year: 2019
  ident: 4886_CR42
  publication-title: Electrophoresis
  doi: 10.1002/elps.201800426
– volume: 6
  start-page: eabc2661
  year: 2020
  ident: 4886_CR21
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc2661
– volume: 105
  start-page: 776
  year: 2013
  ident: 4886_CR43
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.05.065
– volume: 156
  start-page: 244902
  year: 2022
  ident: 4886_CR52
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0094221
– volume: 11
  start-page: 4384
  year: 2020
  ident: 4886_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18132-1
– volume: 151
  start-page: 044705
  year: 2019
  ident: 4886_CR57
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5108700
– volume: 23
  start-page: 2592
  year: 2002
  ident: 4886_CR53
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200208)23:16<2592::AID-ELPS2592>3.0.CO;2-L
– volume: 46
  start-page: 141
  year: 1991
  ident: 4886_CR65
  publication-title: Z. Naturforsch. A
  doi: 10.1515/zna-1991-1-223
– volume: 98
  start-page: 022501
  year: 2018
  ident: 4886_CR72
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.022501
– volume: 8
  start-page: 1552
  year: 2017
  ident: 4886_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01584-3
– volume: 15
  start-page: 201
  year: 2018
  ident: 4886_CR3
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4577
– volume: 34
  start-page: 135
  year: 2011
  ident: 4886_CR26
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2011-11135-3
– volume: 11
  start-page: 109
  year: 2016
  ident: 4886_CR5
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.9
– volume: 91
  start-page: 12228
  year: 2019
  ident: 4886_CR33
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b01900
– volume: 18
  start-page: 604
  year: 2021
  ident: 4886_CR16
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01143-1
– volume: 5
  start-page: 347
  year: 2009
  ident: 4886_CR35
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1230
SSID ssj0062148
Score 2.3950427
Snippet While notable progress has been made in recent years both experimentally and theoretically in understanding the highly complex dynamics of polymer capture and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9943
SubjectTerms Asymmetry
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Concentration gradient
Condensed Matter Physics
Electric fields
Materials Science
Nanotechnology
Polymers
Research Article
Salts
Translocation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3E6JQdPSqBNmrQ9DpkMQU8OditJmg6ha8faHfbf-9I2VkUFbyVNcnjv5X2Q_N4PoVsVCu1rnREZa02CWHMioWomEbe4XTAgnlqA8_OLmM6Cpzmfdzjuyr12d1eSjafuwW4UKihiX5-D0QnCdtEet6U7GPGMjp37FdRvKLNa7BhEL3eV-dMWX4NRn2F-uxRtYs3jETrskkQ8brV6jHZMcYIOPrUOPEXpJN_oN4tNKBYYkjicttTyFS4zvCrz7dKsce06l-OOjgcXsihhwFTYPnhfYFltl0tLqqVxJfMaa4tiLLpWutUZmj1OXh-mpGNMIBrOXk14YCIhY2NkJBgNdeyBiuCYssyyvRqvIRoG1ygkhcgkWAafnsp8BmUVNRln52hQlIW5QBicpDA-12GgsyBSqQy9VHGlotSOmniIPCe6RHftxC2rRZ70jZCttBOQdmKlnbAhuvtYsmp7afw1eeT0kXTHqkpoCAlgFDDBh-je6aj__etml_-afYX2qbWRBnE4QoN6vTHXkHrU6qYxtXelgtB2
  priority: 102
  providerName: Springer Nature
Title Elucidating the dynamics of polymer transport through nanopores using asymmetric salt concentrations
URI https://link.springer.com/article/10.1007/s12274-022-4886-3
https://www.proquest.com/docview/2723284365
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT4MwFG90XvRg_IzTufTgSdPIgBY4mWnYjEZjjEvmiZRSjMkGc-DB_973oIia6AVIgR7ee30f7XvvR8hJ7Ak1UCplMlCKuYHiTELUzHyOdbsgQDzBAue7e3E9cW-mfGo23AqTVtnoxEpRJ7nCPfJz2wPb77uO4BeLN4aoUXi6aiA0Vskati7DlC5v-hVwCXtQoWfVZWRgyJpTzap0zoZ4jGEuO4iwYM5Pu9Q6m7_ORyuzM9oim8ZfpMOawdtkRWc7ZONbF8FdkoSzd_WKZQrZCwV_jiY1ynxB85Qu8tnHXC9p2TQxpwaZh2Yyy2FAFxRz31-oLD7mc8TXUrSQs5IqLGjMTFfdYo9MRuHT1TUz4AlMwTIsGXe1L2SgtfSFY3sqsIBbsGKdFIFftVVhDoOWFNIGIyWcFB6tOB04EGHZOuXOPulkeaYPCAV9KfSAK89VqevHifSsJOZx7Cc4qoMusRrSRcp0FkeAi1nU9kRGakdA7QipHTldcvr1y6Juq_Hfx72GH5FZYUXUykOXnDU8al__Odnh_5MdkXUbhaKqNuyRTrl818fgdpRxv5ItuPqjcZ-sDcfPtyHcL8P7h0cYndjDT3SO2OY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hOJQeEOVDXaDgQ3sBWWTtxEkOVVVRlqV8nEDiFhzHWSHtJgsJQvun-I3MJHG3VCo3bpGTWMr4eWYc-80D-JqGyvSNybmOjeF-bAKucdXMo4B4uwigICOC88WlGl77v2-CmwV4dlwYOlbpfGLjqLPS0D_yQxFi7I98qYIf03tOqlG0u-okNFpYnNnZEy7Zqu-nv3B8vwkxOL46GvJOVYAbxGfNA99GSsfW6khJEZrYw89AKMucFFGt14jxovtQWqD3VjLHSy_N-xKXHsLmpBKBLn_JlzKmGRUNTpznV6LfqHW1tDUMnG4XtaHqCVz_cTo7j1NGcfk6Ds6T23_2Y5swN1iFlS4_ZT9bQH2CBVuswce_qhauQ3Y8fjR3RIsoRgzzR5a1qvYVK3M2LceziX1gtSuazjolIFboosQGWzE6az9iuppNJqTnZVilxzUzRKAsuiq-1QZcv4tZN2GxKAv7GRj6Z2X7gQl9k_tRmunQy9IgTaOMWm3cA8-ZLjFdJXMS1Bgn8xrMZO0ErZ2QtRPZg_0_r0zbMh5vPbzjxiPpZnSVzPHXgwM3RvPb_-1s6-3O9uDD8OriPDk_vTzbhmVBAGmYjjuwWD882i-Y8tTpboMzBrfvDewX8YoOAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC5EYdGD6Ko4Orp90IvSmHSSTnJYFnEcdH3gQWFusdPpDMJMMpqIzF_z11mVh6ML681b6HQCqf66Humq-gD2Yl9qW-uUq1Br7oba4wqjZh54VLeLAPISKnC-upZnd-7fgTeYg9e2FobSKludWCnqJNf0j_xI-Gj7A9eR3lHapEXc9Pp_Jo-cGKTopLWl06ghcmGmLxi-Fb_Pe7jW-0L0T29PznjDMMA1YrXknmsCqUJjVCAd4evQwk9CWDspsaMaqyLmRVUilUBNLp0UL604tR0MQ4RJiTEC1f8CTrJpj_mD92BPCrti7qpL2NCItieqVdmewFiQUx49bh_Jnc82cebo_nM2W5m8_gosN74qO67BtQpzJvsJSx86GK5Bcjp61g9UIpENGfqSLKkZ7guWp2ySj6Zj88TKtoE6a1iBWKayHAdMwSjvfshUMR2PidtLs0KNSqapmDJrOvoW63D3LWLdgPksz8wmMNTV0tie9l2dukGcKN9KYi-Og4RGTdgBqxVdpJuu5kSuMYpm_ZhJ2hFKOyJpR04HDt4fmdQtPb6a3G3XI2p2dxHNsNiBw3aNZrf_-7Ktr1_2C34gpKPL8-uLbVgUhI-q6LEL8-XTs9lB76eMdyuYMbj_bly_AXk7Ei0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+dynamics+of+polymer+transport+through+nanopores+using+asymmetric+salt+concentrations&rft.jtitle=Nano+research&rft.au=Charron%2C+Martin&rft.au=Philipp%2C+Lucas&rft.au=He%2C+Liqun&rft.au=Tabard-Cossa%2C+Vincent&rft.date=2022-11-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=11&rft.spage=9943&rft.epage=9953&rft_id=info:doi/10.1007%2Fs12274-022-4886-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon