Elucidating the dynamics of polymer transport through nanopores using asymmetric salt concentrations
While notable progress has been made in recent years both experimentally and theoretically in understanding the highly complex dynamics of polymer capture and transport through nanopores, there remains significant disagreement between experimental observation and theoretical prediction that needs to...
Saved in:
Published in | Nano research Vol. 15; no. 11; pp. 9943 - 9953 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While notable progress has been made in recent years both experimentally and theoretically in understanding the highly complex dynamics of polymer capture and transport through nanopores, there remains significant disagreement between experimental observation and theoretical prediction that needs to be resolved. Asymmetric salt concentrations, where the concentrations of ions on each side of the membrane are different, can be used to enhance capture rates and prolong translocation times of electrophoretically driven polymers translocating through a nanopore from the low salt concentration reservoir, which are both attractive features for single-molecule analysis. However, since asymmetric salt concentrations affect the electrophoretic pull inside and outside the pore differently, it also offers a useful control parameter to elucidate the otherwise inseparable physics of the capture and translocation process. In this work, we attempt to paint a complete picture of the dynamics of polymer capture and translocation in both symmetric and asymmetric salt concentration conditions by reporting the dependence of multiple translocation metrics on voltage, polymer length, and salt concentration gradient. Using asymmetric salt concentration conditions, we experimentally observe the predictions of tension propagation theory, and infer the significant impact of the electric field outside the pore in capturing polymers and in altering polymer conformations prior to translocation. |
---|---|
AbstractList | While notable progress has been made in recent years both experimentally and theoretically in understanding the highly complex dynamics of polymer capture and transport through nanopores, there remains significant disagreement between experimental observation and theoretical prediction that needs to be resolved. Asymmetric salt concentrations, where the concentrations of ions on each side of the membrane are different, can be used to enhance capture rates and prolong translocation times of electrophoretically driven polymers translocating through a nanopore from the low salt concentration reservoir, which are both attractive features for single-molecule analysis. However, since asymmetric salt concentrations affect the electrophoretic pull inside and outside the pore differently, it also offers a useful control parameter to elucidate the otherwise inseparable physics of the capture and translocation process. In this work, we attempt to paint a complete picture of the dynamics of polymer capture and translocation in both symmetric and asymmetric salt concentration conditions by reporting the dependence of multiple translocation metrics on voltage, polymer length, and salt concentration gradient. Using asymmetric salt concentration conditions, we experimentally observe the predictions of tension propagation theory, and infer the significant impact of the electric field outside the pore in capturing polymers and in altering polymer conformations prior to translocation. |
Author | Charron, Martin Philipp, Lucas Tabard-Cossa, Vincent He, Liqun |
Author_xml | – sequence: 1 givenname: Martin surname: Charron fullname: Charron, Martin organization: Department of Physics, University of Ottawa – sequence: 2 givenname: Lucas surname: Philipp fullname: Philipp, Lucas organization: Department of Physics, University of Ottawa – sequence: 3 givenname: Liqun surname: He fullname: He, Liqun organization: Department of Physics, University of Ottawa – sequence: 4 givenname: Vincent surname: Tabard-Cossa fullname: Tabard-Cossa, Vincent email: tcossa@uottawa.ca organization: Department of Physics, University of Ottawa |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8Bz6v52mz2KKV-QMGLnkOaZtuU3WRNsof-e7OuIgg6lxmG95l5eRdg5rwzAFxjdIsRqu4iJqRiBSKkYELwgp6BOa5rUaBcs-8ZE3YBFjEeEeIEMzEHu3U7aLtTybo9TAcDdyenOqsj9A3sfXvqTIApKBd7H1JWBD_sD9Ap5_PCRDjEkVTx1HUmBathVG2C2jttXOaS9S5egvNGtdFcffUleHtYv66eis3L4_PqflNoRspUlMwIrmpjlOCUVLpGW6MRQ7TBdYkMKllFS8YrrohAmNMmj2jbYIoZI6Yp6RLcTHf74N8HE5M8-iG4_FKSilAiGOWjqppUOvgYg2mktunTaPZrW4mRHCOVU6QyRyrHSCXNJP5F9sF2Kpz-ZcjExKx1exN-PP0NfQCUC4ut |
CitedBy_id | crossref_primary_10_1002_smtd_202301523 crossref_primary_10_3390_ijms24076153 crossref_primary_10_1021_acsami_2c19485 crossref_primary_10_1039_D4SD00159A crossref_primary_10_1021_acs_biomac_3c00473 crossref_primary_10_1039_D3NR01873C |
Cites_doi | 10.1038/s41467-017-01584-3 10.1021/nl100861c 10.1021/acs.analchem.7b01246 10.1103/PhysRevLett.112.244501 10.1016/j.bpj.2013.05.065 10.1126/science.abl4381 10.1021/acsami.9b08004 10.1038/s41598-022-08533-1 10.1088/0957-4484/26/23/234004 10.1038/s41467-021-26046-9 10.1002/elps.201400418 10.1002/elps.201800426 10.1002/(SICI)1097-0282(199711)42:6<687::AID-BIP7>3.0.CO;2-Q 10.1038/nnano.2009.379 10.1038/s41598-017-07227-3 10.1039/C9NR05367K 10.1002/1522-2683(200208)23:16<2592::AID-ELPS2592>3.0.CO;2-L 10.1021/nl048030d 10.1063/1.4742188 10.1021/acs.analchem.9b01900 10.1103/PhysRevLett.110.028102 10.1063/1.2723088 10.1039/C8CS00106E 10.1063/1.3170952 10.1021/jp204014r 10.1038/s41467-020-18132-1 10.1039/c2sm27416g 10.1063/1.3429882 10.1038/s41592-021-01143-1 10.1103/PhysRevE.85.051803 10.1038/s41467-019-10147-7 10.1126/sciadv.abc2661 10.1038/nphys1230 10.1038/s41598-019-51049-4 10.1088/0957-4484/23/40/405301 10.1038/s41598-018-33086-7 10.1103/PhysRevE.98.022501 10.1038/s41467-017-00423-9 10.1063/1.4855075 10.1038/nbt.3423 10.1063/5.0094221 10.1038/s41587-019-0345-2 10.3390/polym8120424 10.1038/s41576-020-0236-x 10.1209/0295-5075/103/38001 10.1021/acs.nanolett.7b03987 10.1021/nl204273h 10.1063/1.4964630 10.1103/PhysRevLett.86.3435 10.1515/zna-1991-1-223 10.1038/nbt.2503 10.1021/acs.nanolett.8b04715 10.1016/j.bpj.2011.05.034 10.1038/s41596-019-0255-2 10.1103/PhysRevE.87.042722 10.1021/acssensors.6b00176 10.1038/s41567-021-01268-2 10.1038/nnano.2016.9 10.1039/C4SM01819B 10.1038/s41578-020-0229-6 10.1063/1.5108700 10.1038/nnano.2016.267 10.1103/PhysRevE.93.022401 10.1002/marc.201700680 10.1038/nbt.1495 10.1021/acs.analchem.6b03725 10.1140/epje/i2011-11135-3 10.1063/1.4903176 10.1021/nn303126n 10.1038/s41565-021-00958-5 10.1371/journal.pone.0181599 10.1146/annurev.fl.21.010189.000425 10.1038/nmeth.4577 10.1103/PhysRevE.85.041801 10.1038/nnano.2016.50 10.1016/j.bpj.2014.10.017 10.1038/nnano.2007.381 10.1021/acsnano.9b01357 10.1039/C9NR04566J 10.48550/arXiv.2101.12712 |
ContentType | Journal Article |
Copyright | Tsinghua University Press 2022, corrected publication 2024 Tsinghua University Press 2022, corrected publication 2024. |
Copyright_xml | – notice: Tsinghua University Press 2022, corrected publication 2024 – notice: Tsinghua University Press 2022, corrected publication 2024. |
DBID | AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12274-022-4886-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1998-0000 |
EndPage | 9953 |
ExternalDocumentID | 10_1007_s12274_022_4886_3 |
GroupedDBID | 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 95- 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABBBX ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACCUX ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSTC ACZOJ ADBBV ADFRT ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AEZWR AFBBN AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AIAKS AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 H13 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PHGZM PHGZT PQGLB PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TGP TSG U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 ZMTXR ~A9 AAYXX ACMFV CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c425t-54e86a9eea86327c90bec0403f1950e0547354676a280163f6760bf131442ef53 |
IEDL.DBID | 7X7 |
ISSN | 1998-0124 |
IngestDate | Sat Aug 23 14:32:33 EDT 2025 Tue Jul 01 01:47:06 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 Mon Jul 21 06:07:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | polymer transport DNA translocation nanopore salt gradient tension propagation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-54e86a9eea86327c90bec0403f1950e0547354676a280163f6760bf131442ef53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s12274-022-4886-3.pdf |
PQID | 2723284365 |
PQPubID | 326270 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2723284365 crossref_citationtrail_10_1007_s12274_022_4886_3 crossref_primary_10_1007_s12274_022_4886_3 springer_journals_10_1007_s12274_022_4886_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationYear | 2022 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Rowghanian, Grosberg (CR24) 2013; 87 Ikonen, Bhattacharya, Ala-Nissila, Sung (CR27) 2012; 137 Muthukumar (CR23) 2010; 132 Sean, De Haan, Slater (CR73) 2015; 36 Tanaka, Tamamushi (CR65) 1991; 46 Briggs, Madejski, Magill, Kastritis, De Haan, Mcgrath, Tabard-Cossa (CR67) 2018; 18 Garalde, Snell, Jachimowicz, Sipos, Lloyd, Bruce, Pantic, Admassu, James, Warland (CR3) 2018; 15 Davenport, Healy, Pevarnik, Teslich, Cabrini, Morrison, Siwy, Létant (CR31) 2012; 6 Van Dorp, Keyser, Dekker, Dekker, Lemay (CR35) 2009; 5 Lucas, Versloot, Yakovlieva, Walvoort, Maglia (CR19) 2021; 12 Storm, Storm, Chen, Zandbergen, Joanny, Dekker (CR34) 2005; 5 Sarabadani, Ikonen, Mökkönen, Ala-Nissila, Carson, Wanunu (CR70) 2017; 7 Verschueren, Jonsson, Dekker (CR48) 2015; 26 Rowghanian, Grosberg (CR25) 2011; 115 He, Tsutsui, Scheicher, Miao, Taniguchi (CR45) 2016; 1 Sarabadani, Ikonen, Ala-Nissila (CR28) 2014; 141 Saito, Sakaue (CR26) 2011; 34 Chen, Jou, Ermann, Muthukumar, Keyser, Bell (CR38) 2021; 17 Vollmer, De Haan (CR50) 2016; 145 Bell, Chen, Ghosal, Ricci, Keyser (CR69) 2017; 5 Meller, Nivon, Branton (CR63) 2001; 86 Farahpour, Maleknejad, Varnik, Ejtehadi (CR49) 2013; 9 Chuah, Wu, Vivekchand, Gaus, Reece, Micolich, Gooding (CR8) 2019; 10 Cao, Krapp, Al Ouahabi, König, Cirauqui, Radenovic, Lutz, Peraro (CR21) 2020; 6 Morin, Mckenna, Shropshire, Wride, Deschamps, Liu, Stamm, Wang, Dunbar (CR11) 2018; 8 Lee, Cottin-Bizonne, Biance, Joseph, Bocquet, Ybert (CR58) 2014; 112 Lin, Acar, Polster, Lin, Hsu, Siwy (CR78) 2019; 13 Wong, Muthukumar (CR55) 2007; 126 Seth, Bhattacharya (CR52) 2022; 156 Carson, Wilson, Aksimentiev, Wanunu (CR36) 2014; 107 Ivica, Williamson, De Planque (CR40) 2017; 89 Nakane, Akeson, Marziali (CR53) 2002; 23 Ikonen, Bhattacharya, Ala-Nissila, Sung (CR60) 2013; 103 Bello, Mowla, Troise, Soyring, Borgesi, Shim (CR42) 2019; 40 Kowalczyk, Wells, Aksimentiev, Dekker (CR46) 2012; 12 Bandara, Karawdeniya, Hagan, Chevalier, Dwyer (CR74) 2019; 11 Gershow, Golovchenko (CR54) 2007; 2 Yusko, Bruhn, Eggenberger, Houghtaling, Rollings, Walsh, Nandivada, Pindrus, Hall, Sept (CR13) 2017; 12 Palyulin, Ala-Nissila, Metzler (CR29) 2014; 10 He, Tsutsui, Scheicher, Fan, Taniguchi, Kawai (CR43) 2013; 105 Ikonen, Bhattacharya, Ala-Nissila, Sung (CR61) 2012; 85 Beamish, Kwok, Tabard-Cossa, Godin (CR77) 2012; 23 Jeon, Muthukumar (CR39) 2014; 140 Bell, Keyser (CR7) 2016; 11 Nivala, Marks, Akeson (CR15) 2013; 31 Brinkerhoff, Kang, Liu, Aksimentiev, Dekker (CR17) 2021; 374 Sakaue (CR62) 2016; 8 Varongchayakul, Song, Meller, Grinstaff (CR12) 2018; 47 Xue, Yamazaki, Ren, Wanunu, Ivanov, Edel (CR6) 2020; 5 Charron, Briggs, King, Waugh, Tabard-Cossa (CR33) 2019; 91 Chou (CR44) 2009; 131 Chen, Kong, Zhu, Ermann, Predki, Keyser (CR20) 2019; 19 He, Karau, Tabard-Cossa (CR66) 2019; 11 CR51 Wanunu, Morrison, Rabin, Grosberg, Meller (CR37) 2010; 5 Anderson (CR59) 1989; 21 Logsdon, Vollger, Eichler (CR2) 2020; 21 Boukhet, König, Ouahabi, Baaken, Lutz, Behrends (CR22) 2017; 38 Stellwagen, Gelfi, Righetti (CR64) 1997; 42 Raveendran, Lee, Sharma, Wälti, Actis (CR10) 2020; 11 Eggenberger, Ying, Mayer (CR75) 2019; 11 Firnkes, Pedone, Knezevic, Döblinger, Rant (CR79) 2010; 10 Forstater, Briggs, Robertson, Ettedgui, Marie-Rose, Vaz, Kasianowicz, Tabard-Cossa, Balijepalli (CR80) 2016; 88 De Haan, Sean, Slater (CR72) 2018; 98 Deamer, Akeson, Branton (CR1) 2016; 34 McMullen, Araujo, Winter, Stein (CR56) 2019; 9 Branton, Deamer, Marziali, Bayley, Benner, Butler, Di Ventra, Garaj, Hibbs, Huang (CR4) 2008; 26 Lindsay (CR5) 2016; 11 Bell, Muthukumar, Keyser (CR32) 2016; 93 Rankin, Bocquet, Huang (CR57) 2019; 151 Schmid, Stömmer, Dietz, Dekker (CR18) 2021; 16 Dubbeldam, Rostiashvili, Milchev, Vilgis (CR30) 2012; 85 Lu, Albertorio, Hoogerheide, Golovchenko (CR71) 2011; 101 Ouldali, Sarthak, Ensslen, Piguet, Manivet, Pelta, Behrends, Aksimentiev, Oukhaled (CR14) 2020; 38 Sze, Ivanov, Cass, Edel (CR9) 2017; 8 Nova, Derrington, Craig, Noakes, Tickman, Doering, Higinbotham, Laszlo, Gundlach (CR41) 2017; 12 Alfaro, Bohländer, Dai, Filius, Howard, Van Kooten, Ohayon, Pomorski, Schmid, Aksimentiev (CR16) 2021; 18 Waugh, Briggs, Gunn, Gibeault, King, Ingram, Jimenez, Berryman, Lomovtsev, Andrzejewski (CR76) 2020; 15 Mihovilovic, Hagerty, Stein (CR68) 2013; 110 Rivas, DeAngelis, Rahbar, Hall (CR47) 2022; 12 M Waugh (4886_CR76) 2020; 15 S C Vollmer (4886_CR50) 2016; 145 D V Verschueren (4886_CR48) 2015; 26 K Briggs (4886_CR67) 2018; 18 J A Alfaro (4886_CR16) 2021; 18 J H Forstater (4886_CR80) 2016; 88 L Xue (4886_CR6) 2020; 5 J L A Dubbeldam (4886_CR30) 2012; 85 M Firnkes (4886_CR79) 2010; 10 M Mihovilovic (4886_CR68) 2013; 110 M Wanunu (4886_CR37) 2010; 5 H Brinkerhoff (4886_CR17) 2021; 374 S Carson (4886_CR36) 2014; 107 O M Eggenberger (4886_CR75) 2019; 11 T Ikonen (4886_CR27) 2012; 137 A J Storm (4886_CR34) 2005; 5 K K Chen (4886_CR38) 2021; 17 C Y Lin (4886_CR78) 2019; 13 K Tanaka (4886_CR65) 1991; 46 Y M N D Y Bandara (4886_CR74) 2019; 11 D J Rankin (4886_CR57) 2019; 151 D Deamer (4886_CR1) 2016; 34 M Gershow (4886_CR54) 2007; 2 J L Anderson (4886_CR59) 1989; 21 H W De Haan (4886_CR72) 2018; 98 J Nakane (4886_CR53) 2002; 23 C T A Wong (4886_CR55) 2007; 126 J Nivala (4886_CR15) 2013; 31 B Lu (4886_CR71) 2011; 101 J Bello (4886_CR42) 2019; 40 L Q He (4886_CR66) 2019; 11 S Seth (4886_CR52) 2022; 156 D Sean (4886_CR73) 2015; 36 J Ivica (4886_CR40) 2017; 89 M Raveendran (4886_CR10) 2020; 11 T Chou (4886_CR44) 2009; 131 C Lee (4886_CR58) 2014; 112 A Meller (4886_CR63) 2001; 86 T Saito (4886_CR26) 2011; 34 T Ikonen (4886_CR61) 2012; 85 M Boukhet (4886_CR22) 2017; 38 J Y Y Sze (4886_CR9) 2017; 8 N A W Bell (4886_CR7) 2016; 11 H Ouldali (4886_CR14) 2020; 38 J Sarabadani (4886_CR70) 2017; 7 M Charron (4886_CR33) 2019; 91 S Lindsay (4886_CR5) 2016; 11 S Van Dorp (4886_CR35) 2009; 5 J Sarabadani (4886_CR28) 2014; 141 D Branton (4886_CR4) 2008; 26 P Rowghanian (4886_CR25) 2011; 115 N C Stellwagen (4886_CR64) 1997; 42 P Rowghanian (4886_CR24) 2013; 87 F Farahpour (4886_CR49) 2013; 9 A McMullen (4886_CR56) 2019; 9 M Davenport (4886_CR31) 2012; 6 T J Morin (4886_CR11) 2018; 8 K K Chen (4886_CR20) 2019; 19 V V Palyulin (4886_CR29) 2014; 10 F L R Lucas (4886_CR19) 2021; 12 Y H He (4886_CR43) 2013; 105 4886_CR51 K Chuah (4886_CR8) 2019; 10 S W Kowalczyk (4886_CR46) 2012; 12 S Schmid (4886_CR18) 2021; 16 T Sakaue (4886_CR62) 2016; 8 N A W Bell (4886_CR32) 2016; 93 D R Garalde (4886_CR3) 2018; 15 T Ikonen (4886_CR60) 2013; 103 I C Nova (4886_CR41) 2017; 12 N A W Bell (4886_CR69) 2017; 5 G A Logsdon (4886_CR2) 2020; 21 B J Jeon (4886_CR39) 2014; 140 E Beamish (4886_CR77) 2012; 23 N Varongchayakul (4886_CR12) 2018; 47 M Muthukumar (4886_CR23) 2010; 132 Y H He (4886_CR45) 2016; 1 E C Yusko (4886_CR13) 2017; 12 C Cao (4886_CR21) 2020; 6 F Rivas (4886_CR47) 2022; 12 |
References_xml | – volume: 8 start-page: 1552 year: 2017 ident: CR9 article-title: Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers publication-title: Nat. Commun. doi: 10.1038/s41467-017-01584-3 – volume: 10 start-page: 2162 year: 2010 end-page: 2167 ident: CR79 article-title: Electrically facilitated translocations of proteins through silicon nitride nanopores: Conjoint and competitive action of diffusion, electrophoresis, and electroosmosis publication-title: Nano Lett. doi: 10.1021/nl100861c – volume: 89 start-page: 8822 year: 2017 end-page: 8829 ident: CR40 article-title: Salt gradient modulation of microRNA translocation through a biological nanopore publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01246 – volume: 112 start-page: 244501 year: 2014 ident: CR58 article-title: Osmotic flow through fully permeable nanochannels publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.244501 – volume: 105 start-page: 776 year: 2013 end-page: 782 ident: CR43 article-title: Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.05.065 – ident: CR51 – volume: 374 start-page: 1509 year: 2021 end-page: 1513 ident: CR17 article-title: Multiple rereads of single proteins at single-amino acid resolution using nanopores publication-title: Science doi: 10.1126/science.abl4381 – volume: 11 start-page: 30411 year: 2019 end-page: 30420 ident: CR74 article-title: Chemically functionalizing controlled dielectric breakdown silicon nitride nanopores by direct photohydrosilylation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b08004 – volume: 12 start-page: 4469 year: 2022 ident: CR47 article-title: Optimizing the sensitivity and resolution of hyaluronan analysis with solid-state nanopores publication-title: Sci. Rep. doi: 10.1038/s41598-022-08533-1 – volume: 26 start-page: 234004 year: 2015 ident: CR48 article-title: Temperature dependence of DNA translocations through solid-state nanopores publication-title: Nanotechnology doi: 10.1088/0957-4484/26/23/234004 – volume: 12 start-page: 5795 year: 2021 ident: CR19 article-title: Protein identification by nanopore peptide profiling publication-title: Nat. Commun. doi: 10.1038/s41467-021-26046-9 – volume: 36 start-page: 682 year: 2015 end-page: 691 ident: CR73 article-title: Translocation of a polymer through a nanopore starting from a confining nanotube publication-title: Electrophoresis doi: 10.1002/elps.201400418 – volume: 40 start-page: 1082 year: 2019 end-page: 1090 ident: CR42 article-title: Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients publication-title: Electrophoresis doi: 10.1002/elps.201800426 – volume: 42 start-page: 687 year: 1997 end-page: 703 ident: CR64 article-title: The free solution mobility of DNA publication-title: Biopolymers doi: 10.1002/(SICI)1097-0282(199711)42:6<687::AID-BIP7>3.0.CO;2-Q – volume: 5 start-page: 160 year: 2010 end-page: 165 ident: CR37 article-title: Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.379 – volume: 7 start-page: 7423 year: 2017 ident: CR70 article-title: Driven translocation of a semi-flexible polymer through a nanopore publication-title: Sci. Rep. doi: 10.1038/s41598-017-07227-3 – volume: 11 start-page: 19636 year: 2019 end-page: 19657 ident: CR75 article-title: Surface coatings for solid-state nanopores publication-title: Nanoscale doi: 10.1039/C9NR05367K – volume: 23 start-page: 2592 year: 2002 end-page: 2601 ident: CR53 article-title: Evaluation of nanopores as candidates for electronic analyte detection publication-title: Electrophoresis doi: 10.1002/1522-2683(200208)23:16<2592::AID-ELPS2592>3.0.CO;2-L – volume: 5 start-page: 1193 year: 2005 end-page: 1197 ident: CR34 article-title: Fast DNA translocation through a solid-state nanopore publication-title: Nano Lett. doi: 10.1021/nl048030d – volume: 137 start-page: 085101 year: 2012 ident: CR27 article-title: Influence of non-universal effects on dynamical scaling in driven polymer translocation publication-title: J. Chem. Phys. doi: 10.1063/1.4742188 – volume: 91 start-page: 12228 year: 2019 end-page: 12237 ident: CR33 article-title: Precise DNA concentration measurements with nanopores by controlled counting publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b01900 – volume: 110 start-page: 028102 year: 2013 ident: CR68 article-title: Statistics of DNA capture by a solid-state nanopore publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.028102 – volume: 126 start-page: 164903 year: 2007 ident: CR55 article-title: Polymer capture by electro-osmotic flow of oppositely charged nanopores publication-title: J. Chem. Phys. doi: 10.1063/1.2723088 – volume: 47 start-page: 8512 year: 2018 end-page: 8524 ident: CR12 article-title: Single-molecule protein sensing in a nanopore: A tutorial publication-title: Chem. Soc. Rev doi: 10.1039/C8CS00106E – volume: 131 start-page: 034703 year: 2009 ident: CR44 article-title: Enhancement of charged macromolecule capture by nanopores in a salt gradient publication-title: J. Chem. Phys. doi: 10.1063/1.3170952 – volume: 115 start-page: 14127 year: 2011 end-page: 14135 ident: CR25 article-title: Force-driven polymer translocation through a nanopore: An old problem revisited publication-title: J. Phys. Chem. B doi: 10.1021/jp204014r – volume: 11 start-page: 4384 year: 2020 ident: CR10 article-title: Rational design of DNA nanostructures for single molecule biosensing publication-title: Nat. Commun. doi: 10.1038/s41467-020-18132-1 – volume: 9 start-page: 2750 year: 2013 end-page: 2759 ident: CR49 article-title: Chain deformation in translocation phenomena publication-title: Soft Matter doi: 10.1039/c2sm27416g – volume: 132 start-page: 195101 year: 2010 ident: CR23 article-title: Theory of capture rate in polymer translocation publication-title: J. Chem. Phys. doi: 10.1063/1.3429882 – volume: 18 start-page: 604 year: 2021 end-page: 617 ident: CR16 article-title: The emerging landscape of single-molecule protein sequencing technologies publication-title: Nat. Methods doi: 10.1038/s41592-021-01143-1 – volume: 85 start-page: 051803 year: 2012 ident: CR61 article-title: Unifying model of driven polymer translocation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.051803 – volume: 10 start-page: 2109 year: 2019 ident: CR8 article-title: Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples publication-title: Nat. Commun. doi: 10.1038/s41467-019-10147-7 – volume: 6 start-page: eabc2661 year: 2020 ident: CR21 article-title: Aerolysin nanopores decode digital information stored in tailored macromolecular analytes publication-title: Sci. Adv. doi: 10.1126/sciadv.abc2661 – volume: 5 start-page: 347 year: 2009 end-page: 351 ident: CR35 article-title: Origin of the electrophoretic force on DNA in solid-state nanopores publication-title: Nat. Phys. doi: 10.1038/nphys1230 – volume: 9 start-page: 15065 year: 2019 ident: CR56 article-title: Osmotically driven and detected DNA translocations publication-title: Sci. Rep. doi: 10.1038/s41598-019-51049-4 – volume: 23 start-page: 405301 year: 2012 ident: CR77 article-title: Precise control of the size and noise of solid-state nanopores using high electric fields publication-title: Nanotechnology doi: 10.1088/0957-4484/23/40/405301 – volume: 8 start-page: 14834 year: 2018 ident: CR11 article-title: A handheld platform for target protein detection and quantification using disposable nanopore strips publication-title: Sci. Rep. doi: 10.1038/s41598-018-33086-7 – volume: 98 start-page: 022501 year: 2018 ident: CR72 article-title: Reducing the variance in the translocation times by prestretching the polymer publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.022501 – volume: 5 start-page: 380 year: 2017 ident: CR69 article-title: Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore publication-title: Nat. Commun. doi: 10.1038/s41467-017-00423-9 – volume: 140 start-page: 015101 year: 2014 ident: CR39 article-title: Polymer capture by α-hemolysin pore upon salt concentration gradient publication-title: J. Chem. Phys. doi: 10.1063/1.4855075 – volume: 34 start-page: 518 year: 2016 end-page: 524 ident: CR1 article-title: Three decades of nanopore sequencing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3423 – volume: 156 start-page: 244902 year: 2022 ident: CR52 article-title: How capture affects polymer translocation in a solitary nanopore publication-title: J. Chem. Phys. doi: 10.1063/5.0094221 – volume: 38 start-page: 176 year: 2020 end-page: 181 ident: CR14 article-title: Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0345-2 – volume: 8 start-page: 424 year: 2016 ident: CR62 article-title: Dynamics of polymer translocation: A short review with an introduction of weakly-driven regime publication-title: Polymers (Basel) doi: 10.3390/polym8120424 – volume: 21 start-page: 597 year: 2020 end-page: 614 ident: CR2 article-title: Long-read human genome sequencing and its applications publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0236-x – volume: 103 start-page: 38001 year: 2013 ident: CR60 article-title: Influence of pore friction on the universal aspects of driven polymer translocation publication-title: Europhys. Lett. doi: 10.1209/0295-5075/103/38001 – volume: 18 start-page: 660 year: 2018 end-page: 668 ident: CR67 article-title: DNA translocations through nanopores under nanoscale preconfinement publication-title: Nano Lett doi: 10.1021/acs.nanolett.7b03987 – volume: 12 start-page: 1038 year: 2012 end-page: 1044 ident: CR46 article-title: Slowing down DNA translocation through a nanopore in lithium chloride publication-title: Nano Lett. doi: 10.1021/nl204273h – volume: 145 start-page: 154902 year: 2016 ident: CR50 article-title: Translocation is a nonequilibrium process at all stages: Simulating the capture and translocation of a polymer by a nanopore publication-title: J. Chem. Phys. doi: 10.1063/1.4964630 – volume: 86 start-page: 3435 year: 2001 end-page: 3438 ident: CR63 article-title: Voltage-driven DNA translocations through a nanopore publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.3435 – volume: 46 start-page: 141 year: 1991 end-page: 147 ident: CR65 article-title: A Physico-chemical study of concentrated aqueous solutions of lithium chloride publication-title: Z. Naturforsch. A doi: 10.1515/zna-1991-1-223 – volume: 31 start-page: 247 year: 2013 end-page: 250 ident: CR15 article-title: Unfoldase-mediated protein translocation through an α-hemolysin nanopore publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2503 – volume: 19 start-page: 1210 year: 2019 end-page: 1215 ident: CR20 article-title: Digital data storage using DNA nanostructures and solid-state nanopores publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04715 – volume: 101 start-page: 70 year: 2011 end-page: 79 ident: CR71 article-title: Origins and consequences of velocity fluctuations during DNA passage through a nanopore publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.05.034 – volume: 15 start-page: 122 year: 2020 end-page: 143 ident: CR76 article-title: Solid-state nanopore fabrication by automated controlled breakdown publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0255-2 – volume: 87 start-page: 042722 year: 2013 ident: CR24 article-title: Electrophoretic capture of a DNA chain into a nanopore publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.042722 – volume: 1 start-page: 807 year: 2016 end-page: 816 ident: CR45 article-title: Salt-gradient approach for regulating capture-to-translocation dynamics of DNA with nanochannel sensors publication-title: ACS Sensors doi: 10.1021/acssensors.6b00176 – volume: 17 start-page: 1043 year: 2021 end-page: 1049 ident: CR38 article-title: Dynamics of driven polymer transport through a nanopore publication-title: Nat. Phys. doi: 10.1038/s41567-021-01268-2 – volume: 11 start-page: 109 year: 2016 end-page: 111 ident: CR5 article-title: The promises and challenges of solid-state sequencing publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.9 – volume: 10 start-page: 9016 year: 2014 end-page: 9037 ident: CR29 article-title: Polymer translocation: The first two decades and the recent diversification publication-title: Soft Matter doi: 10.1039/C4SM01819B – volume: 5 start-page: 931 year: 2020 end-page: 951 ident: CR6 article-title: Solid-state nanopore sensors publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0229-6 – volume: 151 start-page: 044705 year: 2019 ident: CR57 article-title: Entrance effects in concentration-gradient-driven flow through an ultrathin porous membrane publication-title: J. Chem. Phys. doi: 10.1063/1.5108700 – volume: 12 start-page: 360 year: 2017 end-page: 367 ident: CR13 article-title: Real-time shape approximation and fingerprinting of single proteins using a nanopore publication-title: Nat. Nanotechnol doi: 10.1038/nnano.2016.267 – volume: 93 start-page: 022401 year: 2016 ident: CR32 article-title: Translocation frequency of double-stranded DNA through a solid-state nanopore publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.022401 – volume: 38 start-page: 1700680 year: 2017 ident: CR22 article-title: Translocation of precision polymers through biological nanopores publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201700680 – volume: 26 start-page: 1146 year: 2008 end-page: 1153 ident: CR4 article-title: The potential and challenges of nanopore sequencing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1495 – volume: 88 start-page: 11900 year: 2016 end-page: 11907 ident: CR80 article-title: MOSAIC: A modular single-molecule analysis interface for decoding multistate nanopore data publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03725 – volume: 34 start-page: 135 year: 2011 ident: CR26 article-title: Dynamical diagram and scaling in polymer driven translocation publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2011-11135-3 – volume: 141 start-page: 214907 year: 2014 ident: CR28 article-title: Iso-flux tension propagation theory of driven polymer translocation: The role of initial configurations publication-title: J. Chem. Phys. doi: 10.1063/1.4903176 – volume: 6 start-page: 8366 year: 2012 end-page: 8380 ident: CR31 article-title: The role of pore geometry in single nanoparticle detection publication-title: ACS Nano doi: 10.1021/nn303126n – volume: 16 start-page: 1244 year: 2021 end-page: 1250 ident: CR18 article-title: Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00958-5 – volume: 12 start-page: e0181599 year: 2017 ident: CR41 article-title: Investigating asymmetric salt profiles for nanopore DNA sequencing with biological porin MspA publication-title: PLoS One doi: 10.1371/journal.pone.0181599 – volume: 21 start-page: 61 year: 1989 end-page: 99 ident: CR59 article-title: Colloid transport by interfacial forces publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.21.010189.000425 – volume: 15 start-page: 201 year: 2018 end-page: 206 ident: CR3 article-title: Highly parallel direct RNA sequencing on an array of nanopores publication-title: Nat. Methods doi: 10.1038/nmeth.4577 – volume: 85 start-page: 041801 year: 2012 ident: CR30 article-title: Forced translocation of a polymer: Dynamical scaling versus molecular dynamics simulation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.041801 – volume: 11 start-page: 645 year: 2016 end-page: 651 ident: CR7 article-title: Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.50 – volume: 107 start-page: 2381 year: 2014 end-page: 2393 ident: CR36 article-title: Smooth DNA transport through a narrowed pore geometry publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.10.017 – volume: 2 start-page: 775 year: 2007 end-page: 779 ident: CR54 article-title: Recapturing and trapping single molecules with a solid-state nanopore publication-title: Nat. Nanotechnol doi: 10.1038/nnano.2007.381 – volume: 13 start-page: 9868 year: 2019 end-page: 9879 ident: CR78 article-title: Modulation of charge density and charge polarity of nanopore wall by salt gradient and voltage publication-title: ACS Nano doi: 10.1021/acsnano.9b01357 – volume: 11 start-page: 16342 year: 2019 end-page: 16350 ident: CR66 article-title: Fast capture and multiplexed detection of short multi-arm DNA stars in solid-state nanopores publication-title: Nanoscale doi: 10.1039/C9NR04566J – volume: 18 start-page: 660 year: 2018 ident: 4886_CR67 publication-title: Nano Lett doi: 10.1021/acs.nanolett.7b03987 – volume: 21 start-page: 61 year: 1989 ident: 4886_CR59 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.21.010189.000425 – volume: 8 start-page: 424 year: 2016 ident: 4886_CR62 publication-title: Polymers (Basel) doi: 10.3390/polym8120424 – volume: 85 start-page: 041801 year: 2012 ident: 4886_CR30 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.041801 – ident: 4886_CR51 doi: 10.48550/arXiv.2101.12712 – volume: 36 start-page: 682 year: 2015 ident: 4886_CR73 publication-title: Electrophoresis doi: 10.1002/elps.201400418 – volume: 126 start-page: 164903 year: 2007 ident: 4886_CR55 publication-title: J. Chem. Phys. doi: 10.1063/1.2723088 – volume: 17 start-page: 1043 year: 2021 ident: 4886_CR38 publication-title: Nat. Phys. doi: 10.1038/s41567-021-01268-2 – volume: 16 start-page: 1244 year: 2021 ident: 4886_CR18 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00958-5 – volume: 137 start-page: 085101 year: 2012 ident: 4886_CR27 publication-title: J. Chem. Phys. doi: 10.1063/1.4742188 – volume: 26 start-page: 234004 year: 2015 ident: 4886_CR48 publication-title: Nanotechnology doi: 10.1088/0957-4484/26/23/234004 – volume: 19 start-page: 1210 year: 2019 ident: 4886_CR20 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04715 – volume: 1 start-page: 807 year: 2016 ident: 4886_CR45 publication-title: ACS Sensors doi: 10.1021/acssensors.6b00176 – volume: 8 start-page: 14834 year: 2018 ident: 4886_CR11 publication-title: Sci. Rep. doi: 10.1038/s41598-018-33086-7 – volume: 11 start-page: 19636 year: 2019 ident: 4886_CR75 publication-title: Nanoscale doi: 10.1039/C9NR05367K – volume: 374 start-page: 1509 year: 2021 ident: 4886_CR17 publication-title: Science doi: 10.1126/science.abl4381 – volume: 10 start-page: 9016 year: 2014 ident: 4886_CR29 publication-title: Soft Matter doi: 10.1039/C4SM01819B – volume: 140 start-page: 015101 year: 2014 ident: 4886_CR39 publication-title: J. Chem. Phys. doi: 10.1063/1.4855075 – volume: 12 start-page: 1038 year: 2012 ident: 4886_CR46 publication-title: Nano Lett. doi: 10.1021/nl204273h – volume: 15 start-page: 122 year: 2020 ident: 4886_CR76 publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0255-2 – volume: 141 start-page: 214907 year: 2014 ident: 4886_CR28 publication-title: J. Chem. Phys. doi: 10.1063/1.4903176 – volume: 5 start-page: 380 year: 2017 ident: 4886_CR69 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00423-9 – volume: 115 start-page: 14127 year: 2011 ident: 4886_CR25 publication-title: J. Phys. Chem. B doi: 10.1021/jp204014r – volume: 12 start-page: e0181599 year: 2017 ident: 4886_CR41 publication-title: PLoS One doi: 10.1371/journal.pone.0181599 – volume: 12 start-page: 5795 year: 2021 ident: 4886_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26046-9 – volume: 21 start-page: 597 year: 2020 ident: 4886_CR2 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0236-x – volume: 26 start-page: 1146 year: 2008 ident: 4886_CR4 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1495 – volume: 10 start-page: 2162 year: 2010 ident: 4886_CR79 publication-title: Nano Lett. doi: 10.1021/nl100861c – volume: 23 start-page: 405301 year: 2012 ident: 4886_CR77 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/40/405301 – volume: 2 start-page: 775 year: 2007 ident: 4886_CR54 publication-title: Nat. Nanotechnol doi: 10.1038/nnano.2007.381 – volume: 42 start-page: 687 year: 1997 ident: 4886_CR64 publication-title: Biopolymers doi: 10.1002/(SICI)1097-0282(199711)42:6<687::AID-BIP7>3.0.CO;2-Q – volume: 132 start-page: 195101 year: 2010 ident: 4886_CR23 publication-title: J. Chem. Phys. doi: 10.1063/1.3429882 – volume: 9 start-page: 15065 year: 2019 ident: 4886_CR56 publication-title: Sci. Rep. doi: 10.1038/s41598-019-51049-4 – volume: 11 start-page: 30411 year: 2019 ident: 4886_CR74 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b08004 – volume: 85 start-page: 051803 year: 2012 ident: 4886_CR61 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.051803 – volume: 12 start-page: 360 year: 2017 ident: 4886_CR13 publication-title: Nat. Nanotechnol doi: 10.1038/nnano.2016.267 – volume: 38 start-page: 176 year: 2020 ident: 4886_CR14 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0345-2 – volume: 107 start-page: 2381 year: 2014 ident: 4886_CR36 publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.10.017 – volume: 5 start-page: 160 year: 2010 ident: 4886_CR37 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.379 – volume: 13 start-page: 9868 year: 2019 ident: 4886_CR78 publication-title: ACS Nano doi: 10.1021/acsnano.9b01357 – volume: 10 start-page: 2109 year: 2019 ident: 4886_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10147-7 – volume: 12 start-page: 4469 year: 2022 ident: 4886_CR47 publication-title: Sci. Rep. doi: 10.1038/s41598-022-08533-1 – volume: 9 start-page: 2750 year: 2013 ident: 4886_CR49 publication-title: Soft Matter doi: 10.1039/c2sm27416g – volume: 93 start-page: 022401 year: 2016 ident: 4886_CR32 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.022401 – volume: 86 start-page: 3435 year: 2001 ident: 4886_CR63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.3435 – volume: 89 start-page: 8822 year: 2017 ident: 4886_CR40 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01246 – volume: 31 start-page: 247 year: 2013 ident: 4886_CR15 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2503 – volume: 145 start-page: 154902 year: 2016 ident: 4886_CR50 publication-title: J. Chem. Phys. doi: 10.1063/1.4964630 – volume: 5 start-page: 931 year: 2020 ident: 4886_CR6 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0229-6 – volume: 34 start-page: 518 year: 2016 ident: 4886_CR1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3423 – volume: 110 start-page: 028102 year: 2013 ident: 4886_CR68 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.028102 – volume: 5 start-page: 1193 year: 2005 ident: 4886_CR34 publication-title: Nano Lett. doi: 10.1021/nl048030d – volume: 87 start-page: 042722 year: 2013 ident: 4886_CR24 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.042722 – volume: 101 start-page: 70 year: 2011 ident: 4886_CR71 publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.05.034 – volume: 131 start-page: 034703 year: 2009 ident: 4886_CR44 publication-title: J. Chem. Phys. doi: 10.1063/1.3170952 – volume: 11 start-page: 645 year: 2016 ident: 4886_CR7 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.50 – volume: 38 start-page: 1700680 year: 2017 ident: 4886_CR22 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201700680 – volume: 103 start-page: 38001 year: 2013 ident: 4886_CR60 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/103/38001 – volume: 88 start-page: 11900 year: 2016 ident: 4886_CR80 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03725 – volume: 11 start-page: 16342 year: 2019 ident: 4886_CR66 publication-title: Nanoscale doi: 10.1039/C9NR04566J – volume: 6 start-page: 8366 year: 2012 ident: 4886_CR31 publication-title: ACS Nano doi: 10.1021/nn303126n – volume: 7 start-page: 7423 year: 2017 ident: 4886_CR70 publication-title: Sci. Rep. doi: 10.1038/s41598-017-07227-3 – volume: 112 start-page: 244501 year: 2014 ident: 4886_CR58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.244501 – volume: 47 start-page: 8512 year: 2018 ident: 4886_CR12 publication-title: Chem. Soc. Rev doi: 10.1039/C8CS00106E – volume: 40 start-page: 1082 year: 2019 ident: 4886_CR42 publication-title: Electrophoresis doi: 10.1002/elps.201800426 – volume: 6 start-page: eabc2661 year: 2020 ident: 4886_CR21 publication-title: Sci. Adv. doi: 10.1126/sciadv.abc2661 – volume: 105 start-page: 776 year: 2013 ident: 4886_CR43 publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.05.065 – volume: 156 start-page: 244902 year: 2022 ident: 4886_CR52 publication-title: J. Chem. Phys. doi: 10.1063/5.0094221 – volume: 11 start-page: 4384 year: 2020 ident: 4886_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18132-1 – volume: 151 start-page: 044705 year: 2019 ident: 4886_CR57 publication-title: J. Chem. Phys. doi: 10.1063/1.5108700 – volume: 23 start-page: 2592 year: 2002 ident: 4886_CR53 publication-title: Electrophoresis doi: 10.1002/1522-2683(200208)23:16<2592::AID-ELPS2592>3.0.CO;2-L – volume: 46 start-page: 141 year: 1991 ident: 4886_CR65 publication-title: Z. Naturforsch. A doi: 10.1515/zna-1991-1-223 – volume: 98 start-page: 022501 year: 2018 ident: 4886_CR72 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.022501 – volume: 8 start-page: 1552 year: 2017 ident: 4886_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01584-3 – volume: 15 start-page: 201 year: 2018 ident: 4886_CR3 publication-title: Nat. Methods doi: 10.1038/nmeth.4577 – volume: 34 start-page: 135 year: 2011 ident: 4886_CR26 publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2011-11135-3 – volume: 11 start-page: 109 year: 2016 ident: 4886_CR5 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.9 – volume: 91 start-page: 12228 year: 2019 ident: 4886_CR33 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b01900 – volume: 18 start-page: 604 year: 2021 ident: 4886_CR16 publication-title: Nat. Methods doi: 10.1038/s41592-021-01143-1 – volume: 5 start-page: 347 year: 2009 ident: 4886_CR35 publication-title: Nat. Phys. doi: 10.1038/nphys1230 |
SSID | ssj0062148 |
Score | 2.3950427 |
Snippet | While notable progress has been made in recent years both experimentally and theoretically in understanding the highly complex dynamics of polymer capture and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9943 |
SubjectTerms | Asymmetry Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Concentration gradient Condensed Matter Physics Electric fields Materials Science Nanotechnology Polymers Research Article Salts Translocation |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3E6JQdPSqBNmrQ9DpkMQU8OditJmg6ha8faHfbf-9I2VkUFbyVNcnjv5X2Q_N4PoVsVCu1rnREZa02CWHMioWomEbe4XTAgnlqA8_OLmM6Cpzmfdzjuyr12d1eSjafuwW4UKihiX5-D0QnCdtEet6U7GPGMjp37FdRvKLNa7BhEL3eV-dMWX4NRn2F-uxRtYs3jETrskkQ8brV6jHZMcYIOPrUOPEXpJN_oN4tNKBYYkjicttTyFS4zvCrz7dKsce06l-OOjgcXsihhwFTYPnhfYFltl0tLqqVxJfMaa4tiLLpWutUZmj1OXh-mpGNMIBrOXk14YCIhY2NkJBgNdeyBiuCYssyyvRqvIRoG1ygkhcgkWAafnsp8BmUVNRln52hQlIW5QBicpDA-12GgsyBSqQy9VHGlotSOmniIPCe6RHftxC2rRZ70jZCttBOQdmKlnbAhuvtYsmp7afw1eeT0kXTHqkpoCAlgFDDBh-je6aj__etml_-afYX2qbWRBnE4QoN6vTHXkHrU6qYxtXelgtB2 priority: 102 providerName: Springer Nature |
Title | Elucidating the dynamics of polymer transport through nanopores using asymmetric salt concentrations |
URI | https://link.springer.com/article/10.1007/s12274-022-4886-3 https://www.proquest.com/docview/2723284365 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT4MwFG90XvRg_IzTufTgSdPIgBY4mWnYjEZjjEvmiZRSjMkGc-DB_973oIia6AVIgR7ee30f7XvvR8hJ7Ak1UCplMlCKuYHiTELUzHyOdbsgQDzBAue7e3E9cW-mfGo23AqTVtnoxEpRJ7nCPfJz2wPb77uO4BeLN4aoUXi6aiA0Vskati7DlC5v-hVwCXtQoWfVZWRgyJpTzap0zoZ4jGEuO4iwYM5Pu9Q6m7_ORyuzM9oim8ZfpMOawdtkRWc7ZONbF8FdkoSzd_WKZQrZCwV_jiY1ynxB85Qu8tnHXC9p2TQxpwaZh2Yyy2FAFxRz31-oLD7mc8TXUrSQs5IqLGjMTFfdYo9MRuHT1TUz4AlMwTIsGXe1L2SgtfSFY3sqsIBbsGKdFIFftVVhDoOWFNIGIyWcFB6tOB04EGHZOuXOPulkeaYPCAV9KfSAK89VqevHifSsJOZx7Cc4qoMusRrSRcp0FkeAi1nU9kRGakdA7QipHTldcvr1y6Juq_Hfx72GH5FZYUXUykOXnDU8al__Odnh_5MdkXUbhaKqNuyRTrl818fgdpRxv5ItuPqjcZ-sDcfPtyHcL8P7h0cYndjDT3SO2OY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hOJQeEOVDXaDgQ3sBWWTtxEkOVVVRlqV8nEDiFhzHWSHtJgsJQvun-I3MJHG3VCo3bpGTWMr4eWYc-80D-JqGyvSNybmOjeF-bAKucdXMo4B4uwigICOC88WlGl77v2-CmwV4dlwYOlbpfGLjqLPS0D_yQxFi7I98qYIf03tOqlG0u-okNFpYnNnZEy7Zqu-nv3B8vwkxOL46GvJOVYAbxGfNA99GSsfW6khJEZrYw89AKMucFFGt14jxovtQWqD3VjLHSy_N-xKXHsLmpBKBLn_JlzKmGRUNTpznV6LfqHW1tDUMnG4XtaHqCVz_cTo7j1NGcfk6Ds6T23_2Y5swN1iFlS4_ZT9bQH2CBVuswce_qhauQ3Y8fjR3RIsoRgzzR5a1qvYVK3M2LceziX1gtSuazjolIFboosQGWzE6az9iuppNJqTnZVilxzUzRKAsuiq-1QZcv4tZN2GxKAv7GRj6Z2X7gQl9k_tRmunQy9IgTaOMWm3cA8-ZLjFdJXMS1Bgn8xrMZO0ErZ2QtRPZg_0_r0zbMh5vPbzjxiPpZnSVzPHXgwM3RvPb_-1s6-3O9uDD8OriPDk_vTzbhmVBAGmYjjuwWD882i-Y8tTpboMzBrfvDewX8YoOAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC5EYdGD6Ko4Orp90IvSmHSSTnJYFnEcdH3gQWFusdPpDMJMMpqIzF_z11mVh6ML681b6HQCqf66Humq-gD2Yl9qW-uUq1Br7oba4wqjZh54VLeLAPISKnC-upZnd-7fgTeYg9e2FobSKludWCnqJNf0j_xI-Gj7A9eR3lHapEXc9Pp_Jo-cGKTopLWl06ghcmGmLxi-Fb_Pe7jW-0L0T29PznjDMMA1YrXknmsCqUJjVCAd4evQwk9CWDspsaMaqyLmRVUilUBNLp0UL604tR0MQ4RJiTEC1f8CTrJpj_mD92BPCrti7qpL2NCItieqVdmewFiQUx49bh_Jnc82cebo_nM2W5m8_gosN74qO67BtQpzJvsJSx86GK5Bcjp61g9UIpENGfqSLKkZ7guWp2ySj6Zj88TKtoE6a1iBWKayHAdMwSjvfshUMR2PidtLs0KNSqapmDJrOvoW63D3LWLdgPksz8wmMNTV0tie9l2dukGcKN9KYi-Og4RGTdgBqxVdpJuu5kSuMYpm_ZhJ2hFKOyJpR04HDt4fmdQtPb6a3G3XI2p2dxHNsNiBw3aNZrf_-7Ktr1_2C34gpKPL8-uLbVgUhI-q6LEL8-XTs9lB76eMdyuYMbj_bly_AXk7Ei0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+dynamics+of+polymer+transport+through+nanopores+using+asymmetric+salt+concentrations&rft.jtitle=Nano+research&rft.au=Charron%2C+Martin&rft.au=Philipp%2C+Lucas&rft.au=He%2C+Liqun&rft.au=Tabard-Cossa%2C+Vincent&rft.date=2022-11-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=11&rft.spage=9943&rft.epage=9953&rft_id=info:doi/10.1007%2Fs12274-022-4886-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon |