Autofluorescence: Biological functions and technical applications
•Plants contain some fluorescent compounds (porphyrins, alkaloids and phenolic compounds).•Proposed roles: light harvesting and biocommunication.•Autofluorescence is an excellent tool for cell imaging and stress diagnosis. Chlorophylls are the most remarkable examples of fluorophores, and their fluo...
Saved in:
Published in | Plant science (Limerick) Vol. 236; pp. 136 - 145 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier Ireland Ltd
01.07.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0168-9452 1873-2259 1873-2259 |
DOI | 10.1016/j.plantsci.2015.03.010 |
Cover
Abstract | •Plants contain some fluorescent compounds (porphyrins, alkaloids and phenolic compounds).•Proposed roles: light harvesting and biocommunication.•Autofluorescence is an excellent tool for cell imaging and stress diagnosis.
Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator. |
---|---|
AbstractList | Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator. Fluorescence is the property by which a molecule (fluorophore), excited after the absorption of a photon, is able to de-excite by re-emitting a photon of a longer wavelength. Chlorophylls are the most remarkable examples of plant fluorophores, and their properties have been intensively studied as a useful tool that allows the simple and non-invasive assessment of photosynthesis. However, this is only one example among the many plant fluorophores, such as alkaloids (betalains), phenolics (anthocyanins) and porphyrins, many of which emit fluorescence in the visible portion of the light spectrum. Whether fluorescence is just a physicochemical curiosity in the plant kingdom or whether it plays a functional role in photoprotection or as a cue in biocommunication is subject to active discussion and experimentation. Independently of their putative functions, plant fluorophores provide researchers with a tool to visualize certain metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes. As some of these fluorophores are involved in environmental interactions, fluorescence can be also used as a specific stress indicator. •Plants contain some fluorescent compounds (porphyrins, alkaloids and phenolic compounds).•Proposed roles: light harvesting and biocommunication.•Autofluorescence is an excellent tool for cell imaging and stress diagnosis. Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator. Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator.Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator. |
Author | García-Plazaola, José Ignacio Becerril, José María Hernández, Antonio López-Arbeloa, Fernando Fernández-Marín, Beatriz Duke, Stephen O. |
Author_xml | – sequence: 1 givenname: José Ignacio surname: García-Plazaola fullname: García-Plazaola, José Ignacio email: joseignacio.garcia@ehu.es organization: Dpto Biología Vegetal y Ecología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain – sequence: 2 givenname: Beatriz surname: Fernández-Marín fullname: Fernández-Marín, Beatriz organization: Dpto Biología Vegetal y Ecología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain – sequence: 3 givenname: Stephen O. surname: Duke fullname: Duke, Stephen O. organization: Natural Products Utilization Research Unit, USDA, ARS, University of Mississippi, University, MS 38677, USA – sequence: 4 givenname: Antonio surname: Hernández fullname: Hernández, Antonio organization: Dpto Biología Vegetal y Ecología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain – sequence: 5 givenname: Fernando surname: López-Arbeloa fullname: López-Arbeloa, Fernando organization: Dpto Química Física, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain – sequence: 6 givenname: José María surname: Becerril fullname: Becerril, José María organization: Dpto Biología Vegetal y Ecología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26025527$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu2zAQRYkgReI8fiHxshspQ4rPoou6QZsECNBFmzVBUVRCQxZVkirQvy9tx5tuvOKAPHdmeO8FOh3D6BC6wVBjwPxuXU-DGXOyviaAWQ1NDRhO0AJL0VSEMHWKFgWUlaKMnKOLlNYAQBgTZ-ic8G1FxAKtVnMO_TCH6JJ1o3Wfll99GMKrt2ZY9vNosw9jWpqxW2Zn38bdvZmmoRS7pyv0oTdDctfv5yV6-f7t1_1j9fzj4el-9VxZSliuKJBOYiIUVZLQBrNWtkYIprChou1M2zna2o5yylnrAFTDpbC8t6pvDaa0uUQf932nGH7PLmW98WXlodjgwpw0ltCApFjw4yhXikrFBSvozTs6txvX6Sn6jYl_9cGhAnzeAzaGlKLrtfV59_McjR80Br0NRK_1IRC9DURDo0sgRc7_kx8mHBXe7oW9Cdq8Rp_0y88CcCgQSKYK8WVPuOL6H--iLj22EXY-Opt1F_yxIf8Au5Wxqg |
CitedBy_id | crossref_primary_10_1016_j_apsb_2024_01_018 crossref_primary_10_1016_j_foodres_2021_110115 crossref_primary_10_3390_molecules25102393 crossref_primary_10_1038_s41598_019_57387_7 crossref_primary_10_1016_j_cub_2023_03_089 crossref_primary_10_1016_j_tplants_2020_07_013 crossref_primary_10_1016_j_bcab_2020_101889 crossref_primary_10_3389_fmicb_2018_03151 crossref_primary_10_3389_fpls_2022_887347 crossref_primary_10_1002_cbic_201600013 crossref_primary_10_3390_plants14030458 crossref_primary_10_1088_2050_6120_ab6367 crossref_primary_10_1016_j_aac_2025_03_002 crossref_primary_10_1186_s13068_021_01922_0 crossref_primary_10_1016_j_aca_2019_03_003 crossref_primary_10_1093_aobpla_plab041 crossref_primary_10_1016_j_bios_2024_116114 crossref_primary_10_3390_chemosensors6030040 crossref_primary_10_1371_journal_pwat_0000177 crossref_primary_10_1364_BOE_495506 crossref_primary_10_1016_j_jphotobiol_2019_111726 crossref_primary_10_1007_s00442_023_05473_z crossref_primary_10_1002_jemt_23559 crossref_primary_10_1007_s43630_024_00636_0 crossref_primary_10_1016_j_plantsci_2018_12_005 crossref_primary_10_3769_radioisotopes_68_73 crossref_primary_10_3390_app11156804 crossref_primary_10_1007_s10886_018_0958_9 crossref_primary_10_1016_j_polymdegradstab_2024_110826 crossref_primary_10_1016_j_pbi_2019_08_005 crossref_primary_10_1111_nph_19622 crossref_primary_10_1071_FP21012 crossref_primary_10_1186_s12870_018_1481_4 crossref_primary_10_1007_s00709_025_02054_0 crossref_primary_10_3389_fpls_2024_1353110 crossref_primary_10_3390_biom13071104 crossref_primary_10_3390_plants13030396 crossref_primary_10_1002_pld3_112 crossref_primary_10_1038_srep22269 crossref_primary_10_1016_j_plantsci_2019_02_003 crossref_primary_10_3390_insects12100850 crossref_primary_10_3390_polym16233383 crossref_primary_10_1080_19491034_2019_1644592 crossref_primary_10_1016_j_foodchem_2017_04_187 crossref_primary_10_17660_th2021_76_4_5 crossref_primary_10_1080_14688417_2015_1078121 crossref_primary_10_1016_j_jphotobiol_2017_06_024 crossref_primary_10_1007_s12542_020_00538_3 crossref_primary_10_3390_photonics9100711 crossref_primary_10_1016_j_freeradbiomed_2018_04_005 crossref_primary_10_1016_j_bcab_2020_101716 crossref_primary_10_1039_D3TB00469D crossref_primary_10_1016_j_sjbs_2024_104000 crossref_primary_10_1021_acsnano_4c17883 crossref_primary_10_1021_acs_jafc_9b06744 crossref_primary_10_2139_ssrn_4147603 crossref_primary_10_3390_ijms22105071 crossref_primary_10_1007_s10895_023_03281_5 crossref_primary_10_1016_j_foodchem_2023_138028 crossref_primary_10_1021_acsabm_3c00948 crossref_primary_10_1016_j_foodchem_2024_142362 crossref_primary_10_1016_j_compag_2025_110040 crossref_primary_10_1016_j_inoche_2022_110352 crossref_primary_10_1038_s42003_024_05763_z crossref_primary_10_1088_1555_6611_ab2802 crossref_primary_10_3389_fpls_2022_914287 crossref_primary_10_1007_s00226_019_01084_1 crossref_primary_10_1007_s13204_022_02601_8 crossref_primary_10_1007_s00425_016_2597_0 crossref_primary_10_1186_s13007_019_0531_8 crossref_primary_10_1093_aobpla_plaa032 crossref_primary_10_1007_s12600_024_01213_y crossref_primary_10_1111_nph_18344 crossref_primary_10_1016_j_foodres_2020_110048 crossref_primary_10_1016_j_jcz_2018_06_006 crossref_primary_10_1007_s12551_022_00941_x crossref_primary_10_1146_annurev_arplant_042817_040104 crossref_primary_10_1186_s13007_022_00853_7 crossref_primary_10_1016_j_xcrp_2022_100745 crossref_primary_10_1016_j_carbon_2019_08_086 crossref_primary_10_1016_j_plantsci_2018_07_006 crossref_primary_10_1039_D4AY01980F crossref_primary_10_1039_D4AN01409J crossref_primary_10_1002_aps3_11437 crossref_primary_10_1007_s11947_023_03005_4 crossref_primary_10_1111_brv_13072 crossref_primary_10_1242_jcs_254763 crossref_primary_10_3390_foods13020177 crossref_primary_10_1002_chem_201803128 crossref_primary_10_1002_jemt_24469 crossref_primary_10_1007_s10895_023_03309_w crossref_primary_10_1186_s13068_017_0870_5 crossref_primary_10_1111_1541_4337_12692 crossref_primary_10_1007_s00344_018_9899_3 crossref_primary_10_1007_s00425_023_04254_5 crossref_primary_10_1016_j_phytol_2019_02_028 crossref_primary_10_1016_j_tplants_2019_11_001 crossref_primary_10_1186_s12870_024_05852_5 crossref_primary_10_1016_j_snb_2023_133691 crossref_primary_10_3389_fmicb_2019_01409 crossref_primary_10_1007_s43630_022_00303_2 crossref_primary_10_1016_j_postharvbio_2024_113094 crossref_primary_10_1016_j_compag_2021_106251 crossref_primary_10_1016_j_biosystemseng_2024_07_012 crossref_primary_10_3390_foods12091747 crossref_primary_10_1016_j_mocell_2025_100180 crossref_primary_10_3390_agriengineering6030179 crossref_primary_10_1016_j_rse_2019_04_030 crossref_primary_10_3390_molecules23071741 crossref_primary_10_1007_s10895_020_02561_8 crossref_primary_10_1016_j_scitotenv_2019_133906 crossref_primary_10_1093_jxb_eraa527 |
Cites_doi | 10.1038/srep02738 10.1146/annurev.biochem.67.1.509 10.1039/C3PP50392E 10.1016/j.tplants.2008.01.005 10.1006/abio.2000.5006 10.1016/0304-4203(95)00062-3 10.1016/j.rse.2009.05.003 10.1126/science.295.5552.92 10.1038/437334a 10.1073/pnas.062552299 10.1093/jxb/49.323.953 10.1016/j.rse.2014.02.007 10.1111/j.1365-3040.2003.01129.x 10.1016/j.jbiosc.2008.10.001 10.1104/pp.107.105064 10.1002/j.1537-2197.1973.tb07592.x 10.1073/pnas.0908060106 10.1007/s00425-005-0004-3 10.1007/s11120-007-9187-8 10.1093/pcp/pcq133 10.1093/jxb/ers060 10.1016/j.ibiod.2009.03.006 10.1016/S0531-5565(00)00081-4 10.1111/j.1751-1097.2008.00357.x 10.1007/s00114-010-0709-4 10.1016/j.vibspec.2012.09.015 10.3389/fpls.2014.00039 10.1016/S0176-1617(98)80142-9 10.1016/j.febslet.2010.09.011 10.1016/0048-3575(90)90130-T 10.1111/jmi.12059 10.1093/aob/mcm162 10.1016/0005-2728(95)00153-0 10.1093/jxb/erp156 10.1104/pp.97.1.197 10.1039/c3cp55219e 10.1016/S1011-1344(02)00264-6 10.1016/j.scienta.2013.01.008 10.1021/bi034949k 10.1016/j.rse.2014.06.022 10.1002/jsfa.6172 10.1021/jf402398a 10.1016/S0176-1617(98)80144-2 10.4319/lo.2001.46.7.1836 10.1093/jxb/ers338 10.1098/rsbl.2007.0016 10.1080/14634981003796295 10.1016/j.sajb.2013.06.007 10.1111/php.12131 10.1111/j.1365-313X.2011.04648.x 10.1016/j.plaphy.2014.01.005 10.3390/s101110040 10.1007/s11120-009-9498-z 10.1111/j.1438-8677.2012.00709.x |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ireland Ltd Copyright © 2015 Elsevier Ireland Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ireland Ltd – notice: Copyright © 2015 Elsevier Ireland Ltd. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.plantsci.2015.03.010 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1873-2259 |
EndPage | 145 |
ExternalDocumentID | 26025527 10_1016_j_plantsci_2015_03_010 US201600150859 S0168945215000801 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 29O 4.4 457 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABLJU ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W K-O KOM LW9 LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCC SCU SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TN5 WH7 WUQ ZCG ~G- ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c425t-402d8127949824315b8ba77591a47bdabde4bcd46465be0093687c6fc9fba1443 |
IEDL.DBID | AIKHN |
ISSN | 0168-9452 1873-2259 |
IngestDate | Thu Sep 04 17:21:50 EDT 2025 Fri Sep 05 07:52:17 EDT 2025 Mon Jul 21 06:02:52 EDT 2025 Tue Jul 01 00:25:22 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 Wed Dec 27 19:11:46 EST 2023 Fri Feb 23 02:28:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Q Biocommunication Fluorophore F Green fluorescent protein Emission Fluorescence FRET ProtoIX |
Language | English |
License | Copyright © 2015 Elsevier Ireland Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-402d8127949824315b8ba77591a47bdabde4bcd46465be0093687c6fc9fba1443 |
Notes | http://handle.nal.usda.gov/10113/62274 http://dx.doi.org/10.1016/j.plantsci.2015.03.010 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 26025527 |
PQID | 1699489675 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1803084176 proquest_miscellaneous_1699489675 pubmed_primary_26025527 crossref_citationtrail_10_1016_j_plantsci_2015_03_010 crossref_primary_10_1016_j_plantsci_2015_03_010 fao_agris_US201600150859 elsevier_sciencedirect_doi_10_1016_j_plantsci_2015_03_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Plant science (Limerick) |
PublicationTitleAlternate | Plant Sci |
PublicationYear | 2015 |
Publisher | Elsevier Ireland Ltd |
Publisher_xml | – name: Elsevier Ireland Ltd |
References | Maksimov (bib0475) 2014; 81 Meroni (bib0585) 2009; 113 Donaldson, Radotic (bib0560) 2013; 251 Andrews, Reed, Masta (bib0380) 2007; 3 Lakowicz (bib0315) 2006 Mitsumoto, Yabusaki, Aoyagi (bib0410) 2009; 107 Moser (bib0415) 2009; 106 Bellow, Latouche, Brown, Poutaraud, Cerovic (bib0535) 2013; 64 Jockusch, Turro, Banala, Kräutler (bib0435) 2014; 13 Raimondi (bib0360) 2009; 63 Buschmann (bib0580) 2007; 92 Gandía-Herrero, Escribano, García-Carmona (bib0400) 2005; 222 Kurup (bib0425) 2013; 15 Labas (bib0375) 2002; 99 Iriel, Lagorio (bib0430) 2010; 97 Poustka (bib0510) 2007; 145 Harris (bib0345) 2010 Novo, Iriel, Marcgi, Lagorio (bib0520) 2013; 89 Roshchina, Yashina, Yashin (bib0505) 2008; 21 Gomez (bib0325) 2011; 67 Basak, Chattopadhyay (bib0335) 2014; 16 Lepisto (bib0575) 2010; 13 Archetti (bib0445) 2009; 24 Kräutler (bib0420) 2010; 548 Benediktyova, Nedbal (bib0615) 2009; 102 Jacobs, Jacobs, Sherman, Duke (bib0550) 1991; 97 Pineda, Gaspar, Morales, Szigeti, Barón (bib0540) 2008; 84 Roshchina (bib0365) 2012 Matile (bib0440) 2000; 35 Hutzler (bib0500) 1998; 49 Lehnen, Sherman, Becerril, Duke (bib0545) 1990; 37 Reichardt, Welton (bib0330) 2010 Rajagopal, Bukhov, Tajmir-Riahi, Carpenter (bib0340) 2003; 42 Kräutler (bib0620) 2010; 584 Billinton, Knight (bib0320) 2001; 291 Fabriciova, López-Tobar, Cañamares, Backor, Sanchez-Cortes (bib0465) 2012; 63 Joinera (bib0595) 2014; 152 Morales, Cerovic, Moya (bib0495) 1996; 1273 Arnold, Owens, Marshall (bib0385) 2002; 295 Solhaug, Gauslaa (bib0460) 2004; 27 Frankenberga (bib0590) 2014; 147 Coble (bib0600) 1996; 51 Baby (bib0390) 2013; 3 Cruden (bib0395) 1973; 60 Hoque, Remus (bib0480) 1999; 69 Hakala-Yatkin, Mäntysaari, Mattila, Tyystjärvi (bib0450) 2010; 51 Usha, Singh (bib0355) 2013; 153 Gandía-Herrero, García-Carmona, Escribano (bib0405) 2005; 437 Agati, Matteini, Oliveira, Freitas, Mateus (bib0565) 2013; 61 Takahashi, Murata (bib0455) 2008; 13 Conejero, Noirot, Talamond, Verdeil (bib0610) 2014; 5 Buschmann, Lichtenthaler (bib0530) 1998; 152 Yuan, Chen, Leng, Wang (bib0515) 2013; 88 Tsien (bib0350) 1998; 67 Panneton, Clement, Lagace (bib0555) 2013; 93 Bellow, Latouche, Brown, Poutaraud, Cerovic (bib0370) 2012; 63 Hura (bib0485) 2007; 100 Lichtenthaler, Schweiger (bib0490) 1998; 152 Del Castillo (bib0605) 2001; 46 Malenovsky (bib0570) 2009; 60 Ben Ghozlen, Cerovic, Germain, Toutain, Latouche (bib0525) 2010; 10 Hidalgo, Fernández, Ponce, Rubio, Quilhot (bib0470) 2002; 66 Coble (10.1016/j.plantsci.2015.03.010_bib0600) 1996; 51 Ben Ghozlen (10.1016/j.plantsci.2015.03.010_bib0525) 2010; 10 Gomez (10.1016/j.plantsci.2015.03.010_bib0325) 2011; 67 Donaldson (10.1016/j.plantsci.2015.03.010_bib0560) 2013; 251 Basak (10.1016/j.plantsci.2015.03.010_bib0335) 2014; 16 Arnold (10.1016/j.plantsci.2015.03.010_bib0385) 2002; 295 Jockusch (10.1016/j.plantsci.2015.03.010_bib0435) 2014; 13 Solhaug (10.1016/j.plantsci.2015.03.010_bib0460) 2004; 27 Novo (10.1016/j.plantsci.2015.03.010_bib0520) 2013; 89 Gandía-Herrero (10.1016/j.plantsci.2015.03.010_bib0400) 2005; 222 Benediktyova (10.1016/j.plantsci.2015.03.010_bib0615) 2009; 102 Archetti (10.1016/j.plantsci.2015.03.010_bib0445) 2009; 24 Mitsumoto (10.1016/j.plantsci.2015.03.010_bib0410) 2009; 107 Hakala-Yatkin (10.1016/j.plantsci.2015.03.010_bib0450) 2010; 51 Poustka (10.1016/j.plantsci.2015.03.010_bib0510) 2007; 145 Tsien (10.1016/j.plantsci.2015.03.010_bib0350) 1998; 67 Kräutler (10.1016/j.plantsci.2015.03.010_bib0420) 2010; 548 Morales (10.1016/j.plantsci.2015.03.010_bib0495) 1996; 1273 Bellow (10.1016/j.plantsci.2015.03.010_bib0535) 2013; 64 Conejero (10.1016/j.plantsci.2015.03.010_bib0610) 2014; 5 Kräutler (10.1016/j.plantsci.2015.03.010_bib0620) 2010; 584 Matile (10.1016/j.plantsci.2015.03.010_bib0440) 2000; 35 Hura (10.1016/j.plantsci.2015.03.010_bib0485) 2007; 100 Rajagopal (10.1016/j.plantsci.2015.03.010_bib0340) 2003; 42 Hidalgo (10.1016/j.plantsci.2015.03.010_bib0470) 2002; 66 Labas (10.1016/j.plantsci.2015.03.010_bib0375) 2002; 99 Moser (10.1016/j.plantsci.2015.03.010_bib0415) 2009; 106 Hoque (10.1016/j.plantsci.2015.03.010_bib0480) 1999; 69 Billinton (10.1016/j.plantsci.2015.03.010_bib0320) 2001; 291 Takahashi (10.1016/j.plantsci.2015.03.010_bib0455) 2008; 13 Meroni (10.1016/j.plantsci.2015.03.010_bib0585) 2009; 113 Baby (10.1016/j.plantsci.2015.03.010_bib0390) 2013; 3 Roshchina (10.1016/j.plantsci.2015.03.010_bib0505) 2008; 21 Andrews (10.1016/j.plantsci.2015.03.010_bib0380) 2007; 3 Kurup (10.1016/j.plantsci.2015.03.010_bib0425) 2013; 15 Lepisto (10.1016/j.plantsci.2015.03.010_bib0575) 2010; 13 Del Castillo (10.1016/j.plantsci.2015.03.010_bib0605) 2001; 46 Fabriciova (10.1016/j.plantsci.2015.03.010_bib0465) 2012; 63 Lichtenthaler (10.1016/j.plantsci.2015.03.010_bib0490) 1998; 152 Pineda (10.1016/j.plantsci.2015.03.010_bib0540) 2008; 84 Cruden (10.1016/j.plantsci.2015.03.010_bib0395) 1973; 60 Maksimov (10.1016/j.plantsci.2015.03.010_bib0475) 2014; 81 Panneton (10.1016/j.plantsci.2015.03.010_bib0555) 2013; 93 Buschmann (10.1016/j.plantsci.2015.03.010_bib0580) 2007; 92 Gandía-Herrero (10.1016/j.plantsci.2015.03.010_bib0405) 2005; 437 Lakowicz (10.1016/j.plantsci.2015.03.010_bib0315) 2006 Harris (10.1016/j.plantsci.2015.03.010_bib0345) 2010 Raimondi (10.1016/j.plantsci.2015.03.010_bib0360) 2009; 63 Malenovsky (10.1016/j.plantsci.2015.03.010_bib0570) 2009; 60 Yuan (10.1016/j.plantsci.2015.03.010_bib0515) 2013; 88 Buschmann (10.1016/j.plantsci.2015.03.010_bib0530) 1998; 152 Reichardt (10.1016/j.plantsci.2015.03.010_bib0330) 2010 Bellow (10.1016/j.plantsci.2015.03.010_bib0370) 2012; 63 Hutzler (10.1016/j.plantsci.2015.03.010_bib0500) 1998; 49 Joinera (10.1016/j.plantsci.2015.03.010_bib0595) 2014; 152 Agati (10.1016/j.plantsci.2015.03.010_bib0565) 2013; 61 Lehnen (10.1016/j.plantsci.2015.03.010_bib0545) 1990; 37 Iriel (10.1016/j.plantsci.2015.03.010_bib0430) 2010; 97 Frankenberga (10.1016/j.plantsci.2015.03.010_bib0590) 2014; 147 Usha (10.1016/j.plantsci.2015.03.010_bib0355) 2013; 153 Jacobs (10.1016/j.plantsci.2015.03.010_bib0550) 1991; 97 Roshchina (10.1016/j.plantsci.2015.03.010_bib0365) 2012 |
References_xml | – volume: 27 start-page: 167 year: 2004 end-page: 176 ident: bib0460 article-title: Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen publication-title: Plant Cell Environ. – volume: 37 start-page: 239 year: 1990 end-page: 248 ident: bib0545 article-title: Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons publication-title: Pestic. Biochem. Phys. – volume: 97 start-page: 197 year: 1991 end-page: 203 ident: bib0550 article-title: Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporpyrin in organellar and plasma membrane-enriched fractions of barley publication-title: Plant Physiol. – volume: 584 start-page: 4215 year: 2010 end-page: 4221 ident: bib0620 article-title: A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily and indicates a split path of chlorophyll breakdown publication-title: FEBS Lett. – volume: 69 start-page: 177 year: 1999 end-page: 192 ident: bib0480 article-title: Natural UV-screening mechanisms of Norway spruce ( publication-title: Photochem. Photobiol. – volume: 152 start-page: 272 year: 1998 end-page: 282 ident: bib0490 article-title: Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants publication-title: J. Plant Physiol. – volume: 100 start-page: 767 year: 2007 end-page: 775 ident: bib0485 article-title: Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance publication-title: Ann. Bot. – volume: 97 start-page: 915 year: 2010 end-page: 924 ident: bib0430 article-title: Is the flower fluorescence relevant in biocommunication? publication-title: Naturwissenschaften – volume: 35 start-page: 145 year: 2000 end-page: 158 ident: bib0440 article-title: Biochemistry of Indian summer: physiology of autumnal leaf coloration publication-title: Exp. Gerontol. – year: 2006 ident: bib0315 article-title: Principles of Fluorescence Spectroscopy – volume: 24 start-page: 166 year: 2009 end-page: 173 ident: bib0445 article-title: Unraveling the evolution of autumn colours: an interdisciplinary approach publication-title: Trends Plant Sci. – volume: 60 start-page: 802 year: 1973 end-page: 809 ident: bib0395 article-title: Reproductive biology of weedy and cultivated publication-title: Am. J. Bot. – start-page: 419 year: 2010 end-page: 444 ident: bib0345 article-title: Applications of spectrophotometry publication-title: Quantitative Chemical Analysis – volume: 3 start-page: 265 year: 2007 end-page: 267 ident: bib0380 article-title: Spiders fluoresce variably across many taxa publication-title: Biol. Lett. – volume: 222 start-page: 586 year: 2005 end-page: 593 ident: bib0400 article-title: Betaxanthins as pigments responsible for visible fluorescence in flowers publication-title: Planta – volume: 51 start-page: 325 year: 1996 end-page: 346 ident: bib0600 article-title: Characterization of marine and terrestial DPM in seawater using excitation–emission matrix spectroscopy publication-title: Mar. Chem. – volume: 152 start-page: 375 year: 2014 end-page: 391 ident: bib0595 article-title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange publication-title: Remote Sens. Environ. – volume: 63 start-page: 823 year: 2009 end-page: 835 ident: bib0360 article-title: The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: a decade of publication-title: Int. Biodeter. Biodegr. – volume: 3 start-page: 02738 year: 2013 ident: bib0390 article-title: UV induced visual cues in grasses publication-title: Sci. Rep. – volume: 51 start-page: 1745 year: 2010 end-page: 1753 ident: bib0450 article-title: Contributions of visible and ultraviolet parts of sunlight to photoinhibition publication-title: Plant Cell Physiol. – volume: 89 start-page: 1383 year: 2013 end-page: 1390 ident: bib0520 article-title: Spectroscopy, microscopy and fluorescence imaging of publication-title: Photochem. Photobiol. – volume: 93 start-page: 3279 year: 2013 end-page: 3285 ident: bib0555 article-title: Potential of fluorescence spectroscopy for the characterisation of maple syrup flavours publication-title: J. Sci. Food Agric. – volume: 102 start-page: 169 year: 2009 end-page: 175 ident: bib0615 article-title: Imaging of multi-color fluorescence emission from leaf tissues publication-title: Photosynth. Res. – volume: 13 start-page: 178 year: 2008 end-page: 182 ident: bib0455 article-title: How do environmental stresses accelerate photoinhibition? publication-title: Trends Plant Sci. – volume: 92 start-page: 261 year: 2007 end-page: 271 ident: bib0580 article-title: Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves publication-title: Photosynth. Res. – volume: 437 start-page: 334 year: 2005 ident: bib0405 article-title: Floral fluorescence effect publication-title: Nature – volume: 67 start-page: 960 year: 2011 end-page: 970 ident: bib0325 article-title: In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST publication-title: Plant J. – volume: 63 start-page: 3697 year: 2012 end-page: 3708 ident: bib0370 article-title: In vivo localization at the cellular level of stilbene fluorescence induced by publication-title: J. Exp. Bot. – volume: 61 start-page: 10156 year: 2013 end-page: 10162 ident: bib0565 article-title: Fluorescence approach for measuring anthocyanins and derived pigments in red wine publication-title: J. Agric. Food Chem. – volume: 81 start-page: 67 year: 2014 end-page: 73 ident: bib0475 article-title: Fluorescence quenching in the lichen publication-title: Plant Physiol. Biochem. – volume: 66 start-page: 213 year: 2002 end-page: 217 ident: bib0470 article-title: Photophysical, photochemical, and thermodynamic properties of shikimic acid derivatives: calycin and rhizocarpic acid (lichens) publication-title: J. Photochem. Photobiol. B – volume: 1273 start-page: 251 year: 1996 end-page: 262 ident: bib0495 article-title: Time-resolved blue-green fluorescence of sugar beet ( publication-title: Biochim. Biophys. Acta – volume: 10 start-page: 10040 year: 2010 end-page: 10068 ident: bib0525 article-title: Non-destructive optical monitoring of grape maturation by proximal sensing publication-title: Sensors – volume: 88 start-page: 110 year: 2013 end-page: 117 ident: bib0515 article-title: An efficient autofluorescence method for screening publication-title: S. Afr. J. Bot. – volume: 152 start-page: 297 year: 1998 end-page: 314 ident: bib0530 article-title: Principles and characteristics of multi-colour fluorescence imaging of plants publication-title: J. Plant Physiol. – volume: 16 start-page: 11139 year: 2014 end-page: 11149 ident: bib0335 article-title: Studies of protein folding and dynamics using single molecule fluorescence spectroscopy publication-title: Phys. Chem. Chem. Phys. – start-page: 360 year: 2010 ident: bib0330 article-title: Solvents effects on the absorption spectra of organic compounds publication-title: Solvents and Solvent Effects in Organic Chemistry – volume: 251 start-page: 178 year: 2013 end-page: 187 ident: bib0560 article-title: Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood publication-title: J. Microsc. – volume: 42 start-page: 11839 year: 2003 end-page: 11845 ident: bib0340 article-title: Control of energy dissipation and photochemical activity in photosystem I by NADP-dependent reversible conformational changes publication-title: Biochemistry – volume: 99 start-page: 4256 year: 2002 end-page: 4261 ident: bib0375 article-title: Diversity and evolution of the green fluorescent protein family publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 145 start-page: 1323 year: 2007 end-page: 1335 ident: bib0510 article-title: A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in publication-title: Plant Physiol. – volume: 13 start-page: 407 year: 2014 end-page: 411 ident: bib0435 article-title: Photochemical studies of a fluorescent chlorophyll catabolite – source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen publication-title: Photochem. Photobiol. Sci. – volume: 15 start-page: 611 year: 2013 end-page: 615 ident: bib0425 article-title: Fluorescent prey traps in carnivorous plants publication-title: Plant Biol. – volume: 295 start-page: 92 year: 2002 ident: bib0385 article-title: Fluorescent signalling in parrots publication-title: Science – volume: 21 start-page: 219 year: 2008 end-page: 226 ident: bib0505 article-title: Cell communication in pollen allelopathy analyzed with laser-scanning confocal microscopy publication-title: Allelopathy J. – volume: 46 start-page: 1836 year: 2001 end-page: 1843 ident: bib0605 article-title: Multispectral publication-title: Limnol. Oceanogr. – start-page: 124672 year: 2012 ident: bib0365 article-title: Vital autofluorescence: application to the study of plant living cells publication-title: Int. J. Spectrosc. – volume: 67 start-page: 509 year: 1998 end-page: 544 ident: bib0350 article-title: The green fluorescent protein publication-title: Annu. Rev. Biochem. – volume: 113 start-page: 2037 year: 2009 end-page: 2051 ident: bib0585 article-title: Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications publication-title: Remote Sens. Environ. – volume: 106 start-page: 15538 year: 2009 end-page: 15543 ident: bib0415 article-title: Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 49 start-page: 953 year: 1998 end-page: 965 ident: bib0500 article-title: Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy publication-title: J. Exp. Bot. – volume: 60 start-page: 2987 year: 2009 end-page: 3004 ident: bib0570 article-title: Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence publication-title: J. Exp. Bot. – volume: 107 start-page: 90 year: 2009 end-page: 94 ident: bib0410 article-title: Classification of pollen species using autofluorescence image analysis publication-title: J. Biosci. Bioeng. – volume: 64 start-page: 333 year: 2013 end-page: 341 ident: bib0535 article-title: Optical detection of downy mildew in grapevine leaves: daily kinetics of autofluorescence upon infection publication-title: J. Exp. Bot. – volume: 147 start-page: 1 year: 2014 end-page: 12 ident: bib0590 article-title: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2 publication-title: Remote Sens. Environ. – volume: 153 start-page: 71 year: 2013 end-page: 83 ident: bib0355 article-title: Potential applications of remote sensing in horticulture—a review publication-title: Sci. Hortic. Amsterdam – volume: 291 start-page: 175 year: 2001 end-page: 197 ident: bib0320 article-title: Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence publication-title: Anal. Biochem. – volume: 84 start-page: 1048 year: 2008 end-page: 1060 ident: bib0540 article-title: Multicolor fluorescence imaging of leaves-a useful tool for visualizing systemic viral infections in plants publication-title: Photochem. Photobiol. – volume: 13 start-page: 176 year: 2010 end-page: 184 ident: bib0575 article-title: Monitoring of special water quality in lakes by remote sensing and transect measurements publication-title: Aquat. Ecosyst. Health – volume: 548 start-page: 4215 year: 2010 end-page: 4221 ident: bib0420 article-title: A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily and indicates a spit path of chlorophyll breakdown publication-title: FEBS Lett. – volume: 5 start-page: 39 year: 2014 ident: bib0610 article-title: Spectral analysis combined with advanced linear unmixing allows for histolocalization of phenolics in leaves of coffee trees publication-title: Front. Plant Sci. – volume: 63 start-page: 477 year: 2012 end-page: 484 ident: bib0465 article-title: Adsorption of anthraquinone drug parietin on silver nanoparticles: a SERS and fluorescence study publication-title: Vib. Spectrosc. – volume: 3 start-page: 02738 year: 2013 ident: 10.1016/j.plantsci.2015.03.010_bib0390 article-title: UV induced visual cues in grasses publication-title: Sci. Rep. doi: 10.1038/srep02738 – volume: 67 start-page: 509 year: 1998 ident: 10.1016/j.plantsci.2015.03.010_bib0350 article-title: The green fluorescent protein publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.509 – volume: 13 start-page: 407 year: 2014 ident: 10.1016/j.plantsci.2015.03.010_bib0435 article-title: Photochemical studies of a fluorescent chlorophyll catabolite – source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen publication-title: Photochem. Photobiol. Sci. doi: 10.1039/C3PP50392E – volume: 13 start-page: 178 year: 2008 ident: 10.1016/j.plantsci.2015.03.010_bib0455 article-title: How do environmental stresses accelerate photoinhibition? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.01.005 – volume: 291 start-page: 175 year: 2001 ident: 10.1016/j.plantsci.2015.03.010_bib0320 article-title: Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence publication-title: Anal. Biochem. doi: 10.1006/abio.2000.5006 – volume: 51 start-page: 325 year: 1996 ident: 10.1016/j.plantsci.2015.03.010_bib0600 article-title: Characterization of marine and terrestial DPM in seawater using excitation–emission matrix spectroscopy publication-title: Mar. Chem. doi: 10.1016/0304-4203(95)00062-3 – volume: 113 start-page: 2037 year: 2009 ident: 10.1016/j.plantsci.2015.03.010_bib0585 article-title: Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.05.003 – start-page: 124672 year: 2012 ident: 10.1016/j.plantsci.2015.03.010_bib0365 article-title: Vital autofluorescence: application to the study of plant living cells publication-title: Int. J. Spectrosc. – volume: 295 start-page: 92 year: 2002 ident: 10.1016/j.plantsci.2015.03.010_bib0385 article-title: Fluorescent signalling in parrots publication-title: Science doi: 10.1126/science.295.5552.92 – start-page: 419 year: 2010 ident: 10.1016/j.plantsci.2015.03.010_bib0345 article-title: Applications of spectrophotometry – volume: 437 start-page: 334 year: 2005 ident: 10.1016/j.plantsci.2015.03.010_bib0405 article-title: Floral fluorescence effect publication-title: Nature doi: 10.1038/437334a – volume: 99 start-page: 4256 year: 2002 ident: 10.1016/j.plantsci.2015.03.010_bib0375 article-title: Diversity and evolution of the green fluorescent protein family publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.062552299 – volume: 49 start-page: 953 year: 1998 ident: 10.1016/j.plantsci.2015.03.010_bib0500 article-title: Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy publication-title: J. Exp. Bot. doi: 10.1093/jxb/49.323.953 – volume: 21 start-page: 219 year: 2008 ident: 10.1016/j.plantsci.2015.03.010_bib0505 article-title: Cell communication in pollen allelopathy analyzed with laser-scanning confocal microscopy publication-title: Allelopathy J. – volume: 69 start-page: 177 year: 1999 ident: 10.1016/j.plantsci.2015.03.010_bib0480 article-title: Natural UV-screening mechanisms of Norway spruce (Picea abies (L.) Karst.) needles publication-title: Photochem. Photobiol. – volume: 147 start-page: 1 year: 2014 ident: 10.1016/j.plantsci.2015.03.010_bib0590 article-title: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.02.007 – volume: 27 start-page: 167 year: 2004 ident: 10.1016/j.plantsci.2015.03.010_bib0460 article-title: Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2003.01129.x – volume: 24 start-page: 166 year: 2009 ident: 10.1016/j.plantsci.2015.03.010_bib0445 article-title: Unraveling the evolution of autumn colours: an interdisciplinary approach publication-title: Trends Plant Sci. – start-page: 360 year: 2010 ident: 10.1016/j.plantsci.2015.03.010_bib0330 article-title: Solvents effects on the absorption spectra of organic compounds – volume: 107 start-page: 90 year: 2009 ident: 10.1016/j.plantsci.2015.03.010_bib0410 article-title: Classification of pollen species using autofluorescence image analysis publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2008.10.001 – volume: 145 start-page: 1323 year: 2007 ident: 10.1016/j.plantsci.2015.03.010_bib0510 article-title: A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions publication-title: Plant Physiol. doi: 10.1104/pp.107.105064 – volume: 60 start-page: 802 year: 1973 ident: 10.1016/j.plantsci.2015.03.010_bib0395 article-title: Reproductive biology of weedy and cultivated Mirabilis (Nyctaginaceae) publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1973.tb07592.x – volume: 106 start-page: 15538 year: 2009 ident: 10.1016/j.plantsci.2015.03.010_bib0415 article-title: Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0908060106 – year: 2006 ident: 10.1016/j.plantsci.2015.03.010_bib0315 – volume: 222 start-page: 586 year: 2005 ident: 10.1016/j.plantsci.2015.03.010_bib0400 article-title: Betaxanthins as pigments responsible for visible fluorescence in flowers publication-title: Planta doi: 10.1007/s00425-005-0004-3 – volume: 92 start-page: 261 year: 2007 ident: 10.1016/j.plantsci.2015.03.010_bib0580 article-title: Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves publication-title: Photosynth. Res. doi: 10.1007/s11120-007-9187-8 – volume: 51 start-page: 1745 year: 2010 ident: 10.1016/j.plantsci.2015.03.010_bib0450 article-title: Contributions of visible and ultraviolet parts of sunlight to photoinhibition publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcq133 – volume: 63 start-page: 3697 year: 2012 ident: 10.1016/j.plantsci.2015.03.010_bib0370 article-title: In vivo localization at the cellular level of stilbene fluorescence induced by Plasmopara viticola in grapevine leaves publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers060 – volume: 63 start-page: 823 year: 2009 ident: 10.1016/j.plantsci.2015.03.010_bib0360 article-title: The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: a decade of in situ experiments publication-title: Int. Biodeter. Biodegr. doi: 10.1016/j.ibiod.2009.03.006 – volume: 35 start-page: 145 year: 2000 ident: 10.1016/j.plantsci.2015.03.010_bib0440 article-title: Biochemistry of Indian summer: physiology of autumnal leaf coloration publication-title: Exp. Gerontol. doi: 10.1016/S0531-5565(00)00081-4 – volume: 84 start-page: 1048 year: 2008 ident: 10.1016/j.plantsci.2015.03.010_bib0540 article-title: Multicolor fluorescence imaging of leaves-a useful tool for visualizing systemic viral infections in plants publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2008.00357.x – volume: 97 start-page: 915 year: 2010 ident: 10.1016/j.plantsci.2015.03.010_bib0430 article-title: Is the flower fluorescence relevant in biocommunication? publication-title: Naturwissenschaften doi: 10.1007/s00114-010-0709-4 – volume: 63 start-page: 477 year: 2012 ident: 10.1016/j.plantsci.2015.03.010_bib0465 article-title: Adsorption of anthraquinone drug parietin on silver nanoparticles: a SERS and fluorescence study publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2012.09.015 – volume: 5 start-page: 39 year: 2014 ident: 10.1016/j.plantsci.2015.03.010_bib0610 article-title: Spectral analysis combined with advanced linear unmixing allows for histolocalization of phenolics in leaves of coffee trees publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00039 – volume: 152 start-page: 272 year: 1998 ident: 10.1016/j.plantsci.2015.03.010_bib0490 article-title: Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(98)80142-9 – volume: 584 start-page: 4215 year: 2010 ident: 10.1016/j.plantsci.2015.03.010_bib0620 article-title: A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily and indicates a split path of chlorophyll breakdown publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.09.011 – volume: 37 start-page: 239 year: 1990 ident: 10.1016/j.plantsci.2015.03.010_bib0545 article-title: Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons publication-title: Pestic. Biochem. Phys. doi: 10.1016/0048-3575(90)90130-T – volume: 251 start-page: 178 year: 2013 ident: 10.1016/j.plantsci.2015.03.010_bib0560 article-title: Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood publication-title: J. Microsc. doi: 10.1111/jmi.12059 – volume: 100 start-page: 767 year: 2007 ident: 10.1016/j.plantsci.2015.03.010_bib0485 article-title: Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance publication-title: Ann. Bot. doi: 10.1093/aob/mcm162 – volume: 1273 start-page: 251 year: 1996 ident: 10.1016/j.plantsci.2015.03.010_bib0495 article-title: Time-resolved blue-green fluorescence of sugar beet (Beta vulgaris L.) leaves. Spectroscopic evidence for the presence of ferulic acid as the main fluorophore of the epidermis publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2728(95)00153-0 – volume: 60 start-page: 2987 year: 2009 ident: 10.1016/j.plantsci.2015.03.010_bib0570 article-title: Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp156 – volume: 97 start-page: 197 year: 1991 ident: 10.1016/j.plantsci.2015.03.010_bib0550 article-title: Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporpyrin in organellar and plasma membrane-enriched fractions of barley publication-title: Plant Physiol. doi: 10.1104/pp.97.1.197 – volume: 16 start-page: 11139 year: 2014 ident: 10.1016/j.plantsci.2015.03.010_bib0335 article-title: Studies of protein folding and dynamics using single molecule fluorescence spectroscopy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp55219e – volume: 66 start-page: 213 year: 2002 ident: 10.1016/j.plantsci.2015.03.010_bib0470 article-title: Photophysical, photochemical, and thermodynamic properties of shikimic acid derivatives: calycin and rhizocarpic acid (lichens) publication-title: J. Photochem. Photobiol. B doi: 10.1016/S1011-1344(02)00264-6 – volume: 153 start-page: 71 year: 2013 ident: 10.1016/j.plantsci.2015.03.010_bib0355 article-title: Potential applications of remote sensing in horticulture—a review publication-title: Sci. Hortic. Amsterdam doi: 10.1016/j.scienta.2013.01.008 – volume: 42 start-page: 11839 year: 2003 ident: 10.1016/j.plantsci.2015.03.010_bib0340 article-title: Control of energy dissipation and photochemical activity in photosystem I by NADP-dependent reversible conformational changes publication-title: Biochemistry doi: 10.1021/bi034949k – volume: 152 start-page: 375 year: 2014 ident: 10.1016/j.plantsci.2015.03.010_bib0595 article-title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.022 – volume: 93 start-page: 3279 year: 2013 ident: 10.1016/j.plantsci.2015.03.010_bib0555 article-title: Potential of fluorescence spectroscopy for the characterisation of maple syrup flavours publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.6172 – volume: 61 start-page: 10156 year: 2013 ident: 10.1016/j.plantsci.2015.03.010_bib0565 article-title: Fluorescence approach for measuring anthocyanins and derived pigments in red wine publication-title: J. Agric. Food Chem. doi: 10.1021/jf402398a – volume: 152 start-page: 297 year: 1998 ident: 10.1016/j.plantsci.2015.03.010_bib0530 article-title: Principles and characteristics of multi-colour fluorescence imaging of plants publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(98)80144-2 – volume: 46 start-page: 1836 year: 2001 ident: 10.1016/j.plantsci.2015.03.010_bib0605 article-title: Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2001.46.7.1836 – volume: 64 start-page: 333 year: 2013 ident: 10.1016/j.plantsci.2015.03.010_bib0535 article-title: Optical detection of downy mildew in grapevine leaves: daily kinetics of autofluorescence upon infection publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers338 – volume: 3 start-page: 265 year: 2007 ident: 10.1016/j.plantsci.2015.03.010_bib0380 article-title: Spiders fluoresce variably across many taxa publication-title: Biol. Lett. doi: 10.1098/rsbl.2007.0016 – volume: 13 start-page: 176 year: 2010 ident: 10.1016/j.plantsci.2015.03.010_bib0575 article-title: Monitoring of special water quality in lakes by remote sensing and transect measurements publication-title: Aquat. Ecosyst. Health doi: 10.1080/14634981003796295 – volume: 88 start-page: 110 year: 2013 ident: 10.1016/j.plantsci.2015.03.010_bib0515 article-title: An efficient autofluorescence method for screening Limonium bicolor mutants for abnormal salt gland density and salt secretion publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2013.06.007 – volume: 89 start-page: 1383 year: 2013 ident: 10.1016/j.plantsci.2015.03.010_bib0520 article-title: Spectroscopy, microscopy and fluorescence imaging of Origanum vulgare L. basis for nondestructive quality assessment publication-title: Photochem. Photobiol. doi: 10.1111/php.12131 – volume: 67 start-page: 960 year: 2011 ident: 10.1016/j.plantsci.2015.03.010_bib0325 article-title: In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04648.x – volume: 81 start-page: 67 year: 2014 ident: 10.1016/j.plantsci.2015.03.010_bib0475 article-title: Fluorescence quenching in the lichen Peltigera aphtosa due to desiccation publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.01.005 – volume: 10 start-page: 10040 year: 2010 ident: 10.1016/j.plantsci.2015.03.010_bib0525 article-title: Non-destructive optical monitoring of grape maturation by proximal sensing publication-title: Sensors doi: 10.3390/s101110040 – volume: 102 start-page: 169 year: 2009 ident: 10.1016/j.plantsci.2015.03.010_bib0615 article-title: Imaging of multi-color fluorescence emission from leaf tissues publication-title: Photosynth. Res. doi: 10.1007/s11120-009-9498-z – volume: 15 start-page: 611 year: 2013 ident: 10.1016/j.plantsci.2015.03.010_bib0425 article-title: Fluorescent prey traps in carnivorous plants publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2012.00709.x – volume: 548 start-page: 4215 year: 2010 ident: 10.1016/j.plantsci.2015.03.010_bib0420 article-title: A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily and indicates a spit path of chlorophyll breakdown publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.09.011 |
SSID | ssj0002557 |
Score | 2.489458 |
SecondaryResourceType | review_article |
Snippet | •Plants contain some fluorescent compounds (porphyrins, alkaloids and phenolic compounds).•Proposed roles: light harvesting and... Fluorescence is the property by which a molecule (fluorophore), excited after the absorption of a photon, is able to de-excite by re-emitting a photon of a... Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 136 |
SubjectTerms | absorption anthocyanins betalains Biocommunication chlorophyll Emission Fluorescence fluorescent dyes fluorescent proteins Fluorophore Green fluorescent protein metabolites phenolic compounds photostability Photosynthesis Plant Physiological Phenomena wavelengths |
Title | Autofluorescence: Biological functions and technical applications |
URI | https://dx.doi.org/10.1016/j.plantsci.2015.03.010 https://www.ncbi.nlm.nih.gov/pubmed/26025527 https://www.proquest.com/docview/1699489675 https://www.proquest.com/docview/1803084176 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5B2QMXxGuhy0NB4hraJLZjcysIVEBwgUrcLNtxVq2qpIL2sJf97TuTRwUSLAeOsTKSM89v4pkxwKlnyog8kqG3hoXMoylaHvMwdtSN4BzPPCWK9w9iOGK3z_x5BS7bXhgqq2x8f-3TK2_drPQabvZm43HvEcGKVAzDD69wD6ZAa3GiBO_A2uDmbviwdMiImuuuaYG2jQRvGoUnZ7Mp1Zu4MVV58WreKTXTfhyjVnNTfo5Eq4h0vQkbDZQMBvVut2DFF9vw46JEuPdnBwaDxbzMp4vypRrY5Px5UN87SVIJKJxVGheYIgvqQa60_vY8exdG11dPl8OwuS8hdGh5c0oFM4zXaGFKxggMuJXWpClXkWGpzYzNPLMuY4IJbj39yxAydSJ3KrcGE6vkJ3SKsvD7EGBShtjQ5P3YOSYTaTKnRN7P4kSYPgqxC7zlkHbNMHG602Kq26qxiW45q4mzup9o5GwXeku6WT1O40sK1QpAv1MMjT7_S9p9lJg2v9Ff6tFjTNP06A-P5KoLJ60YNRoUnZKYwpeLVx0JpZhUmEj95x1JY35YlIou7NU6sPwcTBBjGmv36xsbP4B1eqrLgg-hM39Z-CMEP3N7DKtnf6PjRsX_ATnBAMk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xkuBSlfJKH7CVet08dm2v3VuKGgUIXCASN8v2elGiaDeC5MCF396ZfUAqFTj06rUl7zy_sWfGAD88U0ZkPRl6a1jIPKqi5REPI0fVCM7x1FOgeHklhmN2fstv1-C0qYWhtMra9lc2vbTW9UinpmZnPpl0rhGsSMXQ_fAS92AItMl4nFBeX_vpJc8DMXNVMy1Qs3H6SpnwtD2fUbaJm1COFy-7nVIp7b891HpmitdxaOmPBh_hQw0kg361111Y8_kn2PpVINh73IN-f7kostmyuC_bNTn_M6henSSeBOTMSnkLTJ4GVRtXGl-9zd6H8eD3zekwrF9LCB3q3YICwRS9NeqXkhHCAm6lNUnCVc-wxKbGpp5ZlzLBBLeeTjKETJzInMqswbAqPoCNvMj9EQQYkiEyNFk3co7JWJrUKZF10ygWpossbAFvKKRd3UqcXrSY6SZnbKobymqirO7GGinbgs7zunnVTOPdFaphgP5LLDRa_HfXHiHHtLlDa6nH1xH10qPzHclVC743bNSoTnRHYnJfLB90TyjFpMIw6o05kpr8sF4iWnBYycDz72B4GFFTu8__sfET2B7eXI706Ozq4gvs0JcqQfgrbCzul_4bwqCFPS7F_A9h9QGU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autofluorescence%3A+Biological+functions+and+technical+applications&rft.jtitle=Plant+science+%28Limerick%29&rft.au=Garc%C3%ADa-Plazaola%2C+Jos%C3%A9+Ignacio&rft.au=Fern%C3%A1ndez-Mar%C3%ADn%2C+Beatriz&rft.au=Duke%2C+Stephen+O&rft.au=Hern%C3%A1ndez%2C+Antonio&rft.date=2015-07-01&rft.issn=0168-9452&rft.volume=236+p.136-145&rft.spage=136&rft.epage=145&rft_id=info:doi/10.1016%2Fj.plantsci.2015.03.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9452&client=summon |