Autofluorescence: Biological functions and technical applications

•Plants contain some fluorescent compounds (porphyrins, alkaloids and phenolic compounds).•Proposed roles: light harvesting and biocommunication.•Autofluorescence is an excellent tool for cell imaging and stress diagnosis. Chlorophylls are the most remarkable examples of fluorophores, and their fluo...

Full description

Saved in:
Bibliographic Details
Published inPlant science (Limerick) Vol. 236; pp. 136 - 145
Main Authors García-Plazaola, José Ignacio, Fernández-Marín, Beatriz, Duke, Stephen O., Hernández, Antonio, López-Arbeloa, Fernando, Becerril, José María
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.07.2015
Subjects
Online AccessGet full text
ISSN0168-9452
1873-2259
1873-2259
DOI10.1016/j.plantsci.2015.03.010

Cover

Abstract •Plants contain some fluorescent compounds (porphyrins, alkaloids and phenolic compounds).•Proposed roles: light harvesting and biocommunication.•Autofluorescence is an excellent tool for cell imaging and stress diagnosis. Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator.
AbstractList Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator.
Fluorescence is the property by which a molecule (fluorophore), excited after the absorption of a photon, is able to de-excite by re-emitting a photon of a longer wavelength. Chlorophylls are the most remarkable examples of plant fluorophores, and their properties have been intensively studied as a useful tool that allows the simple and non-invasive assessment of photosynthesis. However, this is only one example among the many plant fluorophores, such as alkaloids (betalains), phenolics (anthocyanins) and porphyrins, many of which emit fluorescence in the visible portion of the light spectrum. Whether fluorescence is just a physicochemical curiosity in the plant kingdom or whether it plays a functional role in photoprotection or as a cue in biocommunication is subject to active discussion and experimentation. Independently of their putative functions, plant fluorophores provide researchers with a tool to visualize certain metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes. As some of these fluorophores are involved in environmental interactions, fluorescence can be also used as a specific stress indicator.
•Plants contain some fluorescent compounds (porphyrins, alkaloids and phenolic compounds).•Proposed roles: light harvesting and biocommunication.•Autofluorescence is an excellent tool for cell imaging and stress diagnosis. Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator.
Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator.Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator.
Author García-Plazaola, José Ignacio
Becerril, José María
Hernández, Antonio
López-Arbeloa, Fernando
Fernández-Marín, Beatriz
Duke, Stephen O.
Author_xml – sequence: 1
  givenname: José Ignacio
  surname: García-Plazaola
  fullname: García-Plazaola, José Ignacio
  email: joseignacio.garcia@ehu.es
  organization: Dpto Biología Vegetal y Ecología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain
– sequence: 2
  givenname: Beatriz
  surname: Fernández-Marín
  fullname: Fernández-Marín, Beatriz
  organization: Dpto Biología Vegetal y Ecología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain
– sequence: 3
  givenname: Stephen O.
  surname: Duke
  fullname: Duke, Stephen O.
  organization: Natural Products Utilization Research Unit, USDA, ARS, University of Mississippi, University, MS 38677, USA
– sequence: 4
  givenname: Antonio
  surname: Hernández
  fullname: Hernández, Antonio
  organization: Dpto Biología Vegetal y Ecología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain
– sequence: 5
  givenname: Fernando
  surname: López-Arbeloa
  fullname: López-Arbeloa, Fernando
  organization: Dpto Química Física, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain
– sequence: 6
  givenname: José María
  surname: Becerril
  fullname: Becerril, José María
  organization: Dpto Biología Vegetal y Ecología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26025527$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu2zAQRYkgReI8fiHxshspQ4rPoou6QZsECNBFmzVBUVRCQxZVkirQvy9tx5tuvOKAPHdmeO8FOh3D6BC6wVBjwPxuXU-DGXOyviaAWQ1NDRhO0AJL0VSEMHWKFgWUlaKMnKOLlNYAQBgTZ-ic8G1FxAKtVnMO_TCH6JJ1o3Wfll99GMKrt2ZY9vNosw9jWpqxW2Zn38bdvZmmoRS7pyv0oTdDctfv5yV6-f7t1_1j9fzj4el-9VxZSliuKJBOYiIUVZLQBrNWtkYIprChou1M2zna2o5yylnrAFTDpbC8t6pvDaa0uUQf932nGH7PLmW98WXlodjgwpw0ltCApFjw4yhXikrFBSvozTs6txvX6Sn6jYl_9cGhAnzeAzaGlKLrtfV59_McjR80Br0NRK_1IRC9DURDo0sgRc7_kx8mHBXe7oW9Cdq8Rp_0y88CcCgQSKYK8WVPuOL6H--iLj22EXY-Opt1F_yxIf8Au5Wxqg
CitedBy_id crossref_primary_10_1016_j_apsb_2024_01_018
crossref_primary_10_1016_j_foodres_2021_110115
crossref_primary_10_3390_molecules25102393
crossref_primary_10_1038_s41598_019_57387_7
crossref_primary_10_1016_j_cub_2023_03_089
crossref_primary_10_1016_j_tplants_2020_07_013
crossref_primary_10_1016_j_bcab_2020_101889
crossref_primary_10_3389_fmicb_2018_03151
crossref_primary_10_3389_fpls_2022_887347
crossref_primary_10_1002_cbic_201600013
crossref_primary_10_3390_plants14030458
crossref_primary_10_1088_2050_6120_ab6367
crossref_primary_10_1016_j_aac_2025_03_002
crossref_primary_10_1186_s13068_021_01922_0
crossref_primary_10_1016_j_aca_2019_03_003
crossref_primary_10_1093_aobpla_plab041
crossref_primary_10_1016_j_bios_2024_116114
crossref_primary_10_3390_chemosensors6030040
crossref_primary_10_1371_journal_pwat_0000177
crossref_primary_10_1364_BOE_495506
crossref_primary_10_1016_j_jphotobiol_2019_111726
crossref_primary_10_1007_s00442_023_05473_z
crossref_primary_10_1002_jemt_23559
crossref_primary_10_1007_s43630_024_00636_0
crossref_primary_10_1016_j_plantsci_2018_12_005
crossref_primary_10_3769_radioisotopes_68_73
crossref_primary_10_3390_app11156804
crossref_primary_10_1007_s10886_018_0958_9
crossref_primary_10_1016_j_polymdegradstab_2024_110826
crossref_primary_10_1016_j_pbi_2019_08_005
crossref_primary_10_1111_nph_19622
crossref_primary_10_1071_FP21012
crossref_primary_10_1186_s12870_018_1481_4
crossref_primary_10_1007_s00709_025_02054_0
crossref_primary_10_3389_fpls_2024_1353110
crossref_primary_10_3390_biom13071104
crossref_primary_10_3390_plants13030396
crossref_primary_10_1002_pld3_112
crossref_primary_10_1038_srep22269
crossref_primary_10_1016_j_plantsci_2019_02_003
crossref_primary_10_3390_insects12100850
crossref_primary_10_3390_polym16233383
crossref_primary_10_1080_19491034_2019_1644592
crossref_primary_10_1016_j_foodchem_2017_04_187
crossref_primary_10_17660_th2021_76_4_5
crossref_primary_10_1080_14688417_2015_1078121
crossref_primary_10_1016_j_jphotobiol_2017_06_024
crossref_primary_10_1007_s12542_020_00538_3
crossref_primary_10_3390_photonics9100711
crossref_primary_10_1016_j_freeradbiomed_2018_04_005
crossref_primary_10_1016_j_bcab_2020_101716
crossref_primary_10_1039_D3TB00469D
crossref_primary_10_1016_j_sjbs_2024_104000
crossref_primary_10_1021_acsnano_4c17883
crossref_primary_10_1021_acs_jafc_9b06744
crossref_primary_10_2139_ssrn_4147603
crossref_primary_10_3390_ijms22105071
crossref_primary_10_1007_s10895_023_03281_5
crossref_primary_10_1016_j_foodchem_2023_138028
crossref_primary_10_1021_acsabm_3c00948
crossref_primary_10_1016_j_foodchem_2024_142362
crossref_primary_10_1016_j_compag_2025_110040
crossref_primary_10_1016_j_inoche_2022_110352
crossref_primary_10_1038_s42003_024_05763_z
crossref_primary_10_1088_1555_6611_ab2802
crossref_primary_10_3389_fpls_2022_914287
crossref_primary_10_1007_s00226_019_01084_1
crossref_primary_10_1007_s13204_022_02601_8
crossref_primary_10_1007_s00425_016_2597_0
crossref_primary_10_1186_s13007_019_0531_8
crossref_primary_10_1093_aobpla_plaa032
crossref_primary_10_1007_s12600_024_01213_y
crossref_primary_10_1111_nph_18344
crossref_primary_10_1016_j_foodres_2020_110048
crossref_primary_10_1016_j_jcz_2018_06_006
crossref_primary_10_1007_s12551_022_00941_x
crossref_primary_10_1146_annurev_arplant_042817_040104
crossref_primary_10_1186_s13007_022_00853_7
crossref_primary_10_1016_j_xcrp_2022_100745
crossref_primary_10_1016_j_carbon_2019_08_086
crossref_primary_10_1016_j_plantsci_2018_07_006
crossref_primary_10_1039_D4AY01980F
crossref_primary_10_1039_D4AN01409J
crossref_primary_10_1002_aps3_11437
crossref_primary_10_1007_s11947_023_03005_4
crossref_primary_10_1111_brv_13072
crossref_primary_10_1242_jcs_254763
crossref_primary_10_3390_foods13020177
crossref_primary_10_1002_chem_201803128
crossref_primary_10_1002_jemt_24469
crossref_primary_10_1007_s10895_023_03309_w
crossref_primary_10_1186_s13068_017_0870_5
crossref_primary_10_1111_1541_4337_12692
crossref_primary_10_1007_s00344_018_9899_3
crossref_primary_10_1007_s00425_023_04254_5
crossref_primary_10_1016_j_phytol_2019_02_028
crossref_primary_10_1016_j_tplants_2019_11_001
crossref_primary_10_1186_s12870_024_05852_5
crossref_primary_10_1016_j_snb_2023_133691
crossref_primary_10_3389_fmicb_2019_01409
crossref_primary_10_1007_s43630_022_00303_2
crossref_primary_10_1016_j_postharvbio_2024_113094
crossref_primary_10_1016_j_compag_2021_106251
crossref_primary_10_1016_j_biosystemseng_2024_07_012
crossref_primary_10_3390_foods12091747
crossref_primary_10_1016_j_mocell_2025_100180
crossref_primary_10_3390_agriengineering6030179
crossref_primary_10_1016_j_rse_2019_04_030
crossref_primary_10_3390_molecules23071741
crossref_primary_10_1007_s10895_020_02561_8
crossref_primary_10_1016_j_scitotenv_2019_133906
crossref_primary_10_1093_jxb_eraa527
Cites_doi 10.1038/srep02738
10.1146/annurev.biochem.67.1.509
10.1039/C3PP50392E
10.1016/j.tplants.2008.01.005
10.1006/abio.2000.5006
10.1016/0304-4203(95)00062-3
10.1016/j.rse.2009.05.003
10.1126/science.295.5552.92
10.1038/437334a
10.1073/pnas.062552299
10.1093/jxb/49.323.953
10.1016/j.rse.2014.02.007
10.1111/j.1365-3040.2003.01129.x
10.1016/j.jbiosc.2008.10.001
10.1104/pp.107.105064
10.1002/j.1537-2197.1973.tb07592.x
10.1073/pnas.0908060106
10.1007/s00425-005-0004-3
10.1007/s11120-007-9187-8
10.1093/pcp/pcq133
10.1093/jxb/ers060
10.1016/j.ibiod.2009.03.006
10.1016/S0531-5565(00)00081-4
10.1111/j.1751-1097.2008.00357.x
10.1007/s00114-010-0709-4
10.1016/j.vibspec.2012.09.015
10.3389/fpls.2014.00039
10.1016/S0176-1617(98)80142-9
10.1016/j.febslet.2010.09.011
10.1016/0048-3575(90)90130-T
10.1111/jmi.12059
10.1093/aob/mcm162
10.1016/0005-2728(95)00153-0
10.1093/jxb/erp156
10.1104/pp.97.1.197
10.1039/c3cp55219e
10.1016/S1011-1344(02)00264-6
10.1016/j.scienta.2013.01.008
10.1021/bi034949k
10.1016/j.rse.2014.06.022
10.1002/jsfa.6172
10.1021/jf402398a
10.1016/S0176-1617(98)80144-2
10.4319/lo.2001.46.7.1836
10.1093/jxb/ers338
10.1098/rsbl.2007.0016
10.1080/14634981003796295
10.1016/j.sajb.2013.06.007
10.1111/php.12131
10.1111/j.1365-313X.2011.04648.x
10.1016/j.plaphy.2014.01.005
10.3390/s101110040
10.1007/s11120-009-9498-z
10.1111/j.1438-8677.2012.00709.x
ContentType Journal Article
Copyright 2015 Elsevier Ireland Ltd
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ireland Ltd
– notice: Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.plantsci.2015.03.010
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1873-2259
EndPage 145
ExternalDocumentID 26025527
10_1016_j_plantsci_2015_03_010
US201600150859
S0168945215000801
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
29O
4.4
457
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCC
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TN5
WH7
WUQ
ZCG
~G-
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c425t-402d8127949824315b8ba77591a47bdabde4bcd46465be0093687c6fc9fba1443
IEDL.DBID AIKHN
ISSN 0168-9452
1873-2259
IngestDate Thu Sep 04 17:21:50 EDT 2025
Fri Sep 05 07:52:17 EDT 2025
Mon Jul 21 06:02:52 EDT 2025
Tue Jul 01 00:25:22 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
Wed Dec 27 19:11:46 EST 2023
Fri Feb 23 02:28:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Q
Biocommunication
Fluorophore
F
Green fluorescent protein
Emission
Fluorescence
FRET
ProtoIX
Language English
License Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-402d8127949824315b8ba77591a47bdabde4bcd46465be0093687c6fc9fba1443
Notes http://handle.nal.usda.gov/10113/62274
http://dx.doi.org/10.1016/j.plantsci.2015.03.010
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 26025527
PQID 1699489675
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1803084176
proquest_miscellaneous_1699489675
pubmed_primary_26025527
crossref_citationtrail_10_1016_j_plantsci_2015_03_010
crossref_primary_10_1016_j_plantsci_2015_03_010
fao_agris_US201600150859
elsevier_sciencedirect_doi_10_1016_j_plantsci_2015_03_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Plant science (Limerick)
PublicationTitleAlternate Plant Sci
PublicationYear 2015
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Maksimov (bib0475) 2014; 81
Meroni (bib0585) 2009; 113
Donaldson, Radotic (bib0560) 2013; 251
Andrews, Reed, Masta (bib0380) 2007; 3
Lakowicz (bib0315) 2006
Mitsumoto, Yabusaki, Aoyagi (bib0410) 2009; 107
Moser (bib0415) 2009; 106
Bellow, Latouche, Brown, Poutaraud, Cerovic (bib0535) 2013; 64
Jockusch, Turro, Banala, Kräutler (bib0435) 2014; 13
Raimondi (bib0360) 2009; 63
Buschmann (bib0580) 2007; 92
Gandía-Herrero, Escribano, García-Carmona (bib0400) 2005; 222
Kurup (bib0425) 2013; 15
Labas (bib0375) 2002; 99
Iriel, Lagorio (bib0430) 2010; 97
Poustka (bib0510) 2007; 145
Harris (bib0345) 2010
Novo, Iriel, Marcgi, Lagorio (bib0520) 2013; 89
Roshchina, Yashina, Yashin (bib0505) 2008; 21
Gomez (bib0325) 2011; 67
Basak, Chattopadhyay (bib0335) 2014; 16
Lepisto (bib0575) 2010; 13
Archetti (bib0445) 2009; 24
Kräutler (bib0420) 2010; 548
Benediktyova, Nedbal (bib0615) 2009; 102
Jacobs, Jacobs, Sherman, Duke (bib0550) 1991; 97
Pineda, Gaspar, Morales, Szigeti, Barón (bib0540) 2008; 84
Roshchina (bib0365) 2012
Matile (bib0440) 2000; 35
Hutzler (bib0500) 1998; 49
Lehnen, Sherman, Becerril, Duke (bib0545) 1990; 37
Reichardt, Welton (bib0330) 2010
Rajagopal, Bukhov, Tajmir-Riahi, Carpenter (bib0340) 2003; 42
Kräutler (bib0620) 2010; 584
Billinton, Knight (bib0320) 2001; 291
Fabriciova, López-Tobar, Cañamares, Backor, Sanchez-Cortes (bib0465) 2012; 63
Joinera (bib0595) 2014; 152
Morales, Cerovic, Moya (bib0495) 1996; 1273
Arnold, Owens, Marshall (bib0385) 2002; 295
Solhaug, Gauslaa (bib0460) 2004; 27
Frankenberga (bib0590) 2014; 147
Coble (bib0600) 1996; 51
Baby (bib0390) 2013; 3
Cruden (bib0395) 1973; 60
Hoque, Remus (bib0480) 1999; 69
Hakala-Yatkin, Mäntysaari, Mattila, Tyystjärvi (bib0450) 2010; 51
Usha, Singh (bib0355) 2013; 153
Gandía-Herrero, García-Carmona, Escribano (bib0405) 2005; 437
Agati, Matteini, Oliveira, Freitas, Mateus (bib0565) 2013; 61
Takahashi, Murata (bib0455) 2008; 13
Conejero, Noirot, Talamond, Verdeil (bib0610) 2014; 5
Buschmann, Lichtenthaler (bib0530) 1998; 152
Yuan, Chen, Leng, Wang (bib0515) 2013; 88
Tsien (bib0350) 1998; 67
Panneton, Clement, Lagace (bib0555) 2013; 93
Bellow, Latouche, Brown, Poutaraud, Cerovic (bib0370) 2012; 63
Hura (bib0485) 2007; 100
Lichtenthaler, Schweiger (bib0490) 1998; 152
Del Castillo (bib0605) 2001; 46
Malenovsky (bib0570) 2009; 60
Ben Ghozlen, Cerovic, Germain, Toutain, Latouche (bib0525) 2010; 10
Hidalgo, Fernández, Ponce, Rubio, Quilhot (bib0470) 2002; 66
Coble (10.1016/j.plantsci.2015.03.010_bib0600) 1996; 51
Ben Ghozlen (10.1016/j.plantsci.2015.03.010_bib0525) 2010; 10
Gomez (10.1016/j.plantsci.2015.03.010_bib0325) 2011; 67
Donaldson (10.1016/j.plantsci.2015.03.010_bib0560) 2013; 251
Basak (10.1016/j.plantsci.2015.03.010_bib0335) 2014; 16
Arnold (10.1016/j.plantsci.2015.03.010_bib0385) 2002; 295
Jockusch (10.1016/j.plantsci.2015.03.010_bib0435) 2014; 13
Solhaug (10.1016/j.plantsci.2015.03.010_bib0460) 2004; 27
Novo (10.1016/j.plantsci.2015.03.010_bib0520) 2013; 89
Gandía-Herrero (10.1016/j.plantsci.2015.03.010_bib0400) 2005; 222
Benediktyova (10.1016/j.plantsci.2015.03.010_bib0615) 2009; 102
Archetti (10.1016/j.plantsci.2015.03.010_bib0445) 2009; 24
Mitsumoto (10.1016/j.plantsci.2015.03.010_bib0410) 2009; 107
Hakala-Yatkin (10.1016/j.plantsci.2015.03.010_bib0450) 2010; 51
Poustka (10.1016/j.plantsci.2015.03.010_bib0510) 2007; 145
Tsien (10.1016/j.plantsci.2015.03.010_bib0350) 1998; 67
Kräutler (10.1016/j.plantsci.2015.03.010_bib0420) 2010; 548
Morales (10.1016/j.plantsci.2015.03.010_bib0495) 1996; 1273
Bellow (10.1016/j.plantsci.2015.03.010_bib0535) 2013; 64
Conejero (10.1016/j.plantsci.2015.03.010_bib0610) 2014; 5
Kräutler (10.1016/j.plantsci.2015.03.010_bib0620) 2010; 584
Matile (10.1016/j.plantsci.2015.03.010_bib0440) 2000; 35
Hura (10.1016/j.plantsci.2015.03.010_bib0485) 2007; 100
Rajagopal (10.1016/j.plantsci.2015.03.010_bib0340) 2003; 42
Hidalgo (10.1016/j.plantsci.2015.03.010_bib0470) 2002; 66
Labas (10.1016/j.plantsci.2015.03.010_bib0375) 2002; 99
Moser (10.1016/j.plantsci.2015.03.010_bib0415) 2009; 106
Hoque (10.1016/j.plantsci.2015.03.010_bib0480) 1999; 69
Billinton (10.1016/j.plantsci.2015.03.010_bib0320) 2001; 291
Takahashi (10.1016/j.plantsci.2015.03.010_bib0455) 2008; 13
Meroni (10.1016/j.plantsci.2015.03.010_bib0585) 2009; 113
Baby (10.1016/j.plantsci.2015.03.010_bib0390) 2013; 3
Roshchina (10.1016/j.plantsci.2015.03.010_bib0505) 2008; 21
Andrews (10.1016/j.plantsci.2015.03.010_bib0380) 2007; 3
Kurup (10.1016/j.plantsci.2015.03.010_bib0425) 2013; 15
Lepisto (10.1016/j.plantsci.2015.03.010_bib0575) 2010; 13
Del Castillo (10.1016/j.plantsci.2015.03.010_bib0605) 2001; 46
Fabriciova (10.1016/j.plantsci.2015.03.010_bib0465) 2012; 63
Lichtenthaler (10.1016/j.plantsci.2015.03.010_bib0490) 1998; 152
Pineda (10.1016/j.plantsci.2015.03.010_bib0540) 2008; 84
Cruden (10.1016/j.plantsci.2015.03.010_bib0395) 1973; 60
Maksimov (10.1016/j.plantsci.2015.03.010_bib0475) 2014; 81
Panneton (10.1016/j.plantsci.2015.03.010_bib0555) 2013; 93
Buschmann (10.1016/j.plantsci.2015.03.010_bib0580) 2007; 92
Gandía-Herrero (10.1016/j.plantsci.2015.03.010_bib0405) 2005; 437
Lakowicz (10.1016/j.plantsci.2015.03.010_bib0315) 2006
Harris (10.1016/j.plantsci.2015.03.010_bib0345) 2010
Raimondi (10.1016/j.plantsci.2015.03.010_bib0360) 2009; 63
Malenovsky (10.1016/j.plantsci.2015.03.010_bib0570) 2009; 60
Yuan (10.1016/j.plantsci.2015.03.010_bib0515) 2013; 88
Buschmann (10.1016/j.plantsci.2015.03.010_bib0530) 1998; 152
Reichardt (10.1016/j.plantsci.2015.03.010_bib0330) 2010
Bellow (10.1016/j.plantsci.2015.03.010_bib0370) 2012; 63
Hutzler (10.1016/j.plantsci.2015.03.010_bib0500) 1998; 49
Joinera (10.1016/j.plantsci.2015.03.010_bib0595) 2014; 152
Agati (10.1016/j.plantsci.2015.03.010_bib0565) 2013; 61
Lehnen (10.1016/j.plantsci.2015.03.010_bib0545) 1990; 37
Iriel (10.1016/j.plantsci.2015.03.010_bib0430) 2010; 97
Frankenberga (10.1016/j.plantsci.2015.03.010_bib0590) 2014; 147
Usha (10.1016/j.plantsci.2015.03.010_bib0355) 2013; 153
Jacobs (10.1016/j.plantsci.2015.03.010_bib0550) 1991; 97
Roshchina (10.1016/j.plantsci.2015.03.010_bib0365) 2012
References_xml – volume: 27
  start-page: 167
  year: 2004
  end-page: 176
  ident: bib0460
  article-title: Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen
  publication-title: Plant Cell Environ.
– volume: 37
  start-page: 239
  year: 1990
  end-page: 248
  ident: bib0545
  article-title: Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons
  publication-title: Pestic. Biochem. Phys.
– volume: 97
  start-page: 197
  year: 1991
  end-page: 203
  ident: bib0550
  article-title: Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporpyrin in organellar and plasma membrane-enriched fractions of barley
  publication-title: Plant Physiol.
– volume: 584
  start-page: 4215
  year: 2010
  end-page: 4221
  ident: bib0620
  article-title: A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily and indicates a split path of chlorophyll breakdown
  publication-title: FEBS Lett.
– volume: 69
  start-page: 177
  year: 1999
  end-page: 192
  ident: bib0480
  article-title: Natural UV-screening mechanisms of Norway spruce (
  publication-title: Photochem. Photobiol.
– volume: 152
  start-page: 272
  year: 1998
  end-page: 282
  ident: bib0490
  article-title: Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants
  publication-title: J. Plant Physiol.
– volume: 100
  start-page: 767
  year: 2007
  end-page: 775
  ident: bib0485
  article-title: Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance
  publication-title: Ann. Bot.
– volume: 97
  start-page: 915
  year: 2010
  end-page: 924
  ident: bib0430
  article-title: Is the flower fluorescence relevant in biocommunication?
  publication-title: Naturwissenschaften
– volume: 35
  start-page: 145
  year: 2000
  end-page: 158
  ident: bib0440
  article-title: Biochemistry of Indian summer: physiology of autumnal leaf coloration
  publication-title: Exp. Gerontol.
– year: 2006
  ident: bib0315
  article-title: Principles of Fluorescence Spectroscopy
– volume: 24
  start-page: 166
  year: 2009
  end-page: 173
  ident: bib0445
  article-title: Unraveling the evolution of autumn colours: an interdisciplinary approach
  publication-title: Trends Plant Sci.
– volume: 60
  start-page: 802
  year: 1973
  end-page: 809
  ident: bib0395
  article-title: Reproductive biology of weedy and cultivated
  publication-title: Am. J. Bot.
– start-page: 419
  year: 2010
  end-page: 444
  ident: bib0345
  article-title: Applications of spectrophotometry
  publication-title: Quantitative Chemical Analysis
– volume: 3
  start-page: 265
  year: 2007
  end-page: 267
  ident: bib0380
  article-title: Spiders fluoresce variably across many taxa
  publication-title: Biol. Lett.
– volume: 222
  start-page: 586
  year: 2005
  end-page: 593
  ident: bib0400
  article-title: Betaxanthins as pigments responsible for visible fluorescence in flowers
  publication-title: Planta
– volume: 51
  start-page: 325
  year: 1996
  end-page: 346
  ident: bib0600
  article-title: Characterization of marine and terrestial DPM in seawater using excitation–emission matrix spectroscopy
  publication-title: Mar. Chem.
– volume: 152
  start-page: 375
  year: 2014
  end-page: 391
  ident: bib0595
  article-title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange
  publication-title: Remote Sens. Environ.
– volume: 63
  start-page: 823
  year: 2009
  end-page: 835
  ident: bib0360
  article-title: The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: a decade of
  publication-title: Int. Biodeter. Biodegr.
– volume: 3
  start-page: 02738
  year: 2013
  ident: bib0390
  article-title: UV induced visual cues in grasses
  publication-title: Sci. Rep.
– volume: 51
  start-page: 1745
  year: 2010
  end-page: 1753
  ident: bib0450
  article-title: Contributions of visible and ultraviolet parts of sunlight to photoinhibition
  publication-title: Plant Cell Physiol.
– volume: 89
  start-page: 1383
  year: 2013
  end-page: 1390
  ident: bib0520
  article-title: Spectroscopy, microscopy and fluorescence imaging of
  publication-title: Photochem. Photobiol.
– volume: 93
  start-page: 3279
  year: 2013
  end-page: 3285
  ident: bib0555
  article-title: Potential of fluorescence spectroscopy for the characterisation of maple syrup flavours
  publication-title: J. Sci. Food Agric.
– volume: 102
  start-page: 169
  year: 2009
  end-page: 175
  ident: bib0615
  article-title: Imaging of multi-color fluorescence emission from leaf tissues
  publication-title: Photosynth. Res.
– volume: 13
  start-page: 178
  year: 2008
  end-page: 182
  ident: bib0455
  article-title: How do environmental stresses accelerate photoinhibition?
  publication-title: Trends Plant Sci.
– volume: 92
  start-page: 261
  year: 2007
  end-page: 271
  ident: bib0580
  article-title: Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves
  publication-title: Photosynth. Res.
– volume: 437
  start-page: 334
  year: 2005
  ident: bib0405
  article-title: Floral fluorescence effect
  publication-title: Nature
– volume: 67
  start-page: 960
  year: 2011
  end-page: 970
  ident: bib0325
  article-title: In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST
  publication-title: Plant J.
– volume: 63
  start-page: 3697
  year: 2012
  end-page: 3708
  ident: bib0370
  article-title: In vivo localization at the cellular level of stilbene fluorescence induced by
  publication-title: J. Exp. Bot.
– volume: 61
  start-page: 10156
  year: 2013
  end-page: 10162
  ident: bib0565
  article-title: Fluorescence approach for measuring anthocyanins and derived pigments in red wine
  publication-title: J. Agric. Food Chem.
– volume: 81
  start-page: 67
  year: 2014
  end-page: 73
  ident: bib0475
  article-title: Fluorescence quenching in the lichen
  publication-title: Plant Physiol. Biochem.
– volume: 66
  start-page: 213
  year: 2002
  end-page: 217
  ident: bib0470
  article-title: Photophysical, photochemical, and thermodynamic properties of shikimic acid derivatives: calycin and rhizocarpic acid (lichens)
  publication-title: J. Photochem. Photobiol. B
– volume: 1273
  start-page: 251
  year: 1996
  end-page: 262
  ident: bib0495
  article-title: Time-resolved blue-green fluorescence of sugar beet (
  publication-title: Biochim. Biophys. Acta
– volume: 10
  start-page: 10040
  year: 2010
  end-page: 10068
  ident: bib0525
  article-title: Non-destructive optical monitoring of grape maturation by proximal sensing
  publication-title: Sensors
– volume: 88
  start-page: 110
  year: 2013
  end-page: 117
  ident: bib0515
  article-title: An efficient autofluorescence method for screening
  publication-title: S. Afr. J. Bot.
– volume: 152
  start-page: 297
  year: 1998
  end-page: 314
  ident: bib0530
  article-title: Principles and characteristics of multi-colour fluorescence imaging of plants
  publication-title: J. Plant Physiol.
– volume: 16
  start-page: 11139
  year: 2014
  end-page: 11149
  ident: bib0335
  article-title: Studies of protein folding and dynamics using single molecule fluorescence spectroscopy
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 360
  year: 2010
  ident: bib0330
  article-title: Solvents effects on the absorption spectra of organic compounds
  publication-title: Solvents and Solvent Effects in Organic Chemistry
– volume: 251
  start-page: 178
  year: 2013
  end-page: 187
  ident: bib0560
  article-title: Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood
  publication-title: J. Microsc.
– volume: 42
  start-page: 11839
  year: 2003
  end-page: 11845
  ident: bib0340
  article-title: Control of energy dissipation and photochemical activity in photosystem I by NADP-dependent reversible conformational changes
  publication-title: Biochemistry
– volume: 99
  start-page: 4256
  year: 2002
  end-page: 4261
  ident: bib0375
  article-title: Diversity and evolution of the green fluorescent protein family
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 145
  start-page: 1323
  year: 2007
  end-page: 1335
  ident: bib0510
  article-title: A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in
  publication-title: Plant Physiol.
– volume: 13
  start-page: 407
  year: 2014
  end-page: 411
  ident: bib0435
  article-title: Photochemical studies of a fluorescent chlorophyll catabolite – source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen
  publication-title: Photochem. Photobiol. Sci.
– volume: 15
  start-page: 611
  year: 2013
  end-page: 615
  ident: bib0425
  article-title: Fluorescent prey traps in carnivorous plants
  publication-title: Plant Biol.
– volume: 295
  start-page: 92
  year: 2002
  ident: bib0385
  article-title: Fluorescent signalling in parrots
  publication-title: Science
– volume: 21
  start-page: 219
  year: 2008
  end-page: 226
  ident: bib0505
  article-title: Cell communication in pollen allelopathy analyzed with laser-scanning confocal microscopy
  publication-title: Allelopathy J.
– volume: 46
  start-page: 1836
  year: 2001
  end-page: 1843
  ident: bib0605
  article-title: Multispectral
  publication-title: Limnol. Oceanogr.
– start-page: 124672
  year: 2012
  ident: bib0365
  article-title: Vital autofluorescence: application to the study of plant living cells
  publication-title: Int. J. Spectrosc.
– volume: 67
  start-page: 509
  year: 1998
  end-page: 544
  ident: bib0350
  article-title: The green fluorescent protein
  publication-title: Annu. Rev. Biochem.
– volume: 113
  start-page: 2037
  year: 2009
  end-page: 2051
  ident: bib0585
  article-title: Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications
  publication-title: Remote Sens. Environ.
– volume: 106
  start-page: 15538
  year: 2009
  end-page: 15543
  ident: bib0415
  article-title: Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 49
  start-page: 953
  year: 1998
  end-page: 965
  ident: bib0500
  article-title: Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy
  publication-title: J. Exp. Bot.
– volume: 60
  start-page: 2987
  year: 2009
  end-page: 3004
  ident: bib0570
  article-title: Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence
  publication-title: J. Exp. Bot.
– volume: 107
  start-page: 90
  year: 2009
  end-page: 94
  ident: bib0410
  article-title: Classification of pollen species using autofluorescence image analysis
  publication-title: J. Biosci. Bioeng.
– volume: 64
  start-page: 333
  year: 2013
  end-page: 341
  ident: bib0535
  article-title: Optical detection of downy mildew in grapevine leaves: daily kinetics of autofluorescence upon infection
  publication-title: J. Exp. Bot.
– volume: 147
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib0590
  article-title: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2
  publication-title: Remote Sens. Environ.
– volume: 153
  start-page: 71
  year: 2013
  end-page: 83
  ident: bib0355
  article-title: Potential applications of remote sensing in horticulture—a review
  publication-title: Sci. Hortic. Amsterdam
– volume: 291
  start-page: 175
  year: 2001
  end-page: 197
  ident: bib0320
  article-title: Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence
  publication-title: Anal. Biochem.
– volume: 84
  start-page: 1048
  year: 2008
  end-page: 1060
  ident: bib0540
  article-title: Multicolor fluorescence imaging of leaves-a useful tool for visualizing systemic viral infections in plants
  publication-title: Photochem. Photobiol.
– volume: 13
  start-page: 176
  year: 2010
  end-page: 184
  ident: bib0575
  article-title: Monitoring of special water quality in lakes by remote sensing and transect measurements
  publication-title: Aquat. Ecosyst. Health
– volume: 548
  start-page: 4215
  year: 2010
  end-page: 4221
  ident: bib0420
  article-title: A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily and indicates a spit path of chlorophyll breakdown
  publication-title: FEBS Lett.
– volume: 5
  start-page: 39
  year: 2014
  ident: bib0610
  article-title: Spectral analysis combined with advanced linear unmixing allows for histolocalization of phenolics in leaves of coffee trees
  publication-title: Front. Plant Sci.
– volume: 63
  start-page: 477
  year: 2012
  end-page: 484
  ident: bib0465
  article-title: Adsorption of anthraquinone drug parietin on silver nanoparticles: a SERS and fluorescence study
  publication-title: Vib. Spectrosc.
– volume: 3
  start-page: 02738
  year: 2013
  ident: 10.1016/j.plantsci.2015.03.010_bib0390
  article-title: UV induced visual cues in grasses
  publication-title: Sci. Rep.
  doi: 10.1038/srep02738
– volume: 67
  start-page: 509
  year: 1998
  ident: 10.1016/j.plantsci.2015.03.010_bib0350
  article-title: The green fluorescent protein
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.67.1.509
– volume: 13
  start-page: 407
  year: 2014
  ident: 10.1016/j.plantsci.2015.03.010_bib0435
  article-title: Photochemical studies of a fluorescent chlorophyll catabolite – source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/C3PP50392E
– volume: 13
  start-page: 178
  year: 2008
  ident: 10.1016/j.plantsci.2015.03.010_bib0455
  article-title: How do environmental stresses accelerate photoinhibition?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2008.01.005
– volume: 291
  start-page: 175
  year: 2001
  ident: 10.1016/j.plantsci.2015.03.010_bib0320
  article-title: Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2000.5006
– volume: 51
  start-page: 325
  year: 1996
  ident: 10.1016/j.plantsci.2015.03.010_bib0600
  article-title: Characterization of marine and terrestial DPM in seawater using excitation–emission matrix spectroscopy
  publication-title: Mar. Chem.
  doi: 10.1016/0304-4203(95)00062-3
– volume: 113
  start-page: 2037
  year: 2009
  ident: 10.1016/j.plantsci.2015.03.010_bib0585
  article-title: Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.05.003
– start-page: 124672
  year: 2012
  ident: 10.1016/j.plantsci.2015.03.010_bib0365
  article-title: Vital autofluorescence: application to the study of plant living cells
  publication-title: Int. J. Spectrosc.
– volume: 295
  start-page: 92
  year: 2002
  ident: 10.1016/j.plantsci.2015.03.010_bib0385
  article-title: Fluorescent signalling in parrots
  publication-title: Science
  doi: 10.1126/science.295.5552.92
– start-page: 419
  year: 2010
  ident: 10.1016/j.plantsci.2015.03.010_bib0345
  article-title: Applications of spectrophotometry
– volume: 437
  start-page: 334
  year: 2005
  ident: 10.1016/j.plantsci.2015.03.010_bib0405
  article-title: Floral fluorescence effect
  publication-title: Nature
  doi: 10.1038/437334a
– volume: 99
  start-page: 4256
  year: 2002
  ident: 10.1016/j.plantsci.2015.03.010_bib0375
  article-title: Diversity and evolution of the green fluorescent protein family
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.062552299
– volume: 49
  start-page: 953
  year: 1998
  ident: 10.1016/j.plantsci.2015.03.010_bib0500
  article-title: Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/49.323.953
– volume: 21
  start-page: 219
  year: 2008
  ident: 10.1016/j.plantsci.2015.03.010_bib0505
  article-title: Cell communication in pollen allelopathy analyzed with laser-scanning confocal microscopy
  publication-title: Allelopathy J.
– volume: 69
  start-page: 177
  year: 1999
  ident: 10.1016/j.plantsci.2015.03.010_bib0480
  article-title: Natural UV-screening mechanisms of Norway spruce (Picea abies (L.) Karst.) needles
  publication-title: Photochem. Photobiol.
– volume: 147
  start-page: 1
  year: 2014
  ident: 10.1016/j.plantsci.2015.03.010_bib0590
  article-title: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.007
– volume: 27
  start-page: 167
  year: 2004
  ident: 10.1016/j.plantsci.2015.03.010_bib0460
  article-title: Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2003.01129.x
– volume: 24
  start-page: 166
  year: 2009
  ident: 10.1016/j.plantsci.2015.03.010_bib0445
  article-title: Unraveling the evolution of autumn colours: an interdisciplinary approach
  publication-title: Trends Plant Sci.
– start-page: 360
  year: 2010
  ident: 10.1016/j.plantsci.2015.03.010_bib0330
  article-title: Solvents effects on the absorption spectra of organic compounds
– volume: 107
  start-page: 90
  year: 2009
  ident: 10.1016/j.plantsci.2015.03.010_bib0410
  article-title: Classification of pollen species using autofluorescence image analysis
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2008.10.001
– volume: 145
  start-page: 1323
  year: 2007
  ident: 10.1016/j.plantsci.2015.03.010_bib0510
  article-title: A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.105064
– volume: 60
  start-page: 802
  year: 1973
  ident: 10.1016/j.plantsci.2015.03.010_bib0395
  article-title: Reproductive biology of weedy and cultivated Mirabilis (Nyctaginaceae)
  publication-title: Am. J. Bot.
  doi: 10.1002/j.1537-2197.1973.tb07592.x
– volume: 106
  start-page: 15538
  year: 2009
  ident: 10.1016/j.plantsci.2015.03.010_bib0415
  article-title: Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0908060106
– year: 2006
  ident: 10.1016/j.plantsci.2015.03.010_bib0315
– volume: 222
  start-page: 586
  year: 2005
  ident: 10.1016/j.plantsci.2015.03.010_bib0400
  article-title: Betaxanthins as pigments responsible for visible fluorescence in flowers
  publication-title: Planta
  doi: 10.1007/s00425-005-0004-3
– volume: 92
  start-page: 261
  year: 2007
  ident: 10.1016/j.plantsci.2015.03.010_bib0580
  article-title: Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-007-9187-8
– volume: 51
  start-page: 1745
  year: 2010
  ident: 10.1016/j.plantsci.2015.03.010_bib0450
  article-title: Contributions of visible and ultraviolet parts of sunlight to photoinhibition
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcq133
– volume: 63
  start-page: 3697
  year: 2012
  ident: 10.1016/j.plantsci.2015.03.010_bib0370
  article-title: In vivo localization at the cellular level of stilbene fluorescence induced by Plasmopara viticola in grapevine leaves
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers060
– volume: 63
  start-page: 823
  year: 2009
  ident: 10.1016/j.plantsci.2015.03.010_bib0360
  article-title: The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: a decade of in situ experiments
  publication-title: Int. Biodeter. Biodegr.
  doi: 10.1016/j.ibiod.2009.03.006
– volume: 35
  start-page: 145
  year: 2000
  ident: 10.1016/j.plantsci.2015.03.010_bib0440
  article-title: Biochemistry of Indian summer: physiology of autumnal leaf coloration
  publication-title: Exp. Gerontol.
  doi: 10.1016/S0531-5565(00)00081-4
– volume: 84
  start-page: 1048
  year: 2008
  ident: 10.1016/j.plantsci.2015.03.010_bib0540
  article-title: Multicolor fluorescence imaging of leaves-a useful tool for visualizing systemic viral infections in plants
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2008.00357.x
– volume: 97
  start-page: 915
  year: 2010
  ident: 10.1016/j.plantsci.2015.03.010_bib0430
  article-title: Is the flower fluorescence relevant in biocommunication?
  publication-title: Naturwissenschaften
  doi: 10.1007/s00114-010-0709-4
– volume: 63
  start-page: 477
  year: 2012
  ident: 10.1016/j.plantsci.2015.03.010_bib0465
  article-title: Adsorption of anthraquinone drug parietin on silver nanoparticles: a SERS and fluorescence study
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2012.09.015
– volume: 5
  start-page: 39
  year: 2014
  ident: 10.1016/j.plantsci.2015.03.010_bib0610
  article-title: Spectral analysis combined with advanced linear unmixing allows for histolocalization of phenolics in leaves of coffee trees
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00039
– volume: 152
  start-page: 272
  year: 1998
  ident: 10.1016/j.plantsci.2015.03.010_bib0490
  article-title: Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(98)80142-9
– volume: 584
  start-page: 4215
  year: 2010
  ident: 10.1016/j.plantsci.2015.03.010_bib0620
  article-title: A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily and indicates a split path of chlorophyll breakdown
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.09.011
– volume: 37
  start-page: 239
  year: 1990
  ident: 10.1016/j.plantsci.2015.03.010_bib0545
  article-title: Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons
  publication-title: Pestic. Biochem. Phys.
  doi: 10.1016/0048-3575(90)90130-T
– volume: 251
  start-page: 178
  year: 2013
  ident: 10.1016/j.plantsci.2015.03.010_bib0560
  article-title: Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood
  publication-title: J. Microsc.
  doi: 10.1111/jmi.12059
– volume: 100
  start-page: 767
  year: 2007
  ident: 10.1016/j.plantsci.2015.03.010_bib0485
  article-title: Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcm162
– volume: 1273
  start-page: 251
  year: 1996
  ident: 10.1016/j.plantsci.2015.03.010_bib0495
  article-title: Time-resolved blue-green fluorescence of sugar beet (Beta vulgaris L.) leaves. Spectroscopic evidence for the presence of ferulic acid as the main fluorophore of the epidermis
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2728(95)00153-0
– volume: 60
  start-page: 2987
  year: 2009
  ident: 10.1016/j.plantsci.2015.03.010_bib0570
  article-title: Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp156
– volume: 97
  start-page: 197
  year: 1991
  ident: 10.1016/j.plantsci.2015.03.010_bib0550
  article-title: Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporpyrin in organellar and plasma membrane-enriched fractions of barley
  publication-title: Plant Physiol.
  doi: 10.1104/pp.97.1.197
– volume: 16
  start-page: 11139
  year: 2014
  ident: 10.1016/j.plantsci.2015.03.010_bib0335
  article-title: Studies of protein folding and dynamics using single molecule fluorescence spectroscopy
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp55219e
– volume: 66
  start-page: 213
  year: 2002
  ident: 10.1016/j.plantsci.2015.03.010_bib0470
  article-title: Photophysical, photochemical, and thermodynamic properties of shikimic acid derivatives: calycin and rhizocarpic acid (lichens)
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/S1011-1344(02)00264-6
– volume: 153
  start-page: 71
  year: 2013
  ident: 10.1016/j.plantsci.2015.03.010_bib0355
  article-title: Potential applications of remote sensing in horticulture—a review
  publication-title: Sci. Hortic. Amsterdam
  doi: 10.1016/j.scienta.2013.01.008
– volume: 42
  start-page: 11839
  year: 2003
  ident: 10.1016/j.plantsci.2015.03.010_bib0340
  article-title: Control of energy dissipation and photochemical activity in photosystem I by NADP-dependent reversible conformational changes
  publication-title: Biochemistry
  doi: 10.1021/bi034949k
– volume: 152
  start-page: 375
  year: 2014
  ident: 10.1016/j.plantsci.2015.03.010_bib0595
  article-title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.06.022
– volume: 93
  start-page: 3279
  year: 2013
  ident: 10.1016/j.plantsci.2015.03.010_bib0555
  article-title: Potential of fluorescence spectroscopy for the characterisation of maple syrup flavours
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.6172
– volume: 61
  start-page: 10156
  year: 2013
  ident: 10.1016/j.plantsci.2015.03.010_bib0565
  article-title: Fluorescence approach for measuring anthocyanins and derived pigments in red wine
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf402398a
– volume: 152
  start-page: 297
  year: 1998
  ident: 10.1016/j.plantsci.2015.03.010_bib0530
  article-title: Principles and characteristics of multi-colour fluorescence imaging of plants
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(98)80144-2
– volume: 46
  start-page: 1836
  year: 2001
  ident: 10.1016/j.plantsci.2015.03.010_bib0605
  article-title: Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2001.46.7.1836
– volume: 64
  start-page: 333
  year: 2013
  ident: 10.1016/j.plantsci.2015.03.010_bib0535
  article-title: Optical detection of downy mildew in grapevine leaves: daily kinetics of autofluorescence upon infection
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers338
– volume: 3
  start-page: 265
  year: 2007
  ident: 10.1016/j.plantsci.2015.03.010_bib0380
  article-title: Spiders fluoresce variably across many taxa
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2007.0016
– volume: 13
  start-page: 176
  year: 2010
  ident: 10.1016/j.plantsci.2015.03.010_bib0575
  article-title: Monitoring of special water quality in lakes by remote sensing and transect measurements
  publication-title: Aquat. Ecosyst. Health
  doi: 10.1080/14634981003796295
– volume: 88
  start-page: 110
  year: 2013
  ident: 10.1016/j.plantsci.2015.03.010_bib0515
  article-title: An efficient autofluorescence method for screening Limonium bicolor mutants for abnormal salt gland density and salt secretion
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2013.06.007
– volume: 89
  start-page: 1383
  year: 2013
  ident: 10.1016/j.plantsci.2015.03.010_bib0520
  article-title: Spectroscopy, microscopy and fluorescence imaging of Origanum vulgare L. basis for nondestructive quality assessment
  publication-title: Photochem. Photobiol.
  doi: 10.1111/php.12131
– volume: 67
  start-page: 960
  year: 2011
  ident: 10.1016/j.plantsci.2015.03.010_bib0325
  article-title: In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04648.x
– volume: 81
  start-page: 67
  year: 2014
  ident: 10.1016/j.plantsci.2015.03.010_bib0475
  article-title: Fluorescence quenching in the lichen Peltigera aphtosa due to desiccation
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.01.005
– volume: 10
  start-page: 10040
  year: 2010
  ident: 10.1016/j.plantsci.2015.03.010_bib0525
  article-title: Non-destructive optical monitoring of grape maturation by proximal sensing
  publication-title: Sensors
  doi: 10.3390/s101110040
– volume: 102
  start-page: 169
  year: 2009
  ident: 10.1016/j.plantsci.2015.03.010_bib0615
  article-title: Imaging of multi-color fluorescence emission from leaf tissues
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-009-9498-z
– volume: 15
  start-page: 611
  year: 2013
  ident: 10.1016/j.plantsci.2015.03.010_bib0425
  article-title: Fluorescent prey traps in carnivorous plants
  publication-title: Plant Biol.
  doi: 10.1111/j.1438-8677.2012.00709.x
– volume: 548
  start-page: 4215
  year: 2010
  ident: 10.1016/j.plantsci.2015.03.010_bib0420
  article-title: A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily and indicates a spit path of chlorophyll breakdown
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.09.011
SSID ssj0002557
Score 2.489458
SecondaryResourceType review_article
Snippet •Plants contain some fluorescent compounds (porphyrins, alkaloids and phenolic compounds).•Proposed roles: light harvesting and...
Fluorescence is the property by which a molecule (fluorophore), excited after the absorption of a photon, is able to de-excite by re-emitting a photon of a...
Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 136
SubjectTerms absorption
anthocyanins
betalains
Biocommunication
chlorophyll
Emission
Fluorescence
fluorescent dyes
fluorescent proteins
Fluorophore
Green fluorescent protein
metabolites
phenolic compounds
photostability
Photosynthesis
Plant Physiological Phenomena
wavelengths
Title Autofluorescence: Biological functions and technical applications
URI https://dx.doi.org/10.1016/j.plantsci.2015.03.010
https://www.ncbi.nlm.nih.gov/pubmed/26025527
https://www.proquest.com/docview/1699489675
https://www.proquest.com/docview/1803084176
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5B2QMXxGuhy0NB4hraJLZjcysIVEBwgUrcLNtxVq2qpIL2sJf97TuTRwUSLAeOsTKSM89v4pkxwKlnyog8kqG3hoXMoylaHvMwdtSN4BzPPCWK9w9iOGK3z_x5BS7bXhgqq2x8f-3TK2_drPQabvZm43HvEcGKVAzDD69wD6ZAa3GiBO_A2uDmbviwdMiImuuuaYG2jQRvGoUnZ7Mp1Zu4MVV58WreKTXTfhyjVnNTfo5Eq4h0vQkbDZQMBvVut2DFF9vw46JEuPdnBwaDxbzMp4vypRrY5Px5UN87SVIJKJxVGheYIgvqQa60_vY8exdG11dPl8OwuS8hdGh5c0oFM4zXaGFKxggMuJXWpClXkWGpzYzNPLMuY4IJbj39yxAydSJ3KrcGE6vkJ3SKsvD7EGBShtjQ5P3YOSYTaTKnRN7P4kSYPgqxC7zlkHbNMHG602Kq26qxiW45q4mzup9o5GwXeku6WT1O40sK1QpAv1MMjT7_S9p9lJg2v9Ff6tFjTNP06A-P5KoLJ60YNRoUnZKYwpeLVx0JpZhUmEj95x1JY35YlIou7NU6sPwcTBBjGmv36xsbP4B1eqrLgg-hM39Z-CMEP3N7DKtnf6PjRsX_ATnBAMk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xkuBSlfJKH7CVet08dm2v3VuKGgUIXCASN8v2elGiaDeC5MCF396ZfUAqFTj06rUl7zy_sWfGAD88U0ZkPRl6a1jIPKqi5REPI0fVCM7x1FOgeHklhmN2fstv1-C0qYWhtMra9lc2vbTW9UinpmZnPpl0rhGsSMXQ_fAS92AItMl4nFBeX_vpJc8DMXNVMy1Qs3H6SpnwtD2fUbaJm1COFy-7nVIp7b891HpmitdxaOmPBh_hQw0kg361111Y8_kn2PpVINh73IN-f7kostmyuC_bNTn_M6henSSeBOTMSnkLTJ4GVRtXGl-9zd6H8eD3zekwrF9LCB3q3YICwRS9NeqXkhHCAm6lNUnCVc-wxKbGpp5ZlzLBBLeeTjKETJzInMqswbAqPoCNvMj9EQQYkiEyNFk3co7JWJrUKZF10ygWpossbAFvKKRd3UqcXrSY6SZnbKobymqirO7GGinbgs7zunnVTOPdFaphgP5LLDRa_HfXHiHHtLlDa6nH1xH10qPzHclVC743bNSoTnRHYnJfLB90TyjFpMIw6o05kpr8sF4iWnBYycDz72B4GFFTu8__sfET2B7eXI706Ozq4gvs0JcqQfgrbCzul_4bwqCFPS7F_A9h9QGU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autofluorescence%3A+Biological+functions+and+technical+applications&rft.jtitle=Plant+science+%28Limerick%29&rft.au=Garc%C3%ADa-Plazaola%2C+Jos%C3%A9+Ignacio&rft.au=Fern%C3%A1ndez-Mar%C3%ADn%2C+Beatriz&rft.au=Duke%2C+Stephen+O&rft.au=Hern%C3%A1ndez%2C+Antonio&rft.date=2015-07-01&rft.issn=0168-9452&rft.volume=236+p.136-145&rft.spage=136&rft.epage=145&rft_id=info:doi/10.1016%2Fj.plantsci.2015.03.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9452&client=summon