Ultra-fast, High-Bandwidth Coherent cw THz Spectrometer for Non-destructive Testing

Continuous wave THz (cw THz) systems define the state-of-the-art in terms of spectral resolution in THz spectroscopy. Hitherto, acquisition of broadband spectra in a cw THz system was always connected with slow operation. Therefore, high update rate applications like inline process monitoring and no...

Full description

Saved in:
Bibliographic Details
Published inJournal of infrared, millimeter and terahertz waves Vol. 40; no. 3; pp. 288 - 296
Main Authors Liebermeister, Lars, Nellen, Simon, Kohlhaas, Robert, Breuer, Steffen, Schell, Martin, Globisch, Björn
Format Journal Article
LanguageEnglish
Published New York Springer US 15.03.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Continuous wave THz (cw THz) systems define the state-of-the-art in terms of spectral resolution in THz spectroscopy. Hitherto, acquisition of broadband spectra in a cw THz system was always connected with slow operation. Therefore, high update rate applications like inline process monitoring and non-destructive testing are served by time domain spectroscopy (TDS) systems. However, no fundamental restriction prevents cw THz technology from achieving faster update rates and be competitive in this field. In this paper, we present a fully fiber-coupled cw THz spectrometer. Its sweep speed is two orders of magnitude higher compared to commercial state-of-the-art systems and reaches a record performance of 24 spectra per second with a bandwidth of more than 2 THz. In the single-shot mode, the same system reaches a peak dynamic range of 67 dB and exceeds a value of 100 dB with averaging of 7 min, which is among the highest values ever reported. The frequency steps can be as low as 40 MHz. Due to the fully homodyne detection, each spectrum contains full amplitude and phase information. This demonstration of THz-spectroscopy at video-rate is an essential step towards applying cw THz systems in non-destructive, in line testing.
AbstractList Continuous wave THz (cw THz) systems define the state-of-the-art in terms of spectral resolution in THz spectroscopy. Hitherto, acquisition of broadband spectra in a cw THz system was always connected with slow operation. Therefore, high update rate applications like inline process monitoring and non-destructive testing are served by time domain spectroscopy (TDS) systems. However, no fundamental restriction prevents cw THz technology from achieving faster update rates and be competitive in this field. In this paper, we present a fully fiber-coupled cw THz spectrometer. Its sweep speed is two orders of magnitude higher compared to commercial state-of-the-art systems and reaches a record performance of 24 spectra per second with a bandwidth of more than 2 THz. In the single-shot mode, the same system reaches a peak dynamic range of 67 dB and exceeds a value of 100 dB with averaging of 7 min, which is among the highest values ever reported. The frequency steps can be as low as 40 MHz. Due to the fully homodyne detection, each spectrum contains full amplitude and phase information. This demonstration of THz-spectroscopy at video-rate is an essential step towards applying cw THz systems in non-destructive, in line testing.
Continuous wave THz (cw THz) systems define the state-of-the-art in terms of spectral resolution in THz spectroscopy. Hitherto, acquisition of broadband spectra in a cw THz system was always connected with slow operation. Therefore, high update rate applications like inline process monitoring and non-destructive testing are served by time domain spectroscopy (TDS) systems. However, no fundamental restriction prevents cw THz technology from achieving faster update rates and be competitive in this field. In this paper, we present a fully fiber-coupled cw THz spectrometer. Its sweep speed is two orders of magnitude higher compared to commercial state-of-the-art systems and reaches a record performance of 24 spectra per second with a bandwidth of more than 2 THz. In the single-shot mode, the same system reaches a peak dynamic range of 67 dB and exceeds a value of 100 dB with averaging of 7 min, which is among the highest values ever reported. The frequency steps can be as low as 40 MHz. Due to the fully homodyne detection, each spectrum contains full amplitude and phase information. This demonstration of THz-spectroscopy at video-rate is an essential step towards applying cw THz systems in non-destructive, in line testing.
Author Nellen, Simon
Breuer, Steffen
Liebermeister, Lars
Globisch, Björn
Schell, Martin
Kohlhaas, Robert
Author_xml – sequence: 1
  givenname: Lars
  orcidid: 0000-0001-9415-5051
  surname: Liebermeister
  fullname: Liebermeister, Lars
  email: lars.liebermeister@hhi.fraunhofer.de
  organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI
– sequence: 2
  givenname: Simon
  surname: Nellen
  fullname: Nellen, Simon
  organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI
– sequence: 3
  givenname: Robert
  surname: Kohlhaas
  fullname: Kohlhaas, Robert
  organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI
– sequence: 4
  givenname: Steffen
  surname: Breuer
  fullname: Breuer, Steffen
  organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI
– sequence: 5
  givenname: Martin
  surname: Schell
  fullname: Schell, Martin
  organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI
– sequence: 6
  givenname: Björn
  surname: Globisch
  fullname: Globisch, Björn
  organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI
BookMark eNp9kMFOAyEQhompiW31AbyReBUFdhd2j9qoNTF6aHsmLIWWpoUK1EafXprVmJjoaeYw3_wz3wD0nHcagHOCrwjG_DoSzBlFmNQIV6xA7Aj0Sc0YYg1mve--bugJGMS4wpiVZcP6YDJbpyCRkTFdwrFdLNGtdPO9naclHPmlDtolqPZwOv6Ak61WKfiNTjpA4wN89g7NdUxhp5J903Cae-sWp-DYyHXUZ191CGb3d9PRGD29PDyObp6QKmmVEDVa66rGbd3IslFsLo2qmobgquCK8lZxUyjclliVhGCjCWvbtiKE6FYyzmkxBBfd3m3wr7ucLVZ-F1yOFJQ0pK7yzzxPkW5KBR9j0EZsg93I8C4IFgd3onMnsjtxcCdYZvgvRtkkk_Uuy7Lrf0nakTGnuIUOPzf9DX0CcR6E-Q
CitedBy_id crossref_primary_10_1088_2040_8986_abaa60
crossref_primary_10_1109_JLT_2021_3078226
crossref_primary_10_1038_s41467_022_32739_6
crossref_primary_10_1016_j_dyepig_2024_112287
crossref_primary_10_1016_j_optlastec_2023_109951
crossref_primary_10_3390_photonics8110492
crossref_primary_10_1007_s10762_021_00831_5
crossref_primary_10_1063_5_0065649
crossref_primary_10_3390_app11020465
crossref_primary_10_1109_TIM_2020_2998311
crossref_primary_10_1038_s41598_024_55661_x
crossref_primary_10_1007_s10762_020_00676_4
crossref_primary_10_1364_OE_394312
crossref_primary_10_1016_j_optcom_2020_126299
crossref_primary_10_1109_ACCESS_2024_3368912
crossref_primary_10_1021_acs_nanolett_3c00271
crossref_primary_10_3390_ijms241310936
crossref_primary_10_1364_OE_416844
crossref_primary_10_3390_coatings14111357
crossref_primary_10_1016_j_optlastec_2022_108853
crossref_primary_10_1088_1612_202X_ac0449
crossref_primary_10_1364_OE_550923
crossref_primary_10_1007_s10762_019_00638_5
crossref_primary_10_1364_OE_483746
crossref_primary_10_1016_j_culher_2023_12_018
crossref_primary_10_1007_s10762_021_00828_0
crossref_primary_10_1007_s10762_021_00803_9
crossref_primary_10_1007_s11664_022_09779_1
crossref_primary_10_1364_OL_45_000077
crossref_primary_10_1038_s41467_021_21260_x
crossref_primary_10_1063_5_0153046
crossref_primary_10_1063_5_0215826
crossref_primary_10_1016_j_mtcomm_2024_110716
crossref_primary_10_1109_TIM_2023_3318676
crossref_primary_10_3390_instruments4030024
crossref_primary_10_1109_JLT_2021_3092779
crossref_primary_10_1364_OE_443098
crossref_primary_10_1016_j_optlastec_2020_106635
crossref_primary_10_3390_photonics11010042
Cites_doi 10.1109/TTHZ.2014.2348414
10.1007/s10762-010-9670-8
10.1063/1.2008379
10.1007/s10762-010-9751-8
10.1364/OL.38.004197
10.1364/OL.39.006482
10.1364/OE.20.025990
10.1021/la503322v
10.1063/1.4873740
10.1007/s10762-011-9849-7
10.1364/OE.23.014806
10.1007/s10762-014-0085-9
10.1049/el.2011.3004
10.1109/IRMMW-THz.2016.7758344
10.1109/ICIMW.2009.5324653
10.1063/1.4955407
10.1109/IRMMW-THz.2014.6956024
ContentType Journal Article
Copyright The Author(s) 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: The Author(s) 2019
– notice: Copyright Springer Nature B.V. 2019
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10762-018-0563-6
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1866-6906
EndPage 296
ExternalDocumentID 10_1007_s10762_018_0563_6
GroupedDBID -5F
-5G
-BR
-EM
-~C
.VR
06D
0R~
0VY
199
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
IZIGR
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
P62
P9T
PF0
PT4
QOS
R89
R9I
ROL
RSV
S16
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
-Y2
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABULA
ACBXY
ACSTC
AEBTG
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AJBLW
ARCEE
ATHPR
AYFIA
CAG
CITATION
COF
H13
PHGZM
PHGZT
SCLPG
ABRTQ
PQGLB
ID FETCH-LOGICAL-c425t-2feee580b89a49c6dafc59910537c27bc7f3c0b40c4110fe16bbb5111eba67723
IEDL.DBID C6C
ISSN 1866-6892
IngestDate Fri Jul 25 07:16:05 EDT 2025
Thu Apr 24 22:58:53 EDT 2025
Tue Jul 01 03:33:30 EDT 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords High update rate
Continuous wave
Broadband
THz
Terahertz
Non-destructive testing
Spectrometer
NDT
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-2feee580b89a49c6dafc59910537c27bc7f3c0b40c4110fe16bbb5111eba67723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9415-5051
OpenAccessLink https://doi.org/10.1007/s10762-018-0563-6
PQID 2191858667
PQPubID 2044290
PageCount 9
ParticipantIDs proquest_journals_2191858667
crossref_primary_10_1007_s10762_018_0563_6
crossref_citationtrail_10_1007_s10762_018_0563_6
springer_journals_10_1007_s10762_018_0563_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190315
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 3
  year: 2019
  text: 20190315
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of infrared, millimeter and terahertz waves
PublicationTitleAbbrev J Infrared Milli Terahz Waves
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR2
Van Mechelen (CR1) 2014; 30
Yasui, Saneyoshi, Araki (CR7) 2005; 87
CR3
Ryu, Kim, Han, Ko, Park, Moon, Park (CR14) 2012; 20
De Felipe (CR12) 2016; 9747
Dietz, Vieweg, Puppe, Zach, Globisch, Göbel, Leisching, Schell (CR6) 2014; 39
CR19
Göbel, Stanze, Globisch, Dietz, Roehle, Schell (CR20) 2013; 38
CR18
CR17
CR9
Hauck, Stich, Heidemeyer, Bastian, Hochrein (CR4) 2014; 1593
Sartorius, Stanze, Göbel, Schmidt, Schell (CR13) 2012; 33
CR21
Yee, Yahng, Park, Lee, Kim (CR16) 2015; 23
Park (CR15) 2014; 7601
Wilk, Hochrein, Koch, Mei, Holzwarth (CR8) 2011; 32
Vieweg, Rettich, Deninger, Roehle, Dietz, Göbel, Schell (CR5) 2014; 35
Stanze, Globisch, Dietz, Roehle, Göbel, Schell (CR10) 2014; 4
Stanze, Deninger, Roggenbuck, Schindler, Schlak, Sartorius (CR11) 2011; 32
D Stanze (563_CR10) 2014; 4
D Felipe De (563_CR12) 2016; 9747
JLM Mechelen Van (563_CR1) 2014; 30
RJB Dietz (563_CR6) 2014; 39
563_CR21
B Sartorius (563_CR13) 2012; 33
T Yasui (563_CR7) 2005; 87
H-C Ryu (563_CR14) 2012; 20
563_CR17
T Göbel (563_CR20) 2013; 38
563_CR18
D Stanze (563_CR11) 2011; 32
563_CR19
563_CR9
N Vieweg (563_CR5) 2014; 35
DS Yee (563_CR16) 2015; 23
KH Park (563_CR15) 2014; 7601
563_CR2
563_CR3
J Hauck (563_CR4) 2014; 1593
R Wilk (563_CR8) 2011; 32
References_xml – volume: 4
  start-page: 696
  issue: 6
  year: 2014
  end-page: 701
  ident: CR10
  article-title: Multilayer Thickness Determination Using Continuous Wave THz Spectroscopy
  publication-title: IEEE Trans. Terahertz Sci. Technol.
  doi: 10.1109/TTHZ.2014.2348414
– ident: CR21
– ident: CR19
– ident: CR18
– volume: 32
  start-page: 596
  issue: 5
  year: 2011
  end-page: 602
  ident: CR8
  article-title: OSCAT: Novel technique for time-resolved experiments without moveable optical delay lines
  publication-title: J. Infrared, Millimeter, Terahertz Waves
  doi: 10.1007/s10762-010-9670-8
– volume: 9747
  start-page: 1
  year: 2016
  end-page: 7
  ident: CR12
  article-title: Hybrid polymer / InP dual DBR laser for 1.5μm continuous-wave Terahertz systems
  publication-title: Proc. SPIE
– ident: CR3
– volume: 87
  start-page: 2
  issue: 6
  year: 2005
  end-page: 5
  ident: CR7
  article-title: Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2008379
– ident: CR2
– volume: 32
  start-page: 225
  issue: 2
  year: 2011
  end-page: 232
  ident: CR11
  article-title: Compact cw terahertz spectrometer pumped at 1.5 μm wavelength
  publication-title: J. Infrared, Millimeter, Terahertz Waves
  doi: 10.1007/s10762-010-9751-8
– ident: CR17
– volume: 38
  start-page: 4197
  issue: 20
  year: 2013
  end-page: 4199
  ident: CR20
  article-title: Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.004197
– ident: CR9
– volume: 39
  start-page: 6482
  issue: 22
  year: 2014
  end-page: 6485
  ident: CR6
  article-title: All fibercoupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.006482
– volume: 20
  start-page: 25990
  issue: 23
  year: 2012
  ident: CR14
  article-title: Simple and cost-effective thickness measurement terahertz system based on a compact 155 μm λ/4 phase-shifted dual-mode laser
  publication-title: Opt. Express
  doi: 10.1364/OE.20.025990
– volume: 30
  start-page: 12748
  issue: 43
  year: 2014
  end-page: 12754
  ident: CR1
  article-title: Dynamics of the stratification process in drying colloidal dispersions studied by terahertz time-domain spectroscopy
  publication-title: Langmuir
  doi: 10.1021/la503322v
– volume: 1593
  start-page: 86
  issue: 2014
  year: 2014
  end-page: 89
  ident: CR4
  article-title: Terahertz inline wall thickness monitoring system for plastic pipe extrusion
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4873740
– volume: 33
  start-page: 405
  issue: 4
  year: 2012
  end-page: 417
  ident: CR13
  article-title: Continuous wave terahertz systems based on 1.5 μm telecom technologies
  publication-title: J. Infrared, Millimeter, Terahertz Waves
  doi: 10.1007/s10762-011-9849-7
– volume: 7601
  start-page: 898506
  year: 2014
  ident: CR15
  article-title: Photonic devices for tunable continuous-wave terahertz generation and detection
  publication-title: Proc. SPIE
– volume: 23
  start-page: 14806
  issue: 11
  year: 2015
  end-page: 14814
  ident: CR16
  article-title: High-speed broadband frequency sweep of continuous-wave terahertz radiation
  publication-title: Opt. Express
  doi: 10.1364/OE.23.014806
– volume: 35
  start-page: 823
  issue: 10
  year: 2014
  end-page: 832
  ident: CR5
  article-title: Terahertz-time domain spectrometer with 90 dB peak dynamic range
  publication-title: J. Infrared, Millimeter, Terahertz Waves
  doi: 10.1007/s10762-014-0085-9
– volume: 20
  start-page: 25990
  issue: 23
  year: 2012
  ident: 563_CR14
  publication-title: Opt. Express
  doi: 10.1364/OE.20.025990
– volume: 7601
  start-page: 898506
  year: 2014
  ident: 563_CR15
  publication-title: Proc. SPIE
– ident: 563_CR18
– volume: 9747
  start-page: 1
  year: 2016
  ident: 563_CR12
  publication-title: Proc. SPIE
– ident: 563_CR19
– ident: 563_CR17
  doi: 10.1049/el.2011.3004
– ident: 563_CR9
  doi: 10.1109/IRMMW-THz.2016.7758344
– volume: 32
  start-page: 225
  issue: 2
  year: 2011
  ident: 563_CR11
  publication-title: J. Infrared, Millimeter, Terahertz Waves
  doi: 10.1007/s10762-010-9751-8
– volume: 39
  start-page: 6482
  issue: 22
  year: 2014
  ident: 563_CR6
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.006482
– ident: 563_CR21
  doi: 10.1109/ICIMW.2009.5324653
– volume: 1593
  start-page: 86
  issue: 2014
  year: 2014
  ident: 563_CR4
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4873740
– volume: 4
  start-page: 696
  issue: 6
  year: 2014
  ident: 563_CR10
  publication-title: IEEE Trans. Terahertz Sci. Technol.
  doi: 10.1109/TTHZ.2014.2348414
– volume: 23
  start-page: 14806
  issue: 11
  year: 2015
  ident: 563_CR16
  publication-title: Opt. Express
  doi: 10.1364/OE.23.014806
– volume: 38
  start-page: 4197
  issue: 20
  year: 2013
  ident: 563_CR20
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.004197
– volume: 35
  start-page: 823
  issue: 10
  year: 2014
  ident: 563_CR5
  publication-title: J. Infrared, Millimeter, Terahertz Waves
  doi: 10.1007/s10762-014-0085-9
– volume: 87
  start-page: 2
  issue: 6
  year: 2005
  ident: 563_CR7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2008379
– ident: 563_CR2
  doi: 10.1063/1.4955407
– volume: 32
  start-page: 596
  issue: 5
  year: 2011
  ident: 563_CR8
  publication-title: J. Infrared, Millimeter, Terahertz Waves
  doi: 10.1007/s10762-010-9670-8
– volume: 33
  start-page: 405
  issue: 4
  year: 2012
  ident: 563_CR13
  publication-title: J. Infrared, Millimeter, Terahertz Waves
  doi: 10.1007/s10762-011-9849-7
– ident: 563_CR3
  doi: 10.1109/IRMMW-THz.2014.6956024
– volume: 30
  start-page: 12748
  issue: 43
  year: 2014
  ident: 563_CR1
  publication-title: Langmuir
  doi: 10.1021/la503322v
SSID ssj0064496
Score 2.4000535
Snippet Continuous wave THz (cw THz) systems define the state-of-the-art in terms of spectral resolution in THz spectroscopy. Hitherto, acquisition of broadband...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 288
SubjectTerms Broadband
Classical Electrodynamics
Continuous radiation
Destructive testing
Electrical Engineering
Electronics and Microelectronics
Engineering
Instrumentation
Nondestructive testing
Spectra
Spectral resolution
Spectroscopy
Spectrum analysis
State of the art
Upgrading
Title Ultra-fast, High-Bandwidth Coherent cw THz Spectrometer for Non-destructive Testing
URI https://link.springer.com/article/10.1007/s10762-018-0563-6
https://www.proquest.com/docview/2191858667
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58XPTgW6yPsgdP6kIem83mWEsfKBbRFvQU9hUVSio2WPDXO1sTq0UFL8khmz18s7PzJbPzDcCx9ZQf-CajiVYhZTbxqbCxpj6TaH4Tamnd_46rHu8O2MVddFeKRbtamLn8vStxQ3fFD15BMVSHlC_CcuSHsevS0OTNatPFqD5txeXk2ygXSVAlMH-a4nsImvHKuVToNMK0N2CtpIak8WHLTViw-RaslzSRlE443oLVLxqC23A7GBYvkmZyXJwRd2qDnsvcTJ5M8Uhc7YVTXyJ6QvrdN-KazRdOnwDBJMhWSW-UU2NLDdlXS_pOcyN_2IFBu9VvdmnZKYFq9LmCBpm1NhKeEolkieZGZjpC5ufEWnQQKx1nofYU8zTDcJ9ZnyulkGr5VkmO_DrchaV8lNs9IAETUhiG0wr0by5VZuJYGiVYZJGryBp4FXipLmXEXTeLYToTQHZ4p4h36vBOeQ1OPl95_tDQ-GvwYWWRtHSncYrbKvIKtG1cg9PKSrPHv062_6_RB7CCdChxJ8z86BCWEHx7hJSjUHVYFO1OHZYbnfvLFt7PW73rm_p0CeJ1EDTeAeS40GA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHdkRZfYALYCmLkzgHDqxqgfZCK3EL3gJIKCAaUcHv8KOMQ0ILAiQOnONY0azP8cwbgE3jSNdzdUpjJX3KTOxSbiJFXSZQ_dpXwtj_Ha122Oiy08vgsgavVS9MUe1eXUkWkXqo2Q0dF4--nGLS9mlYVlKemec-ntN6e80jVOqW550cdw4btBwlQBUaZU691BgTcEfyWLBYhVqkKkBoZNlMlBdJFaW-ciRzFMN8mBo3lFIiFnGNFCECUB_3HYExxB7cuk7X26_CPeKJYgiYJY6jIY-96ur0u0_-nPwGiPbLJWyR205mYKoEpWT_3YpmoWayOZguASop3b83B5ND7IXzcNG9yx8FTUUv3yW2XoQeiEz3b3V-Q2zXh-V9IqpPOo0XYsfc55YZAdVIECeT9n1GtSnZa58M6Vi2j-x6Abr_IthFGM3uM7MExGNccM1wW46RJRQy1VEktOQsMIiSRB2cSniJKgnM7RyNu2RAvWzlnaC8EyvvJKzD9scrD-_sHb8tXq00kpSO3EswoCOiQd1GddiptDR4_ONmy39avQHjjU7rPDlvts9WYAJBWWzr3NxgFUZREWYNgU8u1wvDI3D135b-Bkl5DP0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4BlRAcoOUhwqPdQ3sBVvFjvV4fOLSBKClthEQicTP7cosUOYhYRPCn-IvMJjahCJB6yNnrlTUzO_ONd-YbgK_WU37gm4wmWoWU2cSnwsaa-kyi-k2opXX_O353eKvHfl5EF3PwUPXCjKvdqyvJSU-DY2nKi_q1yerPGt_wEGMaLCgG8JDysqry1N6NMGcbHrWPUcHfgqB50m20aDlWgGo00IIGmbU2Ep4SiWSJ5kZmOkKY5JhNdBArHWeh9hTzNMPYmFmfK6UQl_hWSY5gNMR95-EDJka-y_YavFG5fsQW44FgjkSOcpEE1TXqa5_8byCcotsXF7LjONf8CCslQCXfJxb1CeZsvgarJVglpSsYrsHyMybDdTjv9YsbSTM5LA6Jqx2hP2RuRlem-EtcB4jjgCJ6RLqte-JG3heOJQFVShAzk84gp8aWTLa3lnQd80f-ZwN6MxHsJizkg9xuAQmYkMIw3Fagl-FSZSaOpVGCRRYRk6yBVwkv1SWZuZup0U-nNMxO3inKO3XyTnkN9p9euZ4weby3eLfSSFoe6mGKzh3RDeo2rsFBpaXp4zc32_6v1V9g8ey4mf5qd053YAnxWeJK3vxoFxZQD3YPMVChPo_tjsDlrA39ERuqESM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-fast%2C+High-Bandwidth+Coherent+cw+THz+Spectrometer+for+Non-destructive+Testing&rft.jtitle=Journal+of+infrared%2C+millimeter+and+terahertz+waves&rft.au=Liebermeister%2C+Lars&rft.au=Nellen%2C+Simon&rft.au=Kohlhaas%2C+Robert&rft.au=Breuer%2C+Steffen&rft.date=2019-03-15&rft.issn=1866-6892&rft.eissn=1866-6906&rft.volume=40&rft.issue=3&rft.spage=288&rft.epage=296&rft_id=info:doi/10.1007%2Fs10762-018-0563-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10762_018_0563_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6892&client=summon