Ultra-fast, High-Bandwidth Coherent cw THz Spectrometer for Non-destructive Testing
Continuous wave THz (cw THz) systems define the state-of-the-art in terms of spectral resolution in THz spectroscopy. Hitherto, acquisition of broadband spectra in a cw THz system was always connected with slow operation. Therefore, high update rate applications like inline process monitoring and no...
Saved in:
Published in | Journal of infrared, millimeter and terahertz waves Vol. 40; no. 3; pp. 288 - 296 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
15.03.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Continuous wave THz (cw THz) systems define the state-of-the-art in terms of spectral resolution in THz spectroscopy. Hitherto, acquisition of broadband spectra in a cw THz system was always connected with slow operation. Therefore, high update rate applications like inline process monitoring and non-destructive testing are served by time domain spectroscopy (TDS) systems. However, no fundamental restriction prevents cw THz technology from achieving faster update rates and be competitive in this field. In this paper, we present a fully fiber-coupled cw THz spectrometer. Its sweep speed is two orders of magnitude higher compared to commercial state-of-the-art systems and reaches a record performance of 24 spectra per second with a bandwidth of more than 2 THz. In the single-shot mode, the same system reaches a peak dynamic range of 67 dB and exceeds a value of 100 dB with averaging of 7 min, which is among the highest values ever reported. The frequency steps can be as low as 40 MHz. Due to the fully homodyne detection, each spectrum contains full amplitude and phase information. This demonstration of THz-spectroscopy at video-rate is an essential step towards applying cw THz systems in non-destructive, in line testing. |
---|---|
AbstractList | Continuous wave THz (cw THz) systems define the state-of-the-art in terms of spectral resolution in THz spectroscopy. Hitherto, acquisition of broadband spectra in a cw THz system was always connected with slow operation. Therefore, high update rate applications like inline process monitoring and non-destructive testing are served by time domain spectroscopy (TDS) systems. However, no fundamental restriction prevents cw THz technology from achieving faster update rates and be competitive in this field. In this paper, we present a fully fiber-coupled cw THz spectrometer. Its sweep speed is two orders of magnitude higher compared to commercial state-of-the-art systems and reaches a record performance of 24 spectra per second with a bandwidth of more than 2 THz. In the single-shot mode, the same system reaches a peak dynamic range of 67 dB and exceeds a value of 100 dB with averaging of 7 min, which is among the highest values ever reported. The frequency steps can be as low as 40 MHz. Due to the fully homodyne detection, each spectrum contains full amplitude and phase information. This demonstration of THz-spectroscopy at video-rate is an essential step towards applying cw THz systems in non-destructive, in line testing. Continuous wave THz (cw THz) systems define the state-of-the-art in terms of spectral resolution in THz spectroscopy. Hitherto, acquisition of broadband spectra in a cw THz system was always connected with slow operation. Therefore, high update rate applications like inline process monitoring and non-destructive testing are served by time domain spectroscopy (TDS) systems. However, no fundamental restriction prevents cw THz technology from achieving faster update rates and be competitive in this field. In this paper, we present a fully fiber-coupled cw THz spectrometer. Its sweep speed is two orders of magnitude higher compared to commercial state-of-the-art systems and reaches a record performance of 24 spectra per second with a bandwidth of more than 2 THz. In the single-shot mode, the same system reaches a peak dynamic range of 67 dB and exceeds a value of 100 dB with averaging of 7 min, which is among the highest values ever reported. The frequency steps can be as low as 40 MHz. Due to the fully homodyne detection, each spectrum contains full amplitude and phase information. This demonstration of THz-spectroscopy at video-rate is an essential step towards applying cw THz systems in non-destructive, in line testing. |
Author | Nellen, Simon Breuer, Steffen Liebermeister, Lars Globisch, Björn Schell, Martin Kohlhaas, Robert |
Author_xml | – sequence: 1 givenname: Lars orcidid: 0000-0001-9415-5051 surname: Liebermeister fullname: Liebermeister, Lars email: lars.liebermeister@hhi.fraunhofer.de organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI – sequence: 2 givenname: Simon surname: Nellen fullname: Nellen, Simon organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI – sequence: 3 givenname: Robert surname: Kohlhaas fullname: Kohlhaas, Robert organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI – sequence: 4 givenname: Steffen surname: Breuer fullname: Breuer, Steffen organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI – sequence: 5 givenname: Martin surname: Schell fullname: Schell, Martin organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI – sequence: 6 givenname: Björn surname: Globisch fullname: Globisch, Björn organization: Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI |
BookMark | eNp9kMFOAyEQhompiW31AbyReBUFdhd2j9qoNTF6aHsmLIWWpoUK1EafXprVmJjoaeYw3_wz3wD0nHcagHOCrwjG_DoSzBlFmNQIV6xA7Aj0Sc0YYg1mve--bugJGMS4wpiVZcP6YDJbpyCRkTFdwrFdLNGtdPO9naclHPmlDtolqPZwOv6Ak61WKfiNTjpA4wN89g7NdUxhp5J903Cae-sWp-DYyHXUZ191CGb3d9PRGD29PDyObp6QKmmVEDVa66rGbd3IslFsLo2qmobgquCK8lZxUyjclliVhGCjCWvbtiKE6FYyzmkxBBfd3m3wr7ucLVZ-F1yOFJQ0pK7yzzxPkW5KBR9j0EZsg93I8C4IFgd3onMnsjtxcCdYZvgvRtkkk_Uuy7Lrf0nakTGnuIUOPzf9DX0CcR6E-Q |
CitedBy_id | crossref_primary_10_1088_2040_8986_abaa60 crossref_primary_10_1109_JLT_2021_3078226 crossref_primary_10_1038_s41467_022_32739_6 crossref_primary_10_1016_j_dyepig_2024_112287 crossref_primary_10_1016_j_optlastec_2023_109951 crossref_primary_10_3390_photonics8110492 crossref_primary_10_1007_s10762_021_00831_5 crossref_primary_10_1063_5_0065649 crossref_primary_10_3390_app11020465 crossref_primary_10_1109_TIM_2020_2998311 crossref_primary_10_1038_s41598_024_55661_x crossref_primary_10_1007_s10762_020_00676_4 crossref_primary_10_1364_OE_394312 crossref_primary_10_1016_j_optcom_2020_126299 crossref_primary_10_1109_ACCESS_2024_3368912 crossref_primary_10_1021_acs_nanolett_3c00271 crossref_primary_10_3390_ijms241310936 crossref_primary_10_1364_OE_416844 crossref_primary_10_3390_coatings14111357 crossref_primary_10_1016_j_optlastec_2022_108853 crossref_primary_10_1088_1612_202X_ac0449 crossref_primary_10_1364_OE_550923 crossref_primary_10_1007_s10762_019_00638_5 crossref_primary_10_1364_OE_483746 crossref_primary_10_1016_j_culher_2023_12_018 crossref_primary_10_1007_s10762_021_00828_0 crossref_primary_10_1007_s10762_021_00803_9 crossref_primary_10_1007_s11664_022_09779_1 crossref_primary_10_1364_OL_45_000077 crossref_primary_10_1038_s41467_021_21260_x crossref_primary_10_1063_5_0153046 crossref_primary_10_1063_5_0215826 crossref_primary_10_1016_j_mtcomm_2024_110716 crossref_primary_10_1109_TIM_2023_3318676 crossref_primary_10_3390_instruments4030024 crossref_primary_10_1109_JLT_2021_3092779 crossref_primary_10_1364_OE_443098 crossref_primary_10_1016_j_optlastec_2020_106635 crossref_primary_10_3390_photonics11010042 |
Cites_doi | 10.1109/TTHZ.2014.2348414 10.1007/s10762-010-9670-8 10.1063/1.2008379 10.1007/s10762-010-9751-8 10.1364/OL.38.004197 10.1364/OL.39.006482 10.1364/OE.20.025990 10.1021/la503322v 10.1063/1.4873740 10.1007/s10762-011-9849-7 10.1364/OE.23.014806 10.1007/s10762-014-0085-9 10.1049/el.2011.3004 10.1109/IRMMW-THz.2016.7758344 10.1109/ICIMW.2009.5324653 10.1063/1.4955407 10.1109/IRMMW-THz.2014.6956024 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: The Author(s) 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10762-018-0563-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1866-6906 |
EndPage | 296 |
ExternalDocumentID | 10_1007_s10762_018_0563_6 |
GroupedDBID | -5F -5G -BR -EM -~C .VR 06D 0R~ 0VY 199 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD AYJHY AZFZN B-. BDATZ BENPR BGLVJ BGNMA BSONS C6C CCPQU CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9G O9J OAM P62 P9T PF0 PT4 QOS R89 R9I ROL RSV S16 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN TSG TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~A9 -Y2 AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABULA ACBXY ACSTC AEBTG AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AHPBZ AHWEU AIXLP AJBLW ARCEE ATHPR AYFIA CAG CITATION COF H13 PHGZM PHGZT SCLPG ABRTQ PQGLB |
ID | FETCH-LOGICAL-c425t-2feee580b89a49c6dafc59910537c27bc7f3c0b40c4110fe16bbb5111eba67723 |
IEDL.DBID | C6C |
ISSN | 1866-6892 |
IngestDate | Fri Jul 25 07:16:05 EDT 2025 Thu Apr 24 22:58:53 EDT 2025 Tue Jul 01 03:33:30 EDT 2025 Fri Feb 21 02:37:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | High update rate Continuous wave Broadband THz Terahertz Non-destructive testing Spectrometer NDT |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-2feee580b89a49c6dafc59910537c27bc7f3c0b40c4110fe16bbb5111eba67723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9415-5051 |
OpenAccessLink | https://doi.org/10.1007/s10762-018-0563-6 |
PQID | 2191858667 |
PQPubID | 2044290 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2191858667 crossref_primary_10_1007_s10762_018_0563_6 crossref_citationtrail_10_1007_s10762_018_0563_6 springer_journals_10_1007_s10762_018_0563_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190315 |
PublicationDateYYYYMMDD | 2019-03-15 |
PublicationDate_xml | – month: 3 year: 2019 text: 20190315 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of infrared, millimeter and terahertz waves |
PublicationTitleAbbrev | J Infrared Milli Terahz Waves |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR2 Van Mechelen (CR1) 2014; 30 Yasui, Saneyoshi, Araki (CR7) 2005; 87 CR3 Ryu, Kim, Han, Ko, Park, Moon, Park (CR14) 2012; 20 De Felipe (CR12) 2016; 9747 Dietz, Vieweg, Puppe, Zach, Globisch, Göbel, Leisching, Schell (CR6) 2014; 39 CR19 Göbel, Stanze, Globisch, Dietz, Roehle, Schell (CR20) 2013; 38 CR18 CR17 CR9 Hauck, Stich, Heidemeyer, Bastian, Hochrein (CR4) 2014; 1593 Sartorius, Stanze, Göbel, Schmidt, Schell (CR13) 2012; 33 CR21 Yee, Yahng, Park, Lee, Kim (CR16) 2015; 23 Park (CR15) 2014; 7601 Wilk, Hochrein, Koch, Mei, Holzwarth (CR8) 2011; 32 Vieweg, Rettich, Deninger, Roehle, Dietz, Göbel, Schell (CR5) 2014; 35 Stanze, Globisch, Dietz, Roehle, Göbel, Schell (CR10) 2014; 4 Stanze, Deninger, Roggenbuck, Schindler, Schlak, Sartorius (CR11) 2011; 32 D Stanze (563_CR10) 2014; 4 D Felipe De (563_CR12) 2016; 9747 JLM Mechelen Van (563_CR1) 2014; 30 RJB Dietz (563_CR6) 2014; 39 563_CR21 B Sartorius (563_CR13) 2012; 33 T Yasui (563_CR7) 2005; 87 H-C Ryu (563_CR14) 2012; 20 563_CR17 T Göbel (563_CR20) 2013; 38 563_CR18 D Stanze (563_CR11) 2011; 32 563_CR19 563_CR9 N Vieweg (563_CR5) 2014; 35 DS Yee (563_CR16) 2015; 23 KH Park (563_CR15) 2014; 7601 563_CR2 563_CR3 J Hauck (563_CR4) 2014; 1593 R Wilk (563_CR8) 2011; 32 |
References_xml | – volume: 4 start-page: 696 issue: 6 year: 2014 end-page: 701 ident: CR10 article-title: Multilayer Thickness Determination Using Continuous Wave THz Spectroscopy publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2014.2348414 – ident: CR21 – ident: CR19 – ident: CR18 – volume: 32 start-page: 596 issue: 5 year: 2011 end-page: 602 ident: CR8 article-title: OSCAT: Novel technique for time-resolved experiments without moveable optical delay lines publication-title: J. Infrared, Millimeter, Terahertz Waves doi: 10.1007/s10762-010-9670-8 – volume: 9747 start-page: 1 year: 2016 end-page: 7 ident: CR12 article-title: Hybrid polymer / InP dual DBR laser for 1.5μm continuous-wave Terahertz systems publication-title: Proc. SPIE – ident: CR3 – volume: 87 start-page: 2 issue: 6 year: 2005 end-page: 5 ident: CR7 article-title: Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition publication-title: Appl. Phys. Lett. doi: 10.1063/1.2008379 – ident: CR2 – volume: 32 start-page: 225 issue: 2 year: 2011 end-page: 232 ident: CR11 article-title: Compact cw terahertz spectrometer pumped at 1.5 μm wavelength publication-title: J. Infrared, Millimeter, Terahertz Waves doi: 10.1007/s10762-010-9751-8 – ident: CR17 – volume: 38 start-page: 4197 issue: 20 year: 2013 end-page: 4199 ident: CR20 article-title: Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth publication-title: Opt. Lett. doi: 10.1364/OL.38.004197 – ident: CR9 – volume: 39 start-page: 6482 issue: 22 year: 2014 end-page: 6485 ident: CR6 article-title: All fibercoupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling publication-title: Opt. Lett. doi: 10.1364/OL.39.006482 – volume: 20 start-page: 25990 issue: 23 year: 2012 ident: CR14 article-title: Simple and cost-effective thickness measurement terahertz system based on a compact 155 μm λ/4 phase-shifted dual-mode laser publication-title: Opt. Express doi: 10.1364/OE.20.025990 – volume: 30 start-page: 12748 issue: 43 year: 2014 end-page: 12754 ident: CR1 article-title: Dynamics of the stratification process in drying colloidal dispersions studied by terahertz time-domain spectroscopy publication-title: Langmuir doi: 10.1021/la503322v – volume: 1593 start-page: 86 issue: 2014 year: 2014 end-page: 89 ident: CR4 article-title: Terahertz inline wall thickness monitoring system for plastic pipe extrusion publication-title: AIP Conf. Proc. doi: 10.1063/1.4873740 – volume: 33 start-page: 405 issue: 4 year: 2012 end-page: 417 ident: CR13 article-title: Continuous wave terahertz systems based on 1.5 μm telecom technologies publication-title: J. Infrared, Millimeter, Terahertz Waves doi: 10.1007/s10762-011-9849-7 – volume: 7601 start-page: 898506 year: 2014 ident: CR15 article-title: Photonic devices for tunable continuous-wave terahertz generation and detection publication-title: Proc. SPIE – volume: 23 start-page: 14806 issue: 11 year: 2015 end-page: 14814 ident: CR16 article-title: High-speed broadband frequency sweep of continuous-wave terahertz radiation publication-title: Opt. Express doi: 10.1364/OE.23.014806 – volume: 35 start-page: 823 issue: 10 year: 2014 end-page: 832 ident: CR5 article-title: Terahertz-time domain spectrometer with 90 dB peak dynamic range publication-title: J. Infrared, Millimeter, Terahertz Waves doi: 10.1007/s10762-014-0085-9 – volume: 20 start-page: 25990 issue: 23 year: 2012 ident: 563_CR14 publication-title: Opt. Express doi: 10.1364/OE.20.025990 – volume: 7601 start-page: 898506 year: 2014 ident: 563_CR15 publication-title: Proc. SPIE – ident: 563_CR18 – volume: 9747 start-page: 1 year: 2016 ident: 563_CR12 publication-title: Proc. SPIE – ident: 563_CR19 – ident: 563_CR17 doi: 10.1049/el.2011.3004 – ident: 563_CR9 doi: 10.1109/IRMMW-THz.2016.7758344 – volume: 32 start-page: 225 issue: 2 year: 2011 ident: 563_CR11 publication-title: J. Infrared, Millimeter, Terahertz Waves doi: 10.1007/s10762-010-9751-8 – volume: 39 start-page: 6482 issue: 22 year: 2014 ident: 563_CR6 publication-title: Opt. Lett. doi: 10.1364/OL.39.006482 – ident: 563_CR21 doi: 10.1109/ICIMW.2009.5324653 – volume: 1593 start-page: 86 issue: 2014 year: 2014 ident: 563_CR4 publication-title: AIP Conf. Proc. doi: 10.1063/1.4873740 – volume: 4 start-page: 696 issue: 6 year: 2014 ident: 563_CR10 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2014.2348414 – volume: 23 start-page: 14806 issue: 11 year: 2015 ident: 563_CR16 publication-title: Opt. Express doi: 10.1364/OE.23.014806 – volume: 38 start-page: 4197 issue: 20 year: 2013 ident: 563_CR20 publication-title: Opt. Lett. doi: 10.1364/OL.38.004197 – volume: 35 start-page: 823 issue: 10 year: 2014 ident: 563_CR5 publication-title: J. Infrared, Millimeter, Terahertz Waves doi: 10.1007/s10762-014-0085-9 – volume: 87 start-page: 2 issue: 6 year: 2005 ident: 563_CR7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2008379 – ident: 563_CR2 doi: 10.1063/1.4955407 – volume: 32 start-page: 596 issue: 5 year: 2011 ident: 563_CR8 publication-title: J. Infrared, Millimeter, Terahertz Waves doi: 10.1007/s10762-010-9670-8 – volume: 33 start-page: 405 issue: 4 year: 2012 ident: 563_CR13 publication-title: J. Infrared, Millimeter, Terahertz Waves doi: 10.1007/s10762-011-9849-7 – ident: 563_CR3 doi: 10.1109/IRMMW-THz.2014.6956024 – volume: 30 start-page: 12748 issue: 43 year: 2014 ident: 563_CR1 publication-title: Langmuir doi: 10.1021/la503322v |
SSID | ssj0064496 |
Score | 2.4000535 |
Snippet | Continuous wave THz (cw THz) systems define the state-of-the-art in terms of spectral resolution in THz spectroscopy. Hitherto, acquisition of broadband... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 288 |
SubjectTerms | Broadband Classical Electrodynamics Continuous radiation Destructive testing Electrical Engineering Electronics and Microelectronics Engineering Instrumentation Nondestructive testing Spectra Spectral resolution Spectroscopy Spectrum analysis State of the art Upgrading |
Title | Ultra-fast, High-Bandwidth Coherent cw THz Spectrometer for Non-destructive Testing |
URI | https://link.springer.com/article/10.1007/s10762-018-0563-6 https://www.proquest.com/docview/2191858667 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58XPTgW6yPsgdP6kIem83mWEsfKBbRFvQU9hUVSio2WPDXO1sTq0UFL8khmz18s7PzJbPzDcCx9ZQf-CajiVYhZTbxqbCxpj6TaH4Tamnd_46rHu8O2MVddFeKRbtamLn8vStxQ3fFD15BMVSHlC_CcuSHsevS0OTNatPFqD5txeXk2ygXSVAlMH-a4nsImvHKuVToNMK0N2CtpIak8WHLTViw-RaslzSRlE443oLVLxqC23A7GBYvkmZyXJwRd2qDnsvcTJ5M8Uhc7YVTXyJ6QvrdN-KazRdOnwDBJMhWSW-UU2NLDdlXS_pOcyN_2IFBu9VvdmnZKYFq9LmCBpm1NhKeEolkieZGZjpC5ufEWnQQKx1nofYU8zTDcJ9ZnyulkGr5VkmO_DrchaV8lNs9IAETUhiG0wr0by5VZuJYGiVYZJGryBp4FXipLmXEXTeLYToTQHZ4p4h36vBOeQ1OPl95_tDQ-GvwYWWRtHSncYrbKvIKtG1cg9PKSrPHv062_6_RB7CCdChxJ8z86BCWEHx7hJSjUHVYFO1OHZYbnfvLFt7PW73rm_p0CeJ1EDTeAeS40GA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHdkRZfYALYCmLkzgHDqxqgfZCK3EL3gJIKCAaUcHv8KOMQ0ILAiQOnONY0azP8cwbgE3jSNdzdUpjJX3KTOxSbiJFXSZQ_dpXwtj_Ha122Oiy08vgsgavVS9MUe1eXUkWkXqo2Q0dF4--nGLS9mlYVlKemec-ntN6e80jVOqW550cdw4btBwlQBUaZU691BgTcEfyWLBYhVqkKkBoZNlMlBdJFaW-ciRzFMN8mBo3lFIiFnGNFCECUB_3HYExxB7cuk7X26_CPeKJYgiYJY6jIY-96ur0u0_-nPwGiPbLJWyR205mYKoEpWT_3YpmoWayOZguASop3b83B5ND7IXzcNG9yx8FTUUv3yW2XoQeiEz3b3V-Q2zXh-V9IqpPOo0XYsfc55YZAdVIECeT9n1GtSnZa58M6Vi2j-x6Abr_IthFGM3uM7MExGNccM1wW46RJRQy1VEktOQsMIiSRB2cSniJKgnM7RyNu2RAvWzlnaC8EyvvJKzD9scrD-_sHb8tXq00kpSO3EswoCOiQd1GddiptDR4_ONmy39avQHjjU7rPDlvts9WYAJBWWzr3NxgFUZREWYNgU8u1wvDI3D135b-Bkl5DP0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4BlRAcoOUhwqPdQ3sBVvFjvV4fOLSBKClthEQicTP7cosUOYhYRPCn-IvMJjahCJB6yNnrlTUzO_ONd-YbgK_WU37gm4wmWoWU2cSnwsaa-kyi-k2opXX_O353eKvHfl5EF3PwUPXCjKvdqyvJSU-DY2nKi_q1yerPGt_wEGMaLCgG8JDysqry1N6NMGcbHrWPUcHfgqB50m20aDlWgGo00IIGmbU2Ep4SiWSJ5kZmOkKY5JhNdBArHWeh9hTzNMPYmFmfK6UQl_hWSY5gNMR95-EDJka-y_YavFG5fsQW44FgjkSOcpEE1TXqa5_8byCcotsXF7LjONf8CCslQCXfJxb1CeZsvgarJVglpSsYrsHyMybDdTjv9YsbSTM5LA6Jqx2hP2RuRlem-EtcB4jjgCJ6RLqte-JG3heOJQFVShAzk84gp8aWTLa3lnQd80f-ZwN6MxHsJizkg9xuAQmYkMIw3Fagl-FSZSaOpVGCRRYRk6yBVwkv1SWZuZup0U-nNMxO3inKO3XyTnkN9p9euZ4weby3eLfSSFoe6mGKzh3RDeo2rsFBpaXp4zc32_6v1V9g8ey4mf5qd053YAnxWeJK3vxoFxZQD3YPMVChPo_tjsDlrA39ERuqESM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-fast%2C+High-Bandwidth+Coherent+cw+THz+Spectrometer+for+Non-destructive+Testing&rft.jtitle=Journal+of+infrared%2C+millimeter+and+terahertz+waves&rft.au=Liebermeister%2C+Lars&rft.au=Nellen%2C+Simon&rft.au=Kohlhaas%2C+Robert&rft.au=Breuer%2C+Steffen&rft.date=2019-03-15&rft.issn=1866-6892&rft.eissn=1866-6906&rft.volume=40&rft.issue=3&rft.spage=288&rft.epage=296&rft_id=info:doi/10.1007%2Fs10762-018-0563-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10762_018_0563_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6892&client=summon |