A novel forecasting method based on multi-order fuzzy time series and technical analysis
•The directional accuracy rate of forecasting model is first selected as performance measures.•Exponential smoothing is used to eliminate noise in the time series.•Multi-order and multivariate fuzzy time series are combined to forecast financial time series.•The proposed method outperforms the exist...
Saved in:
Published in | Information Sciences Vol. 367-368; pp. 41 - 57 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Elsevier Inc
01.11.2016
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The directional accuracy rate of forecasting model is first selected as performance measures.•Exponential smoothing is used to eliminate noise in the time series.•Multi-order and multivariate fuzzy time series are combined to forecast financial time series.•The proposed method outperforms the existing methods for 5 well-known financial time series.
Financial trading is one of the most common risk investment actions in the modern economic environment because financial market systems are complex non-linear dynamic systems. It is a challenge to develop the inherent rules using the traditional time series prediction technique. In this paper, we proposed a new forecasting method based on multi-order fuzzy time series, technical analysis, and a genetic algorithm. Multi-order fuzzy time series (first-order, second-order and third-order) are applied in the proposed algorithm, and to improve the performance, genetic algorithm is used to find a good domain partition. Technical analysis such as the Rate of Change (ROC), Moving Average Convergence/Divergence (MACD), and Stochastic Oscillator (KDJ) are introduced to construct multi-variable fuzzy time series, and exponential smoothing is used to eliminate noise in the time series. In addition to the root mean square error and mean square error, the directional accuracy rate (DAR) is also used in our empirical studies. We apply the proposed method to forecast five well-known stock indexes and the NTD/USD exchange rates. Experimental results demonstrate that our proposed method outperforms other existing models based on fuzzy time series. |
---|---|
AbstractList | •The directional accuracy rate of forecasting model is first selected as performance measures.•Exponential smoothing is used to eliminate noise in the time series.•Multi-order and multivariate fuzzy time series are combined to forecast financial time series.•The proposed method outperforms the existing methods for 5 well-known financial time series.
Financial trading is one of the most common risk investment actions in the modern economic environment because financial market systems are complex non-linear dynamic systems. It is a challenge to develop the inherent rules using the traditional time series prediction technique. In this paper, we proposed a new forecasting method based on multi-order fuzzy time series, technical analysis, and a genetic algorithm. Multi-order fuzzy time series (first-order, second-order and third-order) are applied in the proposed algorithm, and to improve the performance, genetic algorithm is used to find a good domain partition. Technical analysis such as the Rate of Change (ROC), Moving Average Convergence/Divergence (MACD), and Stochastic Oscillator (KDJ) are introduced to construct multi-variable fuzzy time series, and exponential smoothing is used to eliminate noise in the time series. In addition to the root mean square error and mean square error, the directional accuracy rate (DAR) is also used in our empirical studies. We apply the proposed method to forecast five well-known stock indexes and the NTD/USD exchange rates. Experimental results demonstrate that our proposed method outperforms other existing models based on fuzzy time series. Financial trading is one of the most common risk investment actions in the modern economic environment because financial market systems are complex non-linear dynamic systems. It is a challenge to develop the inherent rules using the traditional time series prediction technique. In this paper, we proposed a new forecasting method based on multi-order fuzzy time series, technical analysis, and a genetic algorithm. Multi-order fuzzy time series (first-order, second-order and third-order) are applied in the proposed algorithm, and to improve the performance, genetic algorithm is used to find a good domain partition. Technical analysis such as the Rate of Change (ROC), Moving Average Convergence/Divergence (MACD), and Stochastic Oscillator (KDJ) are introduced to construct multi-variable fuzzy time series, and exponential smoothing is used to eliminate noise in the time series. In addition to the root mean square error and mean square error, the directional accuracy rate (DAR) is also used in our empirical studies. We apply the proposed method to forecast five well-known stock indexes and the NTD/USD exchange rates. Experimental results demonstrate that our proposed method outperforms other existing models based on fuzzy time series. |
Author | Ye, Furong Zhang, Liming Gong, Zhiguo Fujita, Hamido Zhang, Defu |
Author_xml | – sequence: 1 givenname: Furong surname: Ye fullname: Ye, Furong organization: Department of Computer Science, Xiamen University, Xiamen, 361005, China – sequence: 2 givenname: Liming surname: Zhang fullname: Zhang, Liming organization: Department of Computer and Information Science, University of Macau, Macau, China – sequence: 3 givenname: Defu surname: Zhang fullname: Zhang, Defu email: dfzhang@xmu.edu.cn organization: Department of Computer Science, Xiamen University, Xiamen, 361005, China – sequence: 4 givenname: Hamido surname: Fujita fullname: Fujita, Hamido organization: Faculty of Software and Information Science, Iwate Prefectural University, Iwate, Japan – sequence: 5 givenname: Zhiguo surname: Gong fullname: Gong, Zhiguo organization: Department of Computer and Information Science, University of Macau, Macau, China |
BackLink | https://cir.nii.ac.jp/crid/1870865117809378048$$DView record in CiNii |
BookMark | eNp9kTtrHDEUhUVwIGsnPyCdihRpZqzHSKMhlTF5gcGNi3RC0tyJ7zIjOZLWsP710bKpUri5DzjnHvjuJbmIKQIhHznrOeP6et9jLL1oY89Uz6R5Q3bcjKLTYuIXZMeYYB0TSr0jl6XsGWPDqPWO_LqhMT3DSpeUIbhSMf6mG9THNFPvCsw0Rbod1opdyjNkuhxeXo604ga0QEYo1MWZVgiPEYNb2-bWY8Hynrxd3Frgw79-RR6-fX24_dHd3X__eXtz14VBqNoJD9L74NykRqPlNASvzMwX8EoECcpJGeQipBiMZ6C912zR4xwc12FQg7win89nn3L6c4BS7YYlwLq6COlQLDdSaa4mMzXpeJaGnErJsNiA1VVMsWaHq-XMnlDavW0o7QmlZco2lM3J_3M-ZdxcPr7q-XT2RMQWdKrtH8xoxflo2CRbGU6yL2cZNEbPCNmWgBADzNj-Ue2c8JWQv_OqmbY |
CitedBy_id | crossref_primary_10_3390_sym9090191 crossref_primary_10_1002_fut_22012 crossref_primary_10_1016_j_asoc_2020_106898 crossref_primary_10_1016_j_eswa_2020_113447 crossref_primary_10_1007_s13042_021_01310_y crossref_primary_10_1007_s40899_022_00744_8 crossref_primary_10_1016_j_eswa_2020_114056 crossref_primary_10_1007_s10489_021_02864_8 crossref_primary_10_1007_s10115_023_01875_w crossref_primary_10_1016_j_knosys_2020_105937 crossref_primary_10_1016_j_asoc_2023_110356 crossref_primary_10_1007_s40314_021_01534_2 crossref_primary_10_2478_cait_2018_0001 crossref_primary_10_1016_j_eswa_2018_03_005 crossref_primary_10_1007_s40815_019_00688_w crossref_primary_10_1109_ACCESS_2019_2901842 crossref_primary_10_1109_TFUZZ_2021_3113762 crossref_primary_10_1016_j_neucom_2017_02_054 crossref_primary_10_1007_s10614_021_10202_w crossref_primary_10_1016_j_ins_2018_02_016 crossref_primary_10_1016_j_knosys_2016_11_019 crossref_primary_10_1016_j_ijar_2019_05_002 crossref_primary_10_18187_pjsor_v18i4_4212 crossref_primary_10_1016_j_ins_2016_09_027 crossref_primary_10_1016_j_ins_2021_02_024 crossref_primary_10_3390_sym9100207 crossref_primary_10_1002_for_2979 crossref_primary_10_1007_s10489_018_1189_z crossref_primary_10_1016_j_asoc_2018_11_008 crossref_primary_10_1016_j_engappai_2018_02_015 crossref_primary_10_1002_for_2734 crossref_primary_10_3390_math11132800 crossref_primary_10_1016_j_asoc_2024_111759 crossref_primary_10_1016_j_ymssp_2023_110174 crossref_primary_10_1007_s00500_018_3335_2 crossref_primary_10_1007_s00521_017_3325_9 crossref_primary_10_1007_s00521_024_10727_9 crossref_primary_10_1016_j_ins_2019_08_058 crossref_primary_10_1007_s10489_021_02473_5 crossref_primary_10_1007_s10614_021_10132_7 crossref_primary_10_1109_TFUZZ_2019_2914642 crossref_primary_10_3390_sym9070124 crossref_primary_10_1186_s43093_022_00125_9 crossref_primary_10_1016_j_knosys_2020_106139 crossref_primary_10_1016_j_asoc_2017_11_011 crossref_primary_10_1016_j_neucom_2017_04_076 crossref_primary_10_1016_j_neucom_2019_12_113 crossref_primary_10_1007_s41066_018_0126_1 crossref_primary_10_1109_TFUZZ_2020_2972823 crossref_primary_10_1016_j_resourpol_2024_105446 crossref_primary_10_1007_s12530_022_09452_2 crossref_primary_10_1088_1742_6596_1613_1_012019 crossref_primary_10_1007_s10489_021_02926_x crossref_primary_10_1007_s10489_021_02845_x crossref_primary_10_1016_j_asoc_2017_01_043 crossref_primary_10_1016_j_engappai_2018_11_004 crossref_primary_10_1007_s00521_022_07138_z crossref_primary_10_1007_s11071_018_4433_5 crossref_primary_10_7240_jeps_1573839 crossref_primary_10_1007_s40314_024_02950_w crossref_primary_10_1016_j_knosys_2018_10_035 crossref_primary_10_1016_j_knosys_2019_105239 crossref_primary_10_1016_j_eswa_2020_114444 crossref_primary_10_1007_s12065_021_00656_0 crossref_primary_10_3233_JIFS_211405 crossref_primary_10_1016_j_ins_2019_01_071 crossref_primary_10_1109_ACCESS_2021_3050437 crossref_primary_10_3390_math11194022 crossref_primary_10_1016_j_asoc_2017_04_021 crossref_primary_10_1016_j_ins_2016_10_022 crossref_primary_10_1016_j_eswa_2022_116659 crossref_primary_10_3390_sym12060954 crossref_primary_10_1007_s11069_022_05764_3 crossref_primary_10_1080_16168658_2019_1631557 crossref_primary_10_1088_1742_6596_1114_1_012012 crossref_primary_10_3390_w15223910 crossref_primary_10_3233_IDA_220755 crossref_primary_10_1007_s12597_020_00455_8 crossref_primary_10_1016_j_eswa_2024_126298 |
Cites_doi | 10.1016/j.physa.2004.07.024 10.1016/j.procs.2013.05.281 10.1016/S0169-2070(99)00048-5 10.1109/TSMCB.2012.2223815 10.1016/j.eswa.2010.02.049 10.1016/j.omega.2011.07.008 10.1016/j.eswa.2008.10.034 10.1016/j.camwa.2008.07.033 10.1016/j.ins.2010.08.026 10.1016/j.ins.2014.09.038 10.1016/j.eswa.2005.09.020 10.1002/int.20145 10.1016/j.eswa.2011.02.098 10.1016/S0165-0114(97)00121-8 10.1016/j.physa.2007.02.084 10.1016/j.eswa.2007.12.013 10.1016/j.eswa.2009.02.085 10.1016/j.eswa.2009.02.057 10.1016/j.knosys.2014.11.003 10.1016/j.eswa.2011.02.052 10.1016/j.ins.2013.06.005 10.1016/j.eswa.2007.05.016 10.1016/j.eswa.2010.03.063 10.1016/j.physa.2005.08.014 10.1109/TFUZZ.2006.876367 10.1016/0165-0114(93)90355-L 10.1109/TFUZZ.2010.2073712 10.1016/j.eswa.2006.12.013 10.1016/j.asoc.2014.01.022 10.1016/j.eswa.2009.05.081 10.1016/0165-0114(94)90152-X 10.1016/j.asoc.2008.09.002 10.1016/j.eswa.2008.09.040 10.1016/j.asoc.2012.09.024 10.1016/j.datak.2008.06.002 10.1016/j.matcom.2010.09.011 10.1109/TSMCB.2005.857093 10.1016/0165-0114(95)00220-0 10.1016/j.ins.2010.01.014 10.1016/0165-0114(93)90372-O 10.1109/TSMCB.2006.890303 10.1016/j.physa.2004.11.006 10.1016/j.physa.2008.01.099 10.1016/j.eswa.2008.04.001 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. |
Copyright_xml | – notice: 2016 Elsevier Inc. |
DBID | RYH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.ins.2016.05.038 |
DatabaseName | CiNii Complete CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 57 |
ExternalDocumentID | 10_1016_j_ins_2016_05_038 S002002551630370X |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU RYH SSH 1OL 29I AAAKG AAQXK AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO ADVLN AFFNX AFJKZ AGQPQ AIGII APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c425t-2be3bbcaa95786394cb58d1feb52c3e5a33c3f23248b0e6bb60f67dca16c4543 |
IEDL.DBID | .~1 |
ISSN | 0020-0255 |
IngestDate | Thu Jul 10 20:39:31 EDT 2025 Tue Jul 01 04:16:33 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Thu Jun 26 22:39:24 EDT 2025 Fri Feb 23 02:33:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fuzzy time series Technical analysis Financial forecasting Genetic algorithm |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-2be3bbcaa95786394cb58d1feb52c3e5a33c3f23248b0e6bb60f67dca16c4543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5256-210X 0000-0002-2664-8193 |
PQID | 1835615989 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1835615989 crossref_citationtrail_10_1016_j_ins_2016_05_038 crossref_primary_10_1016_j_ins_2016_05_038 nii_cinii_1870865117809378048 elsevier_sciencedirect_doi_10_1016_j_ins_2016_05_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 2016-11-00 20161101 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Information Sciences |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Huarng, Yu, Hsu (bib0026) 2007; 37 Chen, Wang, Pan (bib0018) 2009; 36 Chen, Chen (bib0030) 2011; 19 Sullivan, Woodall (bib0040) 1994; 64 Cai, Zhang, Zheng, Leung (bib0053) 2015; 74 Egrioglu,C.H. Aladag, Yolcu (bib0014) 2011; 38 Chen (bib0003) 1996; 81 Chen, Pan, Liu (bib0049) 2013; 43 Avazbeigi, Doulabi, Karimi (bib0034) 2010; 37 Chen, Manalu, Shih, Sheu, Liu (bib0031) 2011 Cheng, Chen, Wei (bib0017) 2010; 180 Cheng, Cheng, Wang (bib0020) 2008; 34 Yolcu, Egrioglu, Uslu (bib0012) 2009; 9 Song, Chissom (bib0001) 1993; 54 Kirkpatrick, Dahlquist, Analysis (bib0023) 2006 Wang, Wang, Zhang, Guo (bib0044) 2012; 40 Wei, Cheng, Wu (bib0050) 2014; 19 Kim, Min, Han (bib0032) 2006; 32 Jilani, Burney (bib0008) 2008; 387 Chen, Chung (bib0015) 2006; 21 Chen, Cheng, Teoh (bib0016) 2007; 380 Leu, Lee, Jou (bib0048) 2009; 36 Cai, Zhang, Wu, Leung (bib0047) 2013; 18 Hiemstra (bib0042) 1994; 3 Chen, Chen (bib0052) 2015; 45 Aladag, Basaran, Egrioglu (bib0010) 2009; 36 Lee, Wang, Chen, Leu (bib0025) 1996; 14 Chen, Kao (bib0046) 2013; 247 Egrioglu, Aladag, U. Yolcu, Uslu (bib0033) 2009; 36 Brown (bib0037) 1956 Yu, Huarng (bib0027) 2008; 34 Hwang, Chen, Lee (bib0004) 1998; 100 Zhang, Jiang, Li (bib0036) 2004; 1 Kazem, Sharifi, Hussain, Saberi, Hussain (bib0043) 2013; 13 Egrioglu, Aladag, Yolcu (bib0013) 2009; 36 Huarng (bib0006) 2006; 36 Chen, Chen (bib0051) 2015; 294 Aladag, Yolcu, Egrioglu (bib0011) 2010; 81 Stevenson, John (bib0024) 2009; 55 Lee, Efendi, Ismail (bib0005) 2009; 25 Li, Cheng, Lin (bib0022) 2008; 56 Wan, Zhang, Si (bib0054) 2014 Chen, Tanuwijaya (bib0019) 2011; 38 Yu, Huarng (bib0028) 2010; 37 Lakshman Naik, Ramesh, Manjula, Govardhan (bib0041) 2012; 3 Park, Lee, Song, Chun (bib0035) 2010; 37 Wang, Chen (bib0021) 2009; 36 Yu (bib0009) 2005; 346 Teoh, Cheng, Chu (bib0007) 2008; 67 Leung, Daouk, Chen (bib0038) 2000; 16 Huarng, Yu (bib0039) 2006; 363 Yu (bib0045) 2004; 349 Song, Chissom (bib0002) 1993; 54 Chen, Chang (bib0029) 2010; 180 Chen (10.1016/j.ins.2016.05.038_bib0019) 2011; 38 Chen (10.1016/j.ins.2016.05.038_bib0046) 2013; 247 Chen (10.1016/j.ins.2016.05.038_bib0029) 2010; 180 Chen (10.1016/j.ins.2016.05.038_bib0003) 1996; 81 Song (10.1016/j.ins.2016.05.038_bib0001) 1993; 54 Kim (10.1016/j.ins.2016.05.038_bib0032) 2006; 32 Chen (10.1016/j.ins.2016.05.038_bib0049) 2013; 43 Leung (10.1016/j.ins.2016.05.038_bib0038) 2000; 16 Hwang (10.1016/j.ins.2016.05.038_bib0004) 1998; 100 Huarng (10.1016/j.ins.2016.05.038_bib0006) 2006; 36 Yu (10.1016/j.ins.2016.05.038_bib0009) 2005; 346 Aladag (10.1016/j.ins.2016.05.038_bib0011) 2010; 81 Aladag (10.1016/j.ins.2016.05.038_bib0010) 2009; 36 Huarng (10.1016/j.ins.2016.05.038_bib0039) 2006; 363 Chen (10.1016/j.ins.2016.05.038_bib0051) 2015; 294 Brown (10.1016/j.ins.2016.05.038_bib0037) 1956 Chen (10.1016/j.ins.2016.05.038_bib0052) 2015; 45 Stevenson (10.1016/j.ins.2016.05.038_bib0024) 2009; 55 Song (10.1016/j.ins.2016.05.038_bib0002) 1993; 54 Egrioglu (10.1016/j.ins.2016.05.038_bib0013) 2009; 36 Cai (10.1016/j.ins.2016.05.038_bib0047) 2013; 18 Wang (10.1016/j.ins.2016.05.038_bib0021) 2009; 36 Park (10.1016/j.ins.2016.05.038_bib0035) 2010; 37 Lee (10.1016/j.ins.2016.05.038_bib0025) 1996; 14 Lakshman Naik (10.1016/j.ins.2016.05.038_bib0041) 2012; 3 Wang (10.1016/j.ins.2016.05.038_bib0044) 2012; 40 Lee (10.1016/j.ins.2016.05.038_bib0005) 2009; 25 Chen (10.1016/j.ins.2016.05.038_bib0015) 2006; 21 Cai (10.1016/j.ins.2016.05.038_bib0053) 2015; 74 Yolcu (10.1016/j.ins.2016.05.038_bib0012) 2009; 9 Hiemstra (10.1016/j.ins.2016.05.038_bib0042) 1994; 3 Zhang (10.1016/j.ins.2016.05.038_bib0036) 2004; 1 Wei (10.1016/j.ins.2016.05.038_bib0050) 2014; 19 Sullivan (10.1016/j.ins.2016.05.038_bib0040) 1994; 64 Egrioglu,C.H. Aladag (10.1016/j.ins.2016.05.038_bib0014) 2011; 38 Cheng (10.1016/j.ins.2016.05.038_bib0020) 2008; 34 Huarng (10.1016/j.ins.2016.05.038_bib0026) 2007; 37 Teoh (10.1016/j.ins.2016.05.038_bib0007) 2008; 67 Wan (10.1016/j.ins.2016.05.038_bib0054) 2014 Chen (10.1016/j.ins.2016.05.038_bib0030) 2011; 19 Avazbeigi (10.1016/j.ins.2016.05.038_bib0034) 2010; 37 Cheng (10.1016/j.ins.2016.05.038_bib0017) 2010; 180 Yu (10.1016/j.ins.2016.05.038_bib0027) 2008; 34 Yu (10.1016/j.ins.2016.05.038_bib0028) 2010; 37 Chen (10.1016/j.ins.2016.05.038_bib0031) 2011 Kazem (10.1016/j.ins.2016.05.038_bib0043) 2013; 13 Yu (10.1016/j.ins.2016.05.038_bib0045) 2004; 349 Kirkpatrick (10.1016/j.ins.2016.05.038_bib0023) 2006 Jilani (10.1016/j.ins.2016.05.038_bib0008) 2008; 387 Leu (10.1016/j.ins.2016.05.038_bib0048) 2009; 36 Chen (10.1016/j.ins.2016.05.038_bib0016) 2007; 380 Egrioglu (10.1016/j.ins.2016.05.038_bib0033) 2009; 36 Chen (10.1016/j.ins.2016.05.038_bib0018) 2009; 36 Li (10.1016/j.ins.2016.05.038_bib0022) 2008; 56 |
References_xml | – start-page: 2301 year: 2011 end-page: 2306 ident: bib0031 article-title: A new method for fuzzy forecasting based on two-factors high-order fuzzy-trend logical relationship groups and particle swarm optimization techniques publication-title: Proceedings of 2011 IEEE International Conference on Systems, Man, and Cybernetics – volume: 64 start-page: 279 year: 1994 end-page: 293 ident: bib0040 article-title: A comparison of fuzzy forecasting and Markov modeling publication-title: Fuzzy Sets Syst. – volume: 54 start-page: 269 year: 1993 end-page: 277 ident: bib0001 article-title: Fuzzy time series and its models publication-title: Fuzzy Sets Syst. – volume: 55 start-page: 154 year: 2009 end-page: 157 ident: bib0024 article-title: Fuzzy time series forecasting using percentage change as the universe of discourse, world academy of science publication-title: Eng. Technol. – volume: 14 start-page: 468 year: 1996 end-page: 477 ident: bib0025 article-title: Handling forecasting problem based on two-factors high-order fuzzy time series publication-title: IEEE Trans. Fuzzy Syst. – volume: 36 start-page: 7424 year: 2009 end-page: 7434 ident: bib0013 article-title: A new hybrid approach based on SARIMA and partial high order bivariate fuzzy time series forecasting model publication-title: Expert Syst. Appl. – volume: 34 start-page: 1235 year: 2008 end-page: 1242 ident: bib0020 article-title: Multi-attribute fuzzy time series method based on fuzzy clustering publication-title: Expert Syst. Appl. – volume: 56 start-page: 3052 year: 2008 end-page: 3063 ident: bib0022 article-title: A FCM-based deterministic forecasting model for fuzzy time series publication-title: Comput. Math. Appl. – volume: 363 start-page: 481 year: 2006 end-page: 491 ident: bib0039 article-title: The application of neural networks to forecast fuzzy time series publication-title: Physica A – volume: 81 start-page: 311 year: 1996 end-page: 319 ident: bib0003 article-title: Forecasting enrollments based on fuzzy time series publication-title: Fuzzy Sets Syst. – volume: 37 start-page: 959 year: 2010 end-page: 967 ident: bib0035 article-title: TAIFEX and KOSPI 200 forecasting based on two-factors high-order fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. – volume: 54 start-page: 1 year: 1993 end-page: 9 ident: bib0002 article-title: Forecasting enrollments with fuzzy time series, Part I publication-title: Fuzzy Sets Syst. – volume: 247 start-page: 62 year: 2013 end-page: 71 ident: bib0046 article-title: TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machines publication-title: Inf. Sci. – volume: 294 start-page: 227 year: 2015 end-page: 241 ident: bib0051 article-title: A hybrid fuzzy time series model based on granular computing for stock price forecasting publication-title: Inf. Sci. – volume: 32 start-page: 241 year: 2006 end-page: 247 ident: bib0032 article-title: An evolutionary approach to the combination of multiple classifiers to predict a stock price index publication-title: Expert Syst. Appl. – volume: 37 start-page: 5529 year: 2010 ident: bib0028 article-title: Corrigendum to A bivariate fuzzy time series model to forecast the TAIEX publication-title: Expert Syst. Appl. – volume: 349 start-page: 609 year: 2004 end-page: 624 ident: bib0045 article-title: Weighted fuzzy time-series models for TAIEX forecasting publication-title: Physica A – volume: 36 start-page: 11070 year: 2009 end-page: 11076 ident: bib0018 article-title: Forecasting enrollments using automatic clustering techniques and fuzzy logic relationships publication-title: Expert Syst. Appl. – volume: 19 start-page: 86 year: 2014 end-page: 92 ident: bib0050 article-title: A hybrid ANFIS based on n-period moving average model to forecast TAIEX stock publication-title: Appl. Soft Comput. – volume: 180 start-page: 1610 year: 2010 end-page: 1629 ident: bib0017 article-title: A hybrid model based on rough sets theory and genetic algorithms for stock price forecasting publication-title: Inf. Sci. – volume: 100 start-page: 217 year: 1998 end-page: 228 ident: bib0004 article-title: Handling forecasting problems using fuzzy time series publication-title: Fuzzy Sets Syst. – volume: 38 start-page: 10355 year: 2011 end-page: 10357 ident: bib0014 article-title: Fuzzy time series forecasting method based on Gustafson-Kessel fuzzy clustering publication-title: Expert Syst. Appl. – volume: 36 start-page: 10589 year: 2009 end-page: 10594 ident: bib0033 article-title: A new approach based on artificial neural networks for high order multivariate fuzzy time series publication-title: Expert Syst. Appl. – volume: 36 start-page: 4228 year: 2009 end-page: 4231 ident: bib0010 article-title: Forecasting in high order fuzzy time series by using neural networks to define fuzzy relations publication-title: Expert Syst. Appl. – volume: 16 start-page: 173 year: 2000 end-page: 190 ident: bib0038 article-title: Forecasting stock indices: a comparison of classification and level estimation models publication-title: Int. J. Forecast. – volume: 9 start-page: 647 year: 2009 end-page: 651 ident: bib0012 article-title: A new approach for determining the length of intervals for fuzzy time series publication-title: Appl. Soft Comput. – volume: 38 start-page: 10594 year: 2011 end-page: 10605 ident: bib0019 article-title: Multivariate fuzzy forecasting based on fuzzy time series and automatic clustering techniques publication-title: Expert Syst. Appl. – volume: 34 start-page: 2945 year: 2008 end-page: 2952 ident: bib0027 article-title: A bivariate fuzzy time series model to forecast the TAIEX publication-title: Expert Syst. Appl. – volume: 387 start-page: 2857 year: 2008 end-page: 2862 ident: bib0008 article-title: A refined fuzzy time series model for stock market forecasting publication-title: Physica A – volume: 180 start-page: 4772 year: 2010 end-page: 4783 ident: bib0029 article-title: Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy interpolation techniques publication-title: Inf. Sci. – volume: 37 start-page: 5630 year: 2010 end-page: 5639 ident: bib0034 article-title: Choosing the appropriate order in fuzzy time series: a new N-factor fuzzy time series for prediction of the auto industry production publication-title: Expert Syst. Appl. – volume: 346 start-page: 657 year: 2005 end-page: 681 ident: bib0009 article-title: A refined fuzzy time-series model for forecasting publication-title: Physica A, Stat. Theor. Phys. – volume: 36 start-page: 8107 year: 2009 end-page: 8114 ident: bib0048 article-title: A distance-based fuzzy time series model for exchange rates forecasting publication-title: Expert Syst. Appl. – volume: 40 start-page: 758 year: 2012 end-page: 766 ident: bib0044 article-title: Stock index forecasting based on a hybrid model publication-title: Omega – volume: 67 start-page: 103 year: 2008 end-page: 117 ident: bib0007 article-title: Fuzzy time series model based on probabilistic approach and rough set rule induction for empirical research in stock markets publication-title: Data Knowl. Eng. – volume: 37 start-page: 836 year: 2007 end-page: 846 ident: bib0026 article-title: A multivariate heuristic model for fuzzy time-series forecasting publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. – start-page: 15 year: 1956 ident: bib0037 article-title: Exponential Smoothing for Predicting Demand – volume: 45 start-page: 405 year: 2015 end-page: 417 ident: bib0052 article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships publication-title: IEEE Trans. Cybern. – volume: 25 start-page: 67 year: 2009 end-page: 78 ident: bib0005 article-title: Modified Weighted for Enrollment Forecasting Based on Fuzzy Time Series publication-title: MATEMATIKA – volume: 81 start-page: 875 year: 2010 end-page: 882 ident: bib0011 article-title: A high order fuzzy time series forecasting model based on adaptive expectation and artificial neural networks publication-title: Math. Comput. Simul – volume: 3 start-page: 162 year: 2012 end-page: 172 ident: bib0041 article-title: Prediction of Stock Market Index Using Genetic Algorithm publication-title: Comput. Eng. Intell. Syst. – volume: 13 start-page: 947 year: 2013 end-page: 958 ident: bib0043 article-title: Support vector regression with chaos-based firefly algorithm for stock market price forecasting publication-title: Appl. Soft Comput. – start-page: 217 year: 2014 end-page: 223 ident: bib0054 article-title: Evolutionary computation with multi-variates hybrid multi-order fuzzy time series for stock forecasting publication-title: International Conference on Computational Science and Engineering – volume: 380 start-page: 377 year: 2007 end-page: 390 ident: bib0016 article-title: Fuzzy time-series based on Fibonacci sequence for stock price forecasting publication-title: Physica A – year: 2006 ident: bib0023 article-title: The Complete Resource for Financial Market Technicians – volume: 21 start-page: 485 year: 2006 end-page: 501 ident: bib0015 article-title: Forecasting enrollments using high-order fuzzy time series and genetic algorithms publication-title: Int. J. Intell. Syst. – volume: 1 start-page: 106 year: 2004 end-page: 109 ident: bib0036 article-title: Application of neural networks in financial data mining publication-title: Int.J. Comput. Intell. – volume: 43 start-page: 1102 year: 2013 end-page: 1117 ident: bib0049 article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques publication-title: IEEE Trans. Cybern. – volume: 3 start-page: 281 year: 1994 end-page: 287 ident: bib0042 article-title: A stock market forecasting support system based on fuzzy logic publication-title: Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences – volume: 36 start-page: 328 year: 2006 end-page: 340 ident: bib0006 article-title: Ratio-based lengths of intervals to improve fuzzy time series forecasting publication-title: IEEE Trans. Syst. Man. Cybern. Part B Cybern. – volume: 19 start-page: 1 year: 2011 end-page: 12 ident: bib0030 article-title: TAIEX forecasting based on fuzzy time series and fuzzy variation groups publication-title: IEEE Trans. Fuzzy Syst. – volume: 36 start-page: 2143 year: 2009 end-page: 2154 ident: bib0021 article-title: Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and two-factor high-order fuzzy time series publication-title: Expert Syst. Appl. – volume: 18 start-page: 1155 year: 2013 end-page: 1162 ident: bib0047 article-title: A novel stock forecasting model based on fuzzy time series and genetic algorithm publication-title: Proc. Comput. Sci. – volume: 74 start-page: 61 year: 2015 end-page: 68 ident: bib0053 article-title: A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression publication-title: Knowl. Based Syst. – volume: 346 start-page: 657 year: 2005 ident: 10.1016/j.ins.2016.05.038_bib0009 article-title: A refined fuzzy time-series model for forecasting publication-title: Physica A, Stat. Theor. Phys. doi: 10.1016/j.physa.2004.07.024 – volume: 55 start-page: 154 year: 2009 ident: 10.1016/j.ins.2016.05.038_bib0024 article-title: Fuzzy time series forecasting using percentage change as the universe of discourse, world academy of science publication-title: Eng. Technol. – volume: 18 start-page: 1155 year: 2013 ident: 10.1016/j.ins.2016.05.038_bib0047 article-title: A novel stock forecasting model based on fuzzy time series and genetic algorithm publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2013.05.281 – volume: 16 start-page: 173 year: 2000 ident: 10.1016/j.ins.2016.05.038_bib0038 article-title: Forecasting stock indices: a comparison of classification and level estimation models publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(99)00048-5 – volume: 43 start-page: 1102 year: 2013 ident: 10.1016/j.ins.2016.05.038_bib0049 article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2223815 – volume: 37 start-page: 5630 year: 2010 ident: 10.1016/j.ins.2016.05.038_bib0034 article-title: Choosing the appropriate order in fuzzy time series: a new N-factor fuzzy time series for prediction of the auto industry production publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.02.049 – volume: 40 start-page: 758 year: 2012 ident: 10.1016/j.ins.2016.05.038_bib0044 article-title: Stock index forecasting based on a hybrid model publication-title: Omega doi: 10.1016/j.omega.2011.07.008 – volume: 36 start-page: 8107 year: 2009 ident: 10.1016/j.ins.2016.05.038_bib0048 article-title: A distance-based fuzzy time series model for exchange rates forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.10.034 – volume: 56 start-page: 3052 year: 2008 ident: 10.1016/j.ins.2016.05.038_bib0022 article-title: A FCM-based deterministic forecasting model for fuzzy time series publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.07.033 – volume: 180 start-page: 4772 year: 2010 ident: 10.1016/j.ins.2016.05.038_bib0029 article-title: Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy interpolation techniques publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.08.026 – volume: 294 start-page: 227 year: 2015 ident: 10.1016/j.ins.2016.05.038_bib0051 article-title: A hybrid fuzzy time series model based on granular computing for stock price forecasting publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.09.038 – volume: 3 start-page: 162 year: 2012 ident: 10.1016/j.ins.2016.05.038_bib0041 article-title: Prediction of Stock Market Index Using Genetic Algorithm publication-title: Comput. Eng. Intell. Syst. – start-page: 15 year: 1956 ident: 10.1016/j.ins.2016.05.038_bib0037 – volume: 32 start-page: 241 year: 2006 ident: 10.1016/j.ins.2016.05.038_bib0032 article-title: An evolutionary approach to the combination of multiple classifiers to predict a stock price index publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.09.020 – volume: 21 start-page: 485 year: 2006 ident: 10.1016/j.ins.2016.05.038_bib0015 article-title: Forecasting enrollments using high-order fuzzy time series and genetic algorithms publication-title: Int. J. Intell. Syst. doi: 10.1002/int.20145 – volume: 38 start-page: 10594 year: 2011 ident: 10.1016/j.ins.2016.05.038_bib0019 article-title: Multivariate fuzzy forecasting based on fuzzy time series and automatic clustering techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.098 – volume: 100 start-page: 217 year: 1998 ident: 10.1016/j.ins.2016.05.038_bib0004 article-title: Handling forecasting problems using fuzzy time series publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(97)00121-8 – volume: 380 start-page: 377 year: 2007 ident: 10.1016/j.ins.2016.05.038_bib0016 article-title: Fuzzy time-series based on Fibonacci sequence for stock price forecasting publication-title: Physica A doi: 10.1016/j.physa.2007.02.084 – volume: 36 start-page: 2143 year: 2009 ident: 10.1016/j.ins.2016.05.038_bib0021 article-title: Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and two-factor high-order fuzzy time series publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.013 – volume: 25 start-page: 67 year: 2009 ident: 10.1016/j.ins.2016.05.038_bib0005 article-title: Modified Weighted for Enrollment Forecasting Based on Fuzzy Time Series publication-title: MATEMATIKA – volume: 36 start-page: 11070 year: 2009 ident: 10.1016/j.ins.2016.05.038_bib0018 article-title: Forecasting enrollments using automatic clustering techniques and fuzzy logic relationships publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.085 – volume: 36 start-page: 10589 year: 2009 ident: 10.1016/j.ins.2016.05.038_bib0033 article-title: A new approach based on artificial neural networks for high order multivariate fuzzy time series publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.057 – volume: 74 start-page: 61 year: 2015 ident: 10.1016/j.ins.2016.05.038_bib0053 article-title: A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2014.11.003 – volume: 38 start-page: 10355 year: 2011 ident: 10.1016/j.ins.2016.05.038_bib0014 article-title: Fuzzy time series forecasting method based on Gustafson-Kessel fuzzy clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.052 – volume: 247 start-page: 62 year: 2013 ident: 10.1016/j.ins.2016.05.038_bib0046 article-title: TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machines publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.06.005 – volume: 3 start-page: 281 year: 1994 ident: 10.1016/j.ins.2016.05.038_bib0042 article-title: A stock market forecasting support system based on fuzzy logic – volume: 34 start-page: 2945 year: 2008 ident: 10.1016/j.ins.2016.05.038_bib0027 article-title: A bivariate fuzzy time series model to forecast the TAIEX publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.05.016 – year: 2006 ident: 10.1016/j.ins.2016.05.038_bib0023 – volume: 37 start-page: 5529 year: 2010 ident: 10.1016/j.ins.2016.05.038_bib0028 article-title: Corrigendum to A bivariate fuzzy time series model to forecast the TAIEX publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.03.063 – volume: 363 start-page: 481 year: 2006 ident: 10.1016/j.ins.2016.05.038_bib0039 article-title: The application of neural networks to forecast fuzzy time series publication-title: Physica A doi: 10.1016/j.physa.2005.08.014 – volume: 14 start-page: 468 year: 1996 ident: 10.1016/j.ins.2016.05.038_bib0025 article-title: Handling forecasting problem based on two-factors high-order fuzzy time series publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.876367 – volume: 54 start-page: 1 year: 1993 ident: 10.1016/j.ins.2016.05.038_bib0002 article-title: Forecasting enrollments with fuzzy time series, Part I publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(93)90355-L – volume: 19 start-page: 1 year: 2011 ident: 10.1016/j.ins.2016.05.038_bib0030 article-title: TAIEX forecasting based on fuzzy time series and fuzzy variation groups publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2010.2073712 – volume: 34 start-page: 1235 year: 2008 ident: 10.1016/j.ins.2016.05.038_bib0020 article-title: Multi-attribute fuzzy time series method based on fuzzy clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.12.013 – volume: 19 start-page: 86 year: 2014 ident: 10.1016/j.ins.2016.05.038_bib0050 article-title: A hybrid ANFIS based on n-period moving average model to forecast TAIEX stock publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.01.022 – volume: 37 start-page: 959 year: 2010 ident: 10.1016/j.ins.2016.05.038_bib0035 article-title: TAIFEX and KOSPI 200 forecasting based on two-factors high-order fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.05.081 – volume: 64 start-page: 279 year: 1994 ident: 10.1016/j.ins.2016.05.038_bib0040 article-title: A comparison of fuzzy forecasting and Markov modeling publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(94)90152-X – start-page: 217 year: 2014 ident: 10.1016/j.ins.2016.05.038_bib0054 article-title: Evolutionary computation with multi-variates hybrid multi-order fuzzy time series for stock forecasting – volume: 9 start-page: 647 year: 2009 ident: 10.1016/j.ins.2016.05.038_bib0012 article-title: A new approach for determining the length of intervals for fuzzy time series publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2008.09.002 – volume: 36 start-page: 7424 year: 2009 ident: 10.1016/j.ins.2016.05.038_bib0013 article-title: A new hybrid approach based on SARIMA and partial high order bivariate fuzzy time series forecasting model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.040 – volume: 13 start-page: 947 year: 2013 ident: 10.1016/j.ins.2016.05.038_bib0043 article-title: Support vector regression with chaos-based firefly algorithm for stock market price forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.09.024 – volume: 67 start-page: 103 year: 2008 ident: 10.1016/j.ins.2016.05.038_bib0007 article-title: Fuzzy time series model based on probabilistic approach and rough set rule induction for empirical research in stock markets publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2008.06.002 – volume: 81 start-page: 875 year: 2010 ident: 10.1016/j.ins.2016.05.038_bib0011 article-title: A high order fuzzy time series forecasting model based on adaptive expectation and artificial neural networks publication-title: Math. Comput. Simul doi: 10.1016/j.matcom.2010.09.011 – volume: 36 start-page: 328 year: 2006 ident: 10.1016/j.ins.2016.05.038_bib0006 article-title: Ratio-based lengths of intervals to improve fuzzy time series forecasting publication-title: IEEE Trans. Syst. Man. Cybern. Part B Cybern. doi: 10.1109/TSMCB.2005.857093 – volume: 81 start-page: 311 year: 1996 ident: 10.1016/j.ins.2016.05.038_bib0003 article-title: Forecasting enrollments based on fuzzy time series publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(95)00220-0 – volume: 180 start-page: 1610 year: 2010 ident: 10.1016/j.ins.2016.05.038_bib0017 article-title: A hybrid model based on rough sets theory and genetic algorithms for stock price forecasting publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.01.014 – start-page: 2301 year: 2011 ident: 10.1016/j.ins.2016.05.038_bib0031 article-title: A new method for fuzzy forecasting based on two-factors high-order fuzzy-trend logical relationship groups and particle swarm optimization techniques – volume: 45 start-page: 405 year: 2015 ident: 10.1016/j.ins.2016.05.038_bib0052 article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships publication-title: IEEE Trans. Cybern. – volume: 54 start-page: 269 year: 1993 ident: 10.1016/j.ins.2016.05.038_bib0001 article-title: Fuzzy time series and its models publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(93)90372-O – volume: 1 start-page: 106 year: 2004 ident: 10.1016/j.ins.2016.05.038_bib0036 article-title: Application of neural networks in financial data mining publication-title: Int.J. Comput. Intell. – volume: 37 start-page: 836 year: 2007 ident: 10.1016/j.ins.2016.05.038_bib0026 article-title: A multivariate heuristic model for fuzzy time-series forecasting publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2006.890303 – volume: 349 start-page: 609 year: 2004 ident: 10.1016/j.ins.2016.05.038_bib0045 article-title: Weighted fuzzy time-series models for TAIEX forecasting publication-title: Physica A doi: 10.1016/j.physa.2004.11.006 – volume: 387 start-page: 2857 year: 2008 ident: 10.1016/j.ins.2016.05.038_bib0008 article-title: A refined fuzzy time series model for stock market forecasting publication-title: Physica A doi: 10.1016/j.physa.2008.01.099 – volume: 36 start-page: 4228 year: 2009 ident: 10.1016/j.ins.2016.05.038_bib0010 article-title: Forecasting in high order fuzzy time series by using neural networks to define fuzzy relations publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.04.001 |
SSID | ssj0004766 ssib006542140 ssib007615888 ssib006542138 ssib000462208 ssib017384996 ssib002620769 |
Score | 2.5170374 |
Snippet | •The directional accuracy rate of forecasting model is first selected as performance measures.•Exponential smoothing is used to eliminate noise in the time... Financial trading is one of the most common risk investment actions in the modern economic environment because financial market systems are complex non-linear... |
SourceID | proquest crossref nii elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | Dynamical systems Error analysis Financial forecasting Forecasting Fuzzy Fuzzy time series Genetic algorithm Genetic algorithms Mean square values Nonlinear dynamics Technical analysis Time series |
Title | A novel forecasting method based on multi-order fuzzy time series and technical analysis |
URI | https://dx.doi.org/10.1016/j.ins.2016.05.038 https://cir.nii.ac.jp/crid/1870865117809378048 https://www.proquest.com/docview/1835615989 |
Volume | 367-368 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFH9Ye7GHYq3iWldSKB4Ko9nNx8wcF6msLfWksLeQZBIYkdmlu1vQQ__2vjeT0YrFg5eBZBIm5Pfy3m_I-wD4okReBC955iX-m0hrdYbkSGbeiqCcdGiVKN7556WeXsvvMzXbgLM-FobcKpPu73R6q61Tz2nazdNFXVOM77hlxMgouMj5jCLYZU5SfvLn0c0De3Tn5sEzGt3fbLY-XnVDGbtHuk3eSSEq_7dNb5q6fqarWwN0vg3vE3Nkk25xH2AjNDvw7p98gjswTFEI7JilMCPadpbO70eYTVgz_x1uGb4L3i7J5Zl1NaQZmbOK4ejWxTBrU3KyuL6_v2NUf56RqIYls03FuryvCC62upQmu3B1_u3qbJql0gqEiVplYxeEc97aEk8skhTpnSqqUQxOjT2iZIXwIhLbKhwP2jnNo84rb0faSyXFHmw28ybsA5OlHstoq4iyIJXjTric-1DGqJWPQQ6A93tqfEo7TtUvbk3vX3ZjEAZDMBiuDMIwgK8PUxZdzo2XBsseKPNEcAzahJemDRFUXBE9R6i0Co3UMy840rUCtdoAPvdwGzxwdItimzBfL3GwQM6pyqI8eN2nP8EWtbqAxkPYXP1ahyEym5U7akX3CN5OLn5ML_8CsYX2qQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH606aHrYXTdxrItmwalh4KpEv2wfQxlJV3bnDLITUiyBB7FKUtSWP_6vWfL-8FGD70YbElY6JPe-4Te-wRwrEReBC955iXuTaS1OkNyJDNvRVBOOvRKlO98M9ezr_LLUi134LzPhaGwymT7O5veWuv05SyN5tldXVOO76RlxMgouMj5chf2SJ1KDWBvenk1m_9Oj8y7I0vaKVGD_nCzDfOqGxLtHutWv5OyVP7vnnabuv7HXLc-6OIQnifyyKZd_17ATmiO4OAPScEjGKVEBHbCUqYRjTxLS_glLKesWd2HW4Zlwds1RT2z7hppRh6tYli7jTLMWlVOFrcPDz8YXUHPaLaGNbNNxTrpV8QX3zpVk1ewuPi8OJ9l6XYFgkVtsokLwjlvbYmLFnmK9E4V1TgGpyYegbJCeBGJcBWOB-2c5lHnlbdj7XGcxWsYNKsmvAEmSz2R0VYRp4NUjjvhcu5DGaNWPgY5BN6PqfFJeZwuwLg1fYjZN4MwGILBcGUQhiGc_mpy18luPFZZ9kCZv-aOQbfwWLMRgoo9oucY7VahkX3mBUfGVqBhG8KnHm6Da44OUmwTVts1VhZIO1VZlG-f9uuPsD9b3Fyb68v51Tt4RiVdfuN7GGy-b8MIic7GfUgT-ScoI_la |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+forecasting+method+based+on+multi-order+fuzzy+time+series+and+technical+analysis&rft.jtitle=Information+sciences&rft.au=Ye%2C+Furong&rft.au=Zhang%2C+Liming&rft.au=Zhang%2C+Defu&rft.au=Fujita%2C+Hamido&rft.date=2016-11-01&rft.issn=0020-0255&rft.volume=367&rft.spage=41&rft.epage=57&rft_id=info:doi/10.1016%2Fj.ins.2016.05.038&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |