Modulation of B cell receptor activation by antibody competition
During repeated virus exposure, pre-existing antibodies can mask viral epitopes by competing with B cell receptors for antigen. Although epitope masking has the potential to steer B cell responses away from conserved epitopes and toward those that are antigenically novel, the factors that influence...
Saved in:
Published in | Cell reports (Cambridge) Vol. 44; no. 7; p. 115944 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.07.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2025.115944 |
Cover
Loading…
Abstract | During repeated virus exposure, pre-existing antibodies can mask viral epitopes by competing with B cell receptors for antigen. Although epitope masking has the potential to steer B cell responses away from conserved epitopes and toward those that are antigenically novel, the factors that influence this process remain unclear. Using engineered, influenza-reactive B cells, we investigate how antibodies affect the accessibility of epitopes on the viral surface. We find that antibodies against either hemagglutinin or neuraminidase frequently inhibit B cell activation, including, in some instances, B cells targeting the other viral surface protein. Within hemagglutinin, the potency of masking depends on the proximity and relative location of the targeted epitopes as well as antibody affinity, kinetics, and valency. Although most antibodies are inhibitory, we identify one that can enhance accessibility of sites within the hemagglutinin trimer interface. Together, these findings establish rules for epitope masking that could help advance immunogen design.
[Display omitted]
•B cells targeting HA epitopes are sensitive to direct antibody competition•Membrane-proximal epitopes on HA are subject to both direct and indirect masking•HA-stalk antibodies can inhibit activation of B cells targeting NA•Slow antibody dissociation kinetics enhance the potency of epitope masking
Antibodies from prior exposure to influenza viruses affect immune responses during subsequent encounters. He et al. establish an in vitro system that mimics B cell extraction of viral antigens and use it to study principles of epitope masking, demonstrating a dynamic competition between soluble antibodies and B cell receptors. |
---|---|
AbstractList | During repeated virus exposure, pre-existing antibodies can mask viral epitopes by competing with B cell receptors for antigen. Although epitope masking has the potential to steer B cell responses away from conserved epitopes and toward those that are antigenically novel, the factors that influence this process remain unclear. Using engineered, influenza-reactive B cells, we investigate how antibodies affect the accessibility of epitopes on the viral surface. We find that antibodies against either hemagglutinin or neuraminidase frequently inhibit B cell activation, including, in some instances, B cells targeting the other viral surface protein. Within hemagglutinin, the potency of masking depends on the proximity and relative location of the targeted epitopes as well as antibody affinity, kinetics, and valency. Although most antibodies are inhibitory, we identify one that can enhance accessibility of sites within the hemagglutinin trimer interface. Together, these findings establish rules for epitope masking that could help advance immunogen design.
[Display omitted]
•B cells targeting HA epitopes are sensitive to direct antibody competition•Membrane-proximal epitopes on HA are subject to both direct and indirect masking•HA-stalk antibodies can inhibit activation of B cells targeting NA•Slow antibody dissociation kinetics enhance the potency of epitope masking
Antibodies from prior exposure to influenza viruses affect immune responses during subsequent encounters. He et al. establish an in vitro system that mimics B cell extraction of viral antigens and use it to study principles of epitope masking, demonstrating a dynamic competition between soluble antibodies and B cell receptors. During repeated virus exposure, pre-existing antibodies can mask viral epitopes by competing with B cell receptors for antigen. Although epitope masking has the potential to steer B cell responses away from conserved epitopes and toward those that are antigenically novel, the factors that influence this process remain unclear. Using engineered, influenza-reactive B cells, we investigate how antibodies affect the accessibility of epitopes on the viral surface. We find that antibodies against either hemagglutinin or neuraminidase frequently inhibit B cell activation, including, in some instances, B cells targeting the other viral surface protein. Within hemagglutinin, the potency of masking depends on the proximity and relative location of the targeted epitopes as well as antibody affinity, kinetics, and valency. Although most antibodies are inhibitory, we identify one that can enhance accessibility of sites within the hemagglutinin trimer interface. Together, these findings establish rules for epitope masking that could help advance immunogen design. During repeated virus exposure, pre-existing antibodies can mask viral epitopes by competing with B cell receptors for antigen. Although epitope masking has the potential to steer B cell responses away from conserved epitopes and toward those that are antigenically novel, the factors that influence this process remain unclear. Using engineered, influenza-reactive B cells, we investigate how antibodies affect the accessibility of epitopes on the viral surface. We find that antibodies against either hemagglutinin or neuraminidase frequently inhibit B cell activation, including, in some instances, B cells targeting the other viral surface protein. Within hemagglutinin, the potency of masking depends on the proximity and relative location of the targeted epitopes as well as antibody affinity, kinetics, and valency. Although most antibodies are inhibitory, we identify one that can enhance accessibility of sites within the hemagglutinin trimer interface. Together, these findings establish rules for epitope masking that could help advance immunogen design.During repeated virus exposure, pre-existing antibodies can mask viral epitopes by competing with B cell receptors for antigen. Although epitope masking has the potential to steer B cell responses away from conserved epitopes and toward those that are antigenically novel, the factors that influence this process remain unclear. Using engineered, influenza-reactive B cells, we investigate how antibodies affect the accessibility of epitopes on the viral surface. We find that antibodies against either hemagglutinin or neuraminidase frequently inhibit B cell activation, including, in some instances, B cells targeting the other viral surface protein. Within hemagglutinin, the potency of masking depends on the proximity and relative location of the targeted epitopes as well as antibody affinity, kinetics, and valency. Although most antibodies are inhibitory, we identify one that can enhance accessibility of sites within the hemagglutinin trimer interface. Together, these findings establish rules for epitope masking that could help advance immunogen design. |
ArticleNumber | 115944 |
Author | Vahey, Michael D. Guo, Zijian He, Yuanyuan |
Author_xml | – sequence: 1 givenname: Yuanyuan orcidid: 0000-0002-1254-318X surname: He fullname: He, Yuanyuan organization: Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA – sequence: 2 givenname: Zijian surname: Guo fullname: Guo, Zijian organization: Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA – sequence: 3 givenname: Michael D. surname: Vahey fullname: Vahey, Michael D. email: mvahey@wustl.edu organization: Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40652512$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v2zAMFYoW_cw_GAYfd0kqypJsX4ZuRdsV6LDLdhZkiRoUOJYnKQHy76fUXdDTeCFBPT6R712R0zGMSMgHoCugIG_XK4NDxGnFKBMrANFxfkIuGQNYAuPN6bv6gixSWtMSkgJ0_JxccCoFE8Auyd33YLeDzj6MVXDV16rwDlVEg1MOsdIm-9382u8rPWbfB7uvTNhMmP2hf0POnB4SLt7yNfn1-PDz_tvy5cfT8_2Xl6XhTOQlY53hRrYgLJOWOSi1EI1obeu0xKbmTBotoTXcaSE0dbUtS0DttOGdwPqaPM-8Nui1mqLf6LhXQXv12gjxt9IxezOgqqEWvQPmUGjeYNeLhuvWWpCt45TTwvVp5ppi-LPFlNXGp8PhesSwTaou23aUtjUv0I9v0G2_QXv8-J-CBcBngIkhpYjuCAGqDl6ptZq9Ugev1OxVGfs8j2HRbOcxqmQ8jgatL-LncpT_P8FfHlScJA |
Cites_doi | 10.1126/sciimmunol.aax0644 10.1073/pnas.1707950114 10.1073/pnas.1906613117 10.1371/journal.pbio.3002415 10.1073/pnas.2200821119 10.1038/ni.1946 10.1016/j.cell.2019.03.048 10.1371/journal.pone.0080034 10.1038/s42003-021-02995-1 10.1073/pnas.0507705102 10.1038/s41598-018-28706-1 10.1016/j.immuni.2024.06.009 10.3390/v13060965 10.1038/s41564-019-0392-y 10.1016/j.cell.2019.03.016 10.1038/35078099 10.1016/j.ymthe.2017.08.006 10.1016/j.it.2017.08.003 10.1098/rstb.2014.0248 10.7554/eLife.43322 10.1093/infdis/jiy696 10.1186/s12929-015-0200-9 10.1016/j.cell.2019.04.011 10.1038/nature11414 10.1073/pnas.1810927115 10.1038/nm.4224 10.1016/j.virusres.2009.05.010 10.1128/mbio.03591-22 10.1021/acscentsci.2c00981 10.1038/ni.3392 10.1126/scitranslmed.aad0522 10.1016/j.chom.2020.07.001 10.1128/JVI.02278-13 10.1126/sciimmunol.adj9534 10.1371/journal.ppat.1000350 10.1126/science.1248943 10.1073/pnas.96.16.9345 10.1038/s41577-019-0143-6 10.1073/pnas.1212371109 10.1126/science.1222908 10.1172/JCI146791 10.1126/science.1237572 10.1016/j.immuni.2021.07.015 10.1073/pnas.1414070111 10.1016/j.cell.2015.06.026 10.1038/s41586-021-04356-8 10.1128/mBio.02332-17 10.1126/science.aay0678 10.1126/science.1171491 10.1038/s41586-022-05609-w 10.1016/j.cell.2018.10.056 10.1038/s41467-023-36672-0 10.1016/j.chom.2022.06.006 10.7554/eLife.71393 10.1084/jem.20181624 10.1038/srep36298 10.1093/protein/gzw040 10.1038/ncomms7114 10.1016/j.cell.2016.06.043 10.1038/s41577-019-0244-2 10.1126/science.1373518 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. Copyright © 2025. Published by Elsevier Inc. |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright © 2025. Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2025.115944 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | oai_doaj_org_article_3135bf12fe5a47e9b574a8dd168f4040 40652512 10_1016_j_celrep_2025_115944 S2211124725007156 |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 457 53G 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAMRU AAXUO AAYWO ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 O-L O9- OK1 ROL SSZ AAYXX CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c425t-229c4c6815d26d2f1c6855758d8fa6e73426ca618c4fa55a0f3dece13fac495e3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:15:42 EDT 2025 Fri Sep 05 15:41:41 EDT 2025 Wed Jul 30 01:50:01 EDT 2025 Wed Aug 20 23:59:45 EDT 2025 Sat Sep 06 17:13:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | CP: Immunology influenza virus antibody B cell receptor epitope masking multivalency |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-229c4c6815d26d2f1c6855758d8fa6e73426ca618c4fa55a0f3dece13fac495e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1254-318X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2025.115944 |
PMID | 40652512 |
PQID | 3229900834 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3135bf12fe5a47e9b574a8dd168f4040 proquest_miscellaneous_3229900834 pubmed_primary_40652512 crossref_primary_10_1016_j_celrep_2025_115944 elsevier_sciencedirect_doi_10_1016_j_celrep_2025_115944 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-22 |
PublicationDateYYYYMMDD | 2025-07-22 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Phillips, Lawrence, Moulana, Dupic, Chang, Johnson, Cvijovic, Mora, Walczak, Desai (bib36) 2021; 10 Yang, Van Beek, Wang, Muecksch, Canis, Hatziioannou, Bieniasz, Nussenzweig, Chakraborty (bib9) 2023; 42 Krammer (bib14) 2019; 19 Kosik, Angeletti, Gibbs, Angel, Takeda, Kosikova, Nair, Hickman, Xie, Brooke, Yewdell (bib55) 2019; 216 Tzeng, Li, Wang (bib34) 2015; 22 Maamary, Wang, Tan, Palese, Ravetch (bib61) 2017; 114 Yoshida, Igarashi, Ozaki, Kishida, Tomabechi, Kida, Ito, Takada (bib26) 2009; 5 Yin, Straight, McLoughlin, Zhou, Lin, Golan, Kelleher, Kolter, Walsh (bib65) 2005; 102 Brandenburg, Koudstaal, Goudsmit, Klaren, Tang, Bujny, Korse, Kwaks, Otterstrom, Juraszek (bib42) 2013; 8 Akkaya, Kwak, Pierce (bib3) 2020; 20 Batista, Iber, Neuberger (bib28) 2001; 411 Al-Aghbar, Jainarayanan, Dustin, Roffler (bib31) 2022; 5 Zhu, Han, Sun, Puente-Massaguer, Yu, Palese, Krammer, Ward, Wilson (bib47) 2022; 119 Zost, Wu, Hensley, Wilson (bib16) 2019; 219 Liang, Lindgren, Lin, Thompson, Ols, Röhss, John, Hassett, Yuzhakov, Bahl (bib40) 2017; 25 Schlothauer, Herter, Koller, Grau-Richards, Steinhart, Spick, Kubbies, Klein, Umaña, Mössner (bib35) 2016; 29 Kosik, Da Silva Santos, Angel, Hu, Holly, Gibbs, Gill, Kosikova, Li, Bakhache (bib56) 2024; 9 Simmons, Watanabe, Oguin III, Van Itallie, Wiehe, Sempowski, Kuraoka, Kelsoe, McCarthy (bib49) 2023; 21 Natkanski, Lee, Mistry, Casal, Molloy, Tolar (bib27) 2013; 340 Zost, Dong, Gilchuk, Gilchuk, Thornburg, Bangaru, Kose, Finn, Bombardi, Soto (bib46) 2021; 131 Caldera, Tsai, Trieu, Gonzalez, Hajam, Du, Lin, Liu (bib13) 2024; 5 Tsai, Caldera, Hajam, Chiang, Tsai, Li, Díez, Gonzalez, Trieu, Martins (bib12) 2022; 30 Henry, Palm, Krammer, Wilson (bib6) 2018; 39 Ferapontov, Omer, Baudrexel, Nielsen, Dupont, Juul-Madsen, Steen, Eklund, Thiel, Vorup-Jensen (bib29) 2023; 14 Ekiert, Bhabha, Elsliger, Friesen, Jongeneelen, Throsby, Goudsmit, Wilson (bib58) 2009; 324 Krammer, Fouchier, Eichelberger, Webby, Shaw-Saliba, Wan, Wilson, Compans, Skountzou, Monto (bib51) 2018; 9 Guo, He, Xu, Benegal, Brody, Vahey (bib64) 2023; 14 Wang, Maamary, Tan, Bournazos, Davis, Krammer, Schlesinger, Palese, Ahmed, Ravetch (bib59) 2015; 162 Zarnitsyna, Ellebedy, Davis, Jacob, Ahmed, Antia (bib5) 2015; 370 Joyce, Wheatley, Thomas, Chuang, Soto, Bailer, Druz, Georgiev, Gillespie, Kanekiyo (bib50) 2016; 166 He, Guo, Subiaur, Benegal, Vahey (bib41) 2023 Cyster (bib39) 2010; 11 Murin, Wilson, Ward (bib1) 2019; 4 Charles, Janeway, Travers, Walport, Shlomchik (bib30) 2001 Ellebedy, Krammer, Li, Miller, Chiu, Wrammert, Chang, Davis, McCausland, Elbein (bib10) 2014; 111 Guthmiller, Han, Utset, Li, Lan, Henry, Stamper, McMahon, O’Dell, Fernández-Quintero (bib37) 2022; 602 Yang, Chang, Guo, Carney, Shore, Donis, Cox, Villanueva, Klimov, Stevens (bib48) 2014; 88 Cyster, Allen (bib4) 2019; 177 Stadlbauer, Zhu, McMahon, Turner, Wohlbold, Schmitz, Strohmeier, Yu, Nachbagauer, Mudd (bib52) 2019; 366 Moffett, Harms, Fitzpatrick, Tooley, Boonyaratanakornkit, Taylor (bib20) 2019; 4 Chang, Fernandes, Ganzinger, Lee, Siebold, McColl, Jönsson, Palayret, Harlos, Coles (bib32) 2016; 17 Villar, Patel, Weaver, Kanekiyo, Wheatley, Yassine, Costello, Chandler, McTamney, Nabel (bib33) 2016; 6 Diebolder, Beurskens, de Jong, Koning, Strumane, Lindorfer, Voorhorst, Ugurlar, Rosati, Heck (bib57) 2014; 343 Benton, Nans, Calder, Turner, Neu, Lin, Ketelaars, Kallewaard, Corti, Lanzavecchia (bib24) 2018; 115 Andrews, Huang, Kaur, Popova, Ho, Pauli, Henry Dunand, Taylor, Lim, Huang (bib18) 2015; 7 Nayak, Balogun, Yamada, Zhou, Barman (bib53) 2009; 143 Cyster, Wilson (bib19) 2024; 57 Dreyfus, Laursen, Kwaks, Zuijdgeest, Khayat, Ekiert, Lee, Metlagel, Bujny, Jongeneelen (bib23) 2012; 337 Wan, Yang, Shore, Garten, Couzens, Gao, Jiang, Carney, Villanueva, Stevens, Eichelberger (bib54) 2015; 6 Young, Brink (bib2) 2021; 54 Schaefer-Babajew, Wang, Muecksch, Cho, Loewe, Cipolla, Raspe, Johnson, Canis, DaSilva (bib8) 2023; 613 Watanabe, McCarthy, Kuraoka, Schmidt, Adachi, Onodera, Tonouchi, Caradonna, Bajic, Song (bib45) 2019; 177 Neumann, Watanabe, Ito, Watanabe, Goto, Gao, Hughes, Perez, Donis, Hoffmann (bib62) 1999; 96 Ellebedy, Nachbagauer, Jackson, Dai, Han, Alsoussi, Davis, Stadlbauer, Rouphael, Chromikova (bib7) 2020; 117 Bangaru, Lang, Schotsaert, Vanderven, Zhu, Kose, Bombardi, Finn, Kent, Gilchuk (bib43) 2019; 177 Carter, Fearon (bib60) 1992; 256 McNamara, Idris, Sutton, Vistein, Flynn, Cai, Wiehe, Lyke, Chatterjee, Kc (bib11) 2020; 28 Guthmiller, Utset, Wilson (bib15) 2021; 13 Ekiert, Kashyap, Steel, Rubrum, Bhabha, Khayat, Lee, Dillon, O’Neil, Faynboym (bib21) 2012; 489 Lee, Boutz, Chromikova, Joyce, Vollmers, Leung, Horton, DeKosky, Lee, Lavinder (bib44) 2016; 22 Kirkpatrick, Qiu, Wilson, Bahl, Krammer (bib17) 2018; 8 Lee, Yoshida, Ekiert, Sakai, Suzuki, Takada, Wilson (bib25) 2012; 109 Casalino, Seitz, Lederhofer, Tsybovsky, Wilson, Kanekiyo, Amaro (bib38) 2022; 8 Vahey, Fletcher (bib63) 2019; 176 Andrews, Boeckman, Manning, Nguyen, Bechtold, Dumitras, Gong, Nguyen, van der List, Murray (bib22) 2019; 8 Zost (10.1016/j.celrep.2025.115944_bib46) 2021; 131 Zarnitsyna (10.1016/j.celrep.2025.115944_bib5) 2015; 370 Yang (10.1016/j.celrep.2025.115944_bib9) 2023; 42 Carter (10.1016/j.celrep.2025.115944_bib60) 1992; 256 Watanabe (10.1016/j.celrep.2025.115944_bib45) 2019; 177 Charles (10.1016/j.celrep.2025.115944_bib30) 2001 Al-Aghbar (10.1016/j.celrep.2025.115944_bib31) 2022; 5 Brandenburg (10.1016/j.celrep.2025.115944_bib42) 2013; 8 Yoshida (10.1016/j.celrep.2025.115944_bib26) 2009; 5 Stadlbauer (10.1016/j.celrep.2025.115944_bib52) 2019; 366 Akkaya (10.1016/j.celrep.2025.115944_bib3) 2020; 20 Cyster (10.1016/j.celrep.2025.115944_bib4) 2019; 177 Dreyfus (10.1016/j.celrep.2025.115944_bib23) 2012; 337 Andrews (10.1016/j.celrep.2025.115944_bib18) 2015; 7 Ferapontov (10.1016/j.celrep.2025.115944_bib29) 2023; 14 Villar (10.1016/j.celrep.2025.115944_bib33) 2016; 6 Wan (10.1016/j.celrep.2025.115944_bib54) 2015; 6 Andrews (10.1016/j.celrep.2025.115944_bib22) 2019; 8 Krammer (10.1016/j.celrep.2025.115944_bib51) 2018; 9 Simmons (10.1016/j.celrep.2025.115944_bib49) 2023; 21 Neumann (10.1016/j.celrep.2025.115944_bib62) 1999; 96 Cyster (10.1016/j.celrep.2025.115944_bib39) 2010; 11 Ekiert (10.1016/j.celrep.2025.115944_bib58) 2009; 324 Natkanski (10.1016/j.celrep.2025.115944_bib27) 2013; 340 Batista (10.1016/j.celrep.2025.115944_bib28) 2001; 411 Kosik (10.1016/j.celrep.2025.115944_bib55) 2019; 216 Cyster (10.1016/j.celrep.2025.115944_bib19) 2024; 57 Tzeng (10.1016/j.celrep.2025.115944_bib34) 2015; 22 Yin (10.1016/j.celrep.2025.115944_bib65) 2005; 102 Tsai (10.1016/j.celrep.2025.115944_bib12) 2022; 30 Caldera (10.1016/j.celrep.2025.115944_bib13) 2024; 5 Ellebedy (10.1016/j.celrep.2025.115944_bib7) 2020; 117 Phillips (10.1016/j.celrep.2025.115944_bib36) 2021; 10 Zhu (10.1016/j.celrep.2025.115944_bib47) 2022; 119 Lee (10.1016/j.celrep.2025.115944_bib44) 2016; 22 Guo (10.1016/j.celrep.2025.115944_bib64) 2023; 14 Guthmiller (10.1016/j.celrep.2025.115944_bib37) 2022; 602 Wang (10.1016/j.celrep.2025.115944_bib59) 2015; 162 Joyce (10.1016/j.celrep.2025.115944_bib50) 2016; 166 Krammer (10.1016/j.celrep.2025.115944_bib14) 2019; 19 Diebolder (10.1016/j.celrep.2025.115944_bib57) 2014; 343 McNamara (10.1016/j.celrep.2025.115944_bib11) 2020; 28 Ekiert (10.1016/j.celrep.2025.115944_bib21) 2012; 489 Vahey (10.1016/j.celrep.2025.115944_bib63) 2019; 176 Moffett (10.1016/j.celrep.2025.115944_bib20) 2019; 4 Benton (10.1016/j.celrep.2025.115944_bib24) 2018; 115 Young (10.1016/j.celrep.2025.115944_bib2) 2021; 54 Kosik (10.1016/j.celrep.2025.115944_bib56) 2024; 9 Casalino (10.1016/j.celrep.2025.115944_bib38) 2022; 8 Murin (10.1016/j.celrep.2025.115944_bib1) 2019; 4 Bangaru (10.1016/j.celrep.2025.115944_bib43) 2019; 177 Yang (10.1016/j.celrep.2025.115944_bib48) 2014; 88 Schlothauer (10.1016/j.celrep.2025.115944_bib35) 2016; 29 He (10.1016/j.celrep.2025.115944_bib41) 2023 Lee (10.1016/j.celrep.2025.115944_bib25) 2012; 109 Henry (10.1016/j.celrep.2025.115944_bib6) 2018; 39 Chang (10.1016/j.celrep.2025.115944_bib32) 2016; 17 Maamary (10.1016/j.celrep.2025.115944_bib61) 2017; 114 Schaefer-Babajew (10.1016/j.celrep.2025.115944_bib8) 2023; 613 Guthmiller (10.1016/j.celrep.2025.115944_bib15) 2021; 13 Ellebedy (10.1016/j.celrep.2025.115944_bib10) 2014; 111 Nayak (10.1016/j.celrep.2025.115944_bib53) 2009; 143 Kirkpatrick (10.1016/j.celrep.2025.115944_bib17) 2018; 8 Liang (10.1016/j.celrep.2025.115944_bib40) 2017; 25 Zost (10.1016/j.celrep.2025.115944_bib16) 2019; 219 39605386 - bioRxiv. 2024 Nov 21:2024.11.18.624200. doi: 10.1101/2024.11.18.624200. |
References_xml | – volume: 96 start-page: 9345 year: 1999 end-page: 9350 ident: bib62 article-title: Generation of influenza A viruses entirely from cloned cDNAs publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 year: 2021 ident: bib36 article-title: Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies publication-title: eLife – volume: 14 start-page: 976 year: 2023 ident: bib29 article-title: Antigen footprint governs activation of the B cell receptor publication-title: Nat. Commun. – volume: 117 start-page: 17957 year: 2020 end-page: 17964 ident: bib7 article-title: Adjuvanted H5N1 influenza vaccine enhances both cross-reactive memory B cell and strain-specific naive B cell responses in humans | PNAS publication-title: Proc. Natl. Acad. Sci. USA – volume: 324 start-page: 246 year: 2009 end-page: 251 ident: bib58 article-title: Antibody Recognition of a Highly Conserved Influenza Virus Epitope | Science publication-title: Science – volume: 256 start-page: 105 year: 1992 end-page: 107 ident: bib60 article-title: CD19: Lowering the Threshold for Antigen Receptor Stimulation of B Lymphocytes | Science publication-title: Science – volume: 177 start-page: 524 year: 2019 end-page: 540 ident: bib4 article-title: B cell responses – Cell interaction dynamics and decisions publication-title: Cell – volume: 7 start-page: 316ra192 year: 2015 ident: bib18 article-title: Immune history profoundly affects broadly protective B cell responses to influenza publication-title: Sci. Transl. Med. – volume: 4 year: 2019 ident: bib20 article-title: B cells engineered to express pathogen-specific antibodies protect against infection publication-title: Sci. Immunol. – volume: 22 start-page: 87 year: 2015 ident: bib34 article-title: FcγRIIB mediates antigen-independent inhibition on human B lymphocytes through Btk and p38 MAPK publication-title: J. Biomed. Sci. – volume: 219 start-page: S38 year: 2019 end-page: S45 ident: bib16 article-title: Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens publication-title: J. Infect. Dis. – volume: 119 year: 2022 ident: bib47 article-title: Influenza chimeric hemagglutinin structures in complex with broadly protective antibodies to the stem and trimer interface publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 year: 2023 ident: bib64 article-title: Neuraminidase Activity Modulates Cellular Coinfection during Influenza A Virus Multicycle Growth publication-title: mBio – volume: 143 start-page: 147 year: 2009 end-page: 161 ident: bib53 article-title: Influenza virus morphogenesis and budding publication-title: Virus Res. – volume: 337 start-page: 1343 year: 2012 end-page: 1348 ident: bib23 article-title: Highly Conserved Protective Epitopes on Influenza B Viruses publication-title: Science – volume: 6 start-page: 6114 year: 2015 ident: bib54 article-title: Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers publication-title: Nat. Commun. – volume: 115 start-page: 10112 year: 2018 end-page: 10117 ident: bib24 article-title: Influenza hemagglutinin membrane anchor publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 year: 2024 ident: bib13 article-title: The characteristics of pre-existing humoral imprint determine efficacy of publication-title: Cell Rep. Med. – volume: 114 start-page: 10172 year: 2017 end-page: 10177 ident: bib61 article-title: Increasing the breadth and potency of response to the seasonal influenza virus vaccine by immune complex immunization publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 year: 2009 ident: bib26 article-title: Cross-Protective Potential of a Novel Monoclonal Antibody Directed against Antigenic Site B of the Hemagglutinin of Influenza A Viruses publication-title: PLoS Pathog. – volume: 6 year: 2016 ident: bib33 article-title: Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation publication-title: Sci. Rep. – volume: 21 year: 2023 ident: bib49 article-title: A new class of antibodies that overcomes a steric barrier to cross-group neutralization of influenza viruses | PLOS Biology publication-title: PLoS Biol. – volume: 131 year: 2021 ident: bib46 article-title: Canonical features of human antibodies recognizing the influenza hemagglutinin trimer interface publication-title: J. Clin. Investig. – volume: 11 start-page: 989 year: 2010 end-page: 996 ident: bib39 article-title: B cell follicles and antigen encounters of the third kind publication-title: Nat. Immunol. – volume: 8 year: 2019 ident: bib22 article-title: A toolbox of IgG subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain publication-title: eLife – volume: 366 start-page: 499 year: 2019 end-page: 504 ident: bib52 article-title: Broadly protective human antibodies that target the active site of influenza virus neuraminidase publication-title: Science – volume: 42 year: 2023 ident: bib9 article-title: Antigen presentation dynamics shape the antibody response to variants like SARS-CoV-2 Omicron after multiple vaccinations with the original strain publication-title: Cell Rep. – volume: 9 year: 2018 ident: bib51 article-title: NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza Virus Vaccines? publication-title: mBio – volume: 370 year: 2015 ident: bib5 article-title: Masking of antigenic epitopes by antibodies shapes the humoral immune response to influenza publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 39 start-page: 70 year: 2018 end-page: 79 ident: bib6 article-title: From Original Antigenic Sin to the Universal Influenza Virus Vaccine publication-title: Trends Immunol. – volume: 30 start-page: 1163 year: 2022 end-page: 1172 ident: bib12 article-title: Non-protective immune imprint underlies failure of publication-title: Cell Host Microbe – volume: 9 year: 2024 ident: bib56 article-title: C1q enables influenza hemagglutinin stem binding antibodies to block viral attachment and broadens the antibody escape repertoire publication-title: Sci. Immunol. – volume: 176 start-page: 281 year: 2019 end-page: 294 ident: bib63 article-title: Low fidelity assembly of influenza A virus promotes escape from host cells publication-title: Cell – volume: 489 start-page: 526 year: 2012 end-page: 532 ident: bib21 article-title: Cross-neutralization of influenza A viruses mediated by a single antibody loop publication-title: Nature – volume: 4 start-page: 734 year: 2019 end-page: 747 ident: bib1 article-title: Antibody responses to viral infections: a structural perspective across three different enveloped viruses publication-title: Nat. Microbiol. – volume: 177 start-page: 1124 year: 2019 end-page: 1135 ident: bib45 article-title: Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG Subtype-Dependent Mechanism publication-title: Cell – volume: 88 start-page: 4828 year: 2014 end-page: 4838 ident: bib48 article-title: Structural Stability of Influenza A(H1N1)pdm09 Virus Hemagglutinins publication-title: J. Virol. – volume: 166 start-page: 609 year: 2016 end-page: 623 ident: bib50 article-title: Vaccine-Induced Antibodies that Neutralize Group 1 and 2 Influenza A Viruses publication-title: Cell – volume: 19 start-page: 383 year: 2019 end-page: 397 ident: bib14 article-title: The human antibody response to influenza A virus infection and vaccination publication-title: Nat. Rev. Immunol. – volume: 13 start-page: 965 year: 2021 ident: bib15 article-title: B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat publication-title: Viruses – volume: 57 start-page: 1466 year: 2024 end-page: 1481 ident: bib19 article-title: Antibody modulation of B cell responses—Incorporating positive and negative feedback publication-title: Immunity – volume: 613 start-page: 735 year: 2023 end-page: 742 ident: bib8 article-title: Antibody feedback regulates immune memory after SARS-CoV-2 mRNA vaccination publication-title: Nature – volume: 216 start-page: 304 year: 2019 end-page: 316 ident: bib55 article-title: Neuraminidase inhibition contributes to influenza A virus neutralization by anti-hemagglutinin stem antibodies publication-title: J. Exp. Med. – volume: 411 start-page: 489 year: 2001 end-page: 494 ident: bib28 article-title: B cells acquire antigen from target cells after synapse formation publication-title: Nature – volume: 29 start-page: 457 year: 2016 end-page: 466 ident: bib35 article-title: Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions publication-title: Protein Eng. Des. Sel. – volume: 28 start-page: 572 year: 2020 end-page: 585 ident: bib11 article-title: Antibody Feedback Limits the Expansion of B Cell Responses to Malaria Vaccination but Drives Diversification of the Humoral Response publication-title: Cell Host Microbe – volume: 340 start-page: 1587 year: 2013 end-page: 1590 ident: bib27 article-title: B cells use mechanical energy to discriminate antigen affinities publication-title: Science – volume: 602 start-page: 314 year: 2022 end-page: 320 ident: bib37 article-title: Broadly neutralizing antibodies target a haemagglutinin anchor epitope publication-title: Nature – volume: 8 year: 2018 ident: bib17 article-title: The influenza virus hemagglutinin head evolves faster than the stalk domain publication-title: Sci. Rep. – year: 2001 ident: bib30 article-title: Antigen receptor structure and signaling pathways publication-title: Immunobiology: The Immune System in Health and Disease – volume: 54 start-page: 1652 year: 2021 end-page: 1664 ident: bib2 article-title: The unique biology of germinal center B cells publication-title: Immunity – volume: 5 start-page: 40 year: 2022 ident: bib31 article-title: The interplay between membrane topology and mechanical forces in regulating T cell receptor activity publication-title: Commun. Biol. – volume: 8 year: 2013 ident: bib42 article-title: Mechanisms of Hemagglutinin Targeted Influenza Virus Neutralization publication-title: PLoS One – volume: 17 start-page: 574 year: 2016 end-page: 582 ident: bib32 article-title: Initiation of T cell signaling by CD45 segregation at “close contacts” publication-title: Nat. Immunol. – volume: 8 start-page: 1646 year: 2022 end-page: 1663 ident: bib38 article-title: Breathing and Tilting: Mesoscale Simulations Illuminate Influenza Glycoprotein Vulnerabilities publication-title: ACS Cent. Sci. – volume: 109 start-page: 17040 year: 2012 end-page: 17045 ident: bib25 article-title: Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity publication-title: Proc. Natl. Acad. Sci. USA – year: 2023 ident: bib41 article-title: Antibody Inhibition of Influenza A Virus Assembly and Release publication-title: bioRxiv – volume: 343 start-page: 1260 year: 2014 end-page: 1263 ident: bib57 article-title: Complement Is Activated by IgG Hexamers Assembled at the Cell Surface publication-title: Science – volume: 22 start-page: 1456 year: 2016 end-page: 1464 ident: bib44 article-title: Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination publication-title: Nat. Med. – volume: 102 start-page: 15815 year: 2005 end-page: 15820 ident: bib65 article-title: Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase publication-title: Proc. Natl. Acad. Sci. – volume: 25 start-page: 2635 year: 2017 end-page: 2647 ident: bib40 article-title: Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques publication-title: Mol. Ther. – volume: 20 start-page: 229 year: 2020 end-page: 238 ident: bib3 article-title: B cell memory: building two walls of protection against pathogens publication-title: Nat. Rev. Immunol. – volume: 111 start-page: 13133 year: 2014 end-page: 13138 ident: bib10 article-title: Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans publication-title: Proc. Natl. Acad. Sci. USA – volume: 177 start-page: 1136 year: 2019 end-page: 1152 ident: bib43 article-title: A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface publication-title: Cell – volume: 162 start-page: 160 year: 2015 end-page: 169 ident: bib59 article-title: Anti-HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy publication-title: Cell – volume: 4 year: 2019 ident: 10.1016/j.celrep.2025.115944_bib20 article-title: B cells engineered to express pathogen-specific antibodies protect against infection publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aax0644 – volume: 114 start-page: 10172 year: 2017 ident: 10.1016/j.celrep.2025.115944_bib61 article-title: Increasing the breadth and potency of response to the seasonal influenza virus vaccine by immune complex immunization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1707950114 – volume: 117 start-page: 17957 year: 2020 ident: 10.1016/j.celrep.2025.115944_bib7 article-title: Adjuvanted H5N1 influenza vaccine enhances both cross-reactive memory B cell and strain-specific naive B cell responses in humans | PNAS publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1906613117 – volume: 21 year: 2023 ident: 10.1016/j.celrep.2025.115944_bib49 article-title: A new class of antibodies that overcomes a steric barrier to cross-group neutralization of influenza viruses | PLOS Biology publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3002415 – volume: 5 year: 2024 ident: 10.1016/j.celrep.2025.115944_bib13 article-title: The characteristics of pre-existing humoral imprint determine efficacy of S. aureus vaccines and support alternative vaccine approaches publication-title: Cell Rep. Med. – volume: 119 year: 2022 ident: 10.1016/j.celrep.2025.115944_bib47 article-title: Influenza chimeric hemagglutinin structures in complex with broadly protective antibodies to the stem and trimer interface publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2200821119 – volume: 11 start-page: 989 year: 2010 ident: 10.1016/j.celrep.2025.115944_bib39 article-title: B cell follicles and antigen encounters of the third kind publication-title: Nat. Immunol. doi: 10.1038/ni.1946 – volume: 177 start-page: 1124 year: 2019 ident: 10.1016/j.celrep.2025.115944_bib45 article-title: Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG Subtype-Dependent Mechanism publication-title: Cell doi: 10.1016/j.cell.2019.03.048 – volume: 8 year: 2013 ident: 10.1016/j.celrep.2025.115944_bib42 article-title: Mechanisms of Hemagglutinin Targeted Influenza Virus Neutralization publication-title: PLoS One doi: 10.1371/journal.pone.0080034 – volume: 5 start-page: 40 year: 2022 ident: 10.1016/j.celrep.2025.115944_bib31 article-title: The interplay between membrane topology and mechanical forces in regulating T cell receptor activity publication-title: Commun. Biol. doi: 10.1038/s42003-021-02995-1 – volume: 102 start-page: 15815 year: 2005 ident: 10.1016/j.celrep.2025.115944_bib65 article-title: Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0507705102 – volume: 8 year: 2018 ident: 10.1016/j.celrep.2025.115944_bib17 article-title: The influenza virus hemagglutinin head evolves faster than the stalk domain publication-title: Sci. Rep. doi: 10.1038/s41598-018-28706-1 – volume: 57 start-page: 1466 year: 2024 ident: 10.1016/j.celrep.2025.115944_bib19 article-title: Antibody modulation of B cell responses—Incorporating positive and negative feedback publication-title: Immunity doi: 10.1016/j.immuni.2024.06.009 – volume: 13 start-page: 965 year: 2021 ident: 10.1016/j.celrep.2025.115944_bib15 article-title: B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat publication-title: Viruses doi: 10.3390/v13060965 – volume: 4 start-page: 734 year: 2019 ident: 10.1016/j.celrep.2025.115944_bib1 article-title: Antibody responses to viral infections: a structural perspective across three different enveloped viruses publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0392-y – volume: 177 start-page: 524 year: 2019 ident: 10.1016/j.celrep.2025.115944_bib4 article-title: B cell responses – Cell interaction dynamics and decisions publication-title: Cell doi: 10.1016/j.cell.2019.03.016 – volume: 411 start-page: 489 year: 2001 ident: 10.1016/j.celrep.2025.115944_bib28 article-title: B cells acquire antigen from target cells after synapse formation publication-title: Nature doi: 10.1038/35078099 – volume: 25 start-page: 2635 year: 2017 ident: 10.1016/j.celrep.2025.115944_bib40 article-title: Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.08.006 – volume: 39 start-page: 70 year: 2018 ident: 10.1016/j.celrep.2025.115944_bib6 article-title: From Original Antigenic Sin to the Universal Influenza Virus Vaccine publication-title: Trends Immunol. doi: 10.1016/j.it.2017.08.003 – volume: 370 year: 2015 ident: 10.1016/j.celrep.2025.115944_bib5 article-title: Masking of antigenic epitopes by antibodies shapes the humoral immune response to influenza publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2014.0248 – volume: 8 year: 2019 ident: 10.1016/j.celrep.2025.115944_bib22 article-title: A toolbox of IgG subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain publication-title: eLife doi: 10.7554/eLife.43322 – volume: 219 start-page: S38 year: 2019 ident: 10.1016/j.celrep.2025.115944_bib16 article-title: Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiy696 – volume: 22 start-page: 87 year: 2015 ident: 10.1016/j.celrep.2025.115944_bib34 article-title: FcγRIIB mediates antigen-independent inhibition on human B lymphocytes through Btk and p38 MAPK publication-title: J. Biomed. Sci. doi: 10.1186/s12929-015-0200-9 – volume: 177 start-page: 1136 year: 2019 ident: 10.1016/j.celrep.2025.115944_bib43 article-title: A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface publication-title: Cell doi: 10.1016/j.cell.2019.04.011 – volume: 489 start-page: 526 year: 2012 ident: 10.1016/j.celrep.2025.115944_bib21 article-title: Cross-neutralization of influenza A viruses mediated by a single antibody loop publication-title: Nature doi: 10.1038/nature11414 – volume: 115 start-page: 10112 year: 2018 ident: 10.1016/j.celrep.2025.115944_bib24 article-title: Influenza hemagglutinin membrane anchor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1810927115 – volume: 22 start-page: 1456 year: 2016 ident: 10.1016/j.celrep.2025.115944_bib44 article-title: Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination publication-title: Nat. Med. doi: 10.1038/nm.4224 – volume: 143 start-page: 147 year: 2009 ident: 10.1016/j.celrep.2025.115944_bib53 article-title: Influenza virus morphogenesis and budding publication-title: Virus Res. doi: 10.1016/j.virusres.2009.05.010 – volume: 14 year: 2023 ident: 10.1016/j.celrep.2025.115944_bib64 article-title: Neuraminidase Activity Modulates Cellular Coinfection during Influenza A Virus Multicycle Growth publication-title: mBio doi: 10.1128/mbio.03591-22 – volume: 8 start-page: 1646 year: 2022 ident: 10.1016/j.celrep.2025.115944_bib38 article-title: Breathing and Tilting: Mesoscale Simulations Illuminate Influenza Glycoprotein Vulnerabilities publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.2c00981 – volume: 17 start-page: 574 year: 2016 ident: 10.1016/j.celrep.2025.115944_bib32 article-title: Initiation of T cell signaling by CD45 segregation at “close contacts” publication-title: Nat. Immunol. doi: 10.1038/ni.3392 – volume: 7 start-page: 316ra192 year: 2015 ident: 10.1016/j.celrep.2025.115944_bib18 article-title: Immune history profoundly affects broadly protective B cell responses to influenza publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad0522 – volume: 28 start-page: 572 year: 2020 ident: 10.1016/j.celrep.2025.115944_bib11 article-title: Antibody Feedback Limits the Expansion of B Cell Responses to Malaria Vaccination but Drives Diversification of the Humoral Response publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.07.001 – volume: 88 start-page: 4828 year: 2014 ident: 10.1016/j.celrep.2025.115944_bib48 article-title: Structural Stability of Influenza A(H1N1)pdm09 Virus Hemagglutinins publication-title: J. Virol. doi: 10.1128/JVI.02278-13 – volume: 9 year: 2024 ident: 10.1016/j.celrep.2025.115944_bib56 article-title: C1q enables influenza hemagglutinin stem binding antibodies to block viral attachment and broadens the antibody escape repertoire publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.adj9534 – volume: 5 year: 2009 ident: 10.1016/j.celrep.2025.115944_bib26 article-title: Cross-Protective Potential of a Novel Monoclonal Antibody Directed against Antigenic Site B of the Hemagglutinin of Influenza A Viruses publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000350 – volume: 343 start-page: 1260 year: 2014 ident: 10.1016/j.celrep.2025.115944_bib57 article-title: Complement Is Activated by IgG Hexamers Assembled at the Cell Surface publication-title: Science doi: 10.1126/science.1248943 – volume: 96 start-page: 9345 year: 1999 ident: 10.1016/j.celrep.2025.115944_bib62 article-title: Generation of influenza A viruses entirely from cloned cDNAs publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.16.9345 – volume: 19 start-page: 383 year: 2019 ident: 10.1016/j.celrep.2025.115944_bib14 article-title: The human antibody response to influenza A virus infection and vaccination publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0143-6 – volume: 109 start-page: 17040 year: 2012 ident: 10.1016/j.celrep.2025.115944_bib25 article-title: Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1212371109 – volume: 337 start-page: 1343 year: 2012 ident: 10.1016/j.celrep.2025.115944_bib23 article-title: Highly Conserved Protective Epitopes on Influenza B Viruses publication-title: Science doi: 10.1126/science.1222908 – volume: 131 year: 2021 ident: 10.1016/j.celrep.2025.115944_bib46 article-title: Canonical features of human antibodies recognizing the influenza hemagglutinin trimer interface publication-title: J. Clin. Investig. doi: 10.1172/JCI146791 – volume: 340 start-page: 1587 year: 2013 ident: 10.1016/j.celrep.2025.115944_bib27 article-title: B cells use mechanical energy to discriminate antigen affinities publication-title: Science doi: 10.1126/science.1237572 – volume: 42 year: 2023 ident: 10.1016/j.celrep.2025.115944_bib9 article-title: Antigen presentation dynamics shape the antibody response to variants like SARS-CoV-2 Omicron after multiple vaccinations with the original strain publication-title: Cell Rep. – volume: 54 start-page: 1652 year: 2021 ident: 10.1016/j.celrep.2025.115944_bib2 article-title: The unique biology of germinal center B cells publication-title: Immunity doi: 10.1016/j.immuni.2021.07.015 – year: 2023 ident: 10.1016/j.celrep.2025.115944_bib41 article-title: Antibody Inhibition of Influenza A Virus Assembly and Release publication-title: bioRxiv – volume: 111 start-page: 13133 year: 2014 ident: 10.1016/j.celrep.2025.115944_bib10 article-title: Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1414070111 – year: 2001 ident: 10.1016/j.celrep.2025.115944_bib30 article-title: Antigen receptor structure and signaling pathways – volume: 162 start-page: 160 year: 2015 ident: 10.1016/j.celrep.2025.115944_bib59 article-title: Anti-HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy publication-title: Cell doi: 10.1016/j.cell.2015.06.026 – volume: 602 start-page: 314 year: 2022 ident: 10.1016/j.celrep.2025.115944_bib37 article-title: Broadly neutralizing antibodies target a haemagglutinin anchor epitope publication-title: Nature doi: 10.1038/s41586-021-04356-8 – volume: 9 year: 2018 ident: 10.1016/j.celrep.2025.115944_bib51 article-title: NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza Virus Vaccines? publication-title: mBio doi: 10.1128/mBio.02332-17 – volume: 366 start-page: 499 year: 2019 ident: 10.1016/j.celrep.2025.115944_bib52 article-title: Broadly protective human antibodies that target the active site of influenza virus neuraminidase publication-title: Science doi: 10.1126/science.aay0678 – volume: 324 start-page: 246 year: 2009 ident: 10.1016/j.celrep.2025.115944_bib58 article-title: Antibody Recognition of a Highly Conserved Influenza Virus Epitope | Science publication-title: Science doi: 10.1126/science.1171491 – volume: 613 start-page: 735 year: 2023 ident: 10.1016/j.celrep.2025.115944_bib8 article-title: Antibody feedback regulates immune memory after SARS-CoV-2 mRNA vaccination publication-title: Nature doi: 10.1038/s41586-022-05609-w – volume: 176 start-page: 281 year: 2019 ident: 10.1016/j.celrep.2025.115944_bib63 article-title: Low fidelity assembly of influenza A virus promotes escape from host cells publication-title: Cell doi: 10.1016/j.cell.2018.10.056 – volume: 14 start-page: 976 year: 2023 ident: 10.1016/j.celrep.2025.115944_bib29 article-title: Antigen footprint governs activation of the B cell receptor publication-title: Nat. Commun. doi: 10.1038/s41467-023-36672-0 – volume: 30 start-page: 1163 year: 2022 ident: 10.1016/j.celrep.2025.115944_bib12 article-title: Non-protective immune imprint underlies failure of Staphylococcus aureus IsdB vaccine publication-title: Cell Host Microbe doi: 10.1016/j.chom.2022.06.006 – volume: 10 year: 2021 ident: 10.1016/j.celrep.2025.115944_bib36 article-title: Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies publication-title: eLife doi: 10.7554/eLife.71393 – volume: 216 start-page: 304 year: 2019 ident: 10.1016/j.celrep.2025.115944_bib55 article-title: Neuraminidase inhibition contributes to influenza A virus neutralization by anti-hemagglutinin stem antibodies publication-title: J. Exp. Med. doi: 10.1084/jem.20181624 – volume: 6 year: 2016 ident: 10.1016/j.celrep.2025.115944_bib33 article-title: Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation publication-title: Sci. Rep. doi: 10.1038/srep36298 – volume: 29 start-page: 457 year: 2016 ident: 10.1016/j.celrep.2025.115944_bib35 article-title: Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzw040 – volume: 6 start-page: 6114 year: 2015 ident: 10.1016/j.celrep.2025.115944_bib54 article-title: Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers publication-title: Nat. Commun. doi: 10.1038/ncomms7114 – volume: 166 start-page: 609 year: 2016 ident: 10.1016/j.celrep.2025.115944_bib50 article-title: Vaccine-Induced Antibodies that Neutralize Group 1 and 2 Influenza A Viruses publication-title: Cell doi: 10.1016/j.cell.2016.06.043 – volume: 20 start-page: 229 year: 2020 ident: 10.1016/j.celrep.2025.115944_bib3 article-title: B cell memory: building two walls of protection against pathogens publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0244-2 – volume: 256 start-page: 105 year: 1992 ident: 10.1016/j.celrep.2025.115944_bib60 article-title: CD19: Lowering the Threshold for Antigen Receptor Stimulation of B Lymphocytes | Science publication-title: Science doi: 10.1126/science.1373518 – reference: 39605386 - bioRxiv. 2024 Nov 21:2024.11.18.624200. doi: 10.1101/2024.11.18.624200. |
SSID | ssj0000601194 |
Score | 2.4317365 |
Snippet | During repeated virus exposure, pre-existing antibodies can mask viral epitopes by competing with B cell receptors for antigen. Although epitope masking has... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 115944 |
SubjectTerms | Animals Antibodies, Viral - immunology antibody B cell receptor B-Lymphocytes - immunology CP: Immunology epitope masking Epitopes - immunology Hemagglutinin Glycoproteins, Influenza Virus - immunology Humans influenza virus Lymphocyte Activation - immunology multivalency Neuraminidase - immunology Receptors, Antigen, B-Cell - immunology Receptors, Antigen, B-Cell - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7Et_VFBK-LzXv3phWlCPVkobeQJ1SkW7Qe-u-dbHaLPUgv3pYlj-GbZOZLmMwgdOsqwagithA82IL7aAurjC1S7jrTV5YQm94Oj17lcMxfJmLyq9RXignL6YEzcHeMMGEjoTEIw1WorFDclN4TWUYOKzBZX_B5vw5T2QanXGa8eyvXBHS58PEZUopKKsBQiIrzNV_UpOxfc0l_Uc7G9Tzvo72WM-KHLOsB2gqzQ7STq0guj9D9qPZtES5cRzzA6TIegyULczhQ4_RyId-7YrvEAOTU1n6JXUOYm4CtYzR-fnp7HBZtYYTCwRZbFJRWjjtZEuGp9DQS-BbAu0pfRiODYuB2nZGkdDwaIUw_Mg-TEhaNgwNRYCdoe1bPwhnCpfVSMegQq8ClhO6uz7gl1CpvgM31UNFBpOc5_4XuAsPedYZUJ0h1hrSHBgnHVduUvbr5ATrVrU71Jp32kOq0oFsikB08DDXdMP1NpzQN-yThbWah_v7SYLjA8QLhhDanWZsrIYHUiMTzzv9D-Au0mwRK97-UXqLtxed3uALisrDXzRr9AX9p6ZE priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhUOgltOkraRNUyFXYeu_eWoeGEEgvTcA3oWdwKF7jOAf_-8xodw0-hEJvu0JaaWekmU_DPAi5iK2WwvLAtMqBqVQCC9YHhrnr_NQGzgPGDt_-Ntf36mau5wfkcoyFQbfKQfb3Mr1K66FlMlBzslosJn8E3F1AO1lQ4qAnNabdxkwtGMQ3n-3sLJhvhNd6iNif4YAxgq66ecX8d50xcaXQID50q9SehqqJ_PcU1WtAtCqkq3fkaECS9Ge_2PfkIC-PyZu-tuT2A_lx26WhNBftCp1RNNFT-Ne8gms2xXiG3hpLw5YCeRehS1saK4yublwfyf3Vr7vLazaUS2ARDt6GCdFGFU3DdRImicLhWQMaa1JTvMlWgjKO3vAmquK19tMiE0zKZfERrklZfiKHy26ZvxDahGSshAGlzcoYGB6nUgUugk0eMN4JYSOJ3KrPiuFGd7FH15PUIUldT9ITMkM67vpiTuva0K0f3MBUJ7nUoXBRsvbK5jZoq3yTEjdNUVOc1I5ccHtbBD61-Mf030emOTg9SG-_zN3zkwNxBuoYYCj0-dxzc7dIgDoa0d_pf8_7lbzFNzQFC_GNHG7Wz_kMMMwmnNdN-gIdPey1 priority: 102 providerName: Elsevier |
Title | Modulation of B cell receptor activation by antibody competition |
URI | https://dx.doi.org/10.1016/j.celrep.2025.115944 https://www.ncbi.nlm.nih.gov/pubmed/40652512 https://www.proquest.com/docview/3229900834 https://doaj.org/article/3135bf12fe5a47e9b574a8dd168f4040 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF6SlB5D0ubh0poN9KrgfUuH0NYhxg24pxh8W_ZZEoLl2A7U_76zWinBkBByEULsQ_p2Z-eb1ewMQt9dJRhVxBaCB1twH21hlbFFil1nBsoSYtPZ4ckfOZ7y65mY7aAuZ2sL4OpF0y7lk5ou78__PWx-gMBfPPtquXC_DCn6JBWwBoiK8130AXSTTPN80hL-vDanGGfpVzOlyZeLctWdp3uloS191YT131Jbr9HSRj2NDtB-yyvxrzwRDtFOmH9CH3Omyc1n9HNS-zZRF64jHuK0YY9htQsLMLpxOt2Q92ax3WAA-9bWfoNdQ6obp64jNB1d3VyOizZ5QuFADNcFpZXjTpZEeCo9jQTuBXCz0pfRyKAYqGZnJCkdj0YIM4jMQ6eERePAaArsGO3N63k4Rbi0XioGFWIVuJRQ3Q0Yt4Ra5Q0wvh4qOoj0IsfI0J3z2J3OkOoEqc6Q9tAw4fhUNkW4bh7Uy7-6FRjNCBM2EhqDMFyFygrFTek9kWXkg9Sp6kZBt2QhkwBo6vaN7s-6QdMgSwlvMw_140rD4gbKGUgplDnJo_n0kkB8ROKCX975sV_R3nr5GL4BdVnbfmPyw_X3bNhvZuZ_uE3tUA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEYILKu9CASNxXSV-794gVasUml5opdwsP1EQykZpesi_74x3N1IOCKm3ldez9s7Y8322xmNCvoZGCW6Yr5RMvpIx-8ob5yvMXefGxjPm8ezw7EpPb-SPuZofkNPhLAyGVfa-v_PpxVv3JaNem6PVYjH6xWHtAuhkAMQBJ5V-RB4DG9AY13Uxn-w2WjDhCCsXIqJAhRLDEboS5xXS33XCzJVcgf9QjZR7EFUy-e8h1b-YaEGk8yPyvKeS9HvX2xfkIC1fkifd5ZLbV-TbrI393Vy0zXRCcY-ews-mFayzKR5o6LZjqd9S0O_Ct3FLQ-HRJY7rNbk5P7s-nVb9fQlVgJm3qThvggy6ZipyHXlm8KyAjtWxzk4nIwCNg9OsDjI7pdw4iwiNMpFdgHVSEm_I4bJdpneE1j5qI0AgN0lqDeJhLKRn3JvogOQdk2pQkV11aTHsEC_2x3YqtahS26n0mExQj7u6mNS6FLTr37a3qhVMKJ8Zz0k5aVLjlZGujpHpOssxNmoGK9i9MQKfWvyn-S-D0SxMH9S3W6b27taCPwM8Bh4Kdd521tx1EriOQvr3_sHtfiZPp9ezS3t5cfXzA3mGb3BfmPMTcrhZ36WPQGg2_lMZsPcg5u_c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+B+cell+receptor+activation+by+antibody+competition&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=He%2C+Yuanyuan&rft.au=Guo%2C+Zijian&rft.au=Vahey%2C+Michael+D.&rft.date=2025-07-22&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=44&rft.issue=7&rft.spage=115944&rft_id=info:doi/10.1016%2Fj.celrep.2025.115944&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2025_115944 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |