Variational Autoencoders-Based Algorithm for Multi-Criteria Recommendation Systems

In recent years, recommender systems have become a crucial tool, assisting users in discovering and engaging with valuable information and services. Multi-criteria recommender systems have demonstrated significant value in assisting users to identify the most relevant items by considering various as...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 17; no. 12; p. 561
Main Authors Fraihat, Salam, Shambour, Qusai, Al-Betar, Mohammed Azmi, Makhadmeh, Sharif Naser
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2024
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a17120561

Cover

Loading…
Abstract In recent years, recommender systems have become a crucial tool, assisting users in discovering and engaging with valuable information and services. Multi-criteria recommender systems have demonstrated significant value in assisting users to identify the most relevant items by considering various aspects of user experiences. Deep learning (DL) models demonstrated outstanding performance across different domains: computer vision, natural language processing, image analysis, pattern recognition, and recommender systems. In this study, we introduce a deep learning model using VAE to improve multi-criteria recommendation systems. Specifically, we propose a variational autoencoder-based model for multi-criteria recommendation systems (VAE-MCRS). The VAE-MCRS model is sequentially trained across multiple criteria to uncover patterns that allow for better representation of user–item interactions. The VAE-MCRS model utilizes the latent features generated by the VAE in conjunction with user–item interactions to enhance recommendation accuracy and predict ratings for unrated items. Experiments carried out using the Yahoo! Movies multi-criteria dataset demonstrate that the proposed model surpasses other state-of-the-art recommendation algorithms, achieving a Mean Absolute Error (MAE) of 0.6038 and a Root Mean Squared Error (RMSE) of 0.7085, demonstrating its superior performance in providing more precise recommendations for multi-criteria recommendation tasks.
AbstractList In recent years, recommender systems have become a crucial tool, assisting users in discovering and engaging with valuable information and services. Multi-criteria recommender systems have demonstrated significant value in assisting users to identify the most relevant items by considering various aspects of user experiences. Deep learning (DL) models demonstrated outstanding performance across different domains: computer vision, natural language processing, image analysis, pattern recognition, and recommender systems. In this study, we introduce a deep learning model using VAE to improve multi-criteria recommendation systems. Specifically, we propose a variational autoencoder-based model for multi-criteria recommendation systems (VAE-MCRS). The VAE-MCRS model is sequentially trained across multiple criteria to uncover patterns that allow for better representation of user–item interactions. The VAE-MCRS model utilizes the latent features generated by the VAE in conjunction with user–item interactions to enhance recommendation accuracy and predict ratings for unrated items. Experiments carried out using the Yahoo! Movies multi-criteria dataset demonstrate that the proposed model surpasses other state-of-the-art recommendation algorithms, achieving a Mean Absolute Error (MAE) of 0.6038 and a Root Mean Squared Error (RMSE) of 0.7085, demonstrating its superior performance in providing more precise recommendations for multi-criteria recommendation tasks.
Audience Academic
Author Al-Betar, Mohammed Azmi
Shambour, Qusai
Fraihat, Salam
Makhadmeh, Sharif Naser
Author_xml – sequence: 1
  givenname: Salam
  orcidid: 0000-0002-1025-7868
  surname: Fraihat
  fullname: Fraihat, Salam
– sequence: 2
  givenname: Qusai
  orcidid: 0000-0002-3026-845X
  surname: Shambour
  fullname: Shambour, Qusai
– sequence: 3
  givenname: Mohammed Azmi
  orcidid: 0000-0003-1980-1791
  surname: Al-Betar
  fullname: Al-Betar, Mohammed Azmi
– sequence: 4
  givenname: Sharif Naser
  orcidid: 0000-0002-2894-7998
  surname: Makhadmeh
  fullname: Makhadmeh, Sharif Naser
BookMark eNptkUtr3DAUhUVJIY920X9g6KoLJ5JtvZbToU0CKYU0dCuu5KupBttKJc0i_77KTEjaErSQOJzzXXTPKTla4oKEfGD0vO81vQAmWUe5YG_ICdNat4PS_dFf72NymvOWUsG1YCfk9iekACXEBaZmtSsRFxdHTLn9DBnHZjVtYgrl19z4mJpvu6mEdl0FrKnmFl2cZ1zGPaD58ZALzvkdeethyvj-6T4jd1-_3K2v2pvvl9fr1U3rho6XlqFTyiP3COip6jrNtQUUg1XAmdUAIKSzskfU3nPlvPDdQKnnaEeK_Rm5PmDHCFtzn8IM6cFECGYvxLQxkEpwExqwTjpgQqqxHyxIpZVESxV6VE4IW1kfD6z7FH_vMBezjbtUV5JNzwbNaSf58OLaQIWGxceSwM0hO7NSHRO0HySvrvNXXPWMOAdX2_Kh6v8EPh0CLsWcE_rnzzBqHks1z6VW78V_XhfKfvt1SJheSfwBP8ilcQ
CitedBy_id crossref_primary_10_1016_j_indic_2025_100627
Cites_doi 10.1007/s10462-020-09851-4
10.1007/s13369-019-03946-z
10.1016/j.knosys.2020.106545
10.1016/j.procs.2024.04.041
10.1145/3336191.3371831
10.1007/s00521-023-09007-9
10.28979/comufbed.597093
10.3390/electronics11010141
10.32604/csse.2022.017221
10.1109/MIS.2007.58
10.5829/IJE.2023.36.01A.15
10.1016/j.dajour.2024.100518
10.1145/3680552
10.1504/IJCAT.2020.107908
10.1016/j.eswa.2013.12.023
10.1016/j.knosys.2020.105596
10.1007/978-3-319-29659-3_2
10.1145/3404835.3462986
10.1007/978-0-387-85820-3_24
10.1007/978-3-031-30672-3_38
10.1145/3178876.3186150
10.1109/MCI.2024.3363984
10.1145/223904.223931
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a17120561
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_abc7ca1678d34ba78987eb08efe8c66b
A821603475
10_3390_a17120561
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
TR2
TUS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c425t-1ec88fe5feaef0822959bae64b8a51b9aaa67cb73ee9ff58cf6f2400f5ebd0e3
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Wed Aug 27 01:32:16 EDT 2025
Fri Jul 25 12:00:05 EDT 2025
Tue Jun 17 21:58:33 EDT 2025
Tue Jun 10 21:00:50 EDT 2025
Thu Apr 24 22:51:15 EDT 2025
Tue Jul 01 00:39:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-1ec88fe5feaef0822959bae64b8a51b9aaa67cb73ee9ff58cf6f2400f5ebd0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3026-845X
0000-0003-1980-1791
0000-0002-1025-7868
0000-0002-2894-7998
OpenAccessLink https://doaj.org/article/abc7ca1678d34ba78987eb08efe8c66b
PQID 3149502754
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_abc7ca1678d34ba78987eb08efe8c66b
proquest_journals_3149502754
gale_infotracmisc_A821603475
gale_infotracacademiconefile_A821603475
crossref_primary_10_3390_a17120561
crossref_citationtrail_10_3390_a17120561
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_17) 2024; 18
Shambour (ref_21) 2021; 211
Monti (ref_7) 2021; 54
Shambour (ref_3) 2022; 40
Adomavicius (ref_6) 2007; 22
ref_19
ref_16
ref_15
Nilashi (ref_9) 2016; 3
Ayemowa (ref_12) 2024; 13
Shambour (ref_4) 2020; 63
Spoorthy (ref_20) 2023; 36
Zhang (ref_14) 2019; 52
Fraihat (ref_24) 2023; 35
ref_23
Sengupta (ref_11) 2020; 194
Batmaz (ref_22) 2019; 44
ref_1
Li (ref_2) 2024; 19
Nilashi (ref_10) 2014; 41
(ref_25) 2019; 5
ref_27
ref_26
ref_8
Rajput (ref_18) 2024; 235
ref_5
Debbah (ref_13) 2024; 16
References_xml – volume: 54
  start-page: 427
  year: 2021
  ident: ref_7
  article-title: A systematic literature review of multicriteria recommender systems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09851-4
– volume: 44
  start-page: 9235
  year: 2019
  ident: ref_22
  article-title: AE-MCCF: An autoencoder-based multi-criteria recommendation algorithm
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-03946-z
– volume: 211
  start-page: 106545
  year: 2021
  ident: ref_21
  article-title: A deep learning based algorithm for multi-criteria recommender systems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106545
– volume: 235
  start-page: 414
  year: 2024
  ident: ref_18
  article-title: An autoencoder-based deep learning model for solving the sparsity issues of Multi-Criteria Recommender System
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2024.04.041
– ident: ref_19
  doi: 10.1145/3336191.3371831
– volume: 52
  start-page: 5
  year: 2019
  ident: ref_14
  article-title: Deep learning based recommender system: A survey and new perspectives
  publication-title: ACM Comput. Surv. (CSUR)
– volume: 35
  start-page: 24347
  year: 2023
  ident: ref_24
  article-title: Deep encoder–decoder-based shared learning for multi-criteria recommendation systems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-09007-9
– volume: 16
  start-page: 249
  year: 2024
  ident: ref_13
  article-title: Latest advances in deep learning-based recommender systems
  publication-title: Int. J. Reason.-Based Intell. Syst.
– volume: 5
  start-page: 214
  year: 2019
  ident: ref_25
  article-title: MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks
  publication-title: Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  doi: 10.28979/comufbed.597093
– ident: ref_1
  doi: 10.3390/electronics11010141
– volume: 40
  start-page: 113
  year: 2022
  ident: ref_3
  article-title: Effective Hybrid Content-Based Collaborative Filtering Approach for Requirements Engineering
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2022.017221
– volume: 22
  start-page: 48
  year: 2007
  ident: ref_6
  article-title: New recommendation techniques for multicriteria rating systems
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2007.58
– volume: 36
  start-page: 130
  year: 2023
  ident: ref_20
  article-title: Multi-criteria recommendations using autoencoder and deep neural networks with weight optimization using firefly algorithm
  publication-title: Int. J. Eng.
  doi: 10.5829/IJE.2023.36.01A.15
– volume: 13
  start-page: 100518
  year: 2024
  ident: ref_12
  article-title: A systematic review of the literature on deep learning approaches for cross-domain recommender systems
  publication-title: Decis. Anal. J.
  doi: 10.1016/j.dajour.2024.100518
– volume: 18
  start-page: 9
  year: 2024
  ident: ref_17
  article-title: VAE*: A Novel Variational Autoencoder via Revisiting Positive and Negative Samples for Top-N Recommendation
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3680552
– volume: 63
  start-page: 135
  year: 2020
  ident: ref_4
  article-title: A Hybrid Collaborative Filtering Recommendation Algorithm for Requirements Elicitation
  publication-title: Int. J. Comput. Appl. Technol.
  doi: 10.1504/IJCAT.2020.107908
– volume: 41
  start-page: 3879
  year: 2014
  ident: ref_10
  article-title: Hybrid recommendation approaches for multi-criteria collaborative filtering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.023
– ident: ref_27
– volume: 194
  start-page: 105596
  year: 2020
  ident: ref_11
  article-title: A review of deep learning with special emphasis on architectures, applications and recent trends
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105596
– ident: ref_5
  doi: 10.1007/978-3-319-29659-3_2
– ident: ref_15
  doi: 10.1145/3404835.3462986
– ident: ref_8
  doi: 10.1007/978-0-387-85820-3_24
– ident: ref_16
  doi: 10.1007/978-3-031-30672-3_38
– ident: ref_23
  doi: 10.1145/3178876.3186150
– volume: 19
  start-page: 78
  year: 2024
  ident: ref_2
  article-title: Recent developments in recommender systems: A survey
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2024.3363984
– volume: 3
  start-page: 5
  year: 2016
  ident: ref_9
  article-title: A Multi-Criteria Collaborative Filtering Recommender System Using Clustering and Regression Techniques
  publication-title: J. Soft Comput. Decis. Support Syst.
– ident: ref_26
  doi: 10.1145/223904.223931
SSID ssj0065961
Score 2.3293817
Snippet In recent years, recommender systems have become a crucial tool, assisting users in discovering and engaging with valuable information and services....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 561
SubjectTerms Accuracy
Algorithms
Analysis
Artificial intelligence
collaborative filtering
Computational linguistics
Computer vision
Data compression
Deep learning
Image analysis
Language processing
Machine learning
Machine vision
multi-criteria
Multiple criterion
Natural language interfaces
Natural language processing
Neurons
Normal distribution
Online instruction
Pattern analysis
Pattern recognition
Preferences
recommender system
Recommender systems
Root-mean-square errors
Sparsity
Tourism
User experience
variational autoencoders
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXChpQWxUJCFkOBidZ3YsXNCW8RSIcEBtag3a-yMy6G7W9r0_3cm62y1EnCN5-DMe-zxN0K8j7mDJleo0IJXpo1J-ZhalVIN2lSgcQCr_v6jOT033y7sRTlwuy1tlaNPHBx1t0p8Rn5ccyrPd2zm0_UfxVOj-Ha1jNB4LHY1RRrWcD__OnrixraNXqMJ1VTaH4N2uuKMeSsGDVD9_3LIQ5SZ74unJT2Us7U8n4lHuDwQe-PoBVks8VD8_EU1bjnHk7O7fsV4lNyTrE4oLHVydnVJm-9_LyQlpXJ4Zat4qgHrm-SSc7HAMk5JFtDy5-Js_uXs86kq4xFUIkPrlcbkfUabETAPwO22jYCNiR6sji0ANC5FVyO2OVufMgmFTDZbjN0U6xdiZ7la4kshKQUw3NGfY0LjphXwA1mNHhxY6KZxIj6O_AqpQIfzBIurQCUEszZsWDsR7zak12u8jL8RnTDTNwQMcT18WN1chmIxAWJyCTQF0642EZxvvcM49ZjRp6ahTX1gkQU2RNpMgvKegH6JIa3CzFc8Qts4OxFHW5RkQGl7eRR6KAZ8Gx7U7dX_l1-LJxXlOesOlyOx09_c4RvKU_r4dlDGe4BL6b0
  priority: 102
  providerName: ProQuest
Title Variational Autoencoders-Based Algorithm for Multi-Criteria Recommendation Systems
URI https://www.proquest.com/docview/3149502754
https://doaj.org/article/abc7ca1678d34ba78987eb08efe8c66b
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BcuHCG1FYKgshwcXaOrET59iiLSskVmi1oL1ZY2cMh22LoPv_mUncikogLlyTOdgznseXjL8BeB1zj02uSJNDr20Xk_YxdTqlGo2t0NBAVv3xvDn7bD9cuavfRn1JT9hIDzwq7gRjahMajql9bSO2nkEyxZmnTD41TZToyzlvB6bGGNy4rjEjj1DNoP4ETWsqqZUPss9A0v-3UDzkl-UDuFcKQzUfF_QQbtH6EdzfDV1QxQcfw8UXRrflC56a32w3wkQp3ch6wQmpV_PrrxsG_N9WistRNdyv1TLPQE6aErC5WlEZpKQKXfkTuFyeXr4702Uwgk7sYlttKHmfyWVCygNlu-siUmOjR2dih4hNm2JbE3U5O58ym4OdNTuK_Yzqp3C03qzpGShO_lZ6-XNMZNtZhXI11pDHFh32sziBtzt9hVRIw2V2xXVg8CCqDXvVTuDVXvT7yJTxJ6GFKH0vIOTWwwM2eSgmD_8y-QTeiMmCuCAvJmG5ScBbEjKrMPeVDM-2rZvA8YEku046fL0zeiiu-zPUghnlZ659_j8W-wLuVlwHjR0wx3C0_XFDL7mO2cYp3PbL91O4szg9_3QxHQ7wLwyX9h8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN-pCAQuB4GI1Dzt2DghtgWVLHwe0oN4s2xmXQ3e3tKkQP4r_yEziLFoJuPUaW5E9nhmP7ZnvY-yFj42rYgEClDNC1j4I40MtQihdLguXQwdWfXhUTb_IT8fqeIP9GmphKK1y8Imdo26Wge7Id0oK5emNTb49-y6INYpeVwcKjV4t9uHnDzyyXbzZe4_r-7IoJh9m76YisQqIgPrZihyCMRFUBAexwztXtXdQSW-cyn3tnKt08LoEqGNUJkScC2p6VOCbDEr87TV2XZZlTRmEZvJxcPyVqqu8By_CxmzH5TovKEBf2_I6ZoB_-f9uU5vcYbdSNMrHvfrcZRuwuMduD0wPPBn-ffb5Kx6p07UhH1-2S4K_pBRosYu7YMPHpycoq_bbnGMMzLuiXkEkCqTenE648zkk9iaeMNIfsNlVyO0h21wsF7DFOEYckgoIog8gdVY4qsfNwTjtlGsyP2KvB3nZkJDKiTDj1OKJhURrV6Idseerrmc9PMffOu2S0FcdCFG7-7A8P7HJQK3zQQeX497dlNI7bWqjwWcGIphQVTioV7RkluweBxNcKl_AKRGClh2bghi7pVYjtr3WE-01rDcPi26Tv7iwf7T70f-bn7Eb09nhgT3YO9p_zG4WGGL1yTXbbLM9v4QnGCK1_mmnmJzZKzaE36EQKS4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAX3qhbClgIBBdr4ySOnQNCW8rSUqgQKqg3y3bG5dDd7SMV4qfx75hJnEUrAbdeYyuyx-OZsT3zfYw997FxVcxBgHJGlLUPwvhQixAKJ8vcSejAqj8dVLtfyw9H6miN_RpqYSitcrCJnaFuFoHuyMcFhfL0xlaOY0qL-LwzfXN6JohBil5aBzqNXkX24ecPPL5dvN7bwbV-kefTd4dvd0ViGBABdbUVEoIxEVQEB7HDPle1d1CV3jglfe2cq3TwugCoY1QmRJwXan1U4JsMCvztNXZdFyYj8gQzfT84gUrVleyBjIqizsZOaplTsL7i_jqWgH_5gs7BTe-wWyky5ZNele6yNZjfY7cH1geejMB99uUbHq_TFSKfXLYLgsKkdGixjR6x4ZOTY5RV-33GMR7mXYGvIEIFUnVOp93ZDBKTE0946Q_Y4VXI7SFbny_msME4Rh8lFRNEH6DUWe6oNleCcdop12R-xF4N8rIhoZYTecaJxdMLidYuRTtiz5ZdT3uojr912iahLzsQunb3YXF-bNNmtc4HHZxEP94UpXfa1EaDzwxEMKGqcFAvacks2QAcTHCplAGnRGhadmJyYu8utRqxrZWeuHfDavOw6DbZjgv7R9M3_9_8lN3ALWA_7h3sP2I3c4y2-jybLbbenl_CY4yWWv-k00vO7BXvg9_zQC1b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Autoencoders-Based+Algorithm+for+Multi-Criteria+Recommendation+Systems&rft.jtitle=Algorithms&rft.au=Salam+Fraihat&rft.au=Qusai+Shambour&rft.au=Mohammed+Azmi+Al-Betar&rft.au=Sharif+Naser+Makhadmeh&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=17&rft.issue=12&rft.spage=561&rft_id=info:doi/10.3390%2Fa17120561&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_abc7ca1678d34ba78987eb08efe8c66b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon