Variational Autoencoders-Based Algorithm for Multi-Criteria Recommendation Systems
In recent years, recommender systems have become a crucial tool, assisting users in discovering and engaging with valuable information and services. Multi-criteria recommender systems have demonstrated significant value in assisting users to identify the most relevant items by considering various as...
Saved in:
Published in | Algorithms Vol. 17; no. 12; p. 561 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-4893 1999-4893 |
DOI | 10.3390/a17120561 |
Cover
Loading…
Abstract | In recent years, recommender systems have become a crucial tool, assisting users in discovering and engaging with valuable information and services. Multi-criteria recommender systems have demonstrated significant value in assisting users to identify the most relevant items by considering various aspects of user experiences. Deep learning (DL) models demonstrated outstanding performance across different domains: computer vision, natural language processing, image analysis, pattern recognition, and recommender systems. In this study, we introduce a deep learning model using VAE to improve multi-criteria recommendation systems. Specifically, we propose a variational autoencoder-based model for multi-criteria recommendation systems (VAE-MCRS). The VAE-MCRS model is sequentially trained across multiple criteria to uncover patterns that allow for better representation of user–item interactions. The VAE-MCRS model utilizes the latent features generated by the VAE in conjunction with user–item interactions to enhance recommendation accuracy and predict ratings for unrated items. Experiments carried out using the Yahoo! Movies multi-criteria dataset demonstrate that the proposed model surpasses other state-of-the-art recommendation algorithms, achieving a Mean Absolute Error (MAE) of 0.6038 and a Root Mean Squared Error (RMSE) of 0.7085, demonstrating its superior performance in providing more precise recommendations for multi-criteria recommendation tasks. |
---|---|
AbstractList | In recent years, recommender systems have become a crucial tool, assisting users in discovering and engaging with valuable information and services. Multi-criteria recommender systems have demonstrated significant value in assisting users to identify the most relevant items by considering various aspects of user experiences. Deep learning (DL) models demonstrated outstanding performance across different domains: computer vision, natural language processing, image analysis, pattern recognition, and recommender systems. In this study, we introduce a deep learning model using VAE to improve multi-criteria recommendation systems. Specifically, we propose a variational autoencoder-based model for multi-criteria recommendation systems (VAE-MCRS). The VAE-MCRS model is sequentially trained across multiple criteria to uncover patterns that allow for better representation of user–item interactions. The VAE-MCRS model utilizes the latent features generated by the VAE in conjunction with user–item interactions to enhance recommendation accuracy and predict ratings for unrated items. Experiments carried out using the Yahoo! Movies multi-criteria dataset demonstrate that the proposed model surpasses other state-of-the-art recommendation algorithms, achieving a Mean Absolute Error (MAE) of 0.6038 and a Root Mean Squared Error (RMSE) of 0.7085, demonstrating its superior performance in providing more precise recommendations for multi-criteria recommendation tasks. |
Audience | Academic |
Author | Al-Betar, Mohammed Azmi Shambour, Qusai Fraihat, Salam Makhadmeh, Sharif Naser |
Author_xml | – sequence: 1 givenname: Salam orcidid: 0000-0002-1025-7868 surname: Fraihat fullname: Fraihat, Salam – sequence: 2 givenname: Qusai orcidid: 0000-0002-3026-845X surname: Shambour fullname: Shambour, Qusai – sequence: 3 givenname: Mohammed Azmi orcidid: 0000-0003-1980-1791 surname: Al-Betar fullname: Al-Betar, Mohammed Azmi – sequence: 4 givenname: Sharif Naser orcidid: 0000-0002-2894-7998 surname: Makhadmeh fullname: Makhadmeh, Sharif Naser |
BookMark | eNptkUtr3DAUhUVJIY920X9g6KoLJ5JtvZbToU0CKYU0dCuu5KupBttKJc0i_77KTEjaErSQOJzzXXTPKTla4oKEfGD0vO81vQAmWUe5YG_ICdNat4PS_dFf72NymvOWUsG1YCfk9iekACXEBaZmtSsRFxdHTLn9DBnHZjVtYgrl19z4mJpvu6mEdl0FrKnmFl2cZ1zGPaD58ZALzvkdeethyvj-6T4jd1-_3K2v2pvvl9fr1U3rho6XlqFTyiP3COip6jrNtQUUg1XAmdUAIKSzskfU3nPlvPDdQKnnaEeK_Rm5PmDHCFtzn8IM6cFECGYvxLQxkEpwExqwTjpgQqqxHyxIpZVESxV6VE4IW1kfD6z7FH_vMBezjbtUV5JNzwbNaSf58OLaQIWGxceSwM0hO7NSHRO0HySvrvNXXPWMOAdX2_Kh6v8EPh0CLsWcE_rnzzBqHks1z6VW78V_XhfKfvt1SJheSfwBP8ilcQ |
CitedBy_id | crossref_primary_10_1016_j_indic_2025_100627 |
Cites_doi | 10.1007/s10462-020-09851-4 10.1007/s13369-019-03946-z 10.1016/j.knosys.2020.106545 10.1016/j.procs.2024.04.041 10.1145/3336191.3371831 10.1007/s00521-023-09007-9 10.28979/comufbed.597093 10.3390/electronics11010141 10.32604/csse.2022.017221 10.1109/MIS.2007.58 10.5829/IJE.2023.36.01A.15 10.1016/j.dajour.2024.100518 10.1145/3680552 10.1504/IJCAT.2020.107908 10.1016/j.eswa.2013.12.023 10.1016/j.knosys.2020.105596 10.1007/978-3-319-29659-3_2 10.1145/3404835.3462986 10.1007/978-0-387-85820-3_24 10.1007/978-3-031-30672-3_38 10.1145/3178876.3186150 10.1109/MCI.2024.3363984 10.1145/223904.223931 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/a17120561 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_abc7ca1678d34ba78987eb08efe8c66b A821603475 10_3390_a17120561 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TR2 TUS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c425t-1ec88fe5feaef0822959bae64b8a51b9aaa67cb73ee9ff58cf6f2400f5ebd0e3 |
IEDL.DBID | DOA |
ISSN | 1999-4893 |
IngestDate | Wed Aug 27 01:32:16 EDT 2025 Fri Jul 25 12:00:05 EDT 2025 Tue Jun 17 21:58:33 EDT 2025 Tue Jun 10 21:00:50 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 Tue Jul 01 00:39:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-1ec88fe5feaef0822959bae64b8a51b9aaa67cb73ee9ff58cf6f2400f5ebd0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3026-845X 0000-0003-1980-1791 0000-0002-1025-7868 0000-0002-2894-7998 |
OpenAccessLink | https://doaj.org/article/abc7ca1678d34ba78987eb08efe8c66b |
PQID | 3149502754 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_abc7ca1678d34ba78987eb08efe8c66b proquest_journals_3149502754 gale_infotracmisc_A821603475 gale_infotracacademiconefile_A821603475 crossref_primary_10_3390_a17120561 crossref_citationtrail_10_3390_a17120561 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Liu (ref_17) 2024; 18 Shambour (ref_21) 2021; 211 Monti (ref_7) 2021; 54 Shambour (ref_3) 2022; 40 Adomavicius (ref_6) 2007; 22 ref_19 ref_16 ref_15 Nilashi (ref_9) 2016; 3 Ayemowa (ref_12) 2024; 13 Shambour (ref_4) 2020; 63 Spoorthy (ref_20) 2023; 36 Zhang (ref_14) 2019; 52 Fraihat (ref_24) 2023; 35 ref_23 Sengupta (ref_11) 2020; 194 Batmaz (ref_22) 2019; 44 ref_1 Li (ref_2) 2024; 19 Nilashi (ref_10) 2014; 41 (ref_25) 2019; 5 ref_27 ref_26 ref_8 Rajput (ref_18) 2024; 235 ref_5 Debbah (ref_13) 2024; 16 |
References_xml | – volume: 54 start-page: 427 year: 2021 ident: ref_7 article-title: A systematic literature review of multicriteria recommender systems publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09851-4 – volume: 44 start-page: 9235 year: 2019 ident: ref_22 article-title: AE-MCCF: An autoencoder-based multi-criteria recommendation algorithm publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-03946-z – volume: 211 start-page: 106545 year: 2021 ident: ref_21 article-title: A deep learning based algorithm for multi-criteria recommender systems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106545 – volume: 235 start-page: 414 year: 2024 ident: ref_18 article-title: An autoencoder-based deep learning model for solving the sparsity issues of Multi-Criteria Recommender System publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2024.04.041 – ident: ref_19 doi: 10.1145/3336191.3371831 – volume: 52 start-page: 5 year: 2019 ident: ref_14 article-title: Deep learning based recommender system: A survey and new perspectives publication-title: ACM Comput. Surv. (CSUR) – volume: 35 start-page: 24347 year: 2023 ident: ref_24 article-title: Deep encoder–decoder-based shared learning for multi-criteria recommendation systems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-09007-9 – volume: 16 start-page: 249 year: 2024 ident: ref_13 article-title: Latest advances in deep learning-based recommender systems publication-title: Int. J. Reason.-Based Intell. Syst. – volume: 5 start-page: 214 year: 2019 ident: ref_25 article-title: MovieANN: A Hybrid Approach to Movie Recommender Systems Using Multi Layer Artificial Neural Networks publication-title: Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi doi: 10.28979/comufbed.597093 – ident: ref_1 doi: 10.3390/electronics11010141 – volume: 40 start-page: 113 year: 2022 ident: ref_3 article-title: Effective Hybrid Content-Based Collaborative Filtering Approach for Requirements Engineering publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2022.017221 – volume: 22 start-page: 48 year: 2007 ident: ref_6 article-title: New recommendation techniques for multicriteria rating systems publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2007.58 – volume: 36 start-page: 130 year: 2023 ident: ref_20 article-title: Multi-criteria recommendations using autoencoder and deep neural networks with weight optimization using firefly algorithm publication-title: Int. J. Eng. doi: 10.5829/IJE.2023.36.01A.15 – volume: 13 start-page: 100518 year: 2024 ident: ref_12 article-title: A systematic review of the literature on deep learning approaches for cross-domain recommender systems publication-title: Decis. Anal. J. doi: 10.1016/j.dajour.2024.100518 – volume: 18 start-page: 9 year: 2024 ident: ref_17 article-title: VAE*: A Novel Variational Autoencoder via Revisiting Positive and Negative Samples for Top-N Recommendation publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3680552 – volume: 63 start-page: 135 year: 2020 ident: ref_4 article-title: A Hybrid Collaborative Filtering Recommendation Algorithm for Requirements Elicitation publication-title: Int. J. Comput. Appl. Technol. doi: 10.1504/IJCAT.2020.107908 – volume: 41 start-page: 3879 year: 2014 ident: ref_10 article-title: Hybrid recommendation approaches for multi-criteria collaborative filtering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.023 – ident: ref_27 – volume: 194 start-page: 105596 year: 2020 ident: ref_11 article-title: A review of deep learning with special emphasis on architectures, applications and recent trends publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105596 – ident: ref_5 doi: 10.1007/978-3-319-29659-3_2 – ident: ref_15 doi: 10.1145/3404835.3462986 – ident: ref_8 doi: 10.1007/978-0-387-85820-3_24 – ident: ref_16 doi: 10.1007/978-3-031-30672-3_38 – ident: ref_23 doi: 10.1145/3178876.3186150 – volume: 19 start-page: 78 year: 2024 ident: ref_2 article-title: Recent developments in recommender systems: A survey publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2024.3363984 – volume: 3 start-page: 5 year: 2016 ident: ref_9 article-title: A Multi-Criteria Collaborative Filtering Recommender System Using Clustering and Regression Techniques publication-title: J. Soft Comput. Decis. Support Syst. – ident: ref_26 doi: 10.1145/223904.223931 |
SSID | ssj0065961 |
Score | 2.3293817 |
Snippet | In recent years, recommender systems have become a crucial tool, assisting users in discovering and engaging with valuable information and services.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 561 |
SubjectTerms | Accuracy Algorithms Analysis Artificial intelligence collaborative filtering Computational linguistics Computer vision Data compression Deep learning Image analysis Language processing Machine learning Machine vision multi-criteria Multiple criterion Natural language interfaces Natural language processing Neurons Normal distribution Online instruction Pattern analysis Pattern recognition Preferences recommender system Recommender systems Root-mean-square errors Sparsity Tourism User experience variational autoencoders |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXChpQWxUJCFkOBidZ3YsXNCW8RSIcEBtag3a-yMy6G7W9r0_3cm62y1EnCN5-DMe-zxN0K8j7mDJleo0IJXpo1J-ZhalVIN2lSgcQCr_v6jOT033y7sRTlwuy1tlaNPHBx1t0p8Rn5ccyrPd2zm0_UfxVOj-Ha1jNB4LHY1RRrWcD__OnrixraNXqMJ1VTaH4N2uuKMeSsGDVD9_3LIQ5SZ74unJT2Us7U8n4lHuDwQe-PoBVks8VD8_EU1bjnHk7O7fsV4lNyTrE4oLHVydnVJm-9_LyQlpXJ4Zat4qgHrm-SSc7HAMk5JFtDy5-Js_uXs86kq4xFUIkPrlcbkfUabETAPwO22jYCNiR6sji0ANC5FVyO2OVufMgmFTDZbjN0U6xdiZ7la4kshKQUw3NGfY0LjphXwA1mNHhxY6KZxIj6O_AqpQIfzBIurQCUEszZsWDsR7zak12u8jL8RnTDTNwQMcT18WN1chmIxAWJyCTQF0642EZxvvcM49ZjRp6ahTX1gkQU2RNpMgvKegH6JIa3CzFc8Qts4OxFHW5RkQGl7eRR6KAZ8Gx7U7dX_l1-LJxXlOesOlyOx09_c4RvKU_r4dlDGe4BL6b0 priority: 102 providerName: ProQuest |
Title | Variational Autoencoders-Based Algorithm for Multi-Criteria Recommendation Systems |
URI | https://www.proquest.com/docview/3149502754 https://doaj.org/article/abc7ca1678d34ba78987eb08efe8c66b |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BcuHCG1FYKgshwcXaOrET59iiLSskVmi1oL1ZY2cMh22LoPv_mUncikogLlyTOdgznseXjL8BeB1zj02uSJNDr20Xk_YxdTqlGo2t0NBAVv3xvDn7bD9cuavfRn1JT9hIDzwq7gRjahMajql9bSO2nkEyxZmnTD41TZToyzlvB6bGGNy4rjEjj1DNoP4ETWsqqZUPss9A0v-3UDzkl-UDuFcKQzUfF_QQbtH6EdzfDV1QxQcfw8UXRrflC56a32w3wkQp3ch6wQmpV_PrrxsG_N9WistRNdyv1TLPQE6aErC5WlEZpKQKXfkTuFyeXr4702Uwgk7sYlttKHmfyWVCygNlu-siUmOjR2dih4hNm2JbE3U5O58ym4OdNTuK_Yzqp3C03qzpGShO_lZ6-XNMZNtZhXI11pDHFh32sziBtzt9hVRIw2V2xXVg8CCqDXvVTuDVXvT7yJTxJ6GFKH0vIOTWwwM2eSgmD_8y-QTeiMmCuCAvJmG5ScBbEjKrMPeVDM-2rZvA8YEku046fL0zeiiu-zPUghnlZ659_j8W-wLuVlwHjR0wx3C0_XFDL7mO2cYp3PbL91O4szg9_3QxHQ7wLwyX9h8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN-pCAQuB4GI1Dzt2DghtgWVLHwe0oN4s2xmXQ3e3tKkQP4r_yEziLFoJuPUaW5E9nhmP7ZnvY-yFj42rYgEClDNC1j4I40MtQihdLguXQwdWfXhUTb_IT8fqeIP9GmphKK1y8Imdo26Wge7Id0oK5emNTb49-y6INYpeVwcKjV4t9uHnDzyyXbzZe4_r-7IoJh9m76YisQqIgPrZihyCMRFUBAexwztXtXdQSW-cyn3tnKt08LoEqGNUJkScC2p6VOCbDEr87TV2XZZlTRmEZvJxcPyVqqu8By_CxmzH5TovKEBf2_I6ZoB_-f9uU5vcYbdSNMrHvfrcZRuwuMduD0wPPBn-ffb5Kx6p07UhH1-2S4K_pBRosYu7YMPHpycoq_bbnGMMzLuiXkEkCqTenE648zkk9iaeMNIfsNlVyO0h21wsF7DFOEYckgoIog8gdVY4qsfNwTjtlGsyP2KvB3nZkJDKiTDj1OKJhURrV6Idseerrmc9PMffOu2S0FcdCFG7-7A8P7HJQK3zQQeX497dlNI7bWqjwWcGIphQVTioV7RkluweBxNcKl_AKRGClh2bghi7pVYjtr3WE-01rDcPi26Tv7iwf7T70f-bn7Eb09nhgT3YO9p_zG4WGGL1yTXbbLM9v4QnGCK1_mmnmJzZKzaE36EQKS4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAX3qhbClgIBBdr4ySOnQNCW8rSUqgQKqg3y3bG5dDd7SMV4qfx75hJnEUrAbdeYyuyx-OZsT3zfYw997FxVcxBgHJGlLUPwvhQixAKJ8vcSejAqj8dVLtfyw9H6miN_RpqYSitcrCJnaFuFoHuyMcFhfL0xlaOY0qL-LwzfXN6JohBil5aBzqNXkX24ecPPL5dvN7bwbV-kefTd4dvd0ViGBABdbUVEoIxEVQEB7HDPle1d1CV3jglfe2cq3TwugCoY1QmRJwXan1U4JsMCvztNXZdFyYj8gQzfT84gUrVleyBjIqizsZOaplTsL7i_jqWgH_5gs7BTe-wWyky5ZNele6yNZjfY7cH1geejMB99uUbHq_TFSKfXLYLgsKkdGixjR6x4ZOTY5RV-33GMR7mXYGvIEIFUnVOp93ZDBKTE0946Q_Y4VXI7SFbny_msME4Rh8lFRNEH6DUWe6oNleCcdop12R-xF4N8rIhoZYTecaJxdMLidYuRTtiz5ZdT3uojr912iahLzsQunb3YXF-bNNmtc4HHZxEP94UpXfa1EaDzwxEMKGqcFAvacks2QAcTHCplAGnRGhadmJyYu8utRqxrZWeuHfDavOw6DbZjgv7R9M3_9_8lN3ALWA_7h3sP2I3c4y2-jybLbbenl_CY4yWWv-k00vO7BXvg9_zQC1b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Autoencoders-Based+Algorithm+for+Multi-Criteria+Recommendation+Systems&rft.jtitle=Algorithms&rft.au=Salam+Fraihat&rft.au=Qusai+Shambour&rft.au=Mohammed+Azmi+Al-Betar&rft.au=Sharif+Naser+Makhadmeh&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=17&rft.issue=12&rft.spage=561&rft_id=info:doi/10.3390%2Fa17120561&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_abc7ca1678d34ba78987eb08efe8c66b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |