Phylogeny inference based on spectral graph clustering
Phylogeny inference is an importance issue in computational biology. Some early approaches based on characteristics such as the maximum parsimony algorithm and the maximum likelihood algorithm will become intractable when the number of taxonomic units is large. Recent algorithms based on distance da...
Saved in:
Published in | Journal of computational biology Vol. 18; no. 4; p. 627 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2011
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Phylogeny inference is an importance issue in computational biology. Some early approaches based on characteristics such as the maximum parsimony algorithm and the maximum likelihood algorithm will become intractable when the number of taxonomic units is large. Recent algorithms based on distance data which adopt an agglomerative scheme are widely used for phylogeny inference. However, they have to recursively merge the nearest pair of taxa and estimate a distance matrix; this may enlarge the error gradually, and lead to an inaccurate tree topology. In this study, a splitting algorithm is proposed for phylogeny inference by using the spectral graph clustering (SGC) technique. The SGC algorithm splits graphs by using the maximum cut criterion and circumvents optimization problems through solving a generalized eigenvalue system. The promising features of the proposed algorithm are the following: (i) using a heuristic strategy for constructing phylogenies from certain distance functions, which are not even additive; (ii) distance matrices do not have to be estimated recursively; (iii) inferring a more accurate tree topology than that of the Neighbor-joining (NJ) algorithm on simulated datasets; and (iv) strongly supporting hypotheses induced by other methods for Baculovirus genomes. Our numerical experiments confirm that the SGC algorithm is efficient for phylogeny inference. |
---|---|
AbstractList | Phylogeny inference is an importance issue in computational biology. Some early approaches based on characteristics such as the maximum parsimony algorithm and the maximum likelihood algorithm will become intractable when the number of taxonomic units is large. Recent algorithms based on distance data which adopt an agglomerative scheme are widely used for phylogeny inference. However, they have to recursively merge the nearest pair of taxa and estimate a distance matrix; this may enlarge the error gradually, and lead to an inaccurate tree topology. In this study, a splitting algorithm is proposed for phylogeny inference by using the spectral graph clustering (SGC) technique. The SGC algorithm splits graphs by using the maximum cut criterion and circumvents optimization problems through solving a generalized eigenvalue system. The promising features of the proposed algorithm are the following: (i) using a heuristic strategy for constructing phylogenies from certain distance functions, which are not even additive; (ii) distance matrices do not have to be estimated recursively; (iii) inferring a more accurate tree topology than that of the Neighbor-joining (NJ) algorithm on simulated datasets; and (iv) strongly supporting hypotheses induced by other methods for Baculovirus genomes. Our numerical experiments confirm that the SGC algorithm is efficient for phylogeny inference. |
Author | Lai, Jian-Huang He, Jian-Guo Zhang, Shu-Bo Zhou, Song-Yu |
Author_xml | – sequence: 1 givenname: Shu-Bo surname: Zhang fullname: Zhang, Shu-Bo organization: Department of Computer Science, Maritime College, Guangzhou, PR China – sequence: 2 givenname: Song-Yu surname: Zhou fullname: Zhou, Song-Yu – sequence: 3 givenname: Jian-Guo surname: He fullname: He, Jian-Guo – sequence: 4 givenname: Jian-Huang surname: Lai fullname: Lai, Jian-Huang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21352066$$D View this record in MEDLINE/PubMed |
BookMark | eNo1z7tOwzAUgGELgegFRlbkF0g4tmM7HlHFTarUDjBXtnOcBiVOZKdD3p4BmP7tk_4NuY5jREIeGJQMavPkB1dyAFMC8PqKrJmUuqiVUiuyyfkbgAkF-pasOBOSg1Jroo7npR9bjAvtYsCE0SN1NmNDx0jzhH5OtqdtstOZ-v6SZ0xdbO_ITbB9xvu_bsnX68vn7r3YH94-ds_7wldczgXzwYlgPKARFjAwCUILZaUKwih0PHjtwDS1NyiYN8yGyjQGua6c1iLwLXn8daeLG7A5TakbbFpO_wP8B-TBR7s |
CitedBy_id | crossref_primary_10_1093_bioinformatics_bts098 crossref_primary_10_1016_j_bpj_2014_11_003 crossref_primary_10_1128_microbiolspec_MTBP_0008_2016 crossref_primary_10_3389_fevo_2014_00072 crossref_primary_10_1016_j_ympev_2022_107636 crossref_primary_10_1088_1751_8113_46_36_365102 crossref_primary_10_1007_s10479_017_2456_9 crossref_primary_10_1093_imaiai_iaad032 crossref_primary_10_1093_sysbio_syz049 crossref_primary_10_1016_j_gene_2014_12_062 crossref_primary_10_1089_cmb_2011_0197 |
ContentType | Journal Article |
Copyright | Mary Ann Liebert, Inc. |
Copyright_xml | – notice: Mary Ann Liebert, Inc. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1089/cmb.2009.0028 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1557-8666 |
ExternalDocumentID | 21352066 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 29K 34G 39C 4.4 53G 5GY ABBKN ABEFU ACGFO ADBBV AENEX AFOSN AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BNQNF CAG CGR COF CS3 CUY CVF D-I DIK DU5 EBS ECM EIF EJD F5P IAO IER IGS IHR IM4 ITC MV1 NPM NQHIM O9- P2P R.V RIG RML RMSOB RNS TN5 TR2 UE5 VH1 |
ID | FETCH-LOGICAL-c425t-1cfb3f9c0e93a0ef1503736a56f396eb2fc7b09d8c9e31c91af49d9e274b773f2 |
IngestDate | Thu Apr 03 07:03:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Mary Ann Liebert, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c425t-1cfb3f9c0e93a0ef1503736a56f396eb2fc7b09d8c9e31c91af49d9e274b773f2 |
PMID | 21352066 |
ParticipantIDs | pubmed_primary_21352066 |
PublicationCentury | 2000 |
PublicationDate | 2011-Apr |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-Apr |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of computational biology |
PublicationTitleAlternate | J Comput Biol |
PublicationYear | 2011 |
SSID | ssj0013607 |
Score | 2.0090723 |
Snippet | Phylogeny inference is an importance issue in computational biology. Some early approaches based on characteristics such as the maximum parsimony algorithm and... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 627 |
SubjectTerms | Algorithms Animals Cluster Analysis Computational Biology - methods Humans Models, Genetic Phylogeny |
Title | Phylogeny inference based on spectral graph clustering |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21352066 |
Volume | 18 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6uIuhBfL-lB28STZs2bY4q6iIqHlxYT0uSTfSgreD2oL_eSdKHuirqpZRJH2m_6WQyzXyD0K7gQhohBLZkcTgGDxtLwlMMc2eVZTDikcTmO19esW4vPu8n_XYpr8suGcl99fplXsl_UAUZ4GqzZP-AbHNREMA-4AtbQBi2v8L4-h6m29D64tZUeb5YOywN7S8Al0Np0-8dJ_WeeigtJ0I9Uo37o8rVd6hjgxU503hc-b7ER0UrLkonLfI7fFu2gVWnHKB5-KxsDr7wla-duFuKqiPDNoTaLFTRlZVMYGhjvlzKuBltYwTOJjKf_D9mq0lmqU7Vo6xZQ32W-Dvcnh4dcFEIXiLxd_u59RN1dt3UQR2YRNiqqDaUU_9iYiStSFehJwcf-uEoov25n6Ybzu24mUdzFT7BoQd_AU3ofBFN-wqiL4to9rKh3X1eQqxRiKBRiMApRFDkQa0QgVOIoFWIZdQ7Pbk57uKqMAZWYGJHOFRGUsMV0ZwKog049TSlTCTMUM60jIxK4YsbZoprGioeChPzIddRGss0pSZaQZN5kes1FEQp54JmJBGMxkQQScNEC2KUYILHTK6jVf_4gyfPfjKoX8zGty2baKZVmy00ZeBz09vgu43kjsPgDbNtQs8 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylogeny+inference+based+on+spectral+graph+clustering&rft.jtitle=Journal+of+computational+biology&rft.au=Zhang%2C+Shu-Bo&rft.au=Zhou%2C+Song-Yu&rft.au=He%2C+Jian-Guo&rft.au=Lai%2C+Jian-Huang&rft.date=2011-04-01&rft.eissn=1557-8666&rft.volume=18&rft.issue=4&rft.spage=627&rft_id=info:doi/10.1089%2Fcmb.2009.0028&rft_id=info%3Apmid%2F21352066&rft_id=info%3Apmid%2F21352066&rft.externalDocID=21352066 |