Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go

MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has...

Full description

Saved in:
Bibliographic Details
Published inBrain structure & function Vol. 225; no. 8; pp. 2387 - 2402
Main Authors Schilling, Kurt G., Petit, Laurent, Rheault, Francois, Remedios, Samuel, Pierpaoli, Carlo, Anderson, Adam W., Landman, Bennett A., Descoteaux, Maxime
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections.
AbstractList MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections.
MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false positive and false negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle-segmentation, where streamline filtering using inclusion and exclusion regions of interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually-placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically-driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections.
MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections.MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections.
Author Schilling, Kurt G.
Pierpaoli, Carlo
Descoteaux, Maxime
Anderson, Adam W.
Petit, Laurent
Landman, Bennett A.
Remedios, Samuel
Rheault, Francois
Author_xml – sequence: 1
  givenname: Kurt G.
  orcidid: 0000-0003-3686-7645
  surname: Schilling
  fullname: Schilling, Kurt G.
  email: kurt.g.schilling.1@vumc.org
  organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
– sequence: 2
  givenname: Laurent
  surname: Petit
  fullname: Petit, Laurent
  organization: Groupe dImagerie Neurofonctionnelle, Institut Des Maladies Neurodegeneratives, UMR 5293, CNRS, CEA University of Bordeaux
– sequence: 3
  givenname: Francois
  surname: Rheault
  fullname: Rheault, Francois
  organization: Sherbrooke Connectivity Imaging Laboratory (SCIL), Universite de Sherbrooke
– sequence: 4
  givenname: Samuel
  surname: Remedios
  fullname: Remedios, Samuel
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Henry M. Jackson Foundation
– sequence: 5
  givenname: Carlo
  surname: Pierpaoli
  fullname: Pierpaoli, Carlo
  organization: National Institute of Biomedical Imaging and Bioengineering
– sequence: 6
  givenname: Adam W.
  surname: Anderson
  fullname: Anderson, Adam W.
  organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Department of Biomedical Engineering, Vanderbilt University Medical Center
– sequence: 7
  givenname: Bennett A.
  surname: Landman
  fullname: Landman, Bennett A.
  organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Department of Electrical Engineering and Computer Science, Vanderbilt University
– sequence: 8
  givenname: Maxime
  surname: Descoteaux
  fullname: Descoteaux, Maxime
  organization: Sherbrooke Connectivity Imaging Laboratory (SCIL), Universite de Sherbrooke
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32816112$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03004295$$DView record in HAL
BookMark eNp9ks1u1DAUhS1URH_gBVggL0HqgH9iJ1m2FdBKg5AQrC3XuZm4JPZgOx2lKx6iz9IH4knwNNMKseji2tdX37kLn3OI9px3gNBrSt5TQsoPkZCC1QvCSC6au5tn6IBWki-YlHTvsRd8Hx3GeEWIqCtav0D7nFVUUsoO0N1p0NZh450Dk6x3ETcQ7DU0uA1-wI1t2zHmOf7y7QKnoE3yq6DX3YSNdvgScGdXXT9h7XTygzW63z6MGYNO8Of3rW3xBvBP5zd400GAfNoEeNApQcBrnbqNniKOSYd0vENSBxMG1xznrc2_s8Zj5xNe-Zfoeav7CK929xH68enj97PzxfLr54uzk-XCFEykBa1rWZm6AEZMaWreFlpICoJCwdtalhKMqFlLoGwE4SJXCU1Rm0qyCkgp-RF6N-_tdK_WwQ46TMprq85Plmo7I_zeBHFNM_t2ZtfB_xohJjXYaKDvtQM_RsUKLkpRkpJl9M0OHS8HaB43P_iSgWoGTPAxBmiVsUlv_ckW2F5RorYRUHMEVI6Auo-AuslS9p_0YfuTIj6LYobdCoK68mNw-WufUv0Fu77GVg
CitedBy_id crossref_primary_10_1177_03331024241235168
crossref_primary_10_1016_j_neuroimage_2023_120276
crossref_primary_10_1016_j_neuroimage_2022_119600
crossref_primary_10_1007_s00429_023_02699_8
crossref_primary_10_1162_netn_a_00324
crossref_primary_10_1016_j_nicl_2021_102587
crossref_primary_10_3389_fnins_2024_1385847
crossref_primary_10_1016_j_jneumeth_2023_109883
crossref_primary_10_1053_j_sult_2021_07_005
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1016_j_media_2023_102893
crossref_primary_10_1053_j_sult_2021_07_007
crossref_primary_10_1093_cercor_bhab367
crossref_primary_10_1002_hbm_26310
crossref_primary_10_2463_mrms_rev_2024_0007
crossref_primary_10_1002_hbm_26390
crossref_primary_10_3171_2021_7_JNS211140
crossref_primary_10_1007_s00429_022_02479_w
crossref_primary_10_1162_nol_a_00085
crossref_primary_10_1088_1361_6560_ac0d90
crossref_primary_10_3389_fphy_2024_1447311
crossref_primary_10_1002_nbm_4605
crossref_primary_10_1016_j_pscychresns_2021_111341
crossref_primary_10_1016_j_pscychresns_2022_111448
crossref_primary_10_3389_fsurg_2021_646465
crossref_primary_10_3389_fninf_2022_777853
crossref_primary_10_1212_WNL_0000000000206862
crossref_primary_10_3390_brainsci11121656
crossref_primary_10_52294_e6198273_b8e3_4b63_babb_6e6b0da10669
crossref_primary_10_1016_j_jad_2020_11_122
crossref_primary_10_3390_cancers15030807
crossref_primary_10_1007_s00429_021_02362_0
crossref_primary_10_1016_j_neuroimage_2021_118651
crossref_primary_10_1093_cercor_bhab500
crossref_primary_10_1002_mds_28891
crossref_primary_10_1016_j_neuroimage_2023_120248
crossref_primary_10_1016_j_wneu_2021_06_012
crossref_primary_10_1002_mrm_28926
crossref_primary_10_1016_j_cub_2024_06_034
crossref_primary_10_1007_s00429_022_02518_6
crossref_primary_10_1016_j_media_2021_102126
crossref_primary_10_1002_mrm_30435
crossref_primary_10_1111_ejn_15940
crossref_primary_10_3389_fcomp_2021_718131
crossref_primary_10_1038_s41380_021_01027_y
crossref_primary_10_1002_mrm_30429
crossref_primary_10_3389_fneur_2022_793693
crossref_primary_10_1016_j_neuroimage_2021_118502
crossref_primary_10_1016_j_neuroimage_2021_118543
crossref_primary_10_1080_14737175_2023_2289573
crossref_primary_10_1038_s41386_024_01894_3
Cites_doi 10.1016/j.neuroimage.2019.116017
10.1162/NECO_a_00871
10.1002/jmri.10350
10.1007/s00429-015-1179-4
10.1016/j.neuroimage.2017.07.015
10.1002/mrm.10609
10.1016/j.wneu.2018.04.036
10.1016/j.neuroimage.2007.04.067
10.1016/j.neuroimage.2004.08.050
10.1002/mrm.25198
10.1162/netn_a_00098
10.1073/pnas.1405672111
10.3389/fninf.2014.00008
10.1016/j.neuroimage.2018.06.027
10.1016/j.neuroimage.2012.02.071
10.1016/j.neuroimage.2012.11.049
10.1016/j.media.2013.03.009
10.1016/j.neuroimage.2018.06.049
10.3389/fnhum.2014.00671
10.1002/ima.22005
10.1016/j.mri.2018.09.004
10.1007/s00429-016-1298-6
10.1002/mrm.25045
10.1016/j.neuroimage.2019.116207
10.1523/JNEUROSCI.0493-16.2016
10.1002/hbm.22902
10.1093/acprof:oso/9780195104233.001.0001
10.1002/hbm.22828
10.3389/fnana.2019.00061
10.1176/ajp.2007.164.7.1005
10.1007/s00429-015-1146-0
10.1016/j.mri.2019.04.013
10.1073/pnas.1418198112
10.1073/pnas.96.18.10422
10.1002/hbm.24917
10.1093/cercor/bhu326
10.3389/fnana.2018.00094
10.1016/j.neuroimage.2017.12.036
10.1007/s00429-015-1028-5
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1016/j.neuroimage.2018.10.029
10.1007/s00429-018-1663-8
10.1006/nimg.2002.1136
10.1016/j.neuroimage.2018.07.070
10.1523/JNEUROSCI.5102-10.2011
10.1016/j.mri.2019.07.017
10.1038/s41597-019-0129-z
10.1073/pnas.1711567115
10.1073/pnas.1410767112
10.1002/hbm.23741
10.1523/JNEUROSCI.2457-12.2013
10.1016/j.neuroimage.2007.06.041
10.1016/j.neuroimage.2020.116923
10.1093/cercor/bhv121
10.1016/j.neuroimage.2007.02.056
10.3389/fninf.2011.00023
10.1109/TMI.2014.2352414
10.1016/j.neuroimage.2007.06.022
10.1093/med/9780199541164.001.0001
10.1016/j.neuroimage.2006.09.018
10.1016/j.neuroimage.2012.06.005
10.1162/NECO_a_00955
10.1038/s41467-017-01285-x
10.1016/j.neuroimage.2019.116137
10.1007/s00429-011-0372-3
10.1016/j.neuroimage.2018.08.049
10.1002/hbm.23936
10.1016/j.neuroimage.2014.04.074
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.1007/s00429-017-1463-6
10.1016/j.neuroimage.2007.02.049
10.1016/j.cortex.2012.09.005
10.1016/j.media.2019.101559
10.1162/neco_a_01087
10.1002/nbm.781
10.1016/j.neuroimage.2018.11.018
10.1016/j.neuroimage.2007.12.035
10.1523/JNEUROSCI.2335-17.2017
10.1093/cercor/bhr268
10.1523/JNEUROSCI.5108-12.2013
10.1016/j.neuron.2013.11.012
10.1109/TMI.2014.2380812
10.1016/j.neuroimage.2008.05.002
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
DOI 10.1007/s00429-020-02129-z
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Zoology
EISSN 1863-2661
EndPage 2402
ExternalDocumentID oai_HAL_hal_03004295v1
32816112
10_1007_s00429_020_02129_z
Genre Journal Article
GrantInformation_xml – fundername: Vanderbilt Institute for Clinical and Translational Research
  grantid: VR3029
  funderid: http://dx.doi.org/10.13039/100007206
– fundername: Foundation for the National Institutes of Health
  grantid: R01EB017230; T32EB001628
  funderid: http://dx.doi.org/10.13039/100000009
– fundername: NIBIB NIH HHS
  grantid: R01 EB017230
– fundername: NCRR NIH HHS
  grantid: UL1 RR024975
– fundername: Vanderbilt Institute for Clinical and Translational Research
  grantid: VR3029
– fundername: NIBIB NIH HHS
  grantid: T32 EB001628
– fundername: Foundation for the National Institutes of Health
  grantid: T32EB001628
– fundername: Foundation for the National Institutes of Health
  grantid: R01EB017230
– fundername: NINDS NIH HHS
  grantid: R01 NS058639
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6J9
6NX
78A
7RV
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P9S
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SBL
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TSG
TSK
TSV
TT1
TUC
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z82
Z83
Z87
Z8V
Z8W
Z91
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7X8
1XC
VOOES
ID FETCH-LOGICAL-c425t-19968c94e20c7c93f4a561e51e43f9676ec592f0e7d50355037ed49c8628e0763
IEDL.DBID AGYKE
ISSN 1863-2653
1863-2661
IngestDate Fri May 09 12:15:38 EDT 2025
Fri Jul 11 00:26:59 EDT 2025
Thu Apr 03 07:08:27 EDT 2025
Tue Jul 01 00:38:16 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Fri Feb 21 02:35:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Validation
Diffusion MRI
White matter
Tractography
Tracer
white matter
tractography
tracer
validation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-19968c94e20c7c93f4a561e51e43f9676ec592f0e7d50355037ed49c8628e0763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3686-7645
0000-0003-2499-5367
0000-0002-0097-8004
OpenAccessLink https://hal.science/hal-03004295
PMID 32816112
PQID 2435757072
PQPubID 23479
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_03004295v1
proquest_miscellaneous_2435757072
pubmed_primary_32816112
crossref_citationtrail_10_1007_s00429_020_02129_z
crossref_primary_10_1007_s00429_020_02129_z
springer_journals_10_1007_s00429_020_02129_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201100
2020-11-00
2020-Nov
20201101
2020-11
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
PublicationTitle Brain structure & function
PublicationTitleAbbrev Brain Struct Funct
PublicationTitleAlternate Brain Struct Funct
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Verlag
References Neubert, Mars, Sallet, Rushworth (CR56) 2015; 112
Zhang, Wu, Norton, Rigolo, Rathi, Makris (CR89) 2018; 179
Mori, van Zijl (CR50) 2002; 15
Mori, van Zijl (CR51) 2007; 164
Rheault, De Benedictis, Daducci, Maffei, Tax, Romascano (CR62) 2020; 41
Jbabdi, Lehman, Haber, Behrens (CR39) 2013; 33
Shen, Bezgin, Schirner, Ritter, Everling, McIntosh (CR71) 2019; 6
Dauguet, Peled, Berezovskii, Delzescaux, Warfield, Born (CR15) 2007; 37
Smith, Tournier, Calamante, Connelly (CR72) 2012; 62
Innocenti, Dyrby, Andersen, Rouiller, Caminiti (CR38) 2017; 27
Mori, Crain, Chacko, van Zijl (CR52) 1999; 45
Wasserthal, Neher, Maier-Hein (CR86) 2018; 183
Sallet, Mars, Noonan, Neubert, Jbabdi, O'Reilly (CR64) 2013; 33
Mandonnet, Sarubbo, Petit (CR45) 2018; 12
Schilling, Nath, Hansen, Parvathaneni, Blaber, Gao (CR66) 2018; 185
Huang, Bailey, Wang, Cutting, Gore, Ding (CR37) 2018; 183
Delettre, Messe, Dell, Foubet, Heuer, Larrat (CR17) 2019; 3
Tournier, Yeh, Calamante, Cho, Connelly, Lin (CR76) 2008; 42
Rheault, St-Onge, Sidhu, Maier-Hein, Tzourio-Mazoyer, Petit (CR61) 2019; 186
Sarubbo, De Benedictis, Maldonado, Basso, Duffau (CR65) 2013; 218
CR70
Mars, Jbabdi, Sallet, O'Reilly, Croxson, Olivier (CR46) 2011; 31
Daducci, Dal Palu, Lemkaddem, Thiran (CR13) 2015; 34
Garyfallidis, Cote, Rheault, Sidhu, Hau, Petit (CR31) 2018; 170
Parker, Haroon, Wheeler-Kingshott (CR58) 2003; 18
Alonso-Ortiz, Levesque, Pike (CR1) 2015; 73
Conturo, Lori, Cull, Akbudak, Snyder, Shimony (CR11) 1999; 96
Forkel, Thiebaut de Schotten, Kawadler, Dell'Acqua, Danek, Catani (CR24) 2014; 56
Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki (CR84) 2013; 16
Guevara, Duclap, Poupon, Marrakchi-Kacem, Fillard, Le Bihan (CR35) 2012; 61
Schilling, Gao, Stepniewska, Janve, Landman, Anderson (CR69) 2019; 55
Safadi, Grisot, Jbabdi, Behrens, Heilbronner, McLaughlin (CR63) 2018; 38
Behrens, Berg, Jbabdi, Rushworth, Woolrich (CR7) 2007; 34
Catani, de Schotten (CR10) 2012
Galinsky, Frank (CR26) 2015; 34
Poulin, Jorgens, Jodoin, Descoteaux (CR59) 2019; 64
Mars, Foxley, Verhagen, Jbabdi, Sallet, Noonan (CR49) 2016; 221
Dauguet, Peled, Berezovskii, Delzescaux, Warfield, Born (CR14) 2006; 9
Mori, Oishi, Jiang, Jiang, Li, Akhter (CR53) 2008; 40
Basser, Pajevic, Pierpaoli, Duda, Aldroubi (CR5) 2000; 44
Azadbakht, Parkes, Haroon, Augath, Logothetis, de Crespigny (CR4) 2015; 25
Catani, Howard, Pajevic, Jones (CR9) 2002; 17
Lazar, Alexander (CR43) 2005; 24
Donahue, Sotiropoulos, Jbabdi, Hernandez-Fernandez, Behrens, Dyrby (CR20) 2016; 36
Yendiki, Panneck, Srinivasan, Stevens, Zollei, Augustinack (CR88) 2011; 5
Dyrby, Sogaard, Parker, Alexander, Lind, Baare (CR21) 2007; 37
Galinsky, Martinez, Paulus, Frank (CR28) 2018; 30
Mars, Sallet, Schuffelgen, Jbabdi, Toni, Rushworth (CR47) 2012; 22
Reveley, Seth, Pierpaoli, Silva, Yu, Saunders (CR60) 2015; 112
De Benedictis, Nocerino, Menna, Remondino, Barbareschi, Rozzanigo (CR16) 2018; 115
St-Onge, Daducci, Girard, Descoteaux (CR74) 2018; 169
Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud (CR83) 2020; 217
Wasserthal, Neher, Hirjak, Maier-Hein (CR87) 2019; 58
Deslauriers-Gauthier, Lina, Butler, Whittingstall, Gilbert, Bernier (CR18) 2019; 201
Lawes, Barrick, Murugam, Spierings, Evans, Song (CR42) 2008; 39
Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare (CR6) 2003; 50
Thomas, Ye, Irfanoglu, Modi, Saleem, Leopold (CR75) 2014; 111
Neubert, Mars, Thomas, Sallet, Rushworth (CR55) 2014; 81
Panesar, Fernandez-Miranda (CR57) 2019; 13
Wang, Pathak, Stefaneanu, Yeh, Li, Fernandez-Miranda (CR81) 2016; 221
Girard, Whittingstall, Deriche, Descoteaux (CR32) 2014; 98
Knosche, Anwander, Liptrot, Dyrby (CR40) 2015; 36
Neher, Laun, Stieltjes, Maier-Hein (CR54) 2014; 72
Frank, Galinsky (CR25) 2016; 28
Galinsky, Frank (CR27) 2017; 29
Garyfallidis, Brett, Amirbekian, Rokem, van der Walt, Descoteaux (CR30) 2014; 8
Calabrese, Badea, Cofer, Qi, Johnson (CR8) 2015; 25
Cote, Girard, Bore, Garyfallidis, Houde, Descoteaux (CR12) 2013; 17
Tournier, Calamante, Connelly (CR77) 2012; 22
Aydogan, Jacobs, Dulawa, Thompson, Francois, Toga (CR3) 2018; 223
Hau, Sarubbo, Houde, Corsini, Girard, Deledalle (CR36) 2017; 222
Ganzetti, Wenderoth, Mantini (CR29) 2014; 8
Gore, Li, Gao, Wu, Schilling, Huang (CR34) 2019; 63
Smith, Tournier, Calamante, Connelly (CR73) 2013; 67
Feng, Jeon, Yu, Ouyang, Peng, Mishra (CR23) 2017; 222
Ambrosen, Eskildsen, Hinne, Krug, Lundell, Schmidt (CR2) 2020; 204
Maier-Hein, Neher, Houde, Cote, Garyfallidis, Zhong (CR44) 2017; 8
van den Heuvel, de Reus, Barrett, Scholtens, Coopmans, Schmidt (CR79) 2015; 36
Ding, Huang, Bailey, Gao, Cutting, Rogers (CR19) 2018; 115
Landman, Farrell, Jones, Smith, Prince, Mori (CR41) 2007; 36
Girard, Daducci, Petit, Thiran, Whittingstall, Deriche (CR33) 2017; 38
Tournier, Smith, Raffelt, Tabbara, Dhollander, Pietsch (CR78) 2019; 202
Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki (CR85) 2016; 221
Dyrby, Innocenti, Bech, Lundell (CR22) 2018; 182
Schilling, Gao, Janve, Stepniewska, Landman, Anderson (CR68) 2018; 39
Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub (CR80) 2007; 36
TB Dyrby (2129_CR22) 2018; 182
LR Frank (2129_CR25) 2016; 28
J Wasserthal (2129_CR87) 2019; 58
KS Ambrosen (2129_CR2) 2020; 204
VL Galinsky (2129_CR27) 2017; 29
Z Safadi (2129_CR63) 2018; 38
SJ Forkel (2129_CR24) 2014; 56
A Daducci (2129_CR13) 2015; 34
D Wassermann (2129_CR84) 2013; 16
E Calabrese (2129_CR8) 2015; 25
GJ Parker (2129_CR58) 2003; 18
KG Schilling (2129_CR69) 2019; 55
RB Mars (2129_CR47) 2012; 22
MA Cote (2129_CR12) 2013; 17
E Alonso-Ortiz (2129_CR1) 2015; 73
L Feng (2129_CR23) 2017; 222
G Girard (2129_CR33) 2017; 38
TB Dyrby (2129_CR21) 2007; 37
A De Benedictis (2129_CR16) 2018; 115
RB Mars (2129_CR46) 2011; 31
S Mori (2129_CR51) 2007; 164
TE Behrens (2129_CR6) 2003; 50
MP van den Heuvel (2129_CR79) 2015; 36
S Mori (2129_CR53) 2008; 40
M Catani (2129_CR9) 2002; 17
E Garyfallidis (2129_CR30) 2014; 8
S Sarubbo (2129_CR65) 2013; 218
DB Aydogan (2129_CR3) 2018; 223
S Mori (2129_CR52) 1999; 45
P Poulin (2129_CR59) 2019; 64
TR Knosche (2129_CR40) 2015; 36
VL Galinsky (2129_CR26) 2015; 34
J Hau (2129_CR36) 2017; 222
F Rheault (2129_CR61) 2019; 186
F Zhang (2129_CR89) 2018; 179
S Warrington (2129_CR83) 2020; 217
S Deslauriers-Gauthier (2129_CR18) 2019; 201
M Ganzetti (2129_CR29) 2014; 8
G Girard (2129_CR32) 2014; 98
K Schilling (2129_CR68) 2018; 39
A Yendiki (2129_CR88) 2011; 5
H Azadbakht (2129_CR4) 2015; 25
S Jbabdi (2129_CR39) 2013; 33
VL Galinsky (2129_CR28) 2018; 30
IN Lawes (2129_CR42) 2008; 39
PF Neher (2129_CR54) 2014; 72
PJ Basser (2129_CR5) 2000; 44
JD Tournier (2129_CR76) 2008; 42
M Catani (2129_CR10) 2012
E Garyfallidis (2129_CR31) 2018; 170
RB Mars (2129_CR49) 2016; 221
KG Schilling (2129_CR66) 2018; 185
JC Gore (2129_CR34) 2019; 63
SS Panesar (2129_CR57) 2019; 13
Z Ding (2129_CR19) 2018; 115
RE Smith (2129_CR73) 2013; 67
JD Tournier (2129_CR78) 2019; 202
KH Maier-Hein (2129_CR44) 2017; 8
C Reveley (2129_CR60) 2015; 112
S Mori (2129_CR50) 2002; 15
RE Smith (2129_CR72) 2012; 62
J Dauguet (2129_CR15) 2007; 37
C Delettre (2129_CR17) 2019; 3
Y Huang (2129_CR37) 2018; 183
E St-Onge (2129_CR74) 2018; 169
J Wasserthal (2129_CR86) 2018; 183
P Guevara (2129_CR35) 2012; 61
FX Neubert (2129_CR55) 2014; 81
K Shen (2129_CR71) 2019; 6
JD Tournier (2129_CR77) 2012; 22
E Mandonnet (2129_CR45) 2018; 12
FX Neubert (2129_CR56) 2015; 112
BA Landman (2129_CR41) 2007; 36
TE Conturo (2129_CR11) 1999; 96
J Sallet (2129_CR64) 2013; 33
2129_CR70
GM Innocenti (2129_CR38) 2017; 27
D Wassermann (2129_CR85) 2016; 221
CJ Donahue (2129_CR20) 2016; 36
M Lazar (2129_CR43) 2005; 24
TE Behrens (2129_CR7) 2007; 34
C Thomas (2129_CR75) 2014; 111
J Dauguet (2129_CR14) 2006; 9
F Rheault (2129_CR62) 2020; 41
X Wang (2129_CR81) 2016; 221
S Wakana (2129_CR80) 2007; 36
References_xml – ident: CR70
– volume: 183
  start-page: 239
  year: 2018
  end-page: 253
  ident: CR86
  article-title: TractSeg - Fast and accurate white matter tract segmentation
  publication-title: Neuroimage
– volume: 31
  start-page: 4087
  year: 2011
  end-page: 4100
  ident: CR46
  article-title: Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity
  publication-title: J Neurosci
– volume: 15
  start-page: 468
  year: 2002
  end-page: 480
  ident: CR50
  article-title: Fiber tracking: principles and strategies - a technical review
  publication-title: NMR Biomed
– volume: 16
  start-page: 647
  year: 2013
  end-page: 654
  ident: CR84
  article-title: On describing human white matter anatomy: the white matter query language
  publication-title: Med Image Comput Comput Assist Interv
– volume: 204
  start-page: 116207
  year: 2020
  ident: CR2
  article-title: Validation of structural brain connectivity networks: the impact of scanning parameters
  publication-title: Neuroimage
– volume: 36
  start-page: 6758
  year: 2016
  end-page: 6770
  ident: CR20
  article-title: Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey
  publication-title: J Neurosci
– volume: 28
  start-page: 1769
  year: 2016
  end-page: 1811
  ident: CR25
  article-title: Dynamic multiscale modes of resting state brain activity detected by entropy field decomposition
  publication-title: Neural Comput
– volume: 64
  start-page: 37
  year: 2019
  end-page: 38
  ident: CR59
  article-title: Tractography and machine learning: current state and open challenges
  publication-title: Magn Reson Imaging
– volume: 56
  start-page: 73
  year: 2014
  end-page: 84
  ident: CR24
  article-title: The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography
  publication-title: Cortex
– volume: 218
  start-page: 21
  year: 2013
  end-page: 37
  ident: CR65
  article-title: Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle
  publication-title: Brain Struct Funct
– volume: 34
  start-page: 246
  year: 2015
  end-page: 257
  ident: CR13
  article-title: COMMIT: Convex optimization modeling for microstructure informed tractography
  publication-title: IEEE Trans Med Imaging
– volume: 61
  start-page: 1083
  year: 2012
  end-page: 1099
  ident: CR35
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
  publication-title: Neuroimage
– volume: 45
  start-page: 265
  year: 1999
  end-page: 269
  ident: CR52
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann Neurol
– volume: 39
  start-page: 62
  year: 2008
  end-page: 79
  ident: CR42
  article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection
  publication-title: Neuroimage
– volume: 36
  start-page: 630
  year: 2007
  end-page: 644
  ident: CR80
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
– volume: 37
  start-page: 1267
  year: 2007
  end-page: 1277
  ident: CR21
  article-title: Validation of in vitro probabilistic tractography
  publication-title: Neuroimage
– volume: 17
  start-page: 844
  year: 2013
  end-page: 857
  ident: CR12
  article-title: Tractometer: towards validation of tractography pipelines
  publication-title: Med Image Anal
– volume: 221
  start-page: 4059
  year: 2016
  end-page: 4071
  ident: CR49
  article-title: The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study
  publication-title: Brain Struct Funct
– volume: 9
  start-page: 109
  year: 2006
  end-page: 116
  ident: CR14
  article-title: 3D histological reconstruction of fiber tracts and direct comparison with diffusion tensor MRI tractography
  publication-title: Med Image Comput Comput Assist Interv
– volume: 112
  start-page: E2820
  year: 2015
  end-page: E2828
  ident: CR60
  article-title: Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography
  publication-title: Proc Natl Acad Sci USA
– volume: 115
  start-page: 595
  year: 2018
  end-page: 600
  ident: CR19
  article-title: Detection of synchronous brain activity in white matter tracts at rest and under functional loading
  publication-title: Proc Natl Acad Sci USA
– volume: 183
  start-page: 544
  year: 2018
  end-page: 552
  ident: CR37
  article-title: Voxel-wise detection of functional networks in white matter
  publication-title: Neuroimage
– volume: 222
  start-page: 1645
  year: 2017
  end-page: 1662
  ident: CR36
  article-title: Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation
  publication-title: Brain Struct Funct
– volume: 202
  start-page: 116137
  year: 2019
  ident: CR78
  article-title: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
– volume: 34
  start-page: 1177
  year: 2015
  end-page: 1193
  ident: CR26
  article-title: Simultaneous multi-scale diffusion estimation and tractography guided by entropy spectrum pathways
  publication-title: IEEE Trans Med Imaging
– volume: 3
  start-page: 1038
  year: 2019
  end-page: 1050
  ident: CR17
  article-title: Comparison between diffusion MRI tractography and histological tract-tracing of cortico-cortical structural connectivity in the ferret brain
  publication-title: Netw Neurosci
– volume: 8
  start-page: 1349
  year: 2017
  ident: CR44
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat Commun
– volume: 30
  start-page: 1725
  year: 2018
  end-page: 1749
  ident: CR28
  article-title: Joint estimation of effective brain wave activation modes using EEG/MEG sensor arrays and multimodal MRI volumes
  publication-title: Neural Comput
– volume: 40
  start-page: 570
  year: 2008
  end-page: 582
  ident: CR53
  article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template
  publication-title: Neuroimage
– volume: 27
  start-page: 3217
  year: 2017
  end-page: 3230
  ident: CR38
  article-title: The crossed projection to the striatum in two species of monkey and in humans: behavioral and evolutionary significance
  publication-title: Cereb Cortex
– volume: 8
  start-page: 8
  year: 2014
  ident: CR30
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front Neuroinform
– volume: 24
  start-page: 524
  year: 2005
  end-page: 532
  ident: CR43
  article-title: Bootstrap white matter tractography (BOOT-TRAC)
  publication-title: Neuroimage
– volume: 201
  start-page: 116017
  year: 2019
  ident: CR18
  article-title: White matter information flow mapping from diffusion MRI and EEG
  publication-title: Neuroimage
– volume: 179
  start-page: 429
  year: 2018
  end-page: 447
  ident: CR89
  article-title: An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan
  publication-title: Neuroimage
– volume: 221
  start-page: 2075
  year: 2016
  end-page: 2092
  ident: CR81
  article-title: Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain
  publication-title: Brain Struct Funct
– volume: 185
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR66
  article-title: Limits to anatomical accuracy of diffusion tractography using modern approaches
  publication-title: Neuroimage
– volume: 5
  start-page: 23
  year: 2011
  ident: CR88
  article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy
  publication-title: Front Neuroinform
– volume: 25
  start-page: 4628
  year: 2015
  end-page: 4637
  ident: CR8
  article-title: A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data
  publication-title: Cereb Cortex
– volume: 36
  start-page: 1123
  year: 2007
  end-page: 1138
  ident: CR41
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: Neuroimage
– volume: 164
  start-page: 1005
  year: 2007
  ident: CR51
  article-title: Human white matter atlas
  publication-title: Am J Psychiatry
– volume: 41
  start-page: 1859
  year: 2020
  end-page: 1874
  ident: CR62
  article-title: Tractostorm: The what, why, and how of tractography dissection reproducibility
  publication-title: Hum Brain Mapp
– volume: 8
  start-page: 671
  year: 2014
  ident: CR29
  article-title: Whole brain myelin mapping using T1- and T2-weighted MR imaging data
  publication-title: Front Hum Neurosci
– volume: 38
  start-page: 5485
  year: 2017
  end-page: 5500
  ident: CR33
  article-title: AxTract: Toward microstructure informed tractography
  publication-title: Hum Brain Mapp
– volume: 12
  start-page: 94
  year: 2018
  ident: CR45
  article-title: The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification
  publication-title: Front Neuroanat
– volume: 33
  start-page: 12255
  year: 2013
  end-page: 12274
  ident: CR64
  article-title: The organization of dorsal frontal cortex in humans and macaques
  publication-title: J Neurosci
– volume: 22
  start-page: 53
  year: 2012
  end-page: 66
  ident: CR77
  article-title: MRtrix: Diffusion tractography in crossing fiber regions
  publication-title: Int J Imaging Syst Technol
– volume: 34
  start-page: 144
  year: 2007
  end-page: 155
  ident: CR7
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?
  publication-title: Neuroimage
– volume: 13
  start-page: 61
  year: 2019
  ident: CR57
  article-title: Commentary: the nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification
  publication-title: Front Neuroanat
– volume: 38
  start-page: 2106
  year: 2018
  end-page: 2117
  ident: CR63
  article-title: Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections
  publication-title: J Neurosci
– volume: 98
  start-page: 266
  year: 2014
  end-page: 278
  ident: CR32
  article-title: Towards quantitative connectivity analysis: reducing tractography biases
  publication-title: Neuroimage
– volume: 81
  start-page: 700
  year: 2014
  end-page: 713
  ident: CR55
  article-title: Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex
  publication-title: Neuron
– volume: 37
  start-page: 530
  year: 2007
  end-page: 538
  ident: CR15
  article-title: Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain
  publication-title: Neuroimage
– volume: 25
  start-page: 4299
  year: 2015
  end-page: 4309
  ident: CR4
  article-title: Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex
  publication-title: Cereb Cortex
– volume: 58
  start-page: 101559
  year: 2019
  ident: CR87
  article-title: Combined tract segmentation and orientation mapping for bundle-specific tractography
  publication-title: Med Image Anal
– volume: 112
  start-page: E2695
  year: 2015
  end-page: E2704
  ident: CR56
  article-title: Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex
  publication-title: Proc Natl Acad Sci USA
– volume: 169
  start-page: 524
  year: 2018
  end-page: 539
  ident: CR74
  article-title: Surface-enhanced tractography (SET)
  publication-title: Neuroimage
– volume: 62
  start-page: 1924
  year: 2012
  end-page: 1938
  ident: CR72
  article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: Neuroimage
– volume: 36
  start-page: 3064
  year: 2015
  end-page: 3075
  ident: CR79
  article-title: Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome
  publication-title: Hum Brain Mapp
– volume: 182
  start-page: 62
  year: 2018
  end-page: 79
  ident: CR22
  article-title: Validation strategies for the interpretation of microstructure imaging using diffusion MRI
  publication-title: Neuroimage
– volume: 39
  start-page: 1449
  year: 2018
  end-page: 1466
  ident: CR68
  article-title: Confirmation of a gyral bias in diffusion MRI fiber tractography
  publication-title: Hum Brain Mapp
– volume: 42
  start-page: 617
  year: 2008
  end-page: 625
  ident: CR76
  article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data
  publication-title: Neuroimage
– volume: 170
  start-page: 283
  year: 2018
  end-page: 295
  ident: CR31
  article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering
  publication-title: Neuroimage
– volume: 186
  start-page: 382
  year: 2019
  end-page: 398
  ident: CR61
  article-title: Bundle-specific tractography with incorporated anatomical and orientational priors
  publication-title: Neuroimage
– volume: 29
  start-page: 1441
  year: 2017
  end-page: 1467
  ident: CR27
  article-title: A unified theory of neuro-MRI data shows scale-free nature of connectivity modes
  publication-title: Neural Comput
– volume: 50
  start-page: 1077
  year: 2003
  end-page: 1088
  ident: CR6
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn Reson Med
– volume: 73
  start-page: 70
  year: 2015
  end-page: 81
  ident: CR1
  article-title: MRI-based myelin water imaging: a technical review
  publication-title: Magn Reson Med
– volume: 63
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR34
  article-title: Functional MRI and resting state connectivity in white matter—a mini-review
  publication-title: Magn Reson Imaging
– volume: 111
  start-page: 16574
  year: 2014
  end-page: 16579
  ident: CR75
  article-title: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited
  publication-title: Proc Natl Acad Sci USA
– volume: 55
  start-page: 7
  year: 2019
  end-page: 25
  ident: CR69
  article-title: Anatomical accuracy of standard-practice tractography algorithms in the motor system—A histological validation in the squirrel monkey brain
  publication-title: Magnetic Reson Imaging
– volume: 17
  start-page: 77
  year: 2002
  end-page: 94
  ident: CR9
  article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain
  publication-title: Neuroimage
– year: 2012
  ident: CR10
  publication-title: Atlas of human brain connections
– volume: 115
  start-page: e279
  year: 2018
  end-page: e291
  ident: CR16
  article-title: Photogrammetry of the human brain: a novel method for three-dimensional quantitative exploration of the structural connectivity in neurosurgery and neurosciences
  publication-title: World Neurosurg
– volume: 18
  start-page: 242
  year: 2003
  end-page: 254
  ident: CR58
  article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements
  publication-title: J Magn Reson Imaging
– volume: 96
  start-page: 10422
  year: 1999
  end-page: 10427
  ident: CR11
  article-title: Tracking neuronal fiber pathways in the living human brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 222
  start-page: 4131
  year: 2017
  end-page: 4147
  ident: CR23
  article-title: Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space
  publication-title: Brain Struct Funct
– volume: 33
  start-page: 3190
  year: 2013
  end-page: 3201
  ident: CR39
  article-title: Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography
  publication-title: J Neurosci
– volume: 72
  start-page: 1460
  year: 2014
  end-page: 1470
  ident: CR54
  article-title: Fiberfox: facilitating the creation of realistic white matter software phantoms
  publication-title: Magn Reson Med
– volume: 67
  start-page: 298
  year: 2013
  end-page: 312
  ident: CR73
  article-title: SIFT: Spherical-deconvolution informed filtering of tractograms
  publication-title: Neuroimage
– volume: 36
  start-page: 4116
  year: 2015
  end-page: 4134
  ident: CR40
  article-title: Validation of tractography: comparison with manganese tracing
  publication-title: Hum Brain Mapp
– volume: 6
  start-page: 123
  year: 2019
  ident: CR71
  article-title: A macaque connectome for large-scale network simulations in TheVirtualBrain
  publication-title: Sci Data
– volume: 217
  start-page: 116923
  year: 2020
  ident: CR83
  article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
– volume: 22
  start-page: 1894
  year: 2012
  end-page: 1903
  ident: CR47
  article-title: Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks
  publication-title: Cereb Cortex
– volume: 221
  start-page: 4705
  year: 2016
  end-page: 4721
  ident: CR85
  article-title: The white matter query language: a novel approach for describing human white matter anatomy
  publication-title: Brain Struct Funct
– volume: 223
  start-page: 2841
  year: 2018
  end-page: 2858
  ident: CR3
  article-title: When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity
  publication-title: Brain Struct Funct
– volume: 44
  start-page: 625
  year: 2000
  end-page: 632
  ident: CR5
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn Reson Med
– volume: 201
  start-page: 116017
  year: 2019
  ident: 2129_CR18
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116017
– volume: 28
  start-page: 1769
  year: 2016
  ident: 2129_CR25
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00871
– volume: 18
  start-page: 242
  year: 2003
  ident: 2129_CR58
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.10350
– volume: 221
  start-page: 4705
  year: 2016
  ident: 2129_CR85
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-015-1179-4
– volume: 170
  start-page: 283
  year: 2018
  ident: 2129_CR31
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.015
– volume: 50
  start-page: 1077
  year: 2003
  ident: 2129_CR6
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10609
– volume: 115
  start-page: e279
  year: 2018
  ident: 2129_CR16
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2018.04.036
– volume: 37
  start-page: 530
  year: 2007
  ident: 2129_CR15
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.067
– volume: 24
  start-page: 524
  year: 2005
  ident: 2129_CR43
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.08.050
– volume: 73
  start-page: 70
  year: 2015
  ident: 2129_CR1
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25198
– volume: 3
  start-page: 1038
  year: 2019
  ident: 2129_CR17
  publication-title: Netw Neurosci
  doi: 10.1162/netn_a_00098
– volume: 111
  start-page: 16574
  year: 2014
  ident: 2129_CR75
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1405672111
– volume: 8
  start-page: 8
  year: 2014
  ident: 2129_CR30
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2014.00008
– volume: 16
  start-page: 647
  year: 2013
  ident: 2129_CR84
  publication-title: Med Image Comput Comput Assist Interv
– volume: 179
  start-page: 429
  year: 2018
  ident: 2129_CR89
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.06.027
– volume: 61
  start-page: 1083
  year: 2012
  ident: 2129_CR35
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.071
– volume: 67
  start-page: 298
  year: 2013
  ident: 2129_CR73
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.11.049
– volume: 17
  start-page: 844
  year: 2013
  ident: 2129_CR12
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2013.03.009
– volume: 182
  start-page: 62
  year: 2018
  ident: 2129_CR22
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.06.049
– volume: 8
  start-page: 671
  year: 2014
  ident: 2129_CR29
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2014.00671
– volume: 22
  start-page: 53
  year: 2012
  ident: 2129_CR77
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22005
– volume: 55
  start-page: 7
  year: 2019
  ident: 2129_CR69
  publication-title: Magnetic Reson Imaging
  doi: 10.1016/j.mri.2018.09.004
– volume: 222
  start-page: 1645
  year: 2017
  ident: 2129_CR36
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-016-1298-6
– volume: 72
  start-page: 1460
  year: 2014
  ident: 2129_CR54
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25045
– volume: 204
  start-page: 116207
  year: 2020
  ident: 2129_CR2
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116207
– volume: 36
  start-page: 6758
  year: 2016
  ident: 2129_CR20
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0493-16.2016
– volume: 36
  start-page: 4116
  year: 2015
  ident: 2129_CR40
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22902
– ident: 2129_CR70
  doi: 10.1093/acprof:oso/9780195104233.001.0001
– volume: 36
  start-page: 3064
  year: 2015
  ident: 2129_CR79
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22828
– volume: 9
  start-page: 109
  year: 2006
  ident: 2129_CR14
  publication-title: Med Image Comput Comput Assist Interv
– volume: 13
  start-page: 61
  year: 2019
  ident: 2129_CR57
  publication-title: Front Neuroanat
  doi: 10.3389/fnana.2019.00061
– volume: 164
  start-page: 1005
  year: 2007
  ident: 2129_CR51
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.2007.164.7.1005
– volume: 221
  start-page: 4059
  year: 2016
  ident: 2129_CR49
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-015-1146-0
– volume: 64
  start-page: 37
  year: 2019
  ident: 2129_CR59
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.04.013
– volume: 112
  start-page: E2820
  year: 2015
  ident: 2129_CR60
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1418198112
– volume: 96
  start-page: 10422
  year: 1999
  ident: 2129_CR11
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.18.10422
– volume: 27
  start-page: 3217
  year: 2017
  ident: 2129_CR38
  publication-title: Cereb Cortex
– volume: 41
  start-page: 1859
  year: 2020
  ident: 2129_CR62
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24917
– volume: 25
  start-page: 4299
  year: 2015
  ident: 2129_CR4
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhu326
– volume: 12
  start-page: 94
  year: 2018
  ident: 2129_CR45
  publication-title: Front Neuroanat
  doi: 10.3389/fnana.2018.00094
– volume: 169
  start-page: 524
  year: 2018
  ident: 2129_CR74
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.036
– volume: 221
  start-page: 2075
  year: 2016
  ident: 2129_CR81
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-015-1028-5
– volume: 45
  start-page: 265
  year: 1999
  ident: 2129_CR52
  publication-title: Ann Neurol
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– volume: 185
  start-page: 1
  year: 2018
  ident: 2129_CR66
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.029
– volume: 223
  start-page: 2841
  year: 2018
  ident: 2129_CR3
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-018-1663-8
– volume: 17
  start-page: 77
  year: 2002
  ident: 2129_CR9
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1136
– volume: 183
  start-page: 239
  year: 2018
  ident: 2129_CR86
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.070
– volume: 31
  start-page: 4087
  year: 2011
  ident: 2129_CR46
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5102-10.2011
– volume: 63
  start-page: 1
  year: 2019
  ident: 2129_CR34
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.07.017
– volume: 6
  start-page: 123
  year: 2019
  ident: 2129_CR71
  publication-title: Sci Data
  doi: 10.1038/s41597-019-0129-z
– volume: 115
  start-page: 595
  year: 2018
  ident: 2129_CR19
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1711567115
– volume: 112
  start-page: E2695
  year: 2015
  ident: 2129_CR56
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1410767112
– volume: 38
  start-page: 5485
  year: 2017
  ident: 2129_CR33
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23741
– volume: 33
  start-page: 3190
  year: 2013
  ident: 2129_CR39
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2457-12.2013
– volume: 39
  start-page: 62
  year: 2008
  ident: 2129_CR42
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.06.041
– volume: 217
  start-page: 116923
  year: 2020
  ident: 2129_CR83
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116923
– volume: 25
  start-page: 4628
  year: 2015
  ident: 2129_CR8
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhv121
– volume: 36
  start-page: 1123
  year: 2007
  ident: 2129_CR41
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.056
– volume: 5
  start-page: 23
  year: 2011
  ident: 2129_CR88
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2011.00023
– volume: 34
  start-page: 246
  year: 2015
  ident: 2129_CR13
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2352414
– volume: 37
  start-page: 1267
  year: 2007
  ident: 2129_CR21
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.06.022
– volume-title: Atlas of human brain connections
  year: 2012
  ident: 2129_CR10
  doi: 10.1093/med/9780199541164.001.0001
– volume: 34
  start-page: 144
  year: 2007
  ident: 2129_CR7
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 62
  start-page: 1924
  year: 2012
  ident: 2129_CR72
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.005
– volume: 29
  start-page: 1441
  year: 2017
  ident: 2129_CR27
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00955
– volume: 8
  start-page: 1349
  year: 2017
  ident: 2129_CR44
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01285-x
– volume: 202
  start-page: 116137
  year: 2019
  ident: 2129_CR78
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 218
  start-page: 21
  year: 2013
  ident: 2129_CR65
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-011-0372-3
– volume: 183
  start-page: 544
  year: 2018
  ident: 2129_CR37
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.049
– volume: 39
  start-page: 1449
  year: 2018
  ident: 2129_CR68
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23936
– volume: 98
  start-page: 266
  year: 2014
  ident: 2129_CR32
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.04.074
– volume: 44
  start-page: 625
  year: 2000
  ident: 2129_CR5
  publication-title: Magn Reson Med
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– volume: 222
  start-page: 4131
  year: 2017
  ident: 2129_CR23
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-017-1463-6
– volume: 36
  start-page: 630
  year: 2007
  ident: 2129_CR80
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.049
– volume: 56
  start-page: 73
  year: 2014
  ident: 2129_CR24
  publication-title: Cortex
  doi: 10.1016/j.cortex.2012.09.005
– volume: 58
  start-page: 101559
  year: 2019
  ident: 2129_CR87
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101559
– volume: 30
  start-page: 1725
  year: 2018
  ident: 2129_CR28
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01087
– volume: 15
  start-page: 468
  year: 2002
  ident: 2129_CR50
  publication-title: NMR Biomed
  doi: 10.1002/nbm.781
– volume: 186
  start-page: 382
  year: 2019
  ident: 2129_CR61
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.11.018
– volume: 40
  start-page: 570
  year: 2008
  ident: 2129_CR53
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.12.035
– volume: 38
  start-page: 2106
  year: 2018
  ident: 2129_CR63
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2335-17.2017
– volume: 22
  start-page: 1894
  year: 2012
  ident: 2129_CR47
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhr268
– volume: 33
  start-page: 12255
  year: 2013
  ident: 2129_CR64
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5108-12.2013
– volume: 81
  start-page: 700
  year: 2014
  ident: 2129_CR55
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.11.012
– volume: 34
  start-page: 1177
  year: 2015
  ident: 2129_CR26
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2380812
– volume: 42
  start-page: 617
  year: 2008
  ident: 2129_CR76
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.002
SSID ssj0059819
Score 2.4982107
Snippet MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways...
SourceID hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2387
SubjectTerms Biomedical and Life Sciences
Biomedicine
Cell Biology
Cognitive science
Neurology
Neuroscience
Neurosciences
Original Article
Title Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go
URI https://link.springer.com/article/10.1007/s00429-020-02129-z
https://www.ncbi.nlm.nih.gov/pubmed/32816112
https://www.proquest.com/docview/2435757072
https://hal.science/hal-03004295
Volume 225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF7RVEhcCrRAw081IMSFuLLXu177mKCG8NMeEJEKF8terwHR2qi2GyUnHoJn4YF4EmY2tgUUVeol8s9m42i_HX87O_MNY09FnqRpkuP8FoF08Ew4UZq6jidUboTOudTkhzw8CmZz8fpYHrdJYVUX7d5tSVpL3Se7Wdvp0HKHZMkjZ7XBNpF_uGLANscvP7w56CywjEJb0MMLA9_hgfTbZJn_9_LXC2njM4VDXuSaF_ZJ7etnepPNuwdfR5183W_qdF-v_tF0vOo_u8W2Wj4K4zWAbrNrpthmO-MC1-KnS3gGNkLUut632fWPpT3aYT8nVFkCNEXJ2MSICjKE8rnJgPJVgMquNOSHg8N3r6CmTKxWGhtwKCE1QDLJJ0tI7A8RUOhE64aUK359__Elh4UBcvjBAlFl8BO5MZxaNVCgMsqLZFkBUtuzetQ2QSq7BFNkI-w1-_NaVkJR1vCpvMPm04P3L2ZOWwHC0WhLaoqCCUIdCcNdrXTk5yJBvmekZ4SfR4EKjJYRz12jMukic3J9ZTIRaVymhcZF03mXDYqyMLsMdObTDqwKdJIhaVGJIC9tGiQ558ooM2ReB4NYt_LoVKXjJO6Fne0wxThMsR2meDVkz_vvfFuLg1za-gmiq29Iut6z8duYrrm-bS3PvSF73IEvxolOuzdJYcqmijkSWyWVq_iQ3Vujsu_L5yEydw_vjDqExa0tqi55ovtXa_6A3eAEUpuJ-ZAN6rPGPEJKVqd7OAOnk8nRXjsTfwM6Ky8s
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEF3RVgheuLRcwnVAiBfiyl6vvfZjQC0pTfqAGqnwsrLXa0C0NqrtRskTH8G38EF8CTMb2wKKKvUl8mWzcbRnx2dnZ84w9kLkSZomOc5vEQYOngknTlPX8YTMjdA5DzT5IacH4Xgm3h0FR21SWNVFu3dbktZS98lu1nY6tNwhWfLYWa6xDYFrcMT1xujth_2dzgIHcWQLenhR6Ds8DPw2Web_vfz1Qlr7TOGQ57nmuX1S-_rZvclm3YOvok6-bjd1uq2X_2g6Xvaf3WI3Wj4KoxWAbrMrpthkW6MC1-InC3gJNkLUut432dWPpT3aYj9fU2UJ0BQlYxMjKsgQymcmA8pXASq70pAfDqbv96CmTKxWGhtwKCE1QDLJxwtI7A8RUOhE64aUK359__Elh7kBcvjBHFFl8BO5MZxYNVCgMsrzZFEBUtvTetg2QSq7AFNkQ-w1-_NaVkJR1vCpvMNmuzuHb8ZOWwHC0WhLaoqCCSMdC8NdLXXs5yJBvmcCzwg_j0MZGh3EPHeNzAIXmZPrS5OJWOMyLTIums67bL0oC3Ofgc582oGVoU4yJC0yEeSlTcMk51waaQbM62CgdCuPTlU6jlUv7GyHSeEwKTtMajlgr_rvfFuJg1zY-jmiq29Iut7j0UTRNde3rYMzb8CedeBTONFp9yYpTNlUiiOxlYF0JR-weytU9n35PELm7uGdYYcw1dqi6oInenC55k_ZtfHhdKImewf7D9l1ToC1WZmP2Hp92pjHSM_q9Ek7G38DHqgwnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF3RVCBeuLRcwnVAiBfi1l7veuPHAA0pvQghKrW8WPZ6DYjWrhq7UfLER_AtfBBfwsz6okJRJcRLFDuTTaw9Hp-dnTnD2DORxUkSZ3h_i0A6eCScMElcxxMqM0JnXGqKQ-7sBpM98XZf7p-p4rfZ7u2WZF3TQCpNebl-nGbrXeGb9aMOLX1Iojx0FktsWZC2XY8tj94cbG203liGQ9vcwxsGvsMD6TeFM38f5beH09JnSo08zzvP7ZnaR9H4Oovbi6gzUL6uVWWyphd_6Dv-z1XeYNcangqjGlg32SWTr7DVUY5r9KM5PAebOWpD8ivs8sfCvltlP15SxwnQlD1jCyamkCLET00KVMcC1I6lovgc7LzfhJIqtBrJbMAphsQAyScfziG2P0QAogOtK1K0-Pnt-5cMZgYoEAgzRJvBV-TMcGRVQoHaK8_i-RSQ8p6Ug8YEKe4cTJ4OcNT07Lm0gLwo4VNxi-2NNz68mjhNZwhHo48pKTsmGOpQGO5qpUM_EzHyQCM9I_wsDFRgtAx55hqVShcZlesrk4pQ4_JtaFx0qbdZLy9yc5eBTn3amVWBjlMkMyoWFL1NgjjjXBll-sxrIRHpRjadunccRp3gs52mCKcpstMULfrsRfed41o05ELrp4i0zpD0viej7YjOub61lqdenz1pgRihA6BdnTg3RTWNOBJeJZWreJ_dqRHajeXzITJ6Dz8ZtGiLGh81veAf3fs388fsyrvX42h7c3frPrvKCa-2WPMB65UnlXmIrK1MHjU35i-XRTmD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+connections+derived+from+diffusion+MRI+tractography+can+be+highly+anatomically+accurate-if+we+know+where+white+matter+pathways+start%2C+where+they+end%2C+and+where+they+do+not+go&rft.jtitle=Brain+structure+%26+function&rft.au=Schilling%2C+Kurt+G&rft.au=Petit%2C+Laurent&rft.au=Rheault%2C+Francois&rft.au=Remedios%2C+Samuel&rft.date=2020-11-01&rft.issn=1863-2661&rft.eissn=1863-2661&rft.volume=225&rft.issue=8&rft.spage=2387&rft_id=info:doi/10.1007%2Fs00429-020-02129-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2653&client=summon