Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go
MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has...
Saved in:
Published in | Brain structure & function Vol. 225; no. 8; pp. 2387 - 2402 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2020
Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a
worse-case scenario
for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the
upper bounds
of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections. |
---|---|
AbstractList | MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a
worse-case scenario
for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the
upper bounds
of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections. MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false positive and false negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle-segmentation, where streamline filtering using inclusion and exclusion regions of interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually-placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically-driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections. MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections.MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections. |
Author | Schilling, Kurt G. Pierpaoli, Carlo Descoteaux, Maxime Anderson, Adam W. Petit, Laurent Landman, Bennett A. Remedios, Samuel Rheault, Francois |
Author_xml | – sequence: 1 givenname: Kurt G. orcidid: 0000-0003-3686-7645 surname: Schilling fullname: Schilling, Kurt G. email: kurt.g.schilling.1@vumc.org organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center – sequence: 2 givenname: Laurent surname: Petit fullname: Petit, Laurent organization: Groupe dImagerie Neurofonctionnelle, Institut Des Maladies Neurodegeneratives, UMR 5293, CNRS, CEA University of Bordeaux – sequence: 3 givenname: Francois surname: Rheault fullname: Rheault, Francois organization: Sherbrooke Connectivity Imaging Laboratory (SCIL), Universite de Sherbrooke – sequence: 4 givenname: Samuel surname: Remedios fullname: Remedios, Samuel organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Henry M. Jackson Foundation – sequence: 5 givenname: Carlo surname: Pierpaoli fullname: Pierpaoli, Carlo organization: National Institute of Biomedical Imaging and Bioengineering – sequence: 6 givenname: Adam W. surname: Anderson fullname: Anderson, Adam W. organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Department of Biomedical Engineering, Vanderbilt University Medical Center – sequence: 7 givenname: Bennett A. surname: Landman fullname: Landman, Bennett A. organization: Vanderbilt University Institute of Imaging Science, Vanderbilt University, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Department of Electrical Engineering and Computer Science, Vanderbilt University – sequence: 8 givenname: Maxime surname: Descoteaux fullname: Descoteaux, Maxime organization: Sherbrooke Connectivity Imaging Laboratory (SCIL), Universite de Sherbrooke |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32816112$$D View this record in MEDLINE/PubMed https://hal.science/hal-03004295$$DView record in HAL |
BookMark | eNp9ks1u1DAUhS1URH_gBVggL0HqgH9iJ1m2FdBKg5AQrC3XuZm4JPZgOx2lKx6iz9IH4knwNNMKseji2tdX37kLn3OI9px3gNBrSt5TQsoPkZCC1QvCSC6au5tn6IBWki-YlHTvsRd8Hx3GeEWIqCtav0D7nFVUUsoO0N1p0NZh450Dk6x3ETcQ7DU0uA1-wI1t2zHmOf7y7QKnoE3yq6DX3YSNdvgScGdXXT9h7XTygzW63z6MGYNO8Of3rW3xBvBP5zd400GAfNoEeNApQcBrnbqNniKOSYd0vENSBxMG1xznrc2_s8Zj5xNe-Zfoeav7CK929xH68enj97PzxfLr54uzk-XCFEykBa1rWZm6AEZMaWreFlpICoJCwdtalhKMqFlLoGwE4SJXCU1Rm0qyCkgp-RF6N-_tdK_WwQ46TMprq85Plmo7I_zeBHFNM_t2ZtfB_xohJjXYaKDvtQM_RsUKLkpRkpJl9M0OHS8HaB43P_iSgWoGTPAxBmiVsUlv_ckW2F5RorYRUHMEVI6Auo-AuslS9p_0YfuTIj6LYobdCoK68mNw-WufUv0Fu77GVg |
CitedBy_id | crossref_primary_10_1177_03331024241235168 crossref_primary_10_1016_j_neuroimage_2023_120276 crossref_primary_10_1016_j_neuroimage_2022_119600 crossref_primary_10_1007_s00429_023_02699_8 crossref_primary_10_1162_netn_a_00324 crossref_primary_10_1016_j_nicl_2021_102587 crossref_primary_10_3389_fnins_2024_1385847 crossref_primary_10_1016_j_jneumeth_2023_109883 crossref_primary_10_1053_j_sult_2021_07_005 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1016_j_media_2023_102893 crossref_primary_10_1053_j_sult_2021_07_007 crossref_primary_10_1093_cercor_bhab367 crossref_primary_10_1002_hbm_26310 crossref_primary_10_2463_mrms_rev_2024_0007 crossref_primary_10_1002_hbm_26390 crossref_primary_10_3171_2021_7_JNS211140 crossref_primary_10_1007_s00429_022_02479_w crossref_primary_10_1162_nol_a_00085 crossref_primary_10_1088_1361_6560_ac0d90 crossref_primary_10_3389_fphy_2024_1447311 crossref_primary_10_1002_nbm_4605 crossref_primary_10_1016_j_pscychresns_2021_111341 crossref_primary_10_1016_j_pscychresns_2022_111448 crossref_primary_10_3389_fsurg_2021_646465 crossref_primary_10_3389_fninf_2022_777853 crossref_primary_10_1212_WNL_0000000000206862 crossref_primary_10_3390_brainsci11121656 crossref_primary_10_52294_e6198273_b8e3_4b63_babb_6e6b0da10669 crossref_primary_10_1016_j_jad_2020_11_122 crossref_primary_10_3390_cancers15030807 crossref_primary_10_1007_s00429_021_02362_0 crossref_primary_10_1016_j_neuroimage_2021_118651 crossref_primary_10_1093_cercor_bhab500 crossref_primary_10_1002_mds_28891 crossref_primary_10_1016_j_neuroimage_2023_120248 crossref_primary_10_1016_j_wneu_2021_06_012 crossref_primary_10_1002_mrm_28926 crossref_primary_10_1016_j_cub_2024_06_034 crossref_primary_10_1007_s00429_022_02518_6 crossref_primary_10_1016_j_media_2021_102126 crossref_primary_10_1002_mrm_30435 crossref_primary_10_1111_ejn_15940 crossref_primary_10_3389_fcomp_2021_718131 crossref_primary_10_1038_s41380_021_01027_y crossref_primary_10_1002_mrm_30429 crossref_primary_10_3389_fneur_2022_793693 crossref_primary_10_1016_j_neuroimage_2021_118502 crossref_primary_10_1016_j_neuroimage_2021_118543 crossref_primary_10_1080_14737175_2023_2289573 crossref_primary_10_1038_s41386_024_01894_3 |
Cites_doi | 10.1016/j.neuroimage.2019.116017 10.1162/NECO_a_00871 10.1002/jmri.10350 10.1007/s00429-015-1179-4 10.1016/j.neuroimage.2017.07.015 10.1002/mrm.10609 10.1016/j.wneu.2018.04.036 10.1016/j.neuroimage.2007.04.067 10.1016/j.neuroimage.2004.08.050 10.1002/mrm.25198 10.1162/netn_a_00098 10.1073/pnas.1405672111 10.3389/fninf.2014.00008 10.1016/j.neuroimage.2018.06.027 10.1016/j.neuroimage.2012.02.071 10.1016/j.neuroimage.2012.11.049 10.1016/j.media.2013.03.009 10.1016/j.neuroimage.2018.06.049 10.3389/fnhum.2014.00671 10.1002/ima.22005 10.1016/j.mri.2018.09.004 10.1007/s00429-016-1298-6 10.1002/mrm.25045 10.1016/j.neuroimage.2019.116207 10.1523/JNEUROSCI.0493-16.2016 10.1002/hbm.22902 10.1093/acprof:oso/9780195104233.001.0001 10.1002/hbm.22828 10.3389/fnana.2019.00061 10.1176/ajp.2007.164.7.1005 10.1007/s00429-015-1146-0 10.1016/j.mri.2019.04.013 10.1073/pnas.1418198112 10.1073/pnas.96.18.10422 10.1002/hbm.24917 10.1093/cercor/bhu326 10.3389/fnana.2018.00094 10.1016/j.neuroimage.2017.12.036 10.1007/s00429-015-1028-5 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1016/j.neuroimage.2018.10.029 10.1007/s00429-018-1663-8 10.1006/nimg.2002.1136 10.1016/j.neuroimage.2018.07.070 10.1523/JNEUROSCI.5102-10.2011 10.1016/j.mri.2019.07.017 10.1038/s41597-019-0129-z 10.1073/pnas.1711567115 10.1073/pnas.1410767112 10.1002/hbm.23741 10.1523/JNEUROSCI.2457-12.2013 10.1016/j.neuroimage.2007.06.041 10.1016/j.neuroimage.2020.116923 10.1093/cercor/bhv121 10.1016/j.neuroimage.2007.02.056 10.3389/fninf.2011.00023 10.1109/TMI.2014.2352414 10.1016/j.neuroimage.2007.06.022 10.1093/med/9780199541164.001.0001 10.1016/j.neuroimage.2006.09.018 10.1016/j.neuroimage.2012.06.005 10.1162/NECO_a_00955 10.1038/s41467-017-01285-x 10.1016/j.neuroimage.2019.116137 10.1007/s00429-011-0372-3 10.1016/j.neuroimage.2018.08.049 10.1002/hbm.23936 10.1016/j.neuroimage.2014.04.074 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1007/s00429-017-1463-6 10.1016/j.neuroimage.2007.02.049 10.1016/j.cortex.2012.09.005 10.1016/j.media.2019.101559 10.1162/neco_a_01087 10.1002/nbm.781 10.1016/j.neuroimage.2018.11.018 10.1016/j.neuroimage.2007.12.035 10.1523/JNEUROSCI.2335-17.2017 10.1093/cercor/bhr268 10.1523/JNEUROSCI.5108-12.2013 10.1016/j.neuron.2013.11.012 10.1109/TMI.2014.2380812 10.1016/j.neuroimage.2008.05.002 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES |
DOI | 10.1007/s00429-020-02129-z |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Zoology |
EISSN | 1863-2661 |
EndPage | 2402 |
ExternalDocumentID | oai_HAL_hal_03004295v1 32816112 10_1007_s00429_020_02129_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: Vanderbilt Institute for Clinical and Translational Research grantid: VR3029 funderid: http://dx.doi.org/10.13039/100007206 – fundername: Foundation for the National Institutes of Health grantid: R01EB017230; T32EB001628 funderid: http://dx.doi.org/10.13039/100000009 – fundername: NIBIB NIH HHS grantid: R01 EB017230 – fundername: NCRR NIH HHS grantid: UL1 RR024975 – fundername: Vanderbilt Institute for Clinical and Translational Research grantid: VR3029 – fundername: NIBIB NIH HHS grantid: T32 EB001628 – fundername: Foundation for the National Institutes of Health grantid: T32EB001628 – fundername: Foundation for the National Institutes of Health grantid: R01EB017230 – fundername: NINDS NIH HHS grantid: R01 NS058639 |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6J9 6NX 78A 7RV 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LK8 LLZTM M0L M1P M2M M4Y M7P MA- N2Q N9A NAPCQ NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P9S PF- PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S37 S3B SAP SBL SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TSK TSV TT1 TUC U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7U Z82 Z83 Z87 Z8V Z8W Z91 ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c425t-19968c94e20c7c93f4a561e51e43f9676ec592f0e7d50355037ed49c8628e0763 |
IEDL.DBID | AGYKE |
ISSN | 1863-2653 1863-2661 |
IngestDate | Fri May 09 12:15:38 EDT 2025 Fri Jul 11 00:26:59 EDT 2025 Thu Apr 03 07:08:27 EDT 2025 Tue Jul 01 00:38:16 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Fri Feb 21 02:35:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Validation Diffusion MRI White matter Tractography Tracer white matter tractography tracer validation |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-19968c94e20c7c93f4a561e51e43f9676ec592f0e7d50355037ed49c8628e0763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3686-7645 0000-0003-2499-5367 0000-0002-0097-8004 |
OpenAccessLink | https://hal.science/hal-03004295 |
PMID | 32816112 |
PQID | 2435757072 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_03004295v1 proquest_miscellaneous_2435757072 pubmed_primary_32816112 crossref_citationtrail_10_1007_s00429_020_02129_z crossref_primary_10_1007_s00429_020_02129_z springer_journals_10_1007_s00429_020_02129_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201100 2020-11-00 2020-Nov 20201101 2020-11 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
PublicationTitle | Brain structure & function |
PublicationTitleAbbrev | Brain Struct Funct |
PublicationTitleAlternate | Brain Struct Funct |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Verlag |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Verlag |
References | Neubert, Mars, Sallet, Rushworth (CR56) 2015; 112 Zhang, Wu, Norton, Rigolo, Rathi, Makris (CR89) 2018; 179 Mori, van Zijl (CR50) 2002; 15 Mori, van Zijl (CR51) 2007; 164 Rheault, De Benedictis, Daducci, Maffei, Tax, Romascano (CR62) 2020; 41 Jbabdi, Lehman, Haber, Behrens (CR39) 2013; 33 Shen, Bezgin, Schirner, Ritter, Everling, McIntosh (CR71) 2019; 6 Dauguet, Peled, Berezovskii, Delzescaux, Warfield, Born (CR15) 2007; 37 Smith, Tournier, Calamante, Connelly (CR72) 2012; 62 Innocenti, Dyrby, Andersen, Rouiller, Caminiti (CR38) 2017; 27 Mori, Crain, Chacko, van Zijl (CR52) 1999; 45 Wasserthal, Neher, Maier-Hein (CR86) 2018; 183 Sallet, Mars, Noonan, Neubert, Jbabdi, O'Reilly (CR64) 2013; 33 Mandonnet, Sarubbo, Petit (CR45) 2018; 12 Schilling, Nath, Hansen, Parvathaneni, Blaber, Gao (CR66) 2018; 185 Huang, Bailey, Wang, Cutting, Gore, Ding (CR37) 2018; 183 Delettre, Messe, Dell, Foubet, Heuer, Larrat (CR17) 2019; 3 Tournier, Yeh, Calamante, Cho, Connelly, Lin (CR76) 2008; 42 Rheault, St-Onge, Sidhu, Maier-Hein, Tzourio-Mazoyer, Petit (CR61) 2019; 186 Sarubbo, De Benedictis, Maldonado, Basso, Duffau (CR65) 2013; 218 CR70 Mars, Jbabdi, Sallet, O'Reilly, Croxson, Olivier (CR46) 2011; 31 Daducci, Dal Palu, Lemkaddem, Thiran (CR13) 2015; 34 Garyfallidis, Cote, Rheault, Sidhu, Hau, Petit (CR31) 2018; 170 Parker, Haroon, Wheeler-Kingshott (CR58) 2003; 18 Alonso-Ortiz, Levesque, Pike (CR1) 2015; 73 Conturo, Lori, Cull, Akbudak, Snyder, Shimony (CR11) 1999; 96 Forkel, Thiebaut de Schotten, Kawadler, Dell'Acqua, Danek, Catani (CR24) 2014; 56 Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki (CR84) 2013; 16 Guevara, Duclap, Poupon, Marrakchi-Kacem, Fillard, Le Bihan (CR35) 2012; 61 Schilling, Gao, Stepniewska, Janve, Landman, Anderson (CR69) 2019; 55 Safadi, Grisot, Jbabdi, Behrens, Heilbronner, McLaughlin (CR63) 2018; 38 Behrens, Berg, Jbabdi, Rushworth, Woolrich (CR7) 2007; 34 Catani, de Schotten (CR10) 2012 Galinsky, Frank (CR26) 2015; 34 Poulin, Jorgens, Jodoin, Descoteaux (CR59) 2019; 64 Mars, Foxley, Verhagen, Jbabdi, Sallet, Noonan (CR49) 2016; 221 Dauguet, Peled, Berezovskii, Delzescaux, Warfield, Born (CR14) 2006; 9 Mori, Oishi, Jiang, Jiang, Li, Akhter (CR53) 2008; 40 Basser, Pajevic, Pierpaoli, Duda, Aldroubi (CR5) 2000; 44 Azadbakht, Parkes, Haroon, Augath, Logothetis, de Crespigny (CR4) 2015; 25 Catani, Howard, Pajevic, Jones (CR9) 2002; 17 Lazar, Alexander (CR43) 2005; 24 Donahue, Sotiropoulos, Jbabdi, Hernandez-Fernandez, Behrens, Dyrby (CR20) 2016; 36 Yendiki, Panneck, Srinivasan, Stevens, Zollei, Augustinack (CR88) 2011; 5 Dyrby, Sogaard, Parker, Alexander, Lind, Baare (CR21) 2007; 37 Galinsky, Martinez, Paulus, Frank (CR28) 2018; 30 Mars, Sallet, Schuffelgen, Jbabdi, Toni, Rushworth (CR47) 2012; 22 Reveley, Seth, Pierpaoli, Silva, Yu, Saunders (CR60) 2015; 112 De Benedictis, Nocerino, Menna, Remondino, Barbareschi, Rozzanigo (CR16) 2018; 115 St-Onge, Daducci, Girard, Descoteaux (CR74) 2018; 169 Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud (CR83) 2020; 217 Wasserthal, Neher, Hirjak, Maier-Hein (CR87) 2019; 58 Deslauriers-Gauthier, Lina, Butler, Whittingstall, Gilbert, Bernier (CR18) 2019; 201 Lawes, Barrick, Murugam, Spierings, Evans, Song (CR42) 2008; 39 Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare (CR6) 2003; 50 Thomas, Ye, Irfanoglu, Modi, Saleem, Leopold (CR75) 2014; 111 Neubert, Mars, Thomas, Sallet, Rushworth (CR55) 2014; 81 Panesar, Fernandez-Miranda (CR57) 2019; 13 Wang, Pathak, Stefaneanu, Yeh, Li, Fernandez-Miranda (CR81) 2016; 221 Girard, Whittingstall, Deriche, Descoteaux (CR32) 2014; 98 Knosche, Anwander, Liptrot, Dyrby (CR40) 2015; 36 Neher, Laun, Stieltjes, Maier-Hein (CR54) 2014; 72 Frank, Galinsky (CR25) 2016; 28 Galinsky, Frank (CR27) 2017; 29 Garyfallidis, Brett, Amirbekian, Rokem, van der Walt, Descoteaux (CR30) 2014; 8 Calabrese, Badea, Cofer, Qi, Johnson (CR8) 2015; 25 Cote, Girard, Bore, Garyfallidis, Houde, Descoteaux (CR12) 2013; 17 Tournier, Calamante, Connelly (CR77) 2012; 22 Aydogan, Jacobs, Dulawa, Thompson, Francois, Toga (CR3) 2018; 223 Hau, Sarubbo, Houde, Corsini, Girard, Deledalle (CR36) 2017; 222 Ganzetti, Wenderoth, Mantini (CR29) 2014; 8 Gore, Li, Gao, Wu, Schilling, Huang (CR34) 2019; 63 Smith, Tournier, Calamante, Connelly (CR73) 2013; 67 Feng, Jeon, Yu, Ouyang, Peng, Mishra (CR23) 2017; 222 Ambrosen, Eskildsen, Hinne, Krug, Lundell, Schmidt (CR2) 2020; 204 Maier-Hein, Neher, Houde, Cote, Garyfallidis, Zhong (CR44) 2017; 8 van den Heuvel, de Reus, Barrett, Scholtens, Coopmans, Schmidt (CR79) 2015; 36 Ding, Huang, Bailey, Gao, Cutting, Rogers (CR19) 2018; 115 Landman, Farrell, Jones, Smith, Prince, Mori (CR41) 2007; 36 Girard, Daducci, Petit, Thiran, Whittingstall, Deriche (CR33) 2017; 38 Tournier, Smith, Raffelt, Tabbara, Dhollander, Pietsch (CR78) 2019; 202 Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki (CR85) 2016; 221 Dyrby, Innocenti, Bech, Lundell (CR22) 2018; 182 Schilling, Gao, Janve, Stepniewska, Landman, Anderson (CR68) 2018; 39 Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub (CR80) 2007; 36 TB Dyrby (2129_CR22) 2018; 182 LR Frank (2129_CR25) 2016; 28 J Wasserthal (2129_CR87) 2019; 58 KS Ambrosen (2129_CR2) 2020; 204 VL Galinsky (2129_CR27) 2017; 29 Z Safadi (2129_CR63) 2018; 38 SJ Forkel (2129_CR24) 2014; 56 A Daducci (2129_CR13) 2015; 34 D Wassermann (2129_CR84) 2013; 16 E Calabrese (2129_CR8) 2015; 25 GJ Parker (2129_CR58) 2003; 18 KG Schilling (2129_CR69) 2019; 55 RB Mars (2129_CR47) 2012; 22 MA Cote (2129_CR12) 2013; 17 E Alonso-Ortiz (2129_CR1) 2015; 73 L Feng (2129_CR23) 2017; 222 G Girard (2129_CR33) 2017; 38 TB Dyrby (2129_CR21) 2007; 37 A De Benedictis (2129_CR16) 2018; 115 RB Mars (2129_CR46) 2011; 31 S Mori (2129_CR51) 2007; 164 TE Behrens (2129_CR6) 2003; 50 MP van den Heuvel (2129_CR79) 2015; 36 S Mori (2129_CR53) 2008; 40 M Catani (2129_CR9) 2002; 17 E Garyfallidis (2129_CR30) 2014; 8 S Sarubbo (2129_CR65) 2013; 218 DB Aydogan (2129_CR3) 2018; 223 S Mori (2129_CR52) 1999; 45 P Poulin (2129_CR59) 2019; 64 TR Knosche (2129_CR40) 2015; 36 VL Galinsky (2129_CR26) 2015; 34 J Hau (2129_CR36) 2017; 222 F Rheault (2129_CR61) 2019; 186 F Zhang (2129_CR89) 2018; 179 S Warrington (2129_CR83) 2020; 217 S Deslauriers-Gauthier (2129_CR18) 2019; 201 M Ganzetti (2129_CR29) 2014; 8 G Girard (2129_CR32) 2014; 98 K Schilling (2129_CR68) 2018; 39 A Yendiki (2129_CR88) 2011; 5 H Azadbakht (2129_CR4) 2015; 25 S Jbabdi (2129_CR39) 2013; 33 VL Galinsky (2129_CR28) 2018; 30 IN Lawes (2129_CR42) 2008; 39 PF Neher (2129_CR54) 2014; 72 PJ Basser (2129_CR5) 2000; 44 JD Tournier (2129_CR76) 2008; 42 M Catani (2129_CR10) 2012 E Garyfallidis (2129_CR31) 2018; 170 RB Mars (2129_CR49) 2016; 221 KG Schilling (2129_CR66) 2018; 185 JC Gore (2129_CR34) 2019; 63 SS Panesar (2129_CR57) 2019; 13 Z Ding (2129_CR19) 2018; 115 RE Smith (2129_CR73) 2013; 67 JD Tournier (2129_CR78) 2019; 202 KH Maier-Hein (2129_CR44) 2017; 8 C Reveley (2129_CR60) 2015; 112 S Mori (2129_CR50) 2002; 15 RE Smith (2129_CR72) 2012; 62 J Dauguet (2129_CR15) 2007; 37 C Delettre (2129_CR17) 2019; 3 Y Huang (2129_CR37) 2018; 183 E St-Onge (2129_CR74) 2018; 169 J Wasserthal (2129_CR86) 2018; 183 P Guevara (2129_CR35) 2012; 61 FX Neubert (2129_CR55) 2014; 81 K Shen (2129_CR71) 2019; 6 JD Tournier (2129_CR77) 2012; 22 E Mandonnet (2129_CR45) 2018; 12 FX Neubert (2129_CR56) 2015; 112 BA Landman (2129_CR41) 2007; 36 TE Conturo (2129_CR11) 1999; 96 J Sallet (2129_CR64) 2013; 33 2129_CR70 GM Innocenti (2129_CR38) 2017; 27 D Wassermann (2129_CR85) 2016; 221 CJ Donahue (2129_CR20) 2016; 36 M Lazar (2129_CR43) 2005; 24 TE Behrens (2129_CR7) 2007; 34 C Thomas (2129_CR75) 2014; 111 J Dauguet (2129_CR14) 2006; 9 F Rheault (2129_CR62) 2020; 41 X Wang (2129_CR81) 2016; 221 S Wakana (2129_CR80) 2007; 36 |
References_xml | – ident: CR70 – volume: 183 start-page: 239 year: 2018 end-page: 253 ident: CR86 article-title: TractSeg - Fast and accurate white matter tract segmentation publication-title: Neuroimage – volume: 31 start-page: 4087 year: 2011 end-page: 4100 ident: CR46 article-title: Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity publication-title: J Neurosci – volume: 15 start-page: 468 year: 2002 end-page: 480 ident: CR50 article-title: Fiber tracking: principles and strategies - a technical review publication-title: NMR Biomed – volume: 16 start-page: 647 year: 2013 end-page: 654 ident: CR84 article-title: On describing human white matter anatomy: the white matter query language publication-title: Med Image Comput Comput Assist Interv – volume: 204 start-page: 116207 year: 2020 ident: CR2 article-title: Validation of structural brain connectivity networks: the impact of scanning parameters publication-title: Neuroimage – volume: 36 start-page: 6758 year: 2016 end-page: 6770 ident: CR20 article-title: Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey publication-title: J Neurosci – volume: 28 start-page: 1769 year: 2016 end-page: 1811 ident: CR25 article-title: Dynamic multiscale modes of resting state brain activity detected by entropy field decomposition publication-title: Neural Comput – volume: 64 start-page: 37 year: 2019 end-page: 38 ident: CR59 article-title: Tractography and machine learning: current state and open challenges publication-title: Magn Reson Imaging – volume: 56 start-page: 73 year: 2014 end-page: 84 ident: CR24 article-title: The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography publication-title: Cortex – volume: 218 start-page: 21 year: 2013 end-page: 37 ident: CR65 article-title: Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle publication-title: Brain Struct Funct – volume: 34 start-page: 246 year: 2015 end-page: 257 ident: CR13 article-title: COMMIT: Convex optimization modeling for microstructure informed tractography publication-title: IEEE Trans Med Imaging – volume: 61 start-page: 1083 year: 2012 end-page: 1099 ident: CR35 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: Neuroimage – volume: 45 start-page: 265 year: 1999 end-page: 269 ident: CR52 article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Ann Neurol – volume: 39 start-page: 62 year: 2008 end-page: 79 ident: CR42 article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection publication-title: Neuroimage – volume: 36 start-page: 630 year: 2007 end-page: 644 ident: CR80 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage – volume: 37 start-page: 1267 year: 2007 end-page: 1277 ident: CR21 article-title: Validation of in vitro probabilistic tractography publication-title: Neuroimage – volume: 17 start-page: 844 year: 2013 end-page: 857 ident: CR12 article-title: Tractometer: towards validation of tractography pipelines publication-title: Med Image Anal – volume: 221 start-page: 4059 year: 2016 end-page: 4071 ident: CR49 article-title: The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study publication-title: Brain Struct Funct – volume: 9 start-page: 109 year: 2006 end-page: 116 ident: CR14 article-title: 3D histological reconstruction of fiber tracts and direct comparison with diffusion tensor MRI tractography publication-title: Med Image Comput Comput Assist Interv – volume: 112 start-page: E2820 year: 2015 end-page: E2828 ident: CR60 article-title: Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography publication-title: Proc Natl Acad Sci USA – volume: 115 start-page: 595 year: 2018 end-page: 600 ident: CR19 article-title: Detection of synchronous brain activity in white matter tracts at rest and under functional loading publication-title: Proc Natl Acad Sci USA – volume: 183 start-page: 544 year: 2018 end-page: 552 ident: CR37 article-title: Voxel-wise detection of functional networks in white matter publication-title: Neuroimage – volume: 222 start-page: 1645 year: 2017 end-page: 1662 ident: CR36 article-title: Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation publication-title: Brain Struct Funct – volume: 202 start-page: 116137 year: 2019 ident: CR78 article-title: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage – volume: 34 start-page: 1177 year: 2015 end-page: 1193 ident: CR26 article-title: Simultaneous multi-scale diffusion estimation and tractography guided by entropy spectrum pathways publication-title: IEEE Trans Med Imaging – volume: 3 start-page: 1038 year: 2019 end-page: 1050 ident: CR17 article-title: Comparison between diffusion MRI tractography and histological tract-tracing of cortico-cortical structural connectivity in the ferret brain publication-title: Netw Neurosci – volume: 8 start-page: 1349 year: 2017 ident: CR44 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat Commun – volume: 30 start-page: 1725 year: 2018 end-page: 1749 ident: CR28 article-title: Joint estimation of effective brain wave activation modes using EEG/MEG sensor arrays and multimodal MRI volumes publication-title: Neural Comput – volume: 40 start-page: 570 year: 2008 end-page: 582 ident: CR53 article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template publication-title: Neuroimage – volume: 27 start-page: 3217 year: 2017 end-page: 3230 ident: CR38 article-title: The crossed projection to the striatum in two species of monkey and in humans: behavioral and evolutionary significance publication-title: Cereb Cortex – volume: 8 start-page: 8 year: 2014 ident: CR30 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front Neuroinform – volume: 24 start-page: 524 year: 2005 end-page: 532 ident: CR43 article-title: Bootstrap white matter tractography (BOOT-TRAC) publication-title: Neuroimage – volume: 201 start-page: 116017 year: 2019 ident: CR18 article-title: White matter information flow mapping from diffusion MRI and EEG publication-title: Neuroimage – volume: 179 start-page: 429 year: 2018 end-page: 447 ident: CR89 article-title: An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan publication-title: Neuroimage – volume: 221 start-page: 2075 year: 2016 end-page: 2092 ident: CR81 article-title: Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain publication-title: Brain Struct Funct – volume: 185 start-page: 1 year: 2018 end-page: 11 ident: CR66 article-title: Limits to anatomical accuracy of diffusion tractography using modern approaches publication-title: Neuroimage – volume: 5 start-page: 23 year: 2011 ident: CR88 article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy publication-title: Front Neuroinform – volume: 25 start-page: 4628 year: 2015 end-page: 4637 ident: CR8 article-title: A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data publication-title: Cereb Cortex – volume: 36 start-page: 1123 year: 2007 end-page: 1138 ident: CR41 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: Neuroimage – volume: 164 start-page: 1005 year: 2007 ident: CR51 article-title: Human white matter atlas publication-title: Am J Psychiatry – volume: 41 start-page: 1859 year: 2020 end-page: 1874 ident: CR62 article-title: Tractostorm: The what, why, and how of tractography dissection reproducibility publication-title: Hum Brain Mapp – volume: 8 start-page: 671 year: 2014 ident: CR29 article-title: Whole brain myelin mapping using T1- and T2-weighted MR imaging data publication-title: Front Hum Neurosci – volume: 38 start-page: 5485 year: 2017 end-page: 5500 ident: CR33 article-title: AxTract: Toward microstructure informed tractography publication-title: Hum Brain Mapp – volume: 12 start-page: 94 year: 2018 ident: CR45 article-title: The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification publication-title: Front Neuroanat – volume: 33 start-page: 12255 year: 2013 end-page: 12274 ident: CR64 article-title: The organization of dorsal frontal cortex in humans and macaques publication-title: J Neurosci – volume: 22 start-page: 53 year: 2012 end-page: 66 ident: CR77 article-title: MRtrix: Diffusion tractography in crossing fiber regions publication-title: Int J Imaging Syst Technol – volume: 34 start-page: 144 year: 2007 end-page: 155 ident: CR7 article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? publication-title: Neuroimage – volume: 13 start-page: 61 year: 2019 ident: CR57 article-title: Commentary: the nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification publication-title: Front Neuroanat – volume: 38 start-page: 2106 year: 2018 end-page: 2117 ident: CR63 article-title: Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections publication-title: J Neurosci – volume: 98 start-page: 266 year: 2014 end-page: 278 ident: CR32 article-title: Towards quantitative connectivity analysis: reducing tractography biases publication-title: Neuroimage – volume: 81 start-page: 700 year: 2014 end-page: 713 ident: CR55 article-title: Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex publication-title: Neuron – volume: 37 start-page: 530 year: 2007 end-page: 538 ident: CR15 article-title: Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain publication-title: Neuroimage – volume: 25 start-page: 4299 year: 2015 end-page: 4309 ident: CR4 article-title: Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex publication-title: Cereb Cortex – volume: 58 start-page: 101559 year: 2019 ident: CR87 article-title: Combined tract segmentation and orientation mapping for bundle-specific tractography publication-title: Med Image Anal – volume: 112 start-page: E2695 year: 2015 end-page: E2704 ident: CR56 article-title: Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex publication-title: Proc Natl Acad Sci USA – volume: 169 start-page: 524 year: 2018 end-page: 539 ident: CR74 article-title: Surface-enhanced tractography (SET) publication-title: Neuroimage – volume: 62 start-page: 1924 year: 2012 end-page: 1938 ident: CR72 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: Neuroimage – volume: 36 start-page: 3064 year: 2015 end-page: 3075 ident: CR79 article-title: Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome publication-title: Hum Brain Mapp – volume: 182 start-page: 62 year: 2018 end-page: 79 ident: CR22 article-title: Validation strategies for the interpretation of microstructure imaging using diffusion MRI publication-title: Neuroimage – volume: 39 start-page: 1449 year: 2018 end-page: 1466 ident: CR68 article-title: Confirmation of a gyral bias in diffusion MRI fiber tractography publication-title: Hum Brain Mapp – volume: 42 start-page: 617 year: 2008 end-page: 625 ident: CR76 article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data publication-title: Neuroimage – volume: 170 start-page: 283 year: 2018 end-page: 295 ident: CR31 article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering publication-title: Neuroimage – volume: 186 start-page: 382 year: 2019 end-page: 398 ident: CR61 article-title: Bundle-specific tractography with incorporated anatomical and orientational priors publication-title: Neuroimage – volume: 29 start-page: 1441 year: 2017 end-page: 1467 ident: CR27 article-title: A unified theory of neuro-MRI data shows scale-free nature of connectivity modes publication-title: Neural Comput – volume: 50 start-page: 1077 year: 2003 end-page: 1088 ident: CR6 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn Reson Med – volume: 73 start-page: 70 year: 2015 end-page: 81 ident: CR1 article-title: MRI-based myelin water imaging: a technical review publication-title: Magn Reson Med – volume: 63 start-page: 1 year: 2019 end-page: 11 ident: CR34 article-title: Functional MRI and resting state connectivity in white matter—a mini-review publication-title: Magn Reson Imaging – volume: 111 start-page: 16574 year: 2014 end-page: 16579 ident: CR75 article-title: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited publication-title: Proc Natl Acad Sci USA – volume: 55 start-page: 7 year: 2019 end-page: 25 ident: CR69 article-title: Anatomical accuracy of standard-practice tractography algorithms in the motor system—A histological validation in the squirrel monkey brain publication-title: Magnetic Reson Imaging – volume: 17 start-page: 77 year: 2002 end-page: 94 ident: CR9 article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain publication-title: Neuroimage – year: 2012 ident: CR10 publication-title: Atlas of human brain connections – volume: 115 start-page: e279 year: 2018 end-page: e291 ident: CR16 article-title: Photogrammetry of the human brain: a novel method for three-dimensional quantitative exploration of the structural connectivity in neurosurgery and neurosciences publication-title: World Neurosurg – volume: 18 start-page: 242 year: 2003 end-page: 254 ident: CR58 article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements publication-title: J Magn Reson Imaging – volume: 96 start-page: 10422 year: 1999 end-page: 10427 ident: CR11 article-title: Tracking neuronal fiber pathways in the living human brain publication-title: Proc Natl Acad Sci U S A – volume: 222 start-page: 4131 year: 2017 end-page: 4147 ident: CR23 article-title: Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space publication-title: Brain Struct Funct – volume: 33 start-page: 3190 year: 2013 end-page: 3201 ident: CR39 article-title: Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography publication-title: J Neurosci – volume: 72 start-page: 1460 year: 2014 end-page: 1470 ident: CR54 article-title: Fiberfox: facilitating the creation of realistic white matter software phantoms publication-title: Magn Reson Med – volume: 67 start-page: 298 year: 2013 end-page: 312 ident: CR73 article-title: SIFT: Spherical-deconvolution informed filtering of tractograms publication-title: Neuroimage – volume: 36 start-page: 4116 year: 2015 end-page: 4134 ident: CR40 article-title: Validation of tractography: comparison with manganese tracing publication-title: Hum Brain Mapp – volume: 6 start-page: 123 year: 2019 ident: CR71 article-title: A macaque connectome for large-scale network simulations in TheVirtualBrain publication-title: Sci Data – volume: 217 start-page: 116923 year: 2020 ident: CR83 article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage – volume: 22 start-page: 1894 year: 2012 end-page: 1903 ident: CR47 article-title: Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks publication-title: Cereb Cortex – volume: 221 start-page: 4705 year: 2016 end-page: 4721 ident: CR85 article-title: The white matter query language: a novel approach for describing human white matter anatomy publication-title: Brain Struct Funct – volume: 223 start-page: 2841 year: 2018 end-page: 2858 ident: CR3 article-title: When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity publication-title: Brain Struct Funct – volume: 44 start-page: 625 year: 2000 end-page: 632 ident: CR5 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn Reson Med – volume: 201 start-page: 116017 year: 2019 ident: 2129_CR18 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116017 – volume: 28 start-page: 1769 year: 2016 ident: 2129_CR25 publication-title: Neural Comput doi: 10.1162/NECO_a_00871 – volume: 18 start-page: 242 year: 2003 ident: 2129_CR58 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.10350 – volume: 221 start-page: 4705 year: 2016 ident: 2129_CR85 publication-title: Brain Struct Funct doi: 10.1007/s00429-015-1179-4 – volume: 170 start-page: 283 year: 2018 ident: 2129_CR31 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.015 – volume: 50 start-page: 1077 year: 2003 ident: 2129_CR6 publication-title: Magn Reson Med doi: 10.1002/mrm.10609 – volume: 115 start-page: e279 year: 2018 ident: 2129_CR16 publication-title: World Neurosurg doi: 10.1016/j.wneu.2018.04.036 – volume: 37 start-page: 530 year: 2007 ident: 2129_CR15 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.04.067 – volume: 24 start-page: 524 year: 2005 ident: 2129_CR43 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.08.050 – volume: 73 start-page: 70 year: 2015 ident: 2129_CR1 publication-title: Magn Reson Med doi: 10.1002/mrm.25198 – volume: 3 start-page: 1038 year: 2019 ident: 2129_CR17 publication-title: Netw Neurosci doi: 10.1162/netn_a_00098 – volume: 111 start-page: 16574 year: 2014 ident: 2129_CR75 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1405672111 – volume: 8 start-page: 8 year: 2014 ident: 2129_CR30 publication-title: Front Neuroinform doi: 10.3389/fninf.2014.00008 – volume: 16 start-page: 647 year: 2013 ident: 2129_CR84 publication-title: Med Image Comput Comput Assist Interv – volume: 179 start-page: 429 year: 2018 ident: 2129_CR89 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.06.027 – volume: 61 start-page: 1083 year: 2012 ident: 2129_CR35 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.071 – volume: 67 start-page: 298 year: 2013 ident: 2129_CR73 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.11.049 – volume: 17 start-page: 844 year: 2013 ident: 2129_CR12 publication-title: Med Image Anal doi: 10.1016/j.media.2013.03.009 – volume: 182 start-page: 62 year: 2018 ident: 2129_CR22 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.06.049 – volume: 8 start-page: 671 year: 2014 ident: 2129_CR29 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2014.00671 – volume: 22 start-page: 53 year: 2012 ident: 2129_CR77 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22005 – volume: 55 start-page: 7 year: 2019 ident: 2129_CR69 publication-title: Magnetic Reson Imaging doi: 10.1016/j.mri.2018.09.004 – volume: 222 start-page: 1645 year: 2017 ident: 2129_CR36 publication-title: Brain Struct Funct doi: 10.1007/s00429-016-1298-6 – volume: 72 start-page: 1460 year: 2014 ident: 2129_CR54 publication-title: Magn Reson Med doi: 10.1002/mrm.25045 – volume: 204 start-page: 116207 year: 2020 ident: 2129_CR2 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116207 – volume: 36 start-page: 6758 year: 2016 ident: 2129_CR20 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0493-16.2016 – volume: 36 start-page: 4116 year: 2015 ident: 2129_CR40 publication-title: Hum Brain Mapp doi: 10.1002/hbm.22902 – ident: 2129_CR70 doi: 10.1093/acprof:oso/9780195104233.001.0001 – volume: 36 start-page: 3064 year: 2015 ident: 2129_CR79 publication-title: Hum Brain Mapp doi: 10.1002/hbm.22828 – volume: 9 start-page: 109 year: 2006 ident: 2129_CR14 publication-title: Med Image Comput Comput Assist Interv – volume: 13 start-page: 61 year: 2019 ident: 2129_CR57 publication-title: Front Neuroanat doi: 10.3389/fnana.2019.00061 – volume: 164 start-page: 1005 year: 2007 ident: 2129_CR51 publication-title: Am J Psychiatry doi: 10.1176/ajp.2007.164.7.1005 – volume: 221 start-page: 4059 year: 2016 ident: 2129_CR49 publication-title: Brain Struct Funct doi: 10.1007/s00429-015-1146-0 – volume: 64 start-page: 37 year: 2019 ident: 2129_CR59 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2019.04.013 – volume: 112 start-page: E2820 year: 2015 ident: 2129_CR60 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1418198112 – volume: 96 start-page: 10422 year: 1999 ident: 2129_CR11 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.18.10422 – volume: 27 start-page: 3217 year: 2017 ident: 2129_CR38 publication-title: Cereb Cortex – volume: 41 start-page: 1859 year: 2020 ident: 2129_CR62 publication-title: Hum Brain Mapp doi: 10.1002/hbm.24917 – volume: 25 start-page: 4299 year: 2015 ident: 2129_CR4 publication-title: Cereb Cortex doi: 10.1093/cercor/bhu326 – volume: 12 start-page: 94 year: 2018 ident: 2129_CR45 publication-title: Front Neuroanat doi: 10.3389/fnana.2018.00094 – volume: 169 start-page: 524 year: 2018 ident: 2129_CR74 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.036 – volume: 221 start-page: 2075 year: 2016 ident: 2129_CR81 publication-title: Brain Struct Funct doi: 10.1007/s00429-015-1028-5 – volume: 45 start-page: 265 year: 1999 ident: 2129_CR52 publication-title: Ann Neurol doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – volume: 185 start-page: 1 year: 2018 ident: 2129_CR66 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.029 – volume: 223 start-page: 2841 year: 2018 ident: 2129_CR3 publication-title: Brain Struct Funct doi: 10.1007/s00429-018-1663-8 – volume: 17 start-page: 77 year: 2002 ident: 2129_CR9 publication-title: Neuroimage doi: 10.1006/nimg.2002.1136 – volume: 183 start-page: 239 year: 2018 ident: 2129_CR86 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.070 – volume: 31 start-page: 4087 year: 2011 ident: 2129_CR46 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5102-10.2011 – volume: 63 start-page: 1 year: 2019 ident: 2129_CR34 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2019.07.017 – volume: 6 start-page: 123 year: 2019 ident: 2129_CR71 publication-title: Sci Data doi: 10.1038/s41597-019-0129-z – volume: 115 start-page: 595 year: 2018 ident: 2129_CR19 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1711567115 – volume: 112 start-page: E2695 year: 2015 ident: 2129_CR56 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1410767112 – volume: 38 start-page: 5485 year: 2017 ident: 2129_CR33 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23741 – volume: 33 start-page: 3190 year: 2013 ident: 2129_CR39 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2457-12.2013 – volume: 39 start-page: 62 year: 2008 ident: 2129_CR42 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.06.041 – volume: 217 start-page: 116923 year: 2020 ident: 2129_CR83 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116923 – volume: 25 start-page: 4628 year: 2015 ident: 2129_CR8 publication-title: Cereb Cortex doi: 10.1093/cercor/bhv121 – volume: 36 start-page: 1123 year: 2007 ident: 2129_CR41 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.056 – volume: 5 start-page: 23 year: 2011 ident: 2129_CR88 publication-title: Front Neuroinform doi: 10.3389/fninf.2011.00023 – volume: 34 start-page: 246 year: 2015 ident: 2129_CR13 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2352414 – volume: 37 start-page: 1267 year: 2007 ident: 2129_CR21 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.06.022 – volume-title: Atlas of human brain connections year: 2012 ident: 2129_CR10 doi: 10.1093/med/9780199541164.001.0001 – volume: 34 start-page: 144 year: 2007 ident: 2129_CR7 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.018 – volume: 62 start-page: 1924 year: 2012 ident: 2129_CR72 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.005 – volume: 29 start-page: 1441 year: 2017 ident: 2129_CR27 publication-title: Neural Comput doi: 10.1162/NECO_a_00955 – volume: 8 start-page: 1349 year: 2017 ident: 2129_CR44 publication-title: Nat Commun doi: 10.1038/s41467-017-01285-x – volume: 202 start-page: 116137 year: 2019 ident: 2129_CR78 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116137 – volume: 218 start-page: 21 year: 2013 ident: 2129_CR65 publication-title: Brain Struct Funct doi: 10.1007/s00429-011-0372-3 – volume: 183 start-page: 544 year: 2018 ident: 2129_CR37 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.08.049 – volume: 39 start-page: 1449 year: 2018 ident: 2129_CR68 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23936 – volume: 98 start-page: 266 year: 2014 ident: 2129_CR32 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.074 – volume: 44 start-page: 625 year: 2000 ident: 2129_CR5 publication-title: Magn Reson Med doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – volume: 222 start-page: 4131 year: 2017 ident: 2129_CR23 publication-title: Brain Struct Funct doi: 10.1007/s00429-017-1463-6 – volume: 36 start-page: 630 year: 2007 ident: 2129_CR80 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.049 – volume: 56 start-page: 73 year: 2014 ident: 2129_CR24 publication-title: Cortex doi: 10.1016/j.cortex.2012.09.005 – volume: 58 start-page: 101559 year: 2019 ident: 2129_CR87 publication-title: Med Image Anal doi: 10.1016/j.media.2019.101559 – volume: 30 start-page: 1725 year: 2018 ident: 2129_CR28 publication-title: Neural Comput doi: 10.1162/neco_a_01087 – volume: 15 start-page: 468 year: 2002 ident: 2129_CR50 publication-title: NMR Biomed doi: 10.1002/nbm.781 – volume: 186 start-page: 382 year: 2019 ident: 2129_CR61 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.11.018 – volume: 40 start-page: 570 year: 2008 ident: 2129_CR53 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.035 – volume: 38 start-page: 2106 year: 2018 ident: 2129_CR63 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2335-17.2017 – volume: 22 start-page: 1894 year: 2012 ident: 2129_CR47 publication-title: Cereb Cortex doi: 10.1093/cercor/bhr268 – volume: 33 start-page: 12255 year: 2013 ident: 2129_CR64 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5108-12.2013 – volume: 81 start-page: 700 year: 2014 ident: 2129_CR55 publication-title: Neuron doi: 10.1016/j.neuron.2013.11.012 – volume: 34 start-page: 1177 year: 2015 ident: 2129_CR26 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2380812 – volume: 42 start-page: 617 year: 2008 ident: 2129_CR76 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.05.002 |
SSID | ssj0059819 |
Score | 2.4982107 |
Snippet | MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways... |
SourceID | hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2387 |
SubjectTerms | Biomedical and Life Sciences Biomedicine Cell Biology Cognitive science Neurology Neuroscience Neurosciences Original Article |
Title | Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go |
URI | https://link.springer.com/article/10.1007/s00429-020-02129-z https://www.ncbi.nlm.nih.gov/pubmed/32816112 https://www.proquest.com/docview/2435757072 https://hal.science/hal-03004295 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF7RVEhcCrRAw081IMSFuLLXu177mKCG8NMeEJEKF8terwHR2qi2GyUnHoJn4YF4EmY2tgUUVeol8s9m42i_HX87O_MNY09FnqRpkuP8FoF08Ew4UZq6jidUboTOudTkhzw8CmZz8fpYHrdJYVUX7d5tSVpL3Se7Wdvp0HKHZMkjZ7XBNpF_uGLANscvP7w56CywjEJb0MMLA9_hgfTbZJn_9_LXC2njM4VDXuSaF_ZJ7etnepPNuwdfR5183W_qdF-v_tF0vOo_u8W2Wj4K4zWAbrNrpthmO-MC1-KnS3gGNkLUut632fWPpT3aYT8nVFkCNEXJ2MSICjKE8rnJgPJVgMquNOSHg8N3r6CmTKxWGhtwKCE1QDLJJ0tI7A8RUOhE64aUK359__Elh4UBcvjBAlFl8BO5MZxaNVCgMsqLZFkBUtuzetQ2QSq7BFNkI-w1-_NaVkJR1vCpvMPm04P3L2ZOWwHC0WhLaoqCCUIdCcNdrXTk5yJBvmekZ4SfR4EKjJYRz12jMukic3J9ZTIRaVymhcZF03mXDYqyMLsMdObTDqwKdJIhaVGJIC9tGiQ558ooM2ReB4NYt_LoVKXjJO6Fne0wxThMsR2meDVkz_vvfFuLg1za-gmiq29Iut6z8duYrrm-bS3PvSF73IEvxolOuzdJYcqmijkSWyWVq_iQ3Vujsu_L5yEydw_vjDqExa0tqi55ovtXa_6A3eAEUpuJ-ZAN6rPGPEJKVqd7OAOnk8nRXjsTfwM6Ky8s |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEF3RVgheuLRcwnVAiBfiyl6vvfZjQC0pTfqAGqnwsrLXa0C0NqrtRskTH8G38EF8CTMb2wKKKvUl8mWzcbRnx2dnZ84w9kLkSZomOc5vEQYOngknTlPX8YTMjdA5DzT5IacH4Xgm3h0FR21SWNVFu3dbktZS98lu1nY6tNwhWfLYWa6xDYFrcMT1xujth_2dzgIHcWQLenhR6Ds8DPw2Web_vfz1Qlr7TOGQ57nmuX1S-_rZvclm3YOvok6-bjd1uq2X_2g6Xvaf3WI3Wj4KoxWAbrMrpthkW6MC1-InC3gJNkLUut432dWPpT3aYj9fU2UJ0BQlYxMjKsgQymcmA8pXASq70pAfDqbv96CmTKxWGhtwKCE1QDLJxwtI7A8RUOhE64aUK359__Elh7kBcvjBHFFl8BO5MZxYNVCgMsrzZFEBUtvTetg2QSq7AFNkQ-w1-_NaVkJR1vCpvMNmuzuHb8ZOWwHC0WhLaoqCCSMdC8NdLXXs5yJBvmcCzwg_j0MZGh3EPHeNzAIXmZPrS5OJWOMyLTIums67bL0oC3Ofgc582oGVoU4yJC0yEeSlTcMk51waaQbM62CgdCuPTlU6jlUv7GyHSeEwKTtMajlgr_rvfFuJg1zY-jmiq29Iut7j0UTRNde3rYMzb8CedeBTONFp9yYpTNlUiiOxlYF0JR-weytU9n35PELm7uGdYYcw1dqi6oInenC55k_ZtfHhdKImewf7D9l1ToC1WZmP2Hp92pjHSM_q9Ek7G38DHqgwnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF3RVCBeuLRcwnVAiBfi1l7veuPHAA0pvQghKrW8WPZ6DYjWrhq7UfLER_AtfBBfwsz6okJRJcRLFDuTTaw9Hp-dnTnD2DORxUkSZ3h_i0A6eCScMElcxxMqM0JnXGqKQ-7sBpM98XZf7p-p4rfZ7u2WZF3TQCpNebl-nGbrXeGb9aMOLX1Iojx0FktsWZC2XY8tj94cbG203liGQ9vcwxsGvsMD6TeFM38f5beH09JnSo08zzvP7ZnaR9H4Oovbi6gzUL6uVWWyphd_6Dv-z1XeYNcangqjGlg32SWTr7DVUY5r9KM5PAebOWpD8ivs8sfCvltlP15SxwnQlD1jCyamkCLET00KVMcC1I6lovgc7LzfhJIqtBrJbMAphsQAyScfziG2P0QAogOtK1K0-Pnt-5cMZgYoEAgzRJvBV-TMcGRVQoHaK8_i-RSQ8p6Ug8YEKe4cTJ4OcNT07Lm0gLwo4VNxi-2NNz68mjhNZwhHo48pKTsmGOpQGO5qpUM_EzHyQCM9I_wsDFRgtAx55hqVShcZlesrk4pQ4_JtaFx0qbdZLy9yc5eBTn3amVWBjlMkMyoWFL1NgjjjXBll-sxrIRHpRjadunccRp3gs52mCKcpstMULfrsRfed41o05ELrp4i0zpD0viej7YjOub61lqdenz1pgRihA6BdnTg3RTWNOBJeJZWreJ_dqRHajeXzITJ6Dz8ZtGiLGh81veAf3fs388fsyrvX42h7c3frPrvKCa-2WPMB65UnlXmIrK1MHjU35i-XRTmD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+connections+derived+from+diffusion+MRI+tractography+can+be+highly+anatomically+accurate-if+we+know+where+white+matter+pathways+start%2C+where+they+end%2C+and+where+they+do+not+go&rft.jtitle=Brain+structure+%26+function&rft.au=Schilling%2C+Kurt+G&rft.au=Petit%2C+Laurent&rft.au=Rheault%2C+Francois&rft.au=Remedios%2C+Samuel&rft.date=2020-11-01&rft.issn=1863-2661&rft.eissn=1863-2661&rft.volume=225&rft.issue=8&rft.spage=2387&rft_id=info:doi/10.1007%2Fs00429-020-02129-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2653&client=summon |