Identification of source term for the ill-posed Rayleigh–Stokes problem by Tikhonov regularization method

In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative model. The problem is severely ill-posed in the sense of Hadamard. To regularize the unstable solution, we apply the Tikhonov method regularization solu...

Full description

Saved in:
Bibliographic Details
Published inAdvances in difference equations Vol. 2019; no. 1; pp. 1 - 20
Main Authors Binh, Tran Thanh, Nashine, Hemant Kumar, Long, Le Dinh, Luc, Nguyen Hoang, Nguyen, Can
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 08.08.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1687-1847
1687-1839
1687-1847
DOI10.1186/s13662-019-2261-7

Cover

Loading…
Abstract In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative model. The problem is severely ill-posed in the sense of Hadamard. To regularize the unstable solution, we apply the Tikhonov method regularization solution and obtain an a priori error estimate between the exact solution and regularized solutions. We also propose methods for both a priori and a posteriori parameter choice rules. In addition, we verify the proposed regularized methods by numerical experiments to estimate the errors between the regularized and exact solutions.
AbstractList In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative model. The problem is severely ill-posed in the sense of Hadamard. To regularize the unstable solution, we apply the Tikhonov method regularization solution and obtain an a priori error estimate between the exact solution and regularized solutions. We also propose methods for both a priori and a posteriori parameter choice rules. In addition, we verify the proposed regularized methods by numerical experiments to estimate the errors between the regularized and exact solutions.
Abstract In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative model. The problem is severely ill-posed in the sense of Hadamard. To regularize the unstable solution, we apply the Tikhonov method regularization solution and obtain an a priori error estimate between the exact solution and regularized solutions. We also propose methods for both a priori and a posteriori parameter choice rules. In addition, we verify the proposed regularized methods by numerical experiments to estimate the errors between the regularized and exact solutions.
ArticleNumber 331
Author Nashine, Hemant Kumar
Binh, Tran Thanh
Nguyen, Can
Long, Le Dinh
Luc, Nguyen Hoang
Author_xml – sequence: 1
  givenname: Tran Thanh
  surname: Binh
  fullname: Binh, Tran Thanh
  organization: Faculty of Natural Sciences, Thu Dau Mot University
– sequence: 2
  givenname: Hemant Kumar
  surname: Nashine
  fullname: Nashine, Hemant Kumar
  organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
– sequence: 3
  givenname: Le Dinh
  surname: Long
  fullname: Long, Le Dinh
  organization: Institute of Computational Science and Technology
– sequence: 4
  givenname: Nguyen Hoang
  surname: Luc
  fullname: Luc, Nguyen Hoang
  organization: Institute of Research and Development, Duy Tan University
– sequence: 5
  givenname: Can
  surname: Nguyen
  fullname: Nguyen, Can
  email: nguyenhuucan@tdtu.edu.vn
  organization: Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University
BookMark eNp9kd1qGzEQhUVIIT_NA-ROkOttJa13JV2GkLSGQKFNroV-Rrbs9cqV5IJ71XfoG_ZJKmdDWgrNlQYx35mZc87Q8RhHQOiSkneUiv59pm3fs4ZQ2TDW04YfoVPaC95QMePHf9Un6CznFSFMzoQ4Reu5g7EEH6wuIY44epzjLlnABdIG-5hwWQIOw9BsYwaHP-v9AGGx_PXj55cS15DxNkUzwAabPX4I62Uc4zecYLEbdArfJ9UNlGV0b9Ebr4cMF8_vOXq8u324-djcf_owv7m-b-yMdaWhvXTeG28FcN0SQajn0GrRCkOY4YZRTTwlIIlzuhadBELq9aS1BoRk7TmaT7ou6pXaprDRaa-iDurpI6aF0qkEO4CiUnas5dIQBzMnjBZAjBDWgidd10HVupq06pVfd5CLWlV7xrq-qj5L0bOuP0ykU5dNMecE_mUqJeqQj5ryUTWfA0cVrwz_h7GhPNlVkg7DqySbyFynjAtIf3b6P_QbwuSo2w
CitedBy_id crossref_primary_10_3390_fractalfract8100601
crossref_primary_10_3390_axioms13010030
crossref_primary_10_3934_math_2022883
crossref_primary_10_2298_TSCI23S1273P
crossref_primary_10_11650_tjm_230302
crossref_primary_10_1186_s13662_021_03626_z
crossref_primary_10_1155_2022_1035118
crossref_primary_10_1016_j_prime_2024_100750
crossref_primary_10_3390_fractalfract6100587
Cites_doi 10.1080/00036811.2014.979808
10.1140/epjp/i2018-12081-3
10.1002/num.20071
10.1016/j.nonrwa.2005.09.007
10.1007/s00366-016-0491-9
10.1016/j.cnsns.2018.09.004
10.1007/s00211-014-0685-2
10.1016/j.chaos.2005.11.010
10.1007/978-1-4612-5338-9
10.1088/0266-5611/24/3/034004
10.1016/j.cam.2010.06.020
10.1007/s11071-018-4367-y
10.1007/s00466-018-1663-9
10.1186/s13662-018-1684-x
10.1016/j.camwa.2017.12.004
10.1515/nleng-2018-0027
10.1002/mma.2661
10.1088/0266-5611/24/4/045018
10.1002/mma.5101
10.1137/S0036139994264476
10.1002/mma.5455
ContentType Journal Article
Copyright The Author(s) 2019
Advances in Difference Equations is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Advances in Difference Equations is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s13662-019-2261-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Open Access资源_Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 20
ExternalDocumentID oai_doaj_org_article_19952379b0de4d8ba8e0b88ccef0555e
10_1186_s13662_019_2261_7
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c425t-169dffbfc8e7a30801f7e3a838b02b7b21a0f10e90ddaf1059e0036603cbe8923
IEDL.DBID 40G
ISSN 1687-1847
1687-1839
IngestDate Wed Aug 27 01:25:36 EDT 2025
Fri Jul 25 18:50:37 EDT 2025
Tue Jul 01 00:35:37 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 21 02:36:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 47H10
35K05
Ill-posed problem
47J06
Tikhonov regularization method
35K99
Rayleigh–Stokes problem
Fractional derivative
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-169dffbfc8e7a30801f7e3a838b02b7b21a0f10e90ddaf1059e0036603cbe8923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1186/s13662-019-2261-7
PQID 2269862562
PQPubID 237355
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_19952379b0de4d8ba8e0b88ccef0555e
proquest_journals_2269862562
crossref_primary_10_1186_s13662_019_2261_7
crossref_citationtrail_10_1186_s13662_019_2261_7
springer_journals_10_1186_s13662_019_2261_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-08
PublicationDateYYYYMMDD 2019-08-08
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-08
  day: 08
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References KiraneM.MalikA.S.GwaizM.A.An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditionsMath. Methods Appl. Sci.201336910561069306672710.1002/mma.2661
ShenF.TanW.ZhaoY.MasuokaT.The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative modelNonlinear Anal., Real World Appl.20067510721080226089910.1016/j.nonrwa.2005.09.007
TatarS.UlusoyS.An inverse source problem for a one-dimensional space–time fractional diffusion equationAppl. Anal.2015941122332244339385310.1080/00036811.2014.979808
BaleanuD.JajarmiA.BonyahE.HajipourM.New aspects of the poor nutrition in the life cycle within the fractional calculusAdv. Differ. Equ.20182018382054110.1186/s13662-018-1684-x07004578
MaiA.P.N.T.A statistical minimax approach to the Hausdorff moment problemInverse Probl.2008244242588510.1088/0266-5611/24/4/045018
NguyenH.L.NguyenH.T.KiraneM.DuongD.X.T.Identifying initial condition of the Rayleigh–Stokes problem with random noiseMath. Methods Appl. Sci.20194215611571392816910.1002/mma.5455
MehrdadL.DehghanM.The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurementJ. Comput. Appl. Math.20102353669678271980610.1016/j.cam.2010.06.020
MengR.YinD.DrapacaC.S.Variable-order fractional description of compression deformation of amorphous glassy polymersComput. Mech.2019396376510.1007/s00466-018-1663-907073972
DehghanM.The one-dimensional heat equation subject to a boundary integral specificationChaos Solitons Fractals2007322661675228011210.1016/j.chaos.2005.11.010
SinghJ.SecerA.SwroopR.KumarD.A reliable analytical approach for a fractional model of advection-dispersion equationNonlinear Eng.2019810711610.1515/nleng-2018-0027
KumarD.SinghJ.BaleanuD.Analysis of a fractional model of Ambartsumian equationEur. Phys. J. Plus201813310.1140/epjp/i2018-12081-3
CavalierL.Nonparametric statistical inverse problemsInverse Probl.2008243242194110.1088/0266-5611/24/3/034004
KirschA.An Introduction to the Mathematical Theory of Inverse Problem1996BerlinSpringer10.1007/978-1-4612-5338-9
HajipourM.JajarmiA.BaleanuD.SunH.On an accurate discretization of a variable-order fractional reaction–diffusion equationCommun. Nonlinear Sci. Numer. Simul.201969119133388705810.1016/j.cnsns.2018.09.004
MairA.B.RuymgaartH.F.Statistical inverse estimation in Hilbert scalesSIAM J. Appl. Math.199656514241444140912710.1137/S0036139994264476
ZakyA.M.An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluidComput. Math. Appl.201875722432258377709710.1016/j.camwa.2017.12.004
NguyenA.T.LuuV.C.H.NguyenH.L.NguyenH.T.NguyenV.T.Identification of source term for the Rayleigh–Stokes problem with Gaussian random noiseMath. Methods Appl. Sci.2018411455935601384593010.1002/mma.5101
KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Application of Fractional Differential Equations2006AmsterdamElsevier1092.45003
PodlubnyI.Fractional Differential Equations1990San DiegoAcademic Press0918.34010
BazhlekovaE.JinB.LazarovR.ZhouZ.An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluidNumer. Math.2015131131338332610.1007/s00211-014-0685-2
DehghanM.A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specificationsNumer. Methods Partial Differ. Equ.2006221220257218553310.1002/num.20071
BaleanuD.JajarmiA.AsadJ.H.Classical and fractional aspects of two coupled pendulumsRom. Rep. Phys.2019711
DehghanM.AbbaszadehM.A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivativesEng. Comput.20173358760510.1007/s00366-016-0491-9
BaleanuD.JajarmiA.HajipourM.On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernelNonlinear Dyn.201894139741410.1007/s11071-018-4367-y
R. Meng (2261_CR10) 2019
E. Bazhlekova (2261_CR22) 2015; 131
M. Dehghan (2261_CR5) 2007; 32
A. Kirsch (2261_CR24) 1996
D. Baleanu (2261_CR16) 2018; 94
I. Podlubny (2261_CR2) 1990
D. Baleanu (2261_CR17) 2018; 2018
F. Shen (2261_CR3) 2006; 7
L. Cavalier (2261_CR19) 2008; 24
D. Kumar (2261_CR18) 2018; 133
H.L. Nguyen (2261_CR13) 2019; 42
D. Baleanu (2261_CR15) 2019; 71
M. Dehghan (2261_CR4) 2006; 22
A.T. Nguyen (2261_CR23) 2018; 41
A.A. Kilbas (2261_CR1) 2006
J. Singh (2261_CR9) 2019; 8
L. Mehrdad (2261_CR7) 2010; 235
S. Tatar (2261_CR12) 2015; 94
M. Hajipour (2261_CR14) 2019; 69
M. Kirane (2261_CR11) 2013; 36
A.B. Mair (2261_CR21) 1996; 56
M. Dehghan (2261_CR6) 2017; 33
A.M. Zaky (2261_CR8) 2018; 75
A.P.N.T. Mai (2261_CR20) 2008; 24
References_xml – reference: BaleanuD.JajarmiA.HajipourM.On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernelNonlinear Dyn.201894139741410.1007/s11071-018-4367-y
– reference: KiraneM.MalikA.S.GwaizM.A.An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditionsMath. Methods Appl. Sci.201336910561069306672710.1002/mma.2661
– reference: BaleanuD.JajarmiA.BonyahE.HajipourM.New aspects of the poor nutrition in the life cycle within the fractional calculusAdv. Differ. Equ.20182018382054110.1186/s13662-018-1684-x07004578
– reference: TatarS.UlusoyS.An inverse source problem for a one-dimensional space–time fractional diffusion equationAppl. Anal.2015941122332244339385310.1080/00036811.2014.979808
– reference: PodlubnyI.Fractional Differential Equations1990San DiegoAcademic Press0918.34010
– reference: KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Application of Fractional Differential Equations2006AmsterdamElsevier1092.45003
– reference: MaiA.P.N.T.A statistical minimax approach to the Hausdorff moment problemInverse Probl.2008244242588510.1088/0266-5611/24/4/045018
– reference: ShenF.TanW.ZhaoY.MasuokaT.The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative modelNonlinear Anal., Real World Appl.20067510721080226089910.1016/j.nonrwa.2005.09.007
– reference: MengR.YinD.DrapacaC.S.Variable-order fractional description of compression deformation of amorphous glassy polymersComput. Mech.2019396376510.1007/s00466-018-1663-907073972
– reference: DehghanM.A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specificationsNumer. Methods Partial Differ. Equ.2006221220257218553310.1002/num.20071
– reference: KirschA.An Introduction to the Mathematical Theory of Inverse Problem1996BerlinSpringer10.1007/978-1-4612-5338-9
– reference: DehghanM.AbbaszadehM.A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivativesEng. Comput.20173358760510.1007/s00366-016-0491-9
– reference: SinghJ.SecerA.SwroopR.KumarD.A reliable analytical approach for a fractional model of advection-dispersion equationNonlinear Eng.2019810711610.1515/nleng-2018-0027
– reference: BaleanuD.JajarmiA.AsadJ.H.Classical and fractional aspects of two coupled pendulumsRom. Rep. Phys.2019711
– reference: NguyenH.L.NguyenH.T.KiraneM.DuongD.X.T.Identifying initial condition of the Rayleigh–Stokes problem with random noiseMath. Methods Appl. Sci.20194215611571392816910.1002/mma.5455
– reference: BazhlekovaE.JinB.LazarovR.ZhouZ.An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluidNumer. Math.2015131131338332610.1007/s00211-014-0685-2
– reference: MehrdadL.DehghanM.The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurementJ. Comput. Appl. Math.20102353669678271980610.1016/j.cam.2010.06.020
– reference: ZakyA.M.An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluidComput. Math. Appl.201875722432258377709710.1016/j.camwa.2017.12.004
– reference: HajipourM.JajarmiA.BaleanuD.SunH.On an accurate discretization of a variable-order fractional reaction–diffusion equationCommun. Nonlinear Sci. Numer. Simul.201969119133388705810.1016/j.cnsns.2018.09.004
– reference: NguyenA.T.LuuV.C.H.NguyenH.L.NguyenH.T.NguyenV.T.Identification of source term for the Rayleigh–Stokes problem with Gaussian random noiseMath. Methods Appl. Sci.2018411455935601384593010.1002/mma.5101
– reference: DehghanM.The one-dimensional heat equation subject to a boundary integral specificationChaos Solitons Fractals2007322661675228011210.1016/j.chaos.2005.11.010
– reference: KumarD.SinghJ.BaleanuD.Analysis of a fractional model of Ambartsumian equationEur. Phys. J. Plus201813310.1140/epjp/i2018-12081-3
– reference: CavalierL.Nonparametric statistical inverse problemsInverse Probl.2008243242194110.1088/0266-5611/24/3/034004
– reference: MairA.B.RuymgaartH.F.Statistical inverse estimation in Hilbert scalesSIAM J. Appl. Math.199656514241444140912710.1137/S0036139994264476
– volume: 94
  start-page: 2233
  issue: 11
  year: 2015
  ident: 2261_CR12
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2014.979808
– volume: 133
  year: 2018
  ident: 2261_CR18
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-12081-3
– volume-title: Fractional Differential Equations
  year: 1990
  ident: 2261_CR2
– volume: 22
  start-page: 220
  issue: 1
  year: 2006
  ident: 2261_CR4
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20071
– volume: 7
  start-page: 1072
  issue: 5
  year: 2006
  ident: 2261_CR3
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2005.09.007
– volume: 33
  start-page: 587
  year: 2017
  ident: 2261_CR6
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-016-0491-9
– volume: 69
  start-page: 119
  year: 2019
  ident: 2261_CR14
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.09.004
– volume: 131
  start-page: 1
  year: 2015
  ident: 2261_CR22
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0685-2
– volume: 71
  issue: 1
  year: 2019
  ident: 2261_CR15
  publication-title: Rom. Rep. Phys.
– volume: 32
  start-page: 661
  issue: 2
  year: 2007
  ident: 2261_CR5
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.11.010
– volume-title: An Introduction to the Mathematical Theory of Inverse Problem
  year: 1996
  ident: 2261_CR24
  doi: 10.1007/978-1-4612-5338-9
– volume: 24
  issue: 3
  year: 2008
  ident: 2261_CR19
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/24/3/034004
– volume-title: Theory and Application of Fractional Differential Equations
  year: 2006
  ident: 2261_CR1
– volume: 235
  start-page: 669
  issue: 3
  year: 2010
  ident: 2261_CR7
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.06.020
– volume: 94
  start-page: 397
  issue: 1
  year: 2018
  ident: 2261_CR16
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4367-y
– year: 2019
  ident: 2261_CR10
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1663-9
– volume: 2018
  year: 2018
  ident: 2261_CR17
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-018-1684-x
– volume: 75
  start-page: 2243
  issue: 7
  year: 2018
  ident: 2261_CR8
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2017.12.004
– volume: 8
  start-page: 107
  year: 2019
  ident: 2261_CR9
  publication-title: Nonlinear Eng.
  doi: 10.1515/nleng-2018-0027
– volume: 36
  start-page: 1056
  issue: 9
  year: 2013
  ident: 2261_CR11
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.2661
– volume: 24
  issue: 4
  year: 2008
  ident: 2261_CR20
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/24/4/045018
– volume: 41
  start-page: 5593
  issue: 14
  year: 2018
  ident: 2261_CR23
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5101
– volume: 56
  start-page: 1424
  issue: 5
  year: 1996
  ident: 2261_CR21
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139994264476
– volume: 42
  start-page: 1561
  year: 2019
  ident: 2261_CR13
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5455
SSID ssj0029488
Score 2.2431505
Snippet In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative model. The...
Abstract In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Computational fluid dynamics
Difference and Functional Equations
Exact solutions
Fractional derivative
Functional Analysis
Ill posed problems
Ill-posed problem
Mathematics
Mathematics and Statistics
Numerical methods
Ordinary Differential Equations
Partial Differential Equations
Rayleigh–Stokes problem
Regularization
Regularization methods
Tikhonov regularization method
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE-uLHDwpxTbtpulRRVkEPegueAtNOkHZZSvbVfDmf_Af-kucabPrA9SL1z5CmJlkvsnj-xjb73TQ6bIsQhwNWZiCg1AVVpCae6koISeNZuTllez204vbzu0nqS86E9bSA7eGO6IrxCLJchOVkJbKFAoio5S14IirCmj2xZw3LaZ8qZVjXPo9zFjJozpOpKQjCHkoaMEl-5KFGrL-Lwjz26Zok2vOl9mSB4n8uO3cCpuD0Spb_EQduMYG7Q1b55fceOV4uw7Paa7lCEU5Qjt-PxyGD1UNJb_G0pyWQd9eXm8m1QBq7rVkuHnmvfvBXTWqnvi4kaYf-8uZvNWXXmf987PeaTf0wgmhxSE4CWOZl84ZZxVkRYKYMHYZJIVKlImEyYyIi8jFEeRRWRaOEBYQL42MEmtAoX822PyoGsEm4ymAdCJJnRVEzS5zhwUbtg2A2NEKCFg0NaS2nlWcxC2GuqkulNSt7TXaXpPtdRawg9kvDy2lxm8fn5B3Zh8SG3bzAGNE-xjRf8VIwHamvtV-iNbUfo7lHOK_gB1O_f3x-scebf1Hj7bZgqBopLMnaofNT8aPsIvoZmL2mkB-B3s49ys
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XOBQtTzEFlr5wKnIInGyjnNCpQKhSqCKh8TNiu0xoF1tls2CxK3_of-QX9KZxLsUpHLNw7JmPDPfjO35GNvt91HpylcCraEQOQQQunKS2Ny9poCctZyRp2fq5Cr_ed2_jgW3Jh6rnPnE1lH72lGNfB9hQonoG8P1wfheEGsU7a5GCo1FtowuWGPytXx4dPbrfJ5ylXnLPJkqNCXCAnFfM9Vqv0kzpehYQikkFWGKV5GpbeD_CnW-2Sht48_xR_YhAkf-vdP0J7YAozW2-k87wXU26G7dhliG43XgXW2ek__lCE85wj1-NxyKcd2A5-eYrlNp9Pn3n4tpPYCGR34Zbp_45d3gth7Vj3zS0tVP4oVN3nFOb7Cr46PLHycikikIh2Y5FakqfQg2OA1FlSFOTEMBWaUzbRNpCyvTKglpAmXifRUIdQH1qlFJ5ixo1NkmWxrVI9hiPAdQQWZ5cJLatasyYBKHYwMgnnQSeiyZCdK42GmcCC-Gps04tDKd7A3K3pDsTdFj3-a_jLs2G-99fEjamX9IHbLbB_XkxkSDM3T1XGZFaRMPude20pBYrZ2DQD3OcJI7M92aaLaNeVlkPbY30_fL6__O6PP7g22zFUnrjE6a6B22NJ08wBfEMlP7NS7YvzGD8XE
  priority: 102
  providerName: ProQuest
Title Identification of source term for the ill-posed Rayleigh–Stokes problem by Tikhonov regularization method
URI https://link.springer.com/article/10.1186/s13662-019-2261-7
https://www.proquest.com/docview/2269862562
https://doaj.org/article/19952379b0de4d8ba8e0b88ccef0555e
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwELUoXNoDorRVFyjygVOrqI6TdZwjrNiiSiBEWYmbFTvjFu1qgzZLpd74h_5hv4QZx1lK1VbiYsmJHVl5HntmPH7D2MFwiKCrukpQGookBw-JrpykbO61pg05CzkjT8_UyST_fDW8ive42z7avT-SDCt1EGutPrZpphSFEZSJJKdJ8YxtEJsYxXHl4tPKyipxSsbjy792e7QBBZ7-R8rlH-ehYZsZb7HNqB_yww7Ql2wN5tvsxW-sgVg7XVGttq_YtLtq66PvjTeedw55TosuR52UY2t-PZslN00LNb9AG538ob_ufn5ZNlNoeUwqw-0Pfnk9_dbMm-98EXLUL-ItTd4lmn7NJuPjy9FJEjMoJA5lcZmkqqy9t95pKKoMlcPUF5BVOtNWSFtYmVbCpwJKUdeVJ1ULiKBGicxZ0AjUG7Y-b-bwlvEcQHmZ5d5J4mhXpUfLDb8NgEqkkzBgov-txkV6ccpyMTPBzNDKdEgYRMIQEqYYsPerLjcdt8b_Gh8RVquGRIsdHjSLryZKmaH75jIrSitqyGttKw3Cau0ceCI2w0Hu9UibKKstfb9Euw4VwQH70KP_8PqfI9p5Uutd9lzSJKRoE73H1peLW3iH-szS7of5i6UeY7lxdHx2foG1kRrtBw8BlhN5eA_7cPRQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqdgEsKp5iaAEvYAOymtiZxFkgxGuY0scCplJ3JnauSzWjyTCZgmbHP_AffBRfwr1OMqVIdNdtHpZ1n8ePew9jT_p9VHpaFgK9IRMJeBC6cJLY3EtNCVkFzsiDw3R4lHw47h-vsV9dLQxdq-xiYgjUZeVoj3wHYUKO6BvT9cvZV0GsUXS62lFoNGaxB8vvuGSrX-y-Rf0-lXLwbvRmKFpWAeHQPhciTvPSe-udhqxQCJhin4EqtNI2kjazMi4iH0eQR2VZeIIfQE1b0kg5CzqnRgcY8jcSpXLyKD14v1rg5UnguYxTdFxCHu0paqzTnTrGIegSRC4kbflkF_JgoAu4gHH_OZYN2W5wk222MJW_auzqFluD6W1246_mhXfYuKnx9e2mH688b04COEV7jmCYI7jkp5OJmFU1lPxjsQwbsb9__Py0qMZQ85bNhtslH52Ov1TT6hufwwndjG3LQ3nDcH2XHV2JkO-x9Wk1hfuMJwCplyrxTlJz-DT3uGTEsQEQvToJPRZ1gjSu7WtO9BoTE9Y3OjWN7A3K3pDsTdZjz1a_zJqmHpd9_Jq0s_qQ-nGHB9X8xLTubajQXaost1EJSaltoSGyWjsHnjqq4SS3O92aNkjU5tyke-x5p-_z1_-d0YPLB3vMrg1HB_tmf_dwb4tdl2RzdMdFb7P1xfwMHiKKWthHwXQ5-3zVvvIH5Xcs-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqrYTggMqfWCjgQ7mAok2cbOIcEKK0q5bCqiqt1JuJ7XGpdrXZbhbQ3niHvk0fhydhJnG2LRK99Zofy5o_f2OP52Nso99Hpae2CNAbsiABB4EsjCA2dytpQY5rzsgvw3TnKPl03D9eYRftXRgqq2xjYh2obWloj7yHMCFH9I3Ldc_5soj9rcH76VlADFJ00trSaTQmsgeLX5i-Ve92t1DXr4UYbB9-3Ak8w0Bg0FbnQZTm1jntjISsiBE8RS6DuJCx1KHQmRZREboohDy0tnAERYAauKRhbDTInJoeYPhfzTArCjtsdXN7uH-wTPfypGa9jFJ0Y8Ih_kw1kmmvinAQKonIA0EbQNm1VbEmD7iGeP85pK3XvsEau-9BK__QWNkDtgKTh-zelVaGj9ioufHr_BYgLx1vzgU4xX6O0Jgj1OSn43EwLSuw_KBY1Nuyf36ff52XI6i457bhesEPT0ffy0n5k8_ghOpk_WVR3vBdP2ZHtyLmJ6wzKSfwlPEEIHUiTpwR1Co-zR0mkDg2AGJZI6DLwlaQyvgu50S2MVZ1tiNT1cheoewVyV5lXfZm-cu0afFx08ebpJ3lh9Sdu35Qzk6Ud3ZF195FnOU6tJBYqQsJoZbSGHDUXw0nud7qVvmQUalLA--yt62-L1__d0bPbh7sFbuDfqI-7w73nrO7gkyOCl7kOuvMZz_gBUKquX7pbZezb7ftLn8B8-8yig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+source+term+for+the+ill-posed+Rayleigh%E2%80%93Stokes+problem+by+Tikhonov+regularization+method&rft.jtitle=Advances+in+difference+equations&rft.au=Binh%2C+Tran+Thanh&rft.au=Nashine%2C+Hemant+Kumar&rft.au=Long%2C+Le+Dinh&rft.au=Luc%2C+Nguyen+Hoang&rft.date=2019-08-08&rft.pub=Springer+International+Publishing&rft.eissn=1687-1847&rft.volume=2019&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-019-2261-7&rft.externalDocID=10_1186_s13662_019_2261_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon