Identification of source term for the ill-posed Rayleigh–Stokes problem by Tikhonov regularization method
In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative model. The problem is severely ill-posed in the sense of Hadamard. To regularize the unstable solution, we apply the Tikhonov method regularization solu...
Saved in:
Published in | Advances in difference equations Vol. 2019; no. 1; pp. 1 - 20 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
08.08.2019
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1687-1847 1687-1839 1687-1847 |
DOI | 10.1186/s13662-019-2261-7 |
Cover
Loading…
Abstract | In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative model. The problem is severely ill-posed in the sense of Hadamard. To regularize the unstable solution, we apply the Tikhonov method regularization solution and obtain an a priori error estimate between the exact solution and regularized solutions. We also propose methods for both a priori and a posteriori parameter choice rules. In addition, we verify the proposed regularized methods by numerical experiments to estimate the errors between the regularized and exact solutions. |
---|---|
AbstractList | In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative model. The problem is severely ill-posed in the sense of Hadamard. To regularize the unstable solution, we apply the Tikhonov method regularization solution and obtain an a priori error estimate between the exact solution and regularized solutions. We also propose methods for both a priori and a posteriori parameter choice rules. In addition, we verify the proposed regularized methods by numerical experiments to estimate the errors between the regularized and exact solutions. Abstract In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative model. The problem is severely ill-posed in the sense of Hadamard. To regularize the unstable solution, we apply the Tikhonov method regularization solution and obtain an a priori error estimate between the exact solution and regularized solutions. We also propose methods for both a priori and a posteriori parameter choice rules. In addition, we verify the proposed regularized methods by numerical experiments to estimate the errors between the regularized and exact solutions. |
ArticleNumber | 331 |
Author | Nashine, Hemant Kumar Binh, Tran Thanh Nguyen, Can Long, Le Dinh Luc, Nguyen Hoang |
Author_xml | – sequence: 1 givenname: Tran Thanh surname: Binh fullname: Binh, Tran Thanh organization: Faculty of Natural Sciences, Thu Dau Mot University – sequence: 2 givenname: Hemant Kumar surname: Nashine fullname: Nashine, Hemant Kumar organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology – sequence: 3 givenname: Le Dinh surname: Long fullname: Long, Le Dinh organization: Institute of Computational Science and Technology – sequence: 4 givenname: Nguyen Hoang surname: Luc fullname: Luc, Nguyen Hoang organization: Institute of Research and Development, Duy Tan University – sequence: 5 givenname: Can surname: Nguyen fullname: Nguyen, Can email: nguyenhuucan@tdtu.edu.vn organization: Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University |
BookMark | eNp9kd1qGzEQhUVIIT_NA-ROkOttJa13JV2GkLSGQKFNroV-Rrbs9cqV5IJ71XfoG_ZJKmdDWgrNlQYx35mZc87Q8RhHQOiSkneUiv59pm3fs4ZQ2TDW04YfoVPaC95QMePHf9Un6CznFSFMzoQ4Reu5g7EEH6wuIY44epzjLlnABdIG-5hwWQIOw9BsYwaHP-v9AGGx_PXj55cS15DxNkUzwAabPX4I62Uc4zecYLEbdArfJ9UNlGV0b9Ebr4cMF8_vOXq8u324-djcf_owv7m-b-yMdaWhvXTeG28FcN0SQajn0GrRCkOY4YZRTTwlIIlzuhadBELq9aS1BoRk7TmaT7ou6pXaprDRaa-iDurpI6aF0qkEO4CiUnas5dIQBzMnjBZAjBDWgidd10HVupq06pVfd5CLWlV7xrq-qj5L0bOuP0ykU5dNMecE_mUqJeqQj5ryUTWfA0cVrwz_h7GhPNlVkg7DqySbyFynjAtIf3b6P_QbwuSo2w |
CitedBy_id | crossref_primary_10_3390_fractalfract8100601 crossref_primary_10_3390_axioms13010030 crossref_primary_10_3934_math_2022883 crossref_primary_10_2298_TSCI23S1273P crossref_primary_10_11650_tjm_230302 crossref_primary_10_1186_s13662_021_03626_z crossref_primary_10_1155_2022_1035118 crossref_primary_10_1016_j_prime_2024_100750 crossref_primary_10_3390_fractalfract6100587 |
Cites_doi | 10.1080/00036811.2014.979808 10.1140/epjp/i2018-12081-3 10.1002/num.20071 10.1016/j.nonrwa.2005.09.007 10.1007/s00366-016-0491-9 10.1016/j.cnsns.2018.09.004 10.1007/s00211-014-0685-2 10.1016/j.chaos.2005.11.010 10.1007/978-1-4612-5338-9 10.1088/0266-5611/24/3/034004 10.1016/j.cam.2010.06.020 10.1007/s11071-018-4367-y 10.1007/s00466-018-1663-9 10.1186/s13662-018-1684-x 10.1016/j.camwa.2017.12.004 10.1515/nleng-2018-0027 10.1002/mma.2661 10.1088/0266-5611/24/4/045018 10.1002/mma.5101 10.1137/S0036139994264476 10.1002/mma.5455 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Advances in Difference Equations is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Advances in Difference Equations is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1186/s13662-019-2261-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Open Access资源_Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Open Access资源_DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1687-1847 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_19952379b0de4d8ba8e0b88ccef0555e 10_1186_s13662_019_2261_7 |
GroupedDBID | -A0 23M 2WC 3V. 4.4 40G 5GY 5VS 6J9 8FE 8FG 8R4 8R5 AAFWJ AAYZJ ABDBF ABJCF ABUWG ACGFO ACGFS ACIPV ACIWK ACUHS ADBBV ADINQ AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DWQXO EBS EJD ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M0N M7S M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A UPT ~8M AAYXX CITATION OVT PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c425t-169dffbfc8e7a30801f7e3a838b02b7b21a0f10e90ddaf1059e0036603cbe8923 |
IEDL.DBID | 40G |
ISSN | 1687-1847 1687-1839 |
IngestDate | Wed Aug 27 01:25:36 EDT 2025 Fri Jul 25 18:50:37 EDT 2025 Tue Jul 01 00:35:37 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Fri Feb 21 02:36:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 47H10 35K05 Ill-posed problem 47J06 Tikhonov regularization method 35K99 Rayleigh–Stokes problem Fractional derivative |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-169dffbfc8e7a30801f7e3a838b02b7b21a0f10e90ddaf1059e0036603cbe8923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1186/s13662-019-2261-7 |
PQID | 2269862562 |
PQPubID | 237355 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19952379b0de4d8ba8e0b88ccef0555e proquest_journals_2269862562 crossref_primary_10_1186_s13662_019_2261_7 crossref_citationtrail_10_1186_s13662_019_2261_7 springer_journals_10_1186_s13662_019_2261_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-08 |
PublicationDateYYYYMMDD | 2019-08-08 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Advances in difference equations |
PublicationTitleAbbrev | Adv Differ Equ |
PublicationYear | 2019 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | KiraneM.MalikA.S.GwaizM.A.An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditionsMath. Methods Appl. Sci.201336910561069306672710.1002/mma.2661 ShenF.TanW.ZhaoY.MasuokaT.The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative modelNonlinear Anal., Real World Appl.20067510721080226089910.1016/j.nonrwa.2005.09.007 TatarS.UlusoyS.An inverse source problem for a one-dimensional space–time fractional diffusion equationAppl. Anal.2015941122332244339385310.1080/00036811.2014.979808 BaleanuD.JajarmiA.BonyahE.HajipourM.New aspects of the poor nutrition in the life cycle within the fractional calculusAdv. Differ. Equ.20182018382054110.1186/s13662-018-1684-x07004578 MaiA.P.N.T.A statistical minimax approach to the Hausdorff moment problemInverse Probl.2008244242588510.1088/0266-5611/24/4/045018 NguyenH.L.NguyenH.T.KiraneM.DuongD.X.T.Identifying initial condition of the Rayleigh–Stokes problem with random noiseMath. Methods Appl. Sci.20194215611571392816910.1002/mma.5455 MehrdadL.DehghanM.The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurementJ. Comput. Appl. Math.20102353669678271980610.1016/j.cam.2010.06.020 MengR.YinD.DrapacaC.S.Variable-order fractional description of compression deformation of amorphous glassy polymersComput. Mech.2019396376510.1007/s00466-018-1663-907073972 DehghanM.The one-dimensional heat equation subject to a boundary integral specificationChaos Solitons Fractals2007322661675228011210.1016/j.chaos.2005.11.010 SinghJ.SecerA.SwroopR.KumarD.A reliable analytical approach for a fractional model of advection-dispersion equationNonlinear Eng.2019810711610.1515/nleng-2018-0027 KumarD.SinghJ.BaleanuD.Analysis of a fractional model of Ambartsumian equationEur. Phys. J. Plus201813310.1140/epjp/i2018-12081-3 CavalierL.Nonparametric statistical inverse problemsInverse Probl.2008243242194110.1088/0266-5611/24/3/034004 KirschA.An Introduction to the Mathematical Theory of Inverse Problem1996BerlinSpringer10.1007/978-1-4612-5338-9 HajipourM.JajarmiA.BaleanuD.SunH.On an accurate discretization of a variable-order fractional reaction–diffusion equationCommun. Nonlinear Sci. Numer. Simul.201969119133388705810.1016/j.cnsns.2018.09.004 MairA.B.RuymgaartH.F.Statistical inverse estimation in Hilbert scalesSIAM J. Appl. Math.199656514241444140912710.1137/S0036139994264476 ZakyA.M.An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluidComput. Math. Appl.201875722432258377709710.1016/j.camwa.2017.12.004 NguyenA.T.LuuV.C.H.NguyenH.L.NguyenH.T.NguyenV.T.Identification of source term for the Rayleigh–Stokes problem with Gaussian random noiseMath. Methods Appl. Sci.2018411455935601384593010.1002/mma.5101 KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Application of Fractional Differential Equations2006AmsterdamElsevier1092.45003 PodlubnyI.Fractional Differential Equations1990San DiegoAcademic Press0918.34010 BazhlekovaE.JinB.LazarovR.ZhouZ.An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluidNumer. Math.2015131131338332610.1007/s00211-014-0685-2 DehghanM.A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specificationsNumer. Methods Partial Differ. Equ.2006221220257218553310.1002/num.20071 BaleanuD.JajarmiA.AsadJ.H.Classical and fractional aspects of two coupled pendulumsRom. Rep. Phys.2019711 DehghanM.AbbaszadehM.A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivativesEng. Comput.20173358760510.1007/s00366-016-0491-9 BaleanuD.JajarmiA.HajipourM.On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernelNonlinear Dyn.201894139741410.1007/s11071-018-4367-y R. Meng (2261_CR10) 2019 E. Bazhlekova (2261_CR22) 2015; 131 M. Dehghan (2261_CR5) 2007; 32 A. Kirsch (2261_CR24) 1996 D. Baleanu (2261_CR16) 2018; 94 I. Podlubny (2261_CR2) 1990 D. Baleanu (2261_CR17) 2018; 2018 F. Shen (2261_CR3) 2006; 7 L. Cavalier (2261_CR19) 2008; 24 D. Kumar (2261_CR18) 2018; 133 H.L. Nguyen (2261_CR13) 2019; 42 D. Baleanu (2261_CR15) 2019; 71 M. Dehghan (2261_CR4) 2006; 22 A.T. Nguyen (2261_CR23) 2018; 41 A.A. Kilbas (2261_CR1) 2006 J. Singh (2261_CR9) 2019; 8 L. Mehrdad (2261_CR7) 2010; 235 S. Tatar (2261_CR12) 2015; 94 M. Hajipour (2261_CR14) 2019; 69 M. Kirane (2261_CR11) 2013; 36 A.B. Mair (2261_CR21) 1996; 56 M. Dehghan (2261_CR6) 2017; 33 A.M. Zaky (2261_CR8) 2018; 75 A.P.N.T. Mai (2261_CR20) 2008; 24 |
References_xml | – reference: BaleanuD.JajarmiA.HajipourM.On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernelNonlinear Dyn.201894139741410.1007/s11071-018-4367-y – reference: KiraneM.MalikA.S.GwaizM.A.An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditionsMath. Methods Appl. Sci.201336910561069306672710.1002/mma.2661 – reference: BaleanuD.JajarmiA.BonyahE.HajipourM.New aspects of the poor nutrition in the life cycle within the fractional calculusAdv. Differ. Equ.20182018382054110.1186/s13662-018-1684-x07004578 – reference: TatarS.UlusoyS.An inverse source problem for a one-dimensional space–time fractional diffusion equationAppl. Anal.2015941122332244339385310.1080/00036811.2014.979808 – reference: PodlubnyI.Fractional Differential Equations1990San DiegoAcademic Press0918.34010 – reference: KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Application of Fractional Differential Equations2006AmsterdamElsevier1092.45003 – reference: MaiA.P.N.T.A statistical minimax approach to the Hausdorff moment problemInverse Probl.2008244242588510.1088/0266-5611/24/4/045018 – reference: ShenF.TanW.ZhaoY.MasuokaT.The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative modelNonlinear Anal., Real World Appl.20067510721080226089910.1016/j.nonrwa.2005.09.007 – reference: MengR.YinD.DrapacaC.S.Variable-order fractional description of compression deformation of amorphous glassy polymersComput. Mech.2019396376510.1007/s00466-018-1663-907073972 – reference: DehghanM.A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specificationsNumer. Methods Partial Differ. Equ.2006221220257218553310.1002/num.20071 – reference: KirschA.An Introduction to the Mathematical Theory of Inverse Problem1996BerlinSpringer10.1007/978-1-4612-5338-9 – reference: DehghanM.AbbaszadehM.A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivativesEng. Comput.20173358760510.1007/s00366-016-0491-9 – reference: SinghJ.SecerA.SwroopR.KumarD.A reliable analytical approach for a fractional model of advection-dispersion equationNonlinear Eng.2019810711610.1515/nleng-2018-0027 – reference: BaleanuD.JajarmiA.AsadJ.H.Classical and fractional aspects of two coupled pendulumsRom. Rep. Phys.2019711 – reference: NguyenH.L.NguyenH.T.KiraneM.DuongD.X.T.Identifying initial condition of the Rayleigh–Stokes problem with random noiseMath. Methods Appl. Sci.20194215611571392816910.1002/mma.5455 – reference: BazhlekovaE.JinB.LazarovR.ZhouZ.An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluidNumer. Math.2015131131338332610.1007/s00211-014-0685-2 – reference: MehrdadL.DehghanM.The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurementJ. Comput. Appl. Math.20102353669678271980610.1016/j.cam.2010.06.020 – reference: ZakyA.M.An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluidComput. Math. Appl.201875722432258377709710.1016/j.camwa.2017.12.004 – reference: HajipourM.JajarmiA.BaleanuD.SunH.On an accurate discretization of a variable-order fractional reaction–diffusion equationCommun. Nonlinear Sci. Numer. Simul.201969119133388705810.1016/j.cnsns.2018.09.004 – reference: NguyenA.T.LuuV.C.H.NguyenH.L.NguyenH.T.NguyenV.T.Identification of source term for the Rayleigh–Stokes problem with Gaussian random noiseMath. Methods Appl. Sci.2018411455935601384593010.1002/mma.5101 – reference: DehghanM.The one-dimensional heat equation subject to a boundary integral specificationChaos Solitons Fractals2007322661675228011210.1016/j.chaos.2005.11.010 – reference: KumarD.SinghJ.BaleanuD.Analysis of a fractional model of Ambartsumian equationEur. Phys. J. Plus201813310.1140/epjp/i2018-12081-3 – reference: CavalierL.Nonparametric statistical inverse problemsInverse Probl.2008243242194110.1088/0266-5611/24/3/034004 – reference: MairA.B.RuymgaartH.F.Statistical inverse estimation in Hilbert scalesSIAM J. Appl. Math.199656514241444140912710.1137/S0036139994264476 – volume: 94 start-page: 2233 issue: 11 year: 2015 ident: 2261_CR12 publication-title: Appl. Anal. doi: 10.1080/00036811.2014.979808 – volume: 133 year: 2018 ident: 2261_CR18 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-12081-3 – volume-title: Fractional Differential Equations year: 1990 ident: 2261_CR2 – volume: 22 start-page: 220 issue: 1 year: 2006 ident: 2261_CR4 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.20071 – volume: 7 start-page: 1072 issue: 5 year: 2006 ident: 2261_CR3 publication-title: Nonlinear Anal., Real World Appl. doi: 10.1016/j.nonrwa.2005.09.007 – volume: 33 start-page: 587 year: 2017 ident: 2261_CR6 publication-title: Eng. Comput. doi: 10.1007/s00366-016-0491-9 – volume: 69 start-page: 119 year: 2019 ident: 2261_CR14 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.09.004 – volume: 131 start-page: 1 year: 2015 ident: 2261_CR22 publication-title: Numer. Math. doi: 10.1007/s00211-014-0685-2 – volume: 71 issue: 1 year: 2019 ident: 2261_CR15 publication-title: Rom. Rep. Phys. – volume: 32 start-page: 661 issue: 2 year: 2007 ident: 2261_CR5 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.11.010 – volume-title: An Introduction to the Mathematical Theory of Inverse Problem year: 1996 ident: 2261_CR24 doi: 10.1007/978-1-4612-5338-9 – volume: 24 issue: 3 year: 2008 ident: 2261_CR19 publication-title: Inverse Probl. doi: 10.1088/0266-5611/24/3/034004 – volume-title: Theory and Application of Fractional Differential Equations year: 2006 ident: 2261_CR1 – volume: 235 start-page: 669 issue: 3 year: 2010 ident: 2261_CR7 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2010.06.020 – volume: 94 start-page: 397 issue: 1 year: 2018 ident: 2261_CR16 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4367-y – year: 2019 ident: 2261_CR10 publication-title: Comput. Mech. doi: 10.1007/s00466-018-1663-9 – volume: 2018 year: 2018 ident: 2261_CR17 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-018-1684-x – volume: 75 start-page: 2243 issue: 7 year: 2018 ident: 2261_CR8 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.12.004 – volume: 8 start-page: 107 year: 2019 ident: 2261_CR9 publication-title: Nonlinear Eng. doi: 10.1515/nleng-2018-0027 – volume: 36 start-page: 1056 issue: 9 year: 2013 ident: 2261_CR11 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.2661 – volume: 24 issue: 4 year: 2008 ident: 2261_CR20 publication-title: Inverse Probl. doi: 10.1088/0266-5611/24/4/045018 – volume: 41 start-page: 5593 issue: 14 year: 2018 ident: 2261_CR23 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5101 – volume: 56 start-page: 1424 issue: 5 year: 1996 ident: 2261_CR21 publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139994264476 – volume: 42 start-page: 1561 year: 2019 ident: 2261_CR13 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5455 |
SSID | ssj0029488 |
Score | 2.2431505 |
Snippet | In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative model. The... Abstract In this paper, we study an inverse source problem for the Rayleigh–Stokes problem for a generalized second-grade fluid with a fractional derivative... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Computational fluid dynamics Difference and Functional Equations Exact solutions Fractional derivative Functional Analysis Ill posed problems Ill-posed problem Mathematics Mathematics and Statistics Numerical methods Ordinary Differential Equations Partial Differential Equations Rayleigh–Stokes problem Regularization Regularization methods Tikhonov regularization method |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE-uLHDwpxTbtpulRRVkEPegueAtNOkHZZSvbVfDmf_Af-kucabPrA9SL1z5CmJlkvsnj-xjb73TQ6bIsQhwNWZiCg1AVVpCae6koISeNZuTllez204vbzu0nqS86E9bSA7eGO6IrxCLJchOVkJbKFAoio5S14IirCmj2xZw3LaZ8qZVjXPo9zFjJozpOpKQjCHkoaMEl-5KFGrL-Lwjz26Zok2vOl9mSB4n8uO3cCpuD0Spb_EQduMYG7Q1b55fceOV4uw7Paa7lCEU5Qjt-PxyGD1UNJb_G0pyWQd9eXm8m1QBq7rVkuHnmvfvBXTWqnvi4kaYf-8uZvNWXXmf987PeaTf0wgmhxSE4CWOZl84ZZxVkRYKYMHYZJIVKlImEyYyIi8jFEeRRWRaOEBYQL42MEmtAoX822PyoGsEm4ymAdCJJnRVEzS5zhwUbtg2A2NEKCFg0NaS2nlWcxC2GuqkulNSt7TXaXpPtdRawg9kvDy2lxm8fn5B3Zh8SG3bzAGNE-xjRf8VIwHamvtV-iNbUfo7lHOK_gB1O_f3x-scebf1Hj7bZgqBopLMnaofNT8aPsIvoZmL2mkB-B3s49ys priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XOBQtTzEFlr5wKnIInGyjnNCpQKhSqCKh8TNiu0xoF1tls2CxK3_of-QX9KZxLsUpHLNw7JmPDPfjO35GNvt91HpylcCraEQOQQQunKS2Ny9poCctZyRp2fq5Cr_ed2_jgW3Jh6rnPnE1lH72lGNfB9hQonoG8P1wfheEGsU7a5GCo1FtowuWGPytXx4dPbrfJ5ylXnLPJkqNCXCAnFfM9Vqv0kzpehYQikkFWGKV5GpbeD_CnW-2Sht48_xR_YhAkf-vdP0J7YAozW2-k87wXU26G7dhliG43XgXW2ek__lCE85wj1-NxyKcd2A5-eYrlNp9Pn3n4tpPYCGR34Zbp_45d3gth7Vj3zS0tVP4oVN3nFOb7Cr46PLHycikikIh2Y5FakqfQg2OA1FlSFOTEMBWaUzbRNpCyvTKglpAmXifRUIdQH1qlFJ5ixo1NkmWxrVI9hiPAdQQWZ5cJLatasyYBKHYwMgnnQSeiyZCdK42GmcCC-Gps04tDKd7A3K3pDsTdFj3-a_jLs2G-99fEjamX9IHbLbB_XkxkSDM3T1XGZFaRMPude20pBYrZ2DQD3OcJI7M92aaLaNeVlkPbY30_fL6__O6PP7g22zFUnrjE6a6B22NJ08wBfEMlP7NS7YvzGD8XE priority: 102 providerName: ProQuest |
Title | Identification of source term for the ill-posed Rayleigh–Stokes problem by Tikhonov regularization method |
URI | https://link.springer.com/article/10.1186/s13662-019-2261-7 https://www.proquest.com/docview/2269862562 https://doaj.org/article/19952379b0de4d8ba8e0b88ccef0555e |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwELUoXNoDorRVFyjygVOrqI6TdZwjrNiiSiBEWYmbFTvjFu1qgzZLpd74h_5hv4QZx1lK1VbiYsmJHVl5HntmPH7D2MFwiKCrukpQGookBw-JrpykbO61pg05CzkjT8_UyST_fDW8ive42z7avT-SDCt1EGutPrZpphSFEZSJJKdJ8YxtEJsYxXHl4tPKyipxSsbjy792e7QBBZ7-R8rlH-ehYZsZb7HNqB_yww7Ql2wN5tvsxW-sgVg7XVGttq_YtLtq66PvjTeedw55TosuR52UY2t-PZslN00LNb9AG538ob_ufn5ZNlNoeUwqw-0Pfnk9_dbMm-98EXLUL-ItTd4lmn7NJuPjy9FJEjMoJA5lcZmkqqy9t95pKKoMlcPUF5BVOtNWSFtYmVbCpwJKUdeVJ1ULiKBGicxZ0AjUG7Y-b-bwlvEcQHmZ5d5J4mhXpUfLDb8NgEqkkzBgov-txkV6ccpyMTPBzNDKdEgYRMIQEqYYsPerLjcdt8b_Gh8RVquGRIsdHjSLryZKmaH75jIrSitqyGttKw3Cau0ceCI2w0Hu9UibKKstfb9Euw4VwQH70KP_8PqfI9p5Uutd9lzSJKRoE73H1peLW3iH-szS7of5i6UeY7lxdHx2foG1kRrtBw8BlhN5eA_7cPRQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqdgEsKp5iaAEvYAOymtiZxFkgxGuY0scCplJ3JnauSzWjyTCZgmbHP_AffBRfwr1OMqVIdNdtHpZ1n8ePew9jT_p9VHpaFgK9IRMJeBC6cJLY3EtNCVkFzsiDw3R4lHw47h-vsV9dLQxdq-xiYgjUZeVoj3wHYUKO6BvT9cvZV0GsUXS62lFoNGaxB8vvuGSrX-y-Rf0-lXLwbvRmKFpWAeHQPhciTvPSe-udhqxQCJhin4EqtNI2kjazMi4iH0eQR2VZeIIfQE1b0kg5CzqnRgcY8jcSpXLyKD14v1rg5UnguYxTdFxCHu0paqzTnTrGIegSRC4kbflkF_JgoAu4gHH_OZYN2W5wk222MJW_auzqFluD6W1246_mhXfYuKnx9e2mH688b04COEV7jmCYI7jkp5OJmFU1lPxjsQwbsb9__Py0qMZQ85bNhtslH52Ov1TT6hufwwndjG3LQ3nDcH2XHV2JkO-x9Wk1hfuMJwCplyrxTlJz-DT3uGTEsQEQvToJPRZ1gjSu7WtO9BoTE9Y3OjWN7A3K3pDsTdZjz1a_zJqmHpd9_Jq0s_qQ-nGHB9X8xLTubajQXaost1EJSaltoSGyWjsHnjqq4SS3O92aNkjU5tyke-x5p-_z1_-d0YPLB3vMrg1HB_tmf_dwb4tdl2RzdMdFb7P1xfwMHiKKWthHwXQ5-3zVvvIH5Xcs-A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqrYTggMqfWCjgQ7mAok2cbOIcEKK0q5bCqiqt1JuJ7XGpdrXZbhbQ3niHvk0fhydhJnG2LRK99Zofy5o_f2OP52Nso99Hpae2CNAbsiABB4EsjCA2dytpQY5rzsgvw3TnKPl03D9eYRftXRgqq2xjYh2obWloj7yHMCFH9I3Ldc_5soj9rcH76VlADFJ00trSaTQmsgeLX5i-Ve92t1DXr4UYbB9-3Ak8w0Bg0FbnQZTm1jntjISsiBE8RS6DuJCx1KHQmRZREboohDy0tnAERYAauKRhbDTInJoeYPhfzTArCjtsdXN7uH-wTPfypGa9jFJ0Y8Ih_kw1kmmvinAQKonIA0EbQNm1VbEmD7iGeP85pK3XvsEau-9BK__QWNkDtgKTh-zelVaGj9ioufHr_BYgLx1vzgU4xX6O0Jgj1OSn43EwLSuw_KBY1Nuyf36ff52XI6i457bhesEPT0ffy0n5k8_ghOpk_WVR3vBdP2ZHtyLmJ6wzKSfwlPEEIHUiTpwR1Co-zR0mkDg2AGJZI6DLwlaQyvgu50S2MVZ1tiNT1cheoewVyV5lXfZm-cu0afFx08ebpJ3lh9Sdu35Qzk6Ud3ZF195FnOU6tJBYqQsJoZbSGHDUXw0nud7qVvmQUalLA--yt62-L1__d0bPbh7sFbuDfqI-7w73nrO7gkyOCl7kOuvMZz_gBUKquX7pbZezb7ftLn8B8-8yig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+source+term+for+the+ill-posed+Rayleigh%E2%80%93Stokes+problem+by+Tikhonov+regularization+method&rft.jtitle=Advances+in+difference+equations&rft.au=Binh%2C+Tran+Thanh&rft.au=Nashine%2C+Hemant+Kumar&rft.au=Long%2C+Le+Dinh&rft.au=Luc%2C+Nguyen+Hoang&rft.date=2019-08-08&rft.pub=Springer+International+Publishing&rft.eissn=1687-1847&rft.volume=2019&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-019-2261-7&rft.externalDocID=10_1186_s13662_019_2261_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon |