Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime
Two-dimensional silicon phononic crystals have attracted extensive research interest for thermoelectric applications due to their reproducible low thermal conductivity and sufficiently good electrical properties. For thermoelectric devices in high-temperature environment, the coherent phonon interfe...
Saved in:
Published in | npj computational materials Vol. 4; no. 1; pp. 1 - 7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.04.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional silicon phononic crystals have attracted extensive research interest for thermoelectric applications due to their reproducible low thermal conductivity and sufficiently good electrical properties. For thermoelectric devices in high-temperature environment, the coherent phonon interference is strongly suppressed; therefore phonon transport in the incoherent regime is critically important for manipulating their thermal conductivity. On the basis of perturbation theory, we present herein a novel phonon scattering process from the perspective of bond order imperfections in the surface skin of nanostructures. We incorporate this strongly frequency-dependent scattering rate into the phonon Boltzmann transport equation and reproduce the ultra low thermal conductivity of holey silicon nanostructures. We reveal that the remarkable reduction of thermal conductivity originates not only from the impediment of low-frequency phonons by normal boundary scattering, but also from the severe suppression of high-frequency phonons by surface bond order imperfections scattering. Our theory not only reveals the role of the holey surface on the phonon transport, but also provide a computation tool for thermal conductivity modification in nanostructures through surface engineering.
Phononic crystals: Surface scattering
A phonon scattering process on the surface of phononic crystals can explain their ultra-low thermal conductivity. Two-dimensional silicon phononic crystals are promising for thermoelectric applications, as the periodic arrangement of holes allows for significant reduction of their thermal conductivity. A team from Hunan University of Science and Technology and Xiangtan Universities in China, and the Institute of High Performance Computing in Singapore, manage to model the values reported experimentally by incorporating a phonon scattering mechanism, rooted to the bond imperfection on the surface of the nanostructure. As the bonds towards the surface grow shorter and therefore stronger, they perturb the local potential, and suppress the high-frequency phonons. Low-frequency phonons, on the other hand are suppressed by normal boundary scattering. The authors conclude that these two actions lead to the ultra-low thermal conductivity values, and predict that further reduction can be achieved by roughening the hole walls in the phononic crystal. |
---|---|
AbstractList | Two-dimensional silicon phononic crystals have attracted extensive research interest for thermoelectric applications due to their reproducible low thermal conductivity and sufficiently good electrical properties. For thermoelectric devices in high-temperature environment, the coherent phonon interference is strongly suppressed; therefore phonon transport in the incoherent regime is critically important for manipulating their thermal conductivity. On the basis of perturbation theory, we present herein a novel phonon scattering process from the perspective of bond order imperfections in the surface skin of nanostructures. We incorporate this strongly frequency-dependent scattering rate into the phonon Boltzmann transport equation and reproduce the ultra low thermal conductivity of holey silicon nanostructures. We reveal that the remarkable reduction of thermal conductivity originates not only from the impediment of low-frequency phonons by normal boundary scattering, but also from the severe suppression of high-frequency phonons by surface bond order imperfections scattering. Our theory not only reveals the role of the holey surface on the phonon transport, but also provide a computation tool for thermal conductivity modification in nanostructures through surface engineering.
Phononic crystals: Surface scattering
A phonon scattering process on the surface of phononic crystals can explain their ultra-low thermal conductivity. Two-dimensional silicon phononic crystals are promising for thermoelectric applications, as the periodic arrangement of holes allows for significant reduction of their thermal conductivity. A team from Hunan University of Science and Technology and Xiangtan Universities in China, and the Institute of High Performance Computing in Singapore, manage to model the values reported experimentally by incorporating a phonon scattering mechanism, rooted to the bond imperfection on the surface of the nanostructure. As the bonds towards the surface grow shorter and therefore stronger, they perturb the local potential, and suppress the high-frequency phonons. Low-frequency phonons, on the other hand are suppressed by normal boundary scattering. The authors conclude that these two actions lead to the ultra-low thermal conductivity values, and predict that further reduction can be achieved by roughening the hole walls in the phononic crystal. Two-dimensional silicon phononic crystals have attracted extensive research interest for thermoelectric applications due to their reproducible low thermal conductivity and sufficiently good electrical properties. For thermoelectric devices in high-temperature environment, the coherent phonon interference is strongly suppressed; therefore phonon transport in the incoherent regime is critically important for manipulating their thermal conductivity. On the basis of perturbation theory, we present herein a novel phonon scattering process from the perspective of bond order imperfections in the surface skin of nanostructures. We incorporate this strongly frequency-dependent scattering rate into the phonon Boltzmann transport equation and reproduce the ultra low thermal conductivity of holey silicon nanostructures. We reveal that the remarkable reduction of thermal conductivity originates not only from the impediment of low-frequency phonons by normal boundary scattering, but also from the severe suppression of high-frequency phonons by surface bond order imperfections scattering. Our theory not only reveals the role of the holey surface on the phonon transport, but also provide a computation tool for thermal conductivity modification in nanostructures through surface engineering. |
ArticleNumber | 21 |
Author | Guo, Zhixin Zhang, Gang Ju, Zhifang Cai, Yongqing Zhou, Kuikui Wei, Xiaolin Xie, Guofeng |
Author_xml | – sequence: 1 givenname: Guofeng surname: Xie fullname: Xie, Guofeng email: gfxie@xtu.edu.cn organization: School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University – sequence: 2 givenname: Zhifang surname: Ju fullname: Ju, Zhifang organization: Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University – sequence: 3 givenname: Kuikui surname: Zhou fullname: Zhou, Kuikui organization: Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University – sequence: 4 givenname: Xiaolin surname: Wei fullname: Wei, Xiaolin organization: Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University – sequence: 5 givenname: Zhixin surname: Guo fullname: Guo, Zhixin organization: Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University – sequence: 6 givenname: Yongqing surname: Cai fullname: Cai, Yongqing organization: Institute of High Performance Computing – sequence: 7 givenname: Gang surname: Zhang fullname: Zhang, Gang email: zhangg@ihpc.a-star.edu.sg organization: Institute of High Performance Computing |
BookMark | eNp9kE1LAzEQhoNUsGp_gLcFz9FJdrO7OUrxCwpe7E0IaTZpU7ZJTVJL_70pKyiCniYw7zOZec7RyHmnEboicEOgbG9jRRitMJAWAzQ15idoTIE1uOQ1jH68z9AkxjUAEE5bWsEYvc37FCTu_b5IKx02si-Ud91OJfth06Hwpkh7jzu70S5a73J_u_L5f6sKFQ4xyT4W1h3hXJTPM7RLRdDLTFyiU5P7evJVL9D84f51-oRnL4_P07sZVhVlCZOyU6pldSmrrq1pDVABKEKkoQyoajhhhpGFIVQaQ3nNmK5V27HFAjSRrSwv0PUwdxv8-07HJNZ-F_KuUVCgrOE15zSnmiGlgo8xaCOUTTLlo7IB2wsC4mhTDDZFtimONgXPJPlFboPdyHD4l6EDE3PWLXX43ulv6BOCO4mp |
CitedBy_id | crossref_primary_10_1088_1361_648X_ab4cab crossref_primary_10_1016_j_mtphys_2022_100605 crossref_primary_10_1016_j_cej_2022_139269 crossref_primary_10_1016_j_jmat_2020_04_005 crossref_primary_10_1007_s11664_021_08774_2 crossref_primary_10_3390_nano9040597 crossref_primary_10_1080_09276440_2020_1726135 crossref_primary_10_1088_1361_6463_ac17b3 crossref_primary_10_1039_D2CP02067J crossref_primary_10_1063_5_0004484 crossref_primary_10_1039_D3NA00494E crossref_primary_10_1016_j_physleta_2021_127410 crossref_primary_10_1039_C9CP01867K crossref_primary_10_1007_s12274_022_4123_y crossref_primary_10_1088_1361_6528_ad22b4 crossref_primary_10_1002_adfm_201903829 crossref_primary_10_1016_j_carbon_2019_03_073 crossref_primary_10_1063_5_0108739 crossref_primary_10_1039_D0CP00047G crossref_primary_10_1021_acsami_0c08843 crossref_primary_10_1007_s11630_021_1412_9 crossref_primary_10_1039_D0NH00188K crossref_primary_10_1063_5_0031118 crossref_primary_10_1016_j_commatsci_2020_109712 crossref_primary_10_1016_j_ijmecsci_2021_106576 crossref_primary_10_1039_D0CP02792H crossref_primary_10_1038_s41524_019_0167_2 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123227 crossref_primary_10_1039_D1NR08505K crossref_primary_10_1016_j_carbon_2021_01_126 crossref_primary_10_1016_j_applthermaleng_2019_04_063 crossref_primary_10_1016_j_mtphys_2022_100613 crossref_primary_10_1088_1361_648X_ab5e57 crossref_primary_10_3390_ma16165606 crossref_primary_10_1021_acs_jpclett_8b01653 crossref_primary_10_3389_fmats_2020_578791 crossref_primary_10_1039_D1CP05708A crossref_primary_10_1088_1361_648X_ab41c0 crossref_primary_10_1016_j_physb_2018_11_016 crossref_primary_10_1088_1674_1056_ac012c crossref_primary_10_1038_s41598_024_84074_z crossref_primary_10_1063_1_5134080 crossref_primary_10_7498_aps_68_20190194 crossref_primary_10_1063_1_5115060 crossref_primary_10_3390_en15134718 crossref_primary_10_1088_2053_1591_ab5e62 crossref_primary_10_1039_C9CP01837A crossref_primary_10_1039_C9NR04726C crossref_primary_10_1038_s41524_019_0183_2 crossref_primary_10_1103_PhysRevB_101_081402 crossref_primary_10_1016_j_jmmm_2019_165354 crossref_primary_10_1021_acsami_9b22498 crossref_primary_10_1039_C9RA07563A crossref_primary_10_1016_j_ijheatmasstransfer_2024_125385 crossref_primary_10_1016_j_mtphys_2022_100884 crossref_primary_10_1088_1674_1056_ab99af crossref_primary_10_1016_j_scriptamat_2019_09_009 crossref_primary_10_1016_j_pnsc_2019_05_003 crossref_primary_10_1039_D0MA00603C crossref_primary_10_1021_acsomega_9b00534 crossref_primary_10_1021_acsomega_9b03929 crossref_primary_10_1039_C9RA08520C crossref_primary_10_7498_aps_68_20190923 crossref_primary_10_1016_j_mtphys_2019_01_002 crossref_primary_10_1016_j_physrep_2020_03_001 crossref_primary_10_1063_5_0123629 crossref_primary_10_1002_andp_201800437 crossref_primary_10_1039_D0NR06824A crossref_primary_10_1063_1_5121517 crossref_primary_10_1063_1_5053233 crossref_primary_10_1016_j_vacuum_2019_06_011 crossref_primary_10_1039_D1TC04154A crossref_primary_10_1063_5_0059024 crossref_primary_10_1002_adfm_201903873 crossref_primary_10_7498_aps_71_20220036 crossref_primary_10_1021_acs_jpcc_9b09787 crossref_primary_10_1088_1361_648X_ab6d8f crossref_primary_10_1063_5_0074283 crossref_primary_10_1088_1361_648X_aae618 crossref_primary_10_1088_1361_6528_ab824c crossref_primary_10_1039_C9RA07828B crossref_primary_10_1039_D3NR00316G crossref_primary_10_3390_ma13071755 crossref_primary_10_1016_j_physa_2020_124489 crossref_primary_10_1080_23746149_2018_1480417 crossref_primary_10_1016_j_physb_2019_02_064 crossref_primary_10_1002_adfm_201903841 crossref_primary_10_1088_1361_651X_aae401 crossref_primary_10_1016_j_solidstatesciences_2024_107707 crossref_primary_10_1063_1_5118003 crossref_primary_10_1103_PhysRevB_98_245420 crossref_primary_10_1016_j_ssc_2019_113646 crossref_primary_10_1007_s11467_020_1041_x crossref_primary_10_1016_j_mseb_2024_117454 crossref_primary_10_1063_5_0189694 crossref_primary_10_1088_1361_648X_ab81c3 crossref_primary_10_1140_epjb_s10051_021_00178_9 crossref_primary_10_1209_0295_5075_ac7d09 crossref_primary_10_1016_j_physleta_2019_02_007 crossref_primary_10_7498_aps_72_20222244 crossref_primary_10_1021_acsami_2c14871 crossref_primary_10_1002_adfm_202004003 crossref_primary_10_3389_fmats_2020_569090 |
Cites_doi | 10.1103/PhysRevB.93.045411 10.1103/PhysRev.132.2461 10.1021/acs.nanolett.6b02305 10.1063/1.4926653 10.1103/PhysRevB.89.205432 10.1038/nature06381 10.1103/PhysRevLett.57.2760 10.1103/PhysRevLett.102.125503 10.1098/rspa.1926.0133 10.1021/acs.nanolett.6b00956 10.1021/cr500651m 10.1103/PhysRevB.87.195301 10.1126/sciadv.1700027 10.1063/1.4916962 10.1103/PhysRevB.84.115450 10.1021/nl3047392 10.1021/nl102918q 10.1063/1.3663386 10.1088/0960-1317/17/8/023 10.1038/nnano.2010.149 10.1038/ncomms4435 10.1038/ncomms14054 10.1103/PhysRevB.67.195311 10.1063/1.4891362 10.1021/acsnano.5b05385 10.1103/PhysRevB.66.195304 10.1103/PhysRev.113.1046 10.1021/nl102931z 10.1021/nl1045395 10.1016/j.ijheatmasstransfer.2015.07.111 10.1002/cber.19270600550 10.1103/PhysRevB.32.8171 10.1021/ja01195a024 10.1103/PhysRevLett.87.266101 10.1126/science.1225549 10.1103/PhysRev.133.A253 10.1063/1.4816590 10.1103/PhysRevLett.54.1840 10.1021/jp037891s 10.1103/PhysRevB.84.075403 10.1016/j.progsolidstchem.2006.03.001 10.1063/1.1728579 10.1063/1.3699056 10.1021/nl3005868 10.1109/TED.2009.2028382 10.1088/0370-1298/68/12/303 10.1016/j.carbon.2017.01.089 10.1038/ncomms8228 10.1021/acs.nanolett.5b00495 10.1021/jp0272015 10.1063/1.4966190 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1038/s41524-018-0076-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2057-3960 |
EndPage | 7 |
ExternalDocumentID | 10_1038_s41524_018_0076_9 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU D1I EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK KB. KQ8 LK8 M7P M~E NAO NO~ OK1 PDBOC PIMPY PQQKQ PROAC RNT SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c425t-13dcc8563a4d862600400c11af2502c7915f51bf12aff29655e6c8d5bb0e1a8a3 |
IEDL.DBID | 7X7 |
ISSN | 2057-3960 |
IngestDate | Wed Aug 13 02:51:29 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Tue Jul 01 01:41:24 EDT 2025 Fri Feb 21 02:40:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c425t-13dcc8563a4d862600400c11af2502c7915f51bf12aff29655e6c8d5bb0e1a8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2025796992?pq-origsite=%requestingapplication% |
PQID | 2025796992 |
PQPubID | 2041924 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2025796992 crossref_citationtrail_10_1038_s41524_018_0076_9 crossref_primary_10_1038_s41524_018_0076_9 springer_journals_10_1038_s41524_018_0076_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-16 |
PublicationDateYYYYMMDD | 2018-04-16 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | npj computational materials |
PublicationTitleAbbrev | npj Comput Mater |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Luckyanova (CR20) 2012; 338 Hashin, Shtrikman (CR42) 1962; 33 Sun (CR28) 2007; 35 Tang (CR2) 2010; 10 CR37 Wang, Alaniz, Jang, Garay, Dames (CR34) 2011; 11 Nakagawa, Kage, Hori, Shiomi, Nomura (CR7) 2015; 107 Ghossoub (CR48) 2013; 13 Klemens (CR31) 1955; 68 Anufriev, Maire, Nomura (CR18) 2016; 93 Goldschmidt (CR22) 1927; 60 Callaway (CR41) 1959; 113 Ravichandran, Minnich (CR3) 2014; 89 Yu, Mitrovic, Tham, Varghese, Heath (CR1) 2010; 5 Yang, Chen, Yang, Li (CR10) 2015; 91 Pauling (CR21) 1947; 69 Hopkins (CR5) 2010; 11 Hochbaum (CR44) 2008; 451 Nomura, Nakagawa, Sawano, Maire, Volz (CR8) 2016; 109 Dirac (CR30) 1926; 112 Hu, Chen, Yang, Li (CR11) 2017; 116 Chen, Zhang, Li (CR36) 2011; 135 Yang, Chen (CR19) 2003; 67 Sun (CR27) 2014; 108 Romano, Grossman (CR6) 2014; 105 Sadhu, Sinha (CR50) 2011; 84 Alaie (CR14) 2015; 6 Carrete, Gallego, Varela, Mingo (CR51) 2011; 84 Liu (CR24) 2015; 115 Holland (CR33) 1963; 132 Pan, Sun, Li (CR32) 2004; 108 Tešanović, Jarić, Maekawa (CR26) 1986; 57 Dechaumphai, Chen (CR4) 2012; 111 Buran, Pala, Bescond, Dubois, Mouis (CR53) 2009; 56 Lee (CR43) 2017; 8 Song, Peter, Meunier (CR40) 2007; 17 Blanc, Rajabpour, Volz, Fournier, Bourgeois (CR49) 2013; 103 Lim, Hippalgaonkar, Andrews, Majumdar, Yang (CR45) 2012; 12 Lee (CR47) 2016; 16 Maurer, Aksamija, Ramayya, Davoody, Knezevic (CR35) 2015; 106 Maire (CR15) 2017; 3 Zen, Puurtinen, Isotalo, Chaudhuri, Maasilta (CR17) 2014; 5 Bahn, Jacobsen (CR23) 2001; 87 Wagner (CR16) 2016; 16 Sun, Pan, Fu, Tay, Li (CR29) 2003; 107 Lim (CR12) 2015; 10 Jain, Yu, McGaughey (CR13) 2013; 87 Morelli, Heremans, Slack (CR39) 2002; 66 Lee, Lim, Yang (CR9) 2015; 15 Goodnick (CR52) 1985; 32 Slack, Galginaitis (CR38) 1964; 133 Martin, Aksamija, Pop, Ravaioli (CR46) 2009; 102 Hensel, Tung, Poate, Unterwald (CR25) 1985; 54 76_CR37 NK Ravichandran (76_CR3) 2014; 89 JC Hensel (76_CR25) 1985; 54 P Martin (76_CR46) 2009; 102 C Blanc (76_CR49) 2013; 103 J Chen (76_CR36) 2011; 135 C Buran (76_CR53) 2009; 56 S Alaie (76_CR14) 2015; 6 JY Tang (76_CR2) 2010; 10 MR Wagner (76_CR16) 2016; 16 G Romano (76_CR6) 2014; 105 N Zen (76_CR17) 2014; 5 P Klemens (76_CR31) 1955; 68 IH Song (76_CR40) 2007; 17 J Nakagawa (76_CR7) 2015; 107 S Hu (76_CR11) 2017; 116 PAM Dirac (76_CR30) 1926; 112 Z Wang (76_CR34) 2011; 11 Z Tešanović (76_CR26) 1986; 57 M Holland (76_CR33) 1963; 132 J Callaway (76_CR41) 1959; 113 M Nomura (76_CR8) 2016; 109 D Morelli (76_CR39) 2002; 66 JK Yu (76_CR1) 2010; 5 E Dechaumphai (76_CR4) 2012; 111 CQ Sun (76_CR28) 2007; 35 J Lee (76_CR43) 2017; 8 B Yang (76_CR19) 2003; 67 R Anufriev (76_CR18) 2016; 93 A Jain (76_CR13) 2013; 87 M Ghossoub (76_CR48) 2013; 13 CQ Sun (76_CR29) 2003; 107 J Maire (76_CR15) 2017; 3 X Liu (76_CR24) 2015; 115 Z Hashin (76_CR42) 1962; 33 LK Pan (76_CR32) 2004; 108 PE Hopkins (76_CR5) 2010; 11 J Sadhu (76_CR50) 2011; 84 L Pauling (76_CR21) 1947; 69 J Lee (76_CR47) 2016; 16 SR Bahn (76_CR23) 2001; 87 J Lim (76_CR45) 2012; 12 CQ Sun (76_CR27) 2014; 108 V Goldschmidt (76_CR22) 1927; 60 MN Luckyanova (76_CR20) 2012; 338 LN Yang (76_CR10) 2015; 91 AI Hochbaum (76_CR44) 2008; 451 S Goodnick (76_CR52) 1985; 32 J Lim (76_CR12) 2015; 10 GA Slack (76_CR38) 1964; 133 L Maurer (76_CR35) 2015; 106 J Carrete (76_CR51) 2011; 84 J Lee (76_CR9) 2015; 15 |
References_xml | – volume: 93 start-page: 045411 year: 2016 ident: CR18 article-title: Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.045411 – volume: 132 start-page: 2461 year: 1963 ident: CR33 article-title: Analysis of lattice thermal conductivity publication-title: Phys. Rev. doi: 10.1103/PhysRev.132.2461 – volume: 16 start-page: 5661 year: 2016 end-page: 5668 ident: CR16 article-title: Two-dimensional phononic crystals: disorder matters publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02305 – volume: 107 start-page: 023104 year: 2015 ident: CR7 article-title: Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures publication-title: Appl. Phys. Lett. doi: 10.1063/1.4926653 – volume: 89 start-page: 205432 year: 2014 ident: CR3 article-title: Coherent and incoherent thermal transport in nanomeshes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.205432 – volume: 451 start-page: 163 year: 2008 ident: CR44 article-title: Enhanced thermoelectric performance of rough silicon nanowires publication-title: Nature doi: 10.1038/nature06381 – volume: 57 start-page: 2760 year: 1986 ident: CR26 article-title: Quantum transport and surface scattering publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.2760 – volume: 102 start-page: 125503 year: 2009 ident: CR46 article-title: Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.125503 – volume: 112 start-page: 661 year: 1926 end-page: 677 ident: CR30 article-title: On the theory of quantum mechanics publication-title: Proc. R. Soc. A doi: 10.1098/rspa.1926.0133 – volume: 16 start-page: 4133 year: 2016 end-page: 4140 ident: CR47 article-title: Thermal transport in silicon nanowires at high temperature up to 700 K publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00956 – volume: 115 start-page: 6746 year: 2015 end-page: 6810 ident: CR24 article-title: Coordination-resolved electron spectrometrics publication-title: Chem. Rev. doi: 10.1021/cr500651m – volume: 87 start-page: 195301 year: 2013 ident: CR13 article-title: Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.195301 – volume: 3 start-page: e1700027 year: 2017 ident: CR15 article-title: Heat conduction tuning by wave nature of phonons publication-title: Sci. Adv. doi: 10.1126/sciadv.1700027 – volume: 106 start-page: 133108 year: 2015 ident: CR35 article-title: Universal features of phonon transport in nanowires with correlated surface roughness publication-title: Appl. Phys. Lett. doi: 10.1063/1.4916962 – volume: 84 start-page: 115450 year: 2011 ident: CR50 article-title: Room-temperature phonon boundary scattering below the Casimir limit publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.115450 – volume: 13 start-page: 1564 year: 2013 end-page: 1571 ident: CR48 article-title: Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires publication-title: Nano Lett. doi: 10.1021/nl3047392 – volume: 11 start-page: 107 year: 2010 end-page: 112 ident: CR5 article-title: Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning publication-title: Nano Lett. doi: 10.1021/nl102918q – volume: 135 start-page: 204705 year: 2011 ident: CR36 article-title: A universal gauge for thermal conductivity of silicon nanowires with different cross sectional geometries publication-title: J. Chem. Phys. doi: 10.1063/1.3663386 – volume: 17 start-page: 1593 year: 2007 ident: CR40 article-title: Smoothing dry-etched microstructure sidewalls using focused ion beam milling for optical applications publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/17/8/023 – volume: 5 start-page: 718 year: 2010 ident: CR1 article-title: Reduction of thermal conductivity in phononic nanomesh structures publication-title: Nat. Nanotech. doi: 10.1038/nnano.2010.149 – volume: 5 year: 2014 ident: CR17 article-title: Engineering thermal conductance using a two-dimensional phononic crystal publication-title: Nat. Commun. doi: 10.1038/ncomms4435 – volume: 108 start-page: 807 year: 2014 ident: CR27 article-title: Relaxation of the chemical bond publication-title: Springer Ser. Chem. Phys. – volume: 8 year: 2017 ident: CR43 article-title: Investigation of phonon coherence and backscattering using silicon nanomeshes publication-title: Nat. Commun. doi: 10.1038/ncomms14054 – volume: 67 start-page: 195311 year: 2003 ident: CR19 article-title: Partially coherent phonon heat conduction in superlattices publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.195311 – volume: 105 start-page: 033116 year: 2014 ident: CR6 article-title: Toward phonon-boundary engineering in nanoporous materials publication-title: Appl. Phys. Lett. doi: 10.1063/1.4891362 – volume: 10 start-page: 124 year: 2015 end-page: 132 ident: CR12 article-title: Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon publication-title: ACS Nano doi: 10.1021/acsnano.5b05385 – volume: 66 start-page: 195304 year: 2002 ident: CR39 article-title: Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.195304 – volume: 113 start-page: 1046 year: 1959 ident: CR41 article-title: Model for lattice thermal conductivity at low temperatures publication-title: Phys. Rev. doi: 10.1103/PhysRev.113.1046 – volume: 10 start-page: 4279 year: 2010 end-page: 4283 ident: CR2 article-title: Holey silicon as an efficient thermoelectric material publication-title: Nano Lett. doi: 10.1021/nl102931z – volume: 11 start-page: 2206 year: 2011 end-page: 2213 ident: CR34 article-title: Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths publication-title: Nano Lett. doi: 10.1021/nl1045395 – volume: 91 start-page: 428 year: 2015 end-page: 432 ident: CR10 article-title: Significant reduction of graphene thermal conductivity by phononic crystal structure publication-title: J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.07.111 – ident: CR37 – volume: 60 start-page: 1263 year: 1927 end-page: 1296 ident: CR22 article-title: Crystal structure and chemical correlation publication-title: Ber. Deut. Chem. Ges. doi: 10.1002/cber.19270600550 – volume: 32 start-page: 8171 year: 1985 ident: CR52 article-title: Surface roughness at the Si (100)-SiO interface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.32.8171 – volume: 69 start-page: 542 year: 1947 end-page: 553 ident: CR21 article-title: Atomic radii and interatomic distances in metals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01195a024 – volume: 87 start-page: 266101 year: 2001 ident: CR23 article-title: Chain formation of metal atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.266101 – volume: 338 start-page: 936 year: 2012 end-page: 939 ident: CR20 article-title: Coherent phonon heat conduction in superlattices publication-title: Science doi: 10.1126/science.1225549 – volume: 133 start-page: A253 year: 1964 ident: CR38 article-title: Thermal conductivity and phonon scattering by magnetic impurities in CdTe publication-title: Phys. Rev. doi: 10.1103/PhysRev.133.A253 – volume: 103 start-page: 043109 year: 2013 ident: CR49 article-title: Phonon heat conduction in corrugated silicon nanowires below the Casimir limit publication-title: Appl. Phys. Lett. doi: 10.1063/1.4816590 – volume: 54 start-page: 1840 year: 1985 ident: CR25 article-title: Specular boundary scattering and electrical transport in single-crystal thin films of CoSi publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.54.1840 – volume: 108 start-page: 3404 year: 2004 end-page: 3406 ident: CR32 article-title: Elucidating Si-Si dimmer vibration from the size-dependent Raman shift of nanosolid Si publication-title: J. Phys. Chem. B doi: 10.1021/jp037891s – volume: 84 start-page: 075403 year: 2011 ident: CR51 article-title: Surface roughness and thermal conductivity of semiconductor nanowires: going below the Casimir limit publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075403 – volume: 35 start-page: 1 year: 2007 end-page: 159 ident: CR28 article-title: Size dependence of nanostructures: Impact of bond order deficiency publication-title: Prog. Solid State Chem. doi: 10.1016/j.progsolidstchem.2006.03.001 – volume: 33 start-page: 3125 year: 1962 end-page: 3131 ident: CR42 article-title: A variational approach to the theory of the effective magnetic permeability of multiphase materials publication-title: J. Appl. Phys. doi: 10.1063/1.1728579 – volume: 111 start-page: 073508 year: 2012 ident: CR4 article-title: Thermal transport in phononic crystals: the role of zone folding effect publication-title: J. Appl. Phys. doi: 10.1063/1.3699056 – volume: 12 start-page: 2475 year: 2012 end-page: 2482 ident: CR45 article-title: Quantifying surface roughness effects on phonon transport in silicon nanowires publication-title: Nano Lett. doi: 10.1021/nl3005868 – volume: 56 start-page: 2186 year: 2009 end-page: 2192 ident: CR53 article-title: Three-dimensional real-space simulation of surface roughness in silicon nanowire FETs publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2009.2028382 – volume: 68 start-page: 1113 year: 1955 ident: CR31 article-title: The scattering of low-frequency lattice waves by static imperfections publication-title: Proc. Phys. Soc. A doi: 10.1088/0370-1298/68/12/303 – volume: 116 start-page: 139 year: 2017 end-page: 144 ident: CR11 article-title: Thermal transport in graphene with defect and doping: phonon modes analysis publication-title: Carbon doi: 10.1016/j.carbon.2017.01.089 – volume: 6 year: 2015 ident: CR14 article-title: Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature publication-title: Nat. Commun. doi: 10.1038/ncomms8228 – volume: 15 start-page: 3273 year: 2015 end-page: 3279 ident: CR9 article-title: Ballistic phonon transport in holey silicon publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00495 – volume: 107 start-page: 5113 year: 2003 end-page: 5115 ident: CR29 article-title: Size dependence of the 2p-level shift of nanosolid silicon publication-title: J. Phys. Chem. B doi: 10.1021/jp0272015 – volume: 109 start-page: 173104 year: 2016 ident: CR8 article-title: Thermal conduction in Si and SiGe phononic crystals explained by phonon mean free path spectrum publication-title: Appl. Phys. Lett. doi: 10.1063/1.4966190 – volume: 11 start-page: 107 year: 2010 ident: 76_CR5 publication-title: Nano Lett. doi: 10.1021/nl102918q – volume: 8 year: 2017 ident: 76_CR43 publication-title: Nat. Commun. doi: 10.1038/ncomms14054 – volume: 112 start-page: 661 year: 1926 ident: 76_CR30 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.1926.0133 – volume: 113 start-page: 1046 year: 1959 ident: 76_CR41 publication-title: Phys. Rev. doi: 10.1103/PhysRev.113.1046 – volume: 91 start-page: 428 year: 2015 ident: 76_CR10 publication-title: J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.07.111 – volume: 6 year: 2015 ident: 76_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms8228 – volume: 451 start-page: 163 year: 2008 ident: 76_CR44 publication-title: Nature doi: 10.1038/nature06381 – volume: 107 start-page: 023104 year: 2015 ident: 76_CR7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4926653 – volume: 11 start-page: 2206 year: 2011 ident: 76_CR34 publication-title: Nano Lett. doi: 10.1021/nl1045395 – volume: 89 start-page: 205432 year: 2014 ident: 76_CR3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.205432 – volume: 10 start-page: 124 year: 2015 ident: 76_CR12 publication-title: ACS Nano doi: 10.1021/acsnano.5b05385 – volume: 69 start-page: 542 year: 1947 ident: 76_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01195a024 – volume: 3 start-page: e1700027 year: 2017 ident: 76_CR15 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700027 – volume: 103 start-page: 043109 year: 2013 ident: 76_CR49 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4816590 – volume: 106 start-page: 133108 year: 2015 ident: 76_CR35 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4916962 – volume: 5 start-page: 718 year: 2010 ident: 76_CR1 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2010.149 – volume: 5 year: 2014 ident: 76_CR17 publication-title: Nat. Commun. doi: 10.1038/ncomms4435 – volume: 87 start-page: 266101 year: 2001 ident: 76_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.266101 – volume: 133 start-page: A253 year: 1964 ident: 76_CR38 publication-title: Phys. Rev. doi: 10.1103/PhysRev.133.A253 – volume: 56 start-page: 2186 year: 2009 ident: 76_CR53 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2009.2028382 – volume: 108 start-page: 807 year: 2014 ident: 76_CR27 publication-title: Springer Ser. Chem. Phys. – volume: 16 start-page: 5661 year: 2016 ident: 76_CR16 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02305 – volume: 57 start-page: 2760 year: 1986 ident: 76_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.2760 – volume: 84 start-page: 075403 year: 2011 ident: 76_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.075403 – volume: 17 start-page: 1593 year: 2007 ident: 76_CR40 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/17/8/023 – volume: 338 start-page: 936 year: 2012 ident: 76_CR20 publication-title: Science doi: 10.1126/science.1225549 – volume: 12 start-page: 2475 year: 2012 ident: 76_CR45 publication-title: Nano Lett. doi: 10.1021/nl3005868 – volume: 105 start-page: 033116 year: 2014 ident: 76_CR6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4891362 – volume: 132 start-page: 2461 year: 1963 ident: 76_CR33 publication-title: Phys. Rev. doi: 10.1103/PhysRev.132.2461 – volume: 32 start-page: 8171 year: 1985 ident: 76_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.32.8171 – volume: 109 start-page: 173104 year: 2016 ident: 76_CR8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4966190 – volume: 135 start-page: 204705 year: 2011 ident: 76_CR36 publication-title: J. Chem. Phys. doi: 10.1063/1.3663386 – volume: 102 start-page: 125503 year: 2009 ident: 76_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.125503 – volume: 66 start-page: 195304 year: 2002 ident: 76_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.195304 – volume: 93 start-page: 045411 year: 2016 ident: 76_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.045411 – volume: 108 start-page: 3404 year: 2004 ident: 76_CR32 publication-title: J. Phys. Chem. B doi: 10.1021/jp037891s – volume: 13 start-page: 1564 year: 2013 ident: 76_CR48 publication-title: Nano Lett. doi: 10.1021/nl3047392 – volume: 68 start-page: 1113 year: 1955 ident: 76_CR31 publication-title: Proc. Phys. Soc. A doi: 10.1088/0370-1298/68/12/303 – ident: 76_CR37 – volume: 107 start-page: 5113 year: 2003 ident: 76_CR29 publication-title: J. Phys. Chem. B doi: 10.1021/jp0272015 – volume: 16 start-page: 4133 year: 2016 ident: 76_CR47 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00956 – volume: 60 start-page: 1263 year: 1927 ident: 76_CR22 publication-title: Ber. Deut. Chem. Ges. doi: 10.1002/cber.19270600550 – volume: 67 start-page: 195311 year: 2003 ident: 76_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.195311 – volume: 33 start-page: 3125 year: 1962 ident: 76_CR42 publication-title: J. Appl. Phys. doi: 10.1063/1.1728579 – volume: 84 start-page: 115450 year: 2011 ident: 76_CR50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.115450 – volume: 87 start-page: 195301 year: 2013 ident: 76_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.195301 – volume: 115 start-page: 6746 year: 2015 ident: 76_CR24 publication-title: Chem. Rev. doi: 10.1021/cr500651m – volume: 54 start-page: 1840 year: 1985 ident: 76_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.54.1840 – volume: 116 start-page: 139 year: 2017 ident: 76_CR11 publication-title: Carbon doi: 10.1016/j.carbon.2017.01.089 – volume: 111 start-page: 073508 year: 2012 ident: 76_CR4 publication-title: J. Appl. Phys. doi: 10.1063/1.3699056 – volume: 35 start-page: 1 year: 2007 ident: 76_CR28 publication-title: Prog. Solid State Chem. doi: 10.1016/j.progsolidstchem.2006.03.001 – volume: 10 start-page: 4279 year: 2010 ident: 76_CR2 publication-title: Nano Lett. doi: 10.1021/nl102931z – volume: 15 start-page: 3273 year: 2015 ident: 76_CR9 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00495 |
SSID | ssj0001928240 |
Score | 2.4072595 |
Snippet | Two-dimensional silicon phononic crystals have attracted extensive research interest for thermoelectric applications due to their reproducible low thermal... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 639/301 639/925 Boltzmann transport equation Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Crystals Defects Electrical properties Electrical resistivity Frequency dependence Heat conductivity Heat transfer High temperature environments Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Nanostructure Perturbation theory Phonons Scattering Silicon Skin Theoretical Thermal conductivity Thermoelectricity |
SummonAdditionalLinks | – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zu-hB_MTplBw8KcE2bdLkOMQxdvCigx2EkqQpCt0mW2X435uXtpsfKHjueyW85CW_l_fyewhdWrcdGh1FcL2UkJhSQ3QWMKJySRW1UcK0L5C958NxPJqwSQuFzVsYX7TvKS39Nt1Uh90s4aCBeglBIHlE5BbqAFO7W9qdfn_0MNpcrEgXRcTrDGYkfup-PYM2wPJbLtQfMYM9tFtjQ9yvRrOPWnZ2gHY-MQYeoqdxUS4UKeYrDMht6sRdQAucrb4JBJ7nuFzNSQac_RXfBobic-C_xWbx7qBgscQvM1DGwMvwDK_9SgztGab2CI0Hd4-3Q1I3SCDGuRq0kc-MEYxHKs58ZAIeacJQ5Q7YUJPIkOUs1HlIVZ5TyRmz3IiMaR3YUAkVHaO2G4E9QZhl3Pk6i3MR6DgQRitpBbBYx5KrQKguChqTpaZmD4cmFkXqs9iRSCsrp87KKVg5lV10tVZ5ragz_hLuNfOQ1l60TKkDZInkUtIuum7mZvP515-d_kv6DG1TvzZiEvIeapeLN3vukEapL-q19QGxzc1v priority: 102 providerName: Springer Nature |
Title | Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime |
URI | https://link.springer.com/article/10.1038/s41524-018-0076-9 https://www.proquest.com/docview/2025796992 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0jhw8KcE2bdrkJHNsjh2GqIMdhJKkKQrdh1tl-N-bl3WbCnppoU1CeC8veV_5PYQujd0OtQoCcC_FJKRUE5V6jMhMUElNEDPlEmT7UXcQ9oZsWDrc5mVa5WpPdBt1OtHgIwcjHa5NCkFvp-8EqkZBdLUsobGNqgBdBqs6HsYbH4uwBkW4DmYG_GYO5xWkXXACMSgifh5HGx3zV1jUnTadfbRXqom4ueTrAdoy40O0-w088Ai9DPJiJkk-WWBQ4ka2ubVtAb7V1YPAkwwXiwlJAb5_Cb2BIQ8doHCxnn1arTCf47cxdMYA0fAKF_8KDJUaRuYYDTrt51aXlLUSiLZSBxXlU605iwIZps5IAeHUvi8zq-NQHQufZcxXmU9lllERMWYizVOmlGd8yWVwgip2BuYUYZZGVuxZmHFPhR7XSgrDAdA6FJH0uKwhb0WyRJdA4lDPIk9cQDvgyZLKiaVyAlRORA1drbtMlyga_zWur_iQlAI1Tzbsr6HrFW82v_8c7Oz_wc7RDnWLISR-VEeVYvZhLqyWUaiGW0r2yTv3DVRtNntPPfu-a_cfHu3XVtRqOPv9C3Hf1Kg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROLQcUKGtmpYWH8qFyuqu197YB4QQNCQN5JRIOVRyba9XRcqDJltF_Cl-I57dLGmRyI3zeq3V-Nt5eGa-Afjigzp0NknweqlJOWOO2iwS1OSKGeaTprBlgWwvbQ_4j6EYbsBd3QuDZZW1TiwVdTZ1eEeOQTq2TSrFTm7-UJwahdnVeoRGBYuuv12EkG1-3DkP53vIWOt7_6xNl1MFqAv4xNnrmXNSpInhWenOI4xdHJs8eAPMNVUschHbPGYmz5lKhfCpk5mwNvKxkSYJ-76ALZ4ES46d6a2L1Z2OCgEMf0ieJvLbHO0jlnlIijkvqv43fyuf9lEatrRurdews3RLyWmFo13Y8JM92P6HrPAN_ByMipmho-mCoNM4DstDLI10seX8CTLNSbGY0gzHBVRUHwTr3pF6l7jZbfBCR3NyPcGXCVJC_MZGw4LgZIixfwuDZ5HiO9gMX-DfAxFZGtSM4LmMLI-ks0Z5iQTaXKUmkqYBUS0y7ZbE5Tg_Y6TLBHoidSVlHaSsUcpaNeDo4ZWbirVj3eL9-hz08gee6xXcGvC1PpvV4yc3-7B-swN42e5fXerLTq_7EV6xEhicxuk-bBazv_5T8HAK-7mEFYFfz43jewR8CuM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fSxwxEB7sCaU-SLVKT63mQV8qwd3sZi95kNJWD39xSPHAByEm2YQKp6d3Ww7_tf51ZvaHp4K--bzZsEy-ncxkJt8HsOmCO7QmSfB4qUNTxiw1ecSp9pJp5pION2WDbC876KdH5_x8Bv43d2GwrbLxiaWjzocWz8gxScdrk1KyHV-3RZzudX_c3lFUkMJKayOnUUHk2N1PQvo23j3cC2u9xVh3_-z3Aa0VBqgNWEUd9txawbNEp3kZ2iOkbRxrHyIDZjsy5p7HxsdMe89kxrnLrMi5MZGLtdBJmPcDzHYwK2rB7K_93umf6QmPDOlM-lhKTcTOGHdLbPoQFCtgVD7fDKcR7ouibLnXdT_DfB2kkp8VqhZgxt0swtwT6sIvcNEfFCNNB8MJwRDyOgwPmTWSx5ZqFGToSTEZ0hzFAyriD4Jd8EjES-zoPsSkgzG5usGXCRJE_MVrhwVBnYhrtwT9d7HjMrTCF7ivQHieBafDUy8ik0bCGi2dQDrtVGY6EroNUWMyZWsac1TTGKiynJ4IVVlZBSsrtLKSbfj--MptxeHx1uC1Zh1U_TuP1RR8bdhu1mb6-NXJVt6ebAM-Bgyrk8Pe8Sp8YiUuUhpna9AqRv_ctxDuFGa9xhWBy_eG8gPrQBB1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-low+thermal+conductivity+of+two-dimensional+phononic+crystals+in+the+incoherent+regime&rft.jtitle=npj+computational+materials&rft.au=Xie%2C+Guofeng&rft.au=Ju%2C+Zhifang&rft.au=Zhou%2C+Kuikui&rft.au=Wei%2C+Xiaolin&rft.date=2018-04-16&rft.pub=Nature+Publishing+Group&rft.eissn=2057-3960&rft.volume=4&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1038%2Fs41524-018-0076-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon |