Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime

Two-dimensional silicon phononic crystals have attracted extensive research interest for thermoelectric applications due to their reproducible low thermal conductivity and sufficiently good electrical properties. For thermoelectric devices in high-temperature environment, the coherent phonon interfe...

Full description

Saved in:
Bibliographic Details
Published innpj computational materials Vol. 4; no. 1; pp. 1 - 7
Main Authors Xie, Guofeng, Ju, Zhifang, Zhou, Kuikui, Wei, Xiaolin, Guo, Zhixin, Cai, Yongqing, Zhang, Gang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.04.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional silicon phononic crystals have attracted extensive research interest for thermoelectric applications due to their reproducible low thermal conductivity and sufficiently good electrical properties. For thermoelectric devices in high-temperature environment, the coherent phonon interference is strongly suppressed; therefore phonon transport in the incoherent regime is critically important for manipulating their thermal conductivity. On the basis of perturbation theory, we present herein a novel phonon scattering process from the perspective of bond order imperfections in the surface skin of nanostructures. We incorporate this strongly frequency-dependent scattering rate into the phonon Boltzmann transport equation and reproduce the ultra low thermal conductivity of holey silicon nanostructures. We reveal that the remarkable reduction of thermal conductivity originates not only from the impediment of low-frequency phonons by normal boundary scattering, but also from the severe suppression of high-frequency phonons by surface bond order imperfections scattering. Our theory not only reveals the role of the holey surface on the phonon transport, but also provide a computation tool for thermal conductivity modification in nanostructures through surface engineering. Phononic crystals: Surface scattering A phonon scattering process on the surface of phononic crystals can explain their ultra-low thermal conductivity. Two-dimensional silicon phononic crystals are promising for thermoelectric applications, as the periodic arrangement of holes allows for significant reduction of their thermal conductivity. A team from Hunan University of Science and Technology and Xiangtan Universities in China, and the Institute of High Performance Computing in Singapore, manage to model the values reported experimentally by incorporating a phonon scattering mechanism, rooted to the bond imperfection on the surface of the nanostructure. As the bonds towards the surface grow shorter and therefore stronger, they perturb the local potential, and suppress the high-frequency phonons. Low-frequency phonons, on the other hand are suppressed by normal boundary scattering. The authors conclude that these two actions lead to the ultra-low thermal conductivity values, and predict that further reduction can be achieved by roughening the hole walls in the phononic crystal.
AbstractList Two-dimensional silicon phononic crystals have attracted extensive research interest for thermoelectric applications due to their reproducible low thermal conductivity and sufficiently good electrical properties. For thermoelectric devices in high-temperature environment, the coherent phonon interference is strongly suppressed; therefore phonon transport in the incoherent regime is critically important for manipulating their thermal conductivity. On the basis of perturbation theory, we present herein a novel phonon scattering process from the perspective of bond order imperfections in the surface skin of nanostructures. We incorporate this strongly frequency-dependent scattering rate into the phonon Boltzmann transport equation and reproduce the ultra low thermal conductivity of holey silicon nanostructures. We reveal that the remarkable reduction of thermal conductivity originates not only from the impediment of low-frequency phonons by normal boundary scattering, but also from the severe suppression of high-frequency phonons by surface bond order imperfections scattering. Our theory not only reveals the role of the holey surface on the phonon transport, but also provide a computation tool for thermal conductivity modification in nanostructures through surface engineering. Phononic crystals: Surface scattering A phonon scattering process on the surface of phononic crystals can explain their ultra-low thermal conductivity. Two-dimensional silicon phononic crystals are promising for thermoelectric applications, as the periodic arrangement of holes allows for significant reduction of their thermal conductivity. A team from Hunan University of Science and Technology and Xiangtan Universities in China, and the Institute of High Performance Computing in Singapore, manage to model the values reported experimentally by incorporating a phonon scattering mechanism, rooted to the bond imperfection on the surface of the nanostructure. As the bonds towards the surface grow shorter and therefore stronger, they perturb the local potential, and suppress the high-frequency phonons. Low-frequency phonons, on the other hand are suppressed by normal boundary scattering. The authors conclude that these two actions lead to the ultra-low thermal conductivity values, and predict that further reduction can be achieved by roughening the hole walls in the phononic crystal.
Two-dimensional silicon phononic crystals have attracted extensive research interest for thermoelectric applications due to their reproducible low thermal conductivity and sufficiently good electrical properties. For thermoelectric devices in high-temperature environment, the coherent phonon interference is strongly suppressed; therefore phonon transport in the incoherent regime is critically important for manipulating their thermal conductivity. On the basis of perturbation theory, we present herein a novel phonon scattering process from the perspective of bond order imperfections in the surface skin of nanostructures. We incorporate this strongly frequency-dependent scattering rate into the phonon Boltzmann transport equation and reproduce the ultra low thermal conductivity of holey silicon nanostructures. We reveal that the remarkable reduction of thermal conductivity originates not only from the impediment of low-frequency phonons by normal boundary scattering, but also from the severe suppression of high-frequency phonons by surface bond order imperfections scattering. Our theory not only reveals the role of the holey surface on the phonon transport, but also provide a computation tool for thermal conductivity modification in nanostructures through surface engineering.
ArticleNumber 21
Author Guo, Zhixin
Zhang, Gang
Ju, Zhifang
Cai, Yongqing
Zhou, Kuikui
Wei, Xiaolin
Xie, Guofeng
Author_xml – sequence: 1
  givenname: Guofeng
  surname: Xie
  fullname: Xie, Guofeng
  email: gfxie@xtu.edu.cn
  organization: School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University
– sequence: 2
  givenname: Zhifang
  surname: Ju
  fullname: Ju, Zhifang
  organization: Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University
– sequence: 3
  givenname: Kuikui
  surname: Zhou
  fullname: Zhou, Kuikui
  organization: Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University
– sequence: 4
  givenname: Xiaolin
  surname: Wei
  fullname: Wei, Xiaolin
  organization: Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University
– sequence: 5
  givenname: Zhixin
  surname: Guo
  fullname: Guo, Zhixin
  organization: Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University
– sequence: 6
  givenname: Yongqing
  surname: Cai
  fullname: Cai, Yongqing
  organization: Institute of High Performance Computing
– sequence: 7
  givenname: Gang
  surname: Zhang
  fullname: Zhang, Gang
  email: zhangg@ihpc.a-star.edu.sg
  organization: Institute of High Performance Computing
BookMark eNp9kE1LAzEQhoNUsGp_gLcFz9FJdrO7OUrxCwpe7E0IaTZpU7ZJTVJL_70pKyiCniYw7zOZec7RyHmnEboicEOgbG9jRRitMJAWAzQ15idoTIE1uOQ1jH68z9AkxjUAEE5bWsEYvc37FCTu_b5IKx02si-Ud91OJfth06Hwpkh7jzu70S5a73J_u_L5f6sKFQ4xyT4W1h3hXJTPM7RLRdDLTFyiU5P7evJVL9D84f51-oRnL4_P07sZVhVlCZOyU6pldSmrrq1pDVABKEKkoQyoajhhhpGFIVQaQ3nNmK5V27HFAjSRrSwv0PUwdxv8-07HJNZ-F_KuUVCgrOE15zSnmiGlgo8xaCOUTTLlo7IB2wsC4mhTDDZFtimONgXPJPlFboPdyHD4l6EDE3PWLXX43ulv6BOCO4mp
CitedBy_id crossref_primary_10_1088_1361_648X_ab4cab
crossref_primary_10_1016_j_mtphys_2022_100605
crossref_primary_10_1016_j_cej_2022_139269
crossref_primary_10_1016_j_jmat_2020_04_005
crossref_primary_10_1007_s11664_021_08774_2
crossref_primary_10_3390_nano9040597
crossref_primary_10_1080_09276440_2020_1726135
crossref_primary_10_1088_1361_6463_ac17b3
crossref_primary_10_1039_D2CP02067J
crossref_primary_10_1063_5_0004484
crossref_primary_10_1039_D3NA00494E
crossref_primary_10_1016_j_physleta_2021_127410
crossref_primary_10_1039_C9CP01867K
crossref_primary_10_1007_s12274_022_4123_y
crossref_primary_10_1088_1361_6528_ad22b4
crossref_primary_10_1002_adfm_201903829
crossref_primary_10_1016_j_carbon_2019_03_073
crossref_primary_10_1063_5_0108739
crossref_primary_10_1039_D0CP00047G
crossref_primary_10_1021_acsami_0c08843
crossref_primary_10_1007_s11630_021_1412_9
crossref_primary_10_1039_D0NH00188K
crossref_primary_10_1063_5_0031118
crossref_primary_10_1016_j_commatsci_2020_109712
crossref_primary_10_1016_j_ijmecsci_2021_106576
crossref_primary_10_1039_D0CP02792H
crossref_primary_10_1038_s41524_019_0167_2
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123227
crossref_primary_10_1039_D1NR08505K
crossref_primary_10_1016_j_carbon_2021_01_126
crossref_primary_10_1016_j_applthermaleng_2019_04_063
crossref_primary_10_1016_j_mtphys_2022_100613
crossref_primary_10_1088_1361_648X_ab5e57
crossref_primary_10_3390_ma16165606
crossref_primary_10_1021_acs_jpclett_8b01653
crossref_primary_10_3389_fmats_2020_578791
crossref_primary_10_1039_D1CP05708A
crossref_primary_10_1088_1361_648X_ab41c0
crossref_primary_10_1016_j_physb_2018_11_016
crossref_primary_10_1088_1674_1056_ac012c
crossref_primary_10_1038_s41598_024_84074_z
crossref_primary_10_1063_1_5134080
crossref_primary_10_7498_aps_68_20190194
crossref_primary_10_1063_1_5115060
crossref_primary_10_3390_en15134718
crossref_primary_10_1088_2053_1591_ab5e62
crossref_primary_10_1039_C9CP01837A
crossref_primary_10_1039_C9NR04726C
crossref_primary_10_1038_s41524_019_0183_2
crossref_primary_10_1103_PhysRevB_101_081402
crossref_primary_10_1016_j_jmmm_2019_165354
crossref_primary_10_1021_acsami_9b22498
crossref_primary_10_1039_C9RA07563A
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125385
crossref_primary_10_1016_j_mtphys_2022_100884
crossref_primary_10_1088_1674_1056_ab99af
crossref_primary_10_1016_j_scriptamat_2019_09_009
crossref_primary_10_1016_j_pnsc_2019_05_003
crossref_primary_10_1039_D0MA00603C
crossref_primary_10_1021_acsomega_9b00534
crossref_primary_10_1021_acsomega_9b03929
crossref_primary_10_1039_C9RA08520C
crossref_primary_10_7498_aps_68_20190923
crossref_primary_10_1016_j_mtphys_2019_01_002
crossref_primary_10_1016_j_physrep_2020_03_001
crossref_primary_10_1063_5_0123629
crossref_primary_10_1002_andp_201800437
crossref_primary_10_1039_D0NR06824A
crossref_primary_10_1063_1_5121517
crossref_primary_10_1063_1_5053233
crossref_primary_10_1016_j_vacuum_2019_06_011
crossref_primary_10_1039_D1TC04154A
crossref_primary_10_1063_5_0059024
crossref_primary_10_1002_adfm_201903873
crossref_primary_10_7498_aps_71_20220036
crossref_primary_10_1021_acs_jpcc_9b09787
crossref_primary_10_1088_1361_648X_ab6d8f
crossref_primary_10_1063_5_0074283
crossref_primary_10_1088_1361_648X_aae618
crossref_primary_10_1088_1361_6528_ab824c
crossref_primary_10_1039_C9RA07828B
crossref_primary_10_1039_D3NR00316G
crossref_primary_10_3390_ma13071755
crossref_primary_10_1016_j_physa_2020_124489
crossref_primary_10_1080_23746149_2018_1480417
crossref_primary_10_1016_j_physb_2019_02_064
crossref_primary_10_1002_adfm_201903841
crossref_primary_10_1088_1361_651X_aae401
crossref_primary_10_1016_j_solidstatesciences_2024_107707
crossref_primary_10_1063_1_5118003
crossref_primary_10_1103_PhysRevB_98_245420
crossref_primary_10_1016_j_ssc_2019_113646
crossref_primary_10_1007_s11467_020_1041_x
crossref_primary_10_1016_j_mseb_2024_117454
crossref_primary_10_1063_5_0189694
crossref_primary_10_1088_1361_648X_ab81c3
crossref_primary_10_1140_epjb_s10051_021_00178_9
crossref_primary_10_1209_0295_5075_ac7d09
crossref_primary_10_1016_j_physleta_2019_02_007
crossref_primary_10_7498_aps_72_20222244
crossref_primary_10_1021_acsami_2c14871
crossref_primary_10_1002_adfm_202004003
crossref_primary_10_3389_fmats_2020_569090
Cites_doi 10.1103/PhysRevB.93.045411
10.1103/PhysRev.132.2461
10.1021/acs.nanolett.6b02305
10.1063/1.4926653
10.1103/PhysRevB.89.205432
10.1038/nature06381
10.1103/PhysRevLett.57.2760
10.1103/PhysRevLett.102.125503
10.1098/rspa.1926.0133
10.1021/acs.nanolett.6b00956
10.1021/cr500651m
10.1103/PhysRevB.87.195301
10.1126/sciadv.1700027
10.1063/1.4916962
10.1103/PhysRevB.84.115450
10.1021/nl3047392
10.1021/nl102918q
10.1063/1.3663386
10.1088/0960-1317/17/8/023
10.1038/nnano.2010.149
10.1038/ncomms4435
10.1038/ncomms14054
10.1103/PhysRevB.67.195311
10.1063/1.4891362
10.1021/acsnano.5b05385
10.1103/PhysRevB.66.195304
10.1103/PhysRev.113.1046
10.1021/nl102931z
10.1021/nl1045395
10.1016/j.ijheatmasstransfer.2015.07.111
10.1002/cber.19270600550
10.1103/PhysRevB.32.8171
10.1021/ja01195a024
10.1103/PhysRevLett.87.266101
10.1126/science.1225549
10.1103/PhysRev.133.A253
10.1063/1.4816590
10.1103/PhysRevLett.54.1840
10.1021/jp037891s
10.1103/PhysRevB.84.075403
10.1016/j.progsolidstchem.2006.03.001
10.1063/1.1728579
10.1063/1.3699056
10.1021/nl3005868
10.1109/TED.2009.2028382
10.1088/0370-1298/68/12/303
10.1016/j.carbon.2017.01.089
10.1038/ncomms8228
10.1021/acs.nanolett.5b00495
10.1021/jp0272015
10.1063/1.4966190
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1038/s41524-018-0076-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2057-3960
EndPage 7
ExternalDocumentID 10_1038_s41524_018_0076_9
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
D1I
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
KB.
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PDBOC
PIMPY
PQQKQ
PROAC
RNT
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c425t-13dcc8563a4d862600400c11af2502c7915f51bf12aff29655e6c8d5bb0e1a8a3
IEDL.DBID 7X7
ISSN 2057-3960
IngestDate Wed Aug 13 02:51:29 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Tue Jul 01 01:41:24 EDT 2025
Fri Feb 21 02:40:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-13dcc8563a4d862600400c11af2502c7915f51bf12aff29655e6c8d5bb0e1a8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2025796992?pq-origsite=%requestingapplication%
PQID 2025796992
PQPubID 2041924
PageCount 7
ParticipantIDs proquest_journals_2025796992
crossref_citationtrail_10_1038_s41524_018_0076_9
crossref_primary_10_1038_s41524_018_0076_9
springer_journals_10_1038_s41524_018_0076_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-16
PublicationDateYYYYMMDD 2018-04-16
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-16
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle npj computational materials
PublicationTitleAbbrev npj Comput Mater
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Luckyanova (CR20) 2012; 338
Hashin, Shtrikman (CR42) 1962; 33
Sun (CR28) 2007; 35
Tang (CR2) 2010; 10
CR37
Wang, Alaniz, Jang, Garay, Dames (CR34) 2011; 11
Nakagawa, Kage, Hori, Shiomi, Nomura (CR7) 2015; 107
Ghossoub (CR48) 2013; 13
Klemens (CR31) 1955; 68
Anufriev, Maire, Nomura (CR18) 2016; 93
Goldschmidt (CR22) 1927; 60
Callaway (CR41) 1959; 113
Ravichandran, Minnich (CR3) 2014; 89
Yu, Mitrovic, Tham, Varghese, Heath (CR1) 2010; 5
Yang, Chen, Yang, Li (CR10) 2015; 91
Pauling (CR21) 1947; 69
Hopkins (CR5) 2010; 11
Hochbaum (CR44) 2008; 451
Nomura, Nakagawa, Sawano, Maire, Volz (CR8) 2016; 109
Dirac (CR30) 1926; 112
Hu, Chen, Yang, Li (CR11) 2017; 116
Chen, Zhang, Li (CR36) 2011; 135
Yang, Chen (CR19) 2003; 67
Sun (CR27) 2014; 108
Romano, Grossman (CR6) 2014; 105
Sadhu, Sinha (CR50) 2011; 84
Alaie (CR14) 2015; 6
Carrete, Gallego, Varela, Mingo (CR51) 2011; 84
Liu (CR24) 2015; 115
Holland (CR33) 1963; 132
Pan, Sun, Li (CR32) 2004; 108
Tešanović, Jarić, Maekawa (CR26) 1986; 57
Dechaumphai, Chen (CR4) 2012; 111
Buran, Pala, Bescond, Dubois, Mouis (CR53) 2009; 56
Lee (CR43) 2017; 8
Song, Peter, Meunier (CR40) 2007; 17
Blanc, Rajabpour, Volz, Fournier, Bourgeois (CR49) 2013; 103
Lim, Hippalgaonkar, Andrews, Majumdar, Yang (CR45) 2012; 12
Lee (CR47) 2016; 16
Maurer, Aksamija, Ramayya, Davoody, Knezevic (CR35) 2015; 106
Maire (CR15) 2017; 3
Zen, Puurtinen, Isotalo, Chaudhuri, Maasilta (CR17) 2014; 5
Bahn, Jacobsen (CR23) 2001; 87
Wagner (CR16) 2016; 16
Sun, Pan, Fu, Tay, Li (CR29) 2003; 107
Lim (CR12) 2015; 10
Jain, Yu, McGaughey (CR13) 2013; 87
Morelli, Heremans, Slack (CR39) 2002; 66
Lee, Lim, Yang (CR9) 2015; 15
Goodnick (CR52) 1985; 32
Slack, Galginaitis (CR38) 1964; 133
Martin, Aksamija, Pop, Ravaioli (CR46) 2009; 102
Hensel, Tung, Poate, Unterwald (CR25) 1985; 54
76_CR37
NK Ravichandran (76_CR3) 2014; 89
JC Hensel (76_CR25) 1985; 54
P Martin (76_CR46) 2009; 102
C Blanc (76_CR49) 2013; 103
J Chen (76_CR36) 2011; 135
C Buran (76_CR53) 2009; 56
S Alaie (76_CR14) 2015; 6
JY Tang (76_CR2) 2010; 10
MR Wagner (76_CR16) 2016; 16
G Romano (76_CR6) 2014; 105
N Zen (76_CR17) 2014; 5
P Klemens (76_CR31) 1955; 68
IH Song (76_CR40) 2007; 17
J Nakagawa (76_CR7) 2015; 107
S Hu (76_CR11) 2017; 116
PAM Dirac (76_CR30) 1926; 112
Z Wang (76_CR34) 2011; 11
Z Tešanović (76_CR26) 1986; 57
M Holland (76_CR33) 1963; 132
J Callaway (76_CR41) 1959; 113
M Nomura (76_CR8) 2016; 109
D Morelli (76_CR39) 2002; 66
JK Yu (76_CR1) 2010; 5
E Dechaumphai (76_CR4) 2012; 111
CQ Sun (76_CR28) 2007; 35
J Lee (76_CR43) 2017; 8
B Yang (76_CR19) 2003; 67
R Anufriev (76_CR18) 2016; 93
A Jain (76_CR13) 2013; 87
M Ghossoub (76_CR48) 2013; 13
CQ Sun (76_CR29) 2003; 107
J Maire (76_CR15) 2017; 3
X Liu (76_CR24) 2015; 115
Z Hashin (76_CR42) 1962; 33
LK Pan (76_CR32) 2004; 108
PE Hopkins (76_CR5) 2010; 11
J Sadhu (76_CR50) 2011; 84
L Pauling (76_CR21) 1947; 69
J Lee (76_CR47) 2016; 16
SR Bahn (76_CR23) 2001; 87
J Lim (76_CR45) 2012; 12
CQ Sun (76_CR27) 2014; 108
V Goldschmidt (76_CR22) 1927; 60
MN Luckyanova (76_CR20) 2012; 338
LN Yang (76_CR10) 2015; 91
AI Hochbaum (76_CR44) 2008; 451
S Goodnick (76_CR52) 1985; 32
J Lim (76_CR12) 2015; 10
GA Slack (76_CR38) 1964; 133
L Maurer (76_CR35) 2015; 106
J Carrete (76_CR51) 2011; 84
J Lee (76_CR9) 2015; 15
References_xml – volume: 93
  start-page: 045411
  year: 2016
  ident: CR18
  article-title: Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.045411
– volume: 132
  start-page: 2461
  year: 1963
  ident: CR33
  article-title: Analysis of lattice thermal conductivity
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.132.2461
– volume: 16
  start-page: 5661
  year: 2016
  end-page: 5668
  ident: CR16
  article-title: Two-dimensional phononic crystals: disorder matters
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02305
– volume: 107
  start-page: 023104
  year: 2015
  ident: CR7
  article-title: Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4926653
– volume: 89
  start-page: 205432
  year: 2014
  ident: CR3
  article-title: Coherent and incoherent thermal transport in nanomeshes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.205432
– volume: 451
  start-page: 163
  year: 2008
  ident: CR44
  article-title: Enhanced thermoelectric performance of rough silicon nanowires
  publication-title: Nature
  doi: 10.1038/nature06381
– volume: 57
  start-page: 2760
  year: 1986
  ident: CR26
  article-title: Quantum transport and surface scattering
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.2760
– volume: 102
  start-page: 125503
  year: 2009
  ident: CR46
  article-title: Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.125503
– volume: 112
  start-page: 661
  year: 1926
  end-page: 677
  ident: CR30
  article-title: On the theory of quantum mechanics
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.1926.0133
– volume: 16
  start-page: 4133
  year: 2016
  end-page: 4140
  ident: CR47
  article-title: Thermal transport in silicon nanowires at high temperature up to 700 K
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00956
– volume: 115
  start-page: 6746
  year: 2015
  end-page: 6810
  ident: CR24
  article-title: Coordination-resolved electron spectrometrics
  publication-title: Chem. Rev.
  doi: 10.1021/cr500651m
– volume: 87
  start-page: 195301
  year: 2013
  ident: CR13
  article-title: Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.195301
– volume: 3
  start-page: e1700027
  year: 2017
  ident: CR15
  article-title: Heat conduction tuning by wave nature of phonons
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700027
– volume: 106
  start-page: 133108
  year: 2015
  ident: CR35
  article-title: Universal features of phonon transport in nanowires with correlated surface roughness
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4916962
– volume: 84
  start-page: 115450
  year: 2011
  ident: CR50
  article-title: Room-temperature phonon boundary scattering below the Casimir limit
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.115450
– volume: 13
  start-page: 1564
  year: 2013
  end-page: 1571
  ident: CR48
  article-title: Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires
  publication-title: Nano Lett.
  doi: 10.1021/nl3047392
– volume: 11
  start-page: 107
  year: 2010
  end-page: 112
  ident: CR5
  article-title: Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning
  publication-title: Nano Lett.
  doi: 10.1021/nl102918q
– volume: 135
  start-page: 204705
  year: 2011
  ident: CR36
  article-title: A universal gauge for thermal conductivity of silicon nanowires with different cross sectional geometries
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3663386
– volume: 17
  start-page: 1593
  year: 2007
  ident: CR40
  article-title: Smoothing dry-etched microstructure sidewalls using focused ion beam milling for optical applications
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/17/8/023
– volume: 5
  start-page: 718
  year: 2010
  ident: CR1
  article-title: Reduction of thermal conductivity in phononic nanomesh structures
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2010.149
– volume: 5
  year: 2014
  ident: CR17
  article-title: Engineering thermal conductance using a two-dimensional phononic crystal
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4435
– volume: 108
  start-page: 807
  year: 2014
  ident: CR27
  article-title: Relaxation of the chemical bond
  publication-title: Springer Ser. Chem. Phys.
– volume: 8
  year: 2017
  ident: CR43
  article-title: Investigation of phonon coherence and backscattering using silicon nanomeshes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14054
– volume: 67
  start-page: 195311
  year: 2003
  ident: CR19
  article-title: Partially coherent phonon heat conduction in superlattices
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.195311
– volume: 105
  start-page: 033116
  year: 2014
  ident: CR6
  article-title: Toward phonon-boundary engineering in nanoporous materials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4891362
– volume: 10
  start-page: 124
  year: 2015
  end-page: 132
  ident: CR12
  article-title: Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05385
– volume: 66
  start-page: 195304
  year: 2002
  ident: CR39
  article-title: Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.195304
– volume: 113
  start-page: 1046
  year: 1959
  ident: CR41
  article-title: Model for lattice thermal conductivity at low temperatures
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.113.1046
– volume: 10
  start-page: 4279
  year: 2010
  end-page: 4283
  ident: CR2
  article-title: Holey silicon as an efficient thermoelectric material
  publication-title: Nano Lett.
  doi: 10.1021/nl102931z
– volume: 11
  start-page: 2206
  year: 2011
  end-page: 2213
  ident: CR34
  article-title: Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths
  publication-title: Nano Lett.
  doi: 10.1021/nl1045395
– volume: 91
  start-page: 428
  year: 2015
  end-page: 432
  ident: CR10
  article-title: Significant reduction of graphene thermal conductivity by phononic crystal structure
  publication-title: J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.07.111
– ident: CR37
– volume: 60
  start-page: 1263
  year: 1927
  end-page: 1296
  ident: CR22
  article-title: Crystal structure and chemical correlation
  publication-title: Ber. Deut. Chem. Ges.
  doi: 10.1002/cber.19270600550
– volume: 32
  start-page: 8171
  year: 1985
  ident: CR52
  article-title: Surface roughness at the Si (100)-SiO interface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.32.8171
– volume: 69
  start-page: 542
  year: 1947
  end-page: 553
  ident: CR21
  article-title: Atomic radii and interatomic distances in metals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01195a024
– volume: 87
  start-page: 266101
  year: 2001
  ident: CR23
  article-title: Chain formation of metal atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.266101
– volume: 338
  start-page: 936
  year: 2012
  end-page: 939
  ident: CR20
  article-title: Coherent phonon heat conduction in superlattices
  publication-title: Science
  doi: 10.1126/science.1225549
– volume: 133
  start-page: A253
  year: 1964
  ident: CR38
  article-title: Thermal conductivity and phonon scattering by magnetic impurities in CdTe
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.133.A253
– volume: 103
  start-page: 043109
  year: 2013
  ident: CR49
  article-title: Phonon heat conduction in corrugated silicon nanowires below the Casimir limit
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4816590
– volume: 54
  start-page: 1840
  year: 1985
  ident: CR25
  article-title: Specular boundary scattering and electrical transport in single-crystal thin films of CoSi
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.1840
– volume: 108
  start-page: 3404
  year: 2004
  end-page: 3406
  ident: CR32
  article-title: Elucidating Si-Si dimmer vibration from the size-dependent Raman shift of nanosolid Si
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp037891s
– volume: 84
  start-page: 075403
  year: 2011
  ident: CR51
  article-title: Surface roughness and thermal conductivity of semiconductor nanowires: going below the Casimir limit
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.075403
– volume: 35
  start-page: 1
  year: 2007
  end-page: 159
  ident: CR28
  article-title: Size dependence of nanostructures: Impact of bond order deficiency
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/j.progsolidstchem.2006.03.001
– volume: 33
  start-page: 3125
  year: 1962
  end-page: 3131
  ident: CR42
  article-title: A variational approach to the theory of the effective magnetic permeability of multiphase materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1728579
– volume: 111
  start-page: 073508
  year: 2012
  ident: CR4
  article-title: Thermal transport in phononic crystals: the role of zone folding effect
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3699056
– volume: 12
  start-page: 2475
  year: 2012
  end-page: 2482
  ident: CR45
  article-title: Quantifying surface roughness effects on phonon transport in silicon nanowires
  publication-title: Nano Lett.
  doi: 10.1021/nl3005868
– volume: 56
  start-page: 2186
  year: 2009
  end-page: 2192
  ident: CR53
  article-title: Three-dimensional real-space simulation of surface roughness in silicon nanowire FETs
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2009.2028382
– volume: 68
  start-page: 1113
  year: 1955
  ident: CR31
  article-title: The scattering of low-frequency lattice waves by static imperfections
  publication-title: Proc. Phys. Soc. A
  doi: 10.1088/0370-1298/68/12/303
– volume: 116
  start-page: 139
  year: 2017
  end-page: 144
  ident: CR11
  article-title: Thermal transport in graphene with defect and doping: phonon modes analysis
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.089
– volume: 6
  year: 2015
  ident: CR14
  article-title: Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8228
– volume: 15
  start-page: 3273
  year: 2015
  end-page: 3279
  ident: CR9
  article-title: Ballistic phonon transport in holey silicon
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00495
– volume: 107
  start-page: 5113
  year: 2003
  end-page: 5115
  ident: CR29
  article-title: Size dependence of the 2p-level shift of nanosolid silicon
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0272015
– volume: 109
  start-page: 173104
  year: 2016
  ident: CR8
  article-title: Thermal conduction in Si and SiGe phononic crystals explained by phonon mean free path spectrum
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4966190
– volume: 11
  start-page: 107
  year: 2010
  ident: 76_CR5
  publication-title: Nano Lett.
  doi: 10.1021/nl102918q
– volume: 8
  year: 2017
  ident: 76_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14054
– volume: 112
  start-page: 661
  year: 1926
  ident: 76_CR30
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.1926.0133
– volume: 113
  start-page: 1046
  year: 1959
  ident: 76_CR41
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.113.1046
– volume: 91
  start-page: 428
  year: 2015
  ident: 76_CR10
  publication-title: J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.07.111
– volume: 6
  year: 2015
  ident: 76_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8228
– volume: 451
  start-page: 163
  year: 2008
  ident: 76_CR44
  publication-title: Nature
  doi: 10.1038/nature06381
– volume: 107
  start-page: 023104
  year: 2015
  ident: 76_CR7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4926653
– volume: 11
  start-page: 2206
  year: 2011
  ident: 76_CR34
  publication-title: Nano Lett.
  doi: 10.1021/nl1045395
– volume: 89
  start-page: 205432
  year: 2014
  ident: 76_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.205432
– volume: 10
  start-page: 124
  year: 2015
  ident: 76_CR12
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05385
– volume: 69
  start-page: 542
  year: 1947
  ident: 76_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01195a024
– volume: 3
  start-page: e1700027
  year: 2017
  ident: 76_CR15
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700027
– volume: 103
  start-page: 043109
  year: 2013
  ident: 76_CR49
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4816590
– volume: 106
  start-page: 133108
  year: 2015
  ident: 76_CR35
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4916962
– volume: 5
  start-page: 718
  year: 2010
  ident: 76_CR1
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2010.149
– volume: 5
  year: 2014
  ident: 76_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4435
– volume: 87
  start-page: 266101
  year: 2001
  ident: 76_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.266101
– volume: 133
  start-page: A253
  year: 1964
  ident: 76_CR38
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.133.A253
– volume: 56
  start-page: 2186
  year: 2009
  ident: 76_CR53
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2009.2028382
– volume: 108
  start-page: 807
  year: 2014
  ident: 76_CR27
  publication-title: Springer Ser. Chem. Phys.
– volume: 16
  start-page: 5661
  year: 2016
  ident: 76_CR16
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02305
– volume: 57
  start-page: 2760
  year: 1986
  ident: 76_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.2760
– volume: 84
  start-page: 075403
  year: 2011
  ident: 76_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.075403
– volume: 17
  start-page: 1593
  year: 2007
  ident: 76_CR40
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/17/8/023
– volume: 338
  start-page: 936
  year: 2012
  ident: 76_CR20
  publication-title: Science
  doi: 10.1126/science.1225549
– volume: 12
  start-page: 2475
  year: 2012
  ident: 76_CR45
  publication-title: Nano Lett.
  doi: 10.1021/nl3005868
– volume: 105
  start-page: 033116
  year: 2014
  ident: 76_CR6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4891362
– volume: 132
  start-page: 2461
  year: 1963
  ident: 76_CR33
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.132.2461
– volume: 32
  start-page: 8171
  year: 1985
  ident: 76_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.32.8171
– volume: 109
  start-page: 173104
  year: 2016
  ident: 76_CR8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4966190
– volume: 135
  start-page: 204705
  year: 2011
  ident: 76_CR36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3663386
– volume: 102
  start-page: 125503
  year: 2009
  ident: 76_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.125503
– volume: 66
  start-page: 195304
  year: 2002
  ident: 76_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.195304
– volume: 93
  start-page: 045411
  year: 2016
  ident: 76_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.045411
– volume: 108
  start-page: 3404
  year: 2004
  ident: 76_CR32
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp037891s
– volume: 13
  start-page: 1564
  year: 2013
  ident: 76_CR48
  publication-title: Nano Lett.
  doi: 10.1021/nl3047392
– volume: 68
  start-page: 1113
  year: 1955
  ident: 76_CR31
  publication-title: Proc. Phys. Soc. A
  doi: 10.1088/0370-1298/68/12/303
– ident: 76_CR37
– volume: 107
  start-page: 5113
  year: 2003
  ident: 76_CR29
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0272015
– volume: 16
  start-page: 4133
  year: 2016
  ident: 76_CR47
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00956
– volume: 60
  start-page: 1263
  year: 1927
  ident: 76_CR22
  publication-title: Ber. Deut. Chem. Ges.
  doi: 10.1002/cber.19270600550
– volume: 67
  start-page: 195311
  year: 2003
  ident: 76_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.195311
– volume: 33
  start-page: 3125
  year: 1962
  ident: 76_CR42
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1728579
– volume: 84
  start-page: 115450
  year: 2011
  ident: 76_CR50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.115450
– volume: 87
  start-page: 195301
  year: 2013
  ident: 76_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.195301
– volume: 115
  start-page: 6746
  year: 2015
  ident: 76_CR24
  publication-title: Chem. Rev.
  doi: 10.1021/cr500651m
– volume: 54
  start-page: 1840
  year: 1985
  ident: 76_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.1840
– volume: 116
  start-page: 139
  year: 2017
  ident: 76_CR11
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.089
– volume: 111
  start-page: 073508
  year: 2012
  ident: 76_CR4
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3699056
– volume: 35
  start-page: 1
  year: 2007
  ident: 76_CR28
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/j.progsolidstchem.2006.03.001
– volume: 10
  start-page: 4279
  year: 2010
  ident: 76_CR2
  publication-title: Nano Lett.
  doi: 10.1021/nl102931z
– volume: 15
  start-page: 3273
  year: 2015
  ident: 76_CR9
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00495
SSID ssj0001928240
Score 2.4072595
Snippet Two-dimensional silicon phononic crystals have attracted extensive research interest for thermoelectric applications due to their reproducible low thermal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 639/301
639/925
Boltzmann transport equation
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Crystals
Defects
Electrical properties
Electrical resistivity
Frequency dependence
Heat conductivity
Heat transfer
High temperature environments
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Nanostructure
Perturbation theory
Phonons
Scattering
Silicon
Skin
Theoretical
Thermal conductivity
Thermoelectricity
SummonAdditionalLinks – databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zu-hB_MTplBw8KcE2bdLkOMQxdvCigx2EkqQpCt0mW2X435uXtpsfKHjueyW85CW_l_fyewhdWrcdGh1FcL2UkJhSQ3QWMKJySRW1UcK0L5C958NxPJqwSQuFzVsYX7TvKS39Nt1Uh90s4aCBeglBIHlE5BbqAFO7W9qdfn_0MNpcrEgXRcTrDGYkfup-PYM2wPJbLtQfMYM9tFtjQ9yvRrOPWnZ2gHY-MQYeoqdxUS4UKeYrDMht6sRdQAucrb4JBJ7nuFzNSQac_RXfBobic-C_xWbx7qBgscQvM1DGwMvwDK_9SgztGab2CI0Hd4-3Q1I3SCDGuRq0kc-MEYxHKs58ZAIeacJQ5Q7YUJPIkOUs1HlIVZ5TyRmz3IiMaR3YUAkVHaO2G4E9QZhl3Pk6i3MR6DgQRitpBbBYx5KrQKguChqTpaZmD4cmFkXqs9iRSCsrp87KKVg5lV10tVZ5ragz_hLuNfOQ1l60TKkDZInkUtIuum7mZvP515-d_kv6DG1TvzZiEvIeapeLN3vukEapL-q19QGxzc1v
  priority: 102
  providerName: Springer Nature
Title Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime
URI https://link.springer.com/article/10.1038/s41524-018-0076-9
https://www.proquest.com/docview/2025796992
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0jhw8KcE2bdrkJHNsjh2GqIMdhJKkKQrdh1tl-N-bl3WbCnppoU1CeC8veV_5PYQujd0OtQoCcC_FJKRUE5V6jMhMUElNEDPlEmT7UXcQ9oZsWDrc5mVa5WpPdBt1OtHgIwcjHa5NCkFvp-8EqkZBdLUsobGNqgBdBqs6HsYbH4uwBkW4DmYG_GYO5xWkXXACMSgifh5HGx3zV1jUnTadfbRXqom4ueTrAdoy40O0-w088Ai9DPJiJkk-WWBQ4ka2ubVtAb7V1YPAkwwXiwlJAb5_Cb2BIQ8doHCxnn1arTCf47cxdMYA0fAKF_8KDJUaRuYYDTrt51aXlLUSiLZSBxXlU605iwIZps5IAeHUvi8zq-NQHQufZcxXmU9lllERMWYizVOmlGd8yWVwgip2BuYUYZZGVuxZmHFPhR7XSgrDAdA6FJH0uKwhb0WyRJdA4lDPIk9cQDvgyZLKiaVyAlRORA1drbtMlyga_zWur_iQlAI1Tzbsr6HrFW82v_8c7Oz_wc7RDnWLISR-VEeVYvZhLqyWUaiGW0r2yTv3DVRtNntPPfu-a_cfHu3XVtRqOPv9C3Hf1Kg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROLQcUKGtmpYWH8qFyuqu197YB4QQNCQN5JRIOVRyba9XRcqDJltF_Cl-I57dLGmRyI3zeq3V-Nt5eGa-Afjigzp0NknweqlJOWOO2iwS1OSKGeaTprBlgWwvbQ_4j6EYbsBd3QuDZZW1TiwVdTZ1eEeOQTq2TSrFTm7-UJwahdnVeoRGBYuuv12EkG1-3DkP53vIWOt7_6xNl1MFqAv4xNnrmXNSpInhWenOI4xdHJs8eAPMNVUschHbPGYmz5lKhfCpk5mwNvKxkSYJ-76ALZ4ES46d6a2L1Z2OCgEMf0ieJvLbHO0jlnlIijkvqv43fyuf9lEatrRurdews3RLyWmFo13Y8JM92P6HrPAN_ByMipmho-mCoNM4DstDLI10seX8CTLNSbGY0gzHBVRUHwTr3pF6l7jZbfBCR3NyPcGXCVJC_MZGw4LgZIixfwuDZ5HiO9gMX-DfAxFZGtSM4LmMLI-ks0Z5iQTaXKUmkqYBUS0y7ZbE5Tg_Y6TLBHoidSVlHaSsUcpaNeDo4ZWbirVj3eL9-hz08gee6xXcGvC1PpvV4yc3-7B-swN42e5fXerLTq_7EV6xEhicxuk-bBazv_5T8HAK-7mEFYFfz43jewR8CuM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fSxwxEB7sCaU-SLVKT63mQV8qwd3sZi95kNJWD39xSPHAByEm2YQKp6d3Ww7_tf51ZvaHp4K--bzZsEy-ncxkJt8HsOmCO7QmSfB4qUNTxiw1ecSp9pJp5pION2WDbC876KdH5_x8Bv43d2GwrbLxiaWjzocWz8gxScdrk1KyHV-3RZzudX_c3lFUkMJKayOnUUHk2N1PQvo23j3cC2u9xVh3_-z3Aa0VBqgNWEUd9txawbNEp3kZ2iOkbRxrHyIDZjsy5p7HxsdMe89kxrnLrMi5MZGLtdBJmPcDzHYwK2rB7K_93umf6QmPDOlM-lhKTcTOGHdLbPoQFCtgVD7fDKcR7ouibLnXdT_DfB2kkp8VqhZgxt0swtwT6sIvcNEfFCNNB8MJwRDyOgwPmTWSx5ZqFGToSTEZ0hzFAyriD4Jd8EjES-zoPsSkgzG5usGXCRJE_MVrhwVBnYhrtwT9d7HjMrTCF7ivQHieBafDUy8ik0bCGi2dQDrtVGY6EroNUWMyZWsac1TTGKiynJ4IVVlZBSsrtLKSbfj--MptxeHx1uC1Zh1U_TuP1RR8bdhu1mb6-NXJVt6ebAM-Bgyrk8Pe8Sp8YiUuUhpna9AqRv_ctxDuFGa9xhWBy_eG8gPrQBB1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-low+thermal+conductivity+of+two-dimensional+phononic+crystals+in+the+incoherent+regime&rft.jtitle=npj+computational+materials&rft.au=Xie%2C+Guofeng&rft.au=Ju%2C+Zhifang&rft.au=Zhou%2C+Kuikui&rft.au=Wei%2C+Xiaolin&rft.date=2018-04-16&rft.pub=Nature+Publishing+Group&rft.eissn=2057-3960&rft.volume=4&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1038%2Fs41524-018-0076-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon