High Mechanical Performance Composite Conductor: Multi-Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites
Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (∼60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre‐resin impregnation) processes on initially randomly dispersed, comm...
Saved in:
Published in | Advanced functional materials Vol. 19; no. 20; pp. 3219 - 3225 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
23.10.2009
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (∼60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre‐resin impregnation) processes on initially randomly dispersed, commercially available sheets of millimeter‐long MWNTs leads to substantial alignment enhancement, good dispersion, and high packing density of nanotubes in the resultant nanocomposites. The tensile strength and Young's modulus of the nanocomposites reaches 2 088 MPa and 169 GPa, respectively, which are very high experimental results and comparable to the state‐of‐the‐art unidirectional IM7 carbon‐fiber‐reinforced composites for high‐performance structural applications. The nanocomposites demonstrate unprecedentedly high electrical conductivity of 5 500 S cm−1 along the alignment direction. Such unique integration of high mechanical properties and electrical conductance opens the door for developing polymeric composite conductors and eventually structural composites with multifunctionalities. New fracture morphology and failure modes due to self‐assembly and spreading of MWNT bundles are also observed.
High concentration (∼60wt%) multi‐walled carbon nanotube sheet/bismaleimide composites are fabricated using simple mechanical stretching and prepregging methods, resulting in unprecedentedly high electrical conductivity (5 500 S cm−1) and mechanical properties (strength of 2 088 MPa and modulus of 169 GPa) comparable to those of unidirectional carbon fiber‐reinforced composites for high‐performance structural and multifunctional applications. |
---|---|
AbstractList | Multi-walled carbon nanotube (MWNT)-sheet-reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre-resin impregnation) processes on initially randomly dispersed, commercially available sheets of millimeter-long MWNTs leads to substantial alignment enhancement, good dispersion, and high packing density of nanotubes in the resultant nanocomposites. The tensile strength and Young's modulus of the nanocomposites reaches 2 088 MPa and 169 GPa, respectively, which are very high experimental results and comparable to the state-of-the-art unidirectional IM7 carbon-fiber-reinforced composites for high-performance structural applications. The nanocomposites demonstrate unprecedentedly high electrical conductivity of 5 500 S cm-1 along the alignment direction. Such unique integration of high mechanical properties and electrical conductance opens the door for developing polymeric composite conductors and eventually structural composites with multifunctionalities. New fracture morphology and failure modes due to self-assembly and spreading of MWNT bundles are also observed. Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (∼60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre‐resin impregnation) processes on initially randomly dispersed, commercially available sheets of millimeter‐long MWNTs leads to substantial alignment enhancement, good dispersion, and high packing density of nanotubes in the resultant nanocomposites. The tensile strength and Young's modulus of the nanocomposites reaches 2 088 MPa and 169 GPa, respectively, which are very high experimental results and comparable to the state‐of‐the‐art unidirectional IM7 carbon‐fiber‐reinforced composites for high‐performance structural applications. The nanocomposites demonstrate unprecedentedly high electrical conductivity of 5 500 S cm−1 along the alignment direction. Such unique integration of high mechanical properties and electrical conductance opens the door for developing polymeric composite conductors and eventually structural composites with multifunctionalities. New fracture morphology and failure modes due to self‐assembly and spreading of MWNT bundles are also observed. High concentration (∼60wt%) multi‐walled carbon nanotube sheet/bismaleimide composites are fabricated using simple mechanical stretching and prepregging methods, resulting in unprecedentedly high electrical conductivity (5 500 S cm−1) and mechanical properties (strength of 2 088 MPa and modulus of 169 GPa) comparable to those of unidirectional carbon fiber‐reinforced composites for high‐performance structural and multifunctional applications. Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (∼60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre‐resin impregnation) processes on initially randomly dispersed, commercially available sheets of millimeter‐long MWNTs leads to substantial alignment enhancement, good dispersion, and high packing density of nanotubes in the resultant nanocomposites. The tensile strength and Young's modulus of the nanocomposites reaches 2 088 MPa and 169 GPa, respectively, which are very high experimental results and comparable to the state‐of‐the‐art unidirectional IM7 carbon‐fiber‐reinforced composites for high‐performance structural applications. The nanocomposites demonstrate unprecedentedly high electrical conductivity of 5 500 S cm −1 along the alignment direction. Such unique integration of high mechanical properties and electrical conductance opens the door for developing polymeric composite conductors and eventually structural composites with multifunctionalities. New fracture morphology and failure modes due to self‐assembly and spreading of MWNT bundles are also observed. |
Author | Cheng, Qunfeng Liang, Zhiyong Bao, Jianwen Wang, Ben Park, JinGyu Zhang, Chuck |
Author_xml | – sequence: 1 givenname: Qunfeng surname: Cheng fullname: Cheng, Qunfeng organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA) – sequence: 2 givenname: Jianwen surname: Bao fullname: Bao, Jianwen organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA) – sequence: 3 givenname: JinGyu surname: Park fullname: Park, JinGyu organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA) – sequence: 4 givenname: Zhiyong surname: Liang fullname: Liang, Zhiyong email: liang@eng.fsu.edu organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA) – sequence: 5 givenname: Chuck surname: Zhang fullname: Zhang, Chuck organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA) – sequence: 6 givenname: Ben surname: Wang fullname: Wang, Ben organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA) |
BookMark | eNqFkEtvEzEUhS1UJNrClvXsWE3qVzwz7EqgLVITXoWys649d4jBYwfbo7b_noZAhJAQq3uk-31ncY7IQYgBCXnK6IxRyk-gH8YZp7SjVCnxgBwyxVQtKG8P9pl9fkSOcv5KKWsaIQ9JvHBf1tUS7RqCs-Crt5iGmEYIFqtFHDcxu7JNoZ9siel5tZx8cfU1eI99tYBkYqhWEGKZDFYf1ojl5IXLI3h0o-vx58_-LsqPycMBfMYnv-4x-Xj26mpxUV--OX-9OL2sreRzUVuheIO8H9DIvjWqRWM7xoe-E6ajci4NyLalprcgKQAVwgIDzq0VtmuNEcfk2a53k-L3CXPRo8sWvYeAccq6kUK1jZLinpQ70qaYc8JBW1eguBhKAuc1o3o7r97Oq_fz3muzv7RNciOku38L3U64cR7v_kPr05dnyz_deue6XPB270L6plUjmrm-Xp3r1acrRpt373UnfgDDuqFq |
CitedBy_id | crossref_primary_10_1016_j_matdes_2016_12_085 crossref_primary_10_1155_2014_356273 crossref_primary_10_1177_18479804211001140 crossref_primary_10_1002_smll_201401465 crossref_primary_10_1039_c3ra00116d crossref_primary_10_1039_C8RA04718A crossref_primary_10_1016_j_carbon_2012_04_029 crossref_primary_10_1016_j_apsusc_2010_04_033 crossref_primary_10_5004_dwt_2017_21341 crossref_primary_10_1016_j_compscitech_2009_10_004 crossref_primary_10_1039_C4RA12026D crossref_primary_10_1557_mrs_2015_228 crossref_primary_10_1007_s10854_018_0368_3 crossref_primary_10_1007_s13233_014_2171_1 crossref_primary_10_1177_0731684415610919 crossref_primary_10_1016_j_compscitech_2013_08_034 crossref_primary_10_1016_j_matdes_2016_07_045 crossref_primary_10_1039_C5RA04043D crossref_primary_10_1109_TASE_2016_2599023 crossref_primary_10_1016_j_compositesa_2021_106409 crossref_primary_10_1155_2016_1052478 crossref_primary_10_1021_am402077d crossref_primary_10_1021_acs_langmuir_1c01800 crossref_primary_10_1177_0021998320981134 crossref_primary_10_1007_s12540_011_1001_7 crossref_primary_10_3390_nano12152558 crossref_primary_10_1002_adem_201500034 crossref_primary_10_1002_adem_201700647 crossref_primary_10_1002_pi_4256 crossref_primary_10_1016_j_compscitech_2017_07_021 crossref_primary_10_1016_j_ijsolstr_2016_11_020 crossref_primary_10_3390_coatings11020138 crossref_primary_10_1021_acsanm_3c01575 crossref_primary_10_1016_j_apsusc_2015_05_015 crossref_primary_10_1016_j_polymer_2019_01_031 crossref_primary_10_1002_app_48667 crossref_primary_10_1007_s00289_014_1096_3 crossref_primary_10_1016_j_carbon_2013_10_001 crossref_primary_10_1016_j_matdes_2017_08_035 crossref_primary_10_1002_adem_201900895 crossref_primary_10_1002_pat_1872 crossref_primary_10_1016_j_tsf_2013_02_010 crossref_primary_10_3390_nano13162339 crossref_primary_10_1038_srep11533 crossref_primary_10_1016_j_compscitech_2021_109136 crossref_primary_10_1088_0022_3727_47_40_405103 crossref_primary_10_1016_j_compscitech_2015_03_012 crossref_primary_10_1177_0954008320968917 crossref_primary_10_1016_j_mtcomm_2018_07_004 crossref_primary_10_1002_adfm_201703459 crossref_primary_10_1002_admi_201800107 crossref_primary_10_1007_s12274_023_6099_7 crossref_primary_10_1039_C3RA44777D crossref_primary_10_1016_j_compstruct_2020_112744 crossref_primary_10_1016_j_jeurceramsoc_2016_02_045 crossref_primary_10_1016_j_carbon_2024_118909 crossref_primary_10_1021_acsanm_0c03013 crossref_primary_10_1016_j_carbon_2014_08_082 crossref_primary_10_1039_C3RA45769A crossref_primary_10_1002_pc_23344 crossref_primary_10_1002_aelm_201800811 crossref_primary_10_1039_C5RA06009E crossref_primary_10_1177_0954008314533578 crossref_primary_10_1021_acsnano_5b00170 crossref_primary_10_1155_2012_365062 crossref_primary_10_1021_acsanm_0c03141 crossref_primary_10_1063_1_4919719 crossref_primary_10_1088_1361_6528_ab127f crossref_primary_10_1016_j_physb_2012_03_045 crossref_primary_10_1016_j_powtec_2011_11_004 crossref_primary_10_1016_j_carbon_2017_04_072 crossref_primary_10_1016_j_compositesb_2018_10_012 crossref_primary_10_1039_c3cc46150e crossref_primary_10_1038_s41427_023_00490_z crossref_primary_10_3390_polym5020847 crossref_primary_10_1155_2015_945091 crossref_primary_10_1007_s00366_021_01538_w crossref_primary_10_1002_adma_201200179 crossref_primary_10_1016_j_electacta_2019_135233 crossref_primary_10_1002_adem_201600130 crossref_primary_10_1016_j_carbon_2020_11_055 crossref_primary_10_1016_j_compscitech_2014_08_015 crossref_primary_10_1186_s10033_022_00826_w crossref_primary_10_1088_2053_1591_ab4385 crossref_primary_10_1016_j_compscitech_2018_04_003 crossref_primary_10_1038_s41563_020_00892_2 crossref_primary_10_1557_adv_2019_386 crossref_primary_10_1016_j_compscitech_2022_109501 crossref_primary_10_1016_j_compositesa_2016_02_003 crossref_primary_10_1021_acsami_5b12303 crossref_primary_10_1002_smll_201203252 crossref_primary_10_1016_j_carbon_2023_118530 crossref_primary_10_1016_j_compscitech_2023_110016 crossref_primary_10_1557_opl_2012_255 crossref_primary_10_1002_app_41557 crossref_primary_10_1061__ASCE_AS_1943_5525_0000558 crossref_primary_10_1016_j_carbon_2015_09_026 crossref_primary_10_3390_mi13111863 crossref_primary_10_1021_am403936n crossref_primary_10_6089_jscm_39_240 crossref_primary_10_1007_s41061_017_0102_2 crossref_primary_10_1016_j_compscitech_2013_01_003 crossref_primary_10_1016_j_carbon_2016_01_005 crossref_primary_10_2139_ssrn_4075459 crossref_primary_10_1016_j_carbon_2021_12_034 crossref_primary_10_1016_j_compscitech_2018_05_028 crossref_primary_10_1016_j_tsf_2018_02_016 crossref_primary_10_1016_j_compositesa_2014_07_004 crossref_primary_10_1088_1757_899X_87_1_012052 crossref_primary_10_1002_admi_201600352 crossref_primary_10_1016_j_carbon_2011_07_028 crossref_primary_10_1021_nn200201u crossref_primary_10_1039_C5RA10961B crossref_primary_10_1039_D1NJ05807J crossref_primary_10_1088_1674_1056_26_2_028802 crossref_primary_10_1016_j_compscitech_2011_07_023 crossref_primary_10_1002_marc_201400706 crossref_primary_10_1002_macp_201800328 crossref_primary_10_1016_j_compositesa_2016_06_001 crossref_primary_10_1016_j_mtchem_2022_101301 crossref_primary_10_1080_00401706_2019_1592783 crossref_primary_10_1134_S1063783415020031 crossref_primary_10_1016_j_compstruct_2016_12_014 crossref_primary_10_1016_j_progpolymsci_2016_12_002 crossref_primary_10_1016_j_carbon_2019_07_002 crossref_primary_10_3390_c5030035 crossref_primary_10_1088_2053_1591_aa55a4 crossref_primary_10_1002_adma_202201046 crossref_primary_10_1016_j_carbon_2016_09_010 crossref_primary_10_1002_adem_201400045 crossref_primary_10_1007_s11595_021_2465_z crossref_primary_10_1021_acsami_8b13643 crossref_primary_10_1039_c3tb00448a crossref_primary_10_1016_j_ceramint_2017_06_090 crossref_primary_10_1016_j_jmbbm_2019_02_023 crossref_primary_10_1016_j_addma_2016_06_008 crossref_primary_10_1016_j_compositesa_2011_11_003 crossref_primary_10_1016_j_compstruct_2018_01_033 crossref_primary_10_1080_21663831_2012_686586 crossref_primary_10_1039_C8RA01212A crossref_primary_10_1016_j_compositesa_2019_03_015 crossref_primary_10_1016_j_carbon_2019_01_073 crossref_primary_10_1021_acsanm_3c01266 crossref_primary_10_1016_j_carbon_2017_09_089 crossref_primary_10_1016_j_synthmet_2011_07_021 crossref_primary_10_1021_acs_nanolett_3c02707 crossref_primary_10_1103_PhysRevMaterials_1_056001 crossref_primary_10_1016_j_compositesa_2015_06_009 crossref_primary_10_1016_j_carbon_2015_04_026 crossref_primary_10_1016_j_carbon_2015_12_042 crossref_primary_10_1039_C3NR06704A crossref_primary_10_1007_s10853_015_8969_1 crossref_primary_10_1073_pnas_1719111115 crossref_primary_10_1017_S1431927616000805 crossref_primary_10_1016_j_colsurfa_2015_07_005 crossref_primary_10_1039_C6RA04513H crossref_primary_10_1039_C5RA13771C crossref_primary_10_1016_j_carbon_2011_12_046 crossref_primary_10_1080_0740817X_2011_649385 crossref_primary_10_1016_j_coco_2022_101198 crossref_primary_10_1002_adfm_201002442 crossref_primary_10_1039_C4TA06080F crossref_primary_10_1088_0957_4484_23_22_225701 crossref_primary_10_1016_j_polymer_2018_09_053 crossref_primary_10_1179_1753555715Y_0000000046 crossref_primary_10_1016_j_jhazmat_2019_121069 crossref_primary_10_1021_acsami_8b07556 crossref_primary_10_1016_j_compscitech_2019_107795 crossref_primary_10_1039_C5TA06169E crossref_primary_10_1039_C6TC02546C crossref_primary_10_1002_adfm_200902207 crossref_primary_10_1016_j_matdes_2016_11_109 crossref_primary_10_1016_j_compositesa_2023_107448 crossref_primary_10_1039_C4TA03183K crossref_primary_10_1002_smll_200901957 crossref_primary_10_1016_j_fuel_2018_03_034 crossref_primary_10_1021_acs_jpcc_0c03509 crossref_primary_10_1021_nn301321j crossref_primary_10_1002_adma_202008432 crossref_primary_10_1002_smll_201500111 crossref_primary_10_3390_ma14010106 crossref_primary_10_1016_j_compositesa_2010_04_018 crossref_primary_10_3390_jmmp1020022 crossref_primary_10_1177_0021998320960774 crossref_primary_10_1016_j_carbon_2015_01_014 crossref_primary_10_1016_j_carbon_2010_07_037 crossref_primary_10_1038_srep34632 crossref_primary_10_1016_j_compscitech_2018_06_002 crossref_primary_10_3390_nano12081251 crossref_primary_10_1016_j_compscitech_2011_08_009 crossref_primary_10_1016_j_carbon_2019_04_118 crossref_primary_10_1016_j_carbon_2014_02_068 crossref_primary_10_1088_0957_4484_22_48_485708 crossref_primary_10_1016_j_carbon_2019_04_113 crossref_primary_10_1016_j_compositesa_2011_12_029 crossref_primary_10_1021_nn504927e crossref_primary_10_1016_j_ceramint_2016_05_078 crossref_primary_10_1080_15376494_2020_1842950 crossref_primary_10_4028_www_scientific_net_MSF_817_803 crossref_primary_10_1016_j_carbon_2011_06_089 crossref_primary_10_1016_j_cej_2021_130655 crossref_primary_10_1088_2053_1591_aaa0b2 crossref_primary_10_1016_j_pnsc_2022_01_005 crossref_primary_10_1177_0021998316667541 crossref_primary_10_1186_s11671_024_04087_5 crossref_primary_10_1021_acsnano_0c03268 crossref_primary_10_1016_j_coco_2019_06_001 crossref_primary_10_1039_c3ra41990h crossref_primary_10_1088_0957_4484_23_7_075501 crossref_primary_10_1016_j_eml_2023_102108 crossref_primary_10_1016_j_compscitech_2015_06_014 crossref_primary_10_1016_j_compositesb_2024_111770 crossref_primary_10_1109_TNANO_2020_2989397 crossref_primary_10_1016_j_compscitech_2010_07_020 crossref_primary_10_1016_j_compscitech_2011_11_007 crossref_primary_10_1177_0731684416684020 crossref_primary_10_1039_C7RA06328H crossref_primary_10_1177_0954008316673418 crossref_primary_10_1016_j_compositesa_2014_05_009 crossref_primary_10_5714_CL_2012_13_4_243 crossref_primary_10_1002_app_36366 crossref_primary_10_1016_j_compscitech_2018_02_009 crossref_primary_10_1002_adem_201400306 crossref_primary_10_1021_cm101785t crossref_primary_10_1002_bkcs_11104 crossref_primary_10_1007_s10854_020_03097_0 crossref_primary_10_1116_1_4861370 crossref_primary_10_1016_j_tws_2020_107264 crossref_primary_10_1021_acsanm_3c00832 crossref_primary_10_1039_c3ra42065e crossref_primary_10_3390_polym11060977 crossref_primary_10_1039_c2ra23179d crossref_primary_10_1016_j_carbon_2017_06_028 crossref_primary_10_1021_am5046718 crossref_primary_10_1016_j_synthmet_2015_03_005 crossref_primary_10_1021_acsami_1c20491 crossref_primary_10_1002_pc_22861 crossref_primary_10_1021_acs_nanolett_5b03863 crossref_primary_10_1007_s10854_021_05475_8 crossref_primary_10_1016_j_compositesb_2015_09_012 crossref_primary_10_1002_adma_201902028 crossref_primary_10_1080_03602559_2017_1289407 crossref_primary_10_1016_j_compositesa_2021_106359 crossref_primary_10_1039_C6RA10397A crossref_primary_10_1016_j_compositesa_2014_05_013 crossref_primary_10_1088_0957_4484_23_43_435706 crossref_primary_10_1016_j_mser_2014_08_002 crossref_primary_10_3390_nano10020365 crossref_primary_10_1039_c2jm15359a crossref_primary_10_1039_C4NR06401A crossref_primary_10_1016_j_compositesa_2013_08_011 crossref_primary_10_1016_j_porgcoat_2016_02_009 crossref_primary_10_1016_j_compscitech_2020_108472 crossref_primary_10_1177_0731684412468799 crossref_primary_10_1002_pc_22298 crossref_primary_10_1557_jmr_2015_160 crossref_primary_10_3390_polym13071047 |
Cites_doi | 10.1126/science.1104276 10.1002/adfm.200400525 10.1038/423703a 10.1016/S1748-0132(08)70062-8 10.1126/science.287.5453.637 10.1126/science.1153911 10.1038/433476a 10.1016/S0009-2614(03)01287-9 10.1088/0957-4484/17/6/003 10.1038/4471066a 10.1126/science.290.5495.1331 10.1126/science.273.5274.483 10.1016/S0009-2614(01)00072-0 10.1007/s003390050734 10.1038/419801a 10.1557/jmr.2008.0356 10.1016/j.compositesb.2005.02.004 10.1002/adma.200502528 10.1016/j.compositesa.2003.09.029 10.1103/PhysRevB.59.R2514 10.1126/science.1147635 10.1063/1.1536733 10.1016/j.polymer.2009.02.030 10.1063/1.1497706 10.1126/science.1115311 10.1126/science.1066996 10.1126/science.1101398 10.1126/science.1094982 |
ContentType | Journal Article |
Copyright | Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.200900663 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 3225 |
ExternalDocumentID | 10_1002_adfm_200900663 ADFM200900663 ark_67375_WNG_NVT107QR_9 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4253-c3627e2dfeb4d8b68ebc912fd93b90454ba4880bdca40aa033ca1a22cc3c98bb3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 03:39:49 EDT 2025 Tue Jul 01 01:29:52 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Wed Jan 22 16:21:12 EST 2025 Wed Oct 30 09:57:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4253-c3627e2dfeb4d8b68ebc912fd93b90454ba4880bdca40aa033ca1a22cc3c98bb3 |
Notes | istex:38231112CC259559F90716A492CF5813434C5A04 ark:/67375/WNG-NVT107QR-9 ArticleID:ADFM200900663 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 743687643 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_743687643 crossref_citationtrail_10_1002_adfm_200900663 crossref_primary_10_1002_adfm_200900663 wiley_primary_10_1002_adfm_200900663_ADFM200900663 istex_primary_ark_67375_WNG_NVT107QR_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 23, 2009 |
PublicationDateYYYYMMDD | 2009-10-23 |
PublicationDate_xml | – month: 10 year: 2009 text: October 23, 2009 day: 23 |
PublicationDecade | 2000 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2009 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 1999, 59, R2514. H. G. Chae, S. Kumar, Science 2008, 319, 908. S. Pegel, P. Pötschke, T. Villmow, D. Stoyan, G. Heinrich, Polymer 2009, 50, 2123. M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358. Q. F. Cheng, J. W. Bao, X. P. Wang, R. Liang, C. Zhang, B. Wang, SAMPE 09, Baltimore, USA 2009, Paper ID 201. K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, Science 2007, 318, 1892. D. A. Walters, M. J. Casavant, X. C. Qin, C. B. Huffman, P. J. Boul, L. M. Ericson, E. H. Haroz, M. J. O'Connell, K. Smith, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 2001, 338, 14. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 2000, 287, 637. S. R. Wang, Z. Y. Liang, T. Liu, B. Wang, C. Zhang, Nanotechnology 2006, 17, 1551. X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, S. S. Fan, Adv. Mater. 2006, 18, 1505. J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy, R. Haggenmueller, M. J. Casavant, D. E. Walters, R. E. Smalley, J. Appl. Phys. 2003, 93, 2157. L. Liu, A. H. Barber, S. Nuriel, H. D. Wagner, Adv. Funct. Mater. 2005, 15, 975. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, Science 2005, 309, 1215. P. M. Ajayan, J. M. Tour, Nature 2007, 447, 1066. A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman, Nature 2003, 423, 703. Q. F. Cheng, J. P. Wang, K. L. Jiang, Q. Q. Li, S. S. Fan, J. Mater. Res. 2008, 23, 2975. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan, Science 2002, 296, 884. Y. L. Li, I. A. Kinloch, A. H. Windle, Science 2004, 304, 276. K. Jiang, Q. Li, S. Fan, Nature 2002, 419, 801. J. Gou, Z. Liang, C. Zhang, B. Wang, Compos. Part. B-Eng. 2005, 36, 524-533. M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, M. Terrones, M. S. Dresselhaus, Nature 2005, 433, 476. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483. T. Liu, S. Kumar, Chem. Phys. Lett. 2003, 378, 257. B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier, Appl. Phys. Lett. 2002, 81, 1210. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley, Appl. Phys. A-Mater. 1998, 67, 29. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science 2000, 290, 1331. Z. Wang, Z. Y. Liang, B. Wang, C. Zhang, L. Kramer, Compos. Part. A-Appl. S 2004, 35, 1225. N. Behabtu, M. J. Green, M. Pasquali, Nano Today 2008, 3, 24. L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W.-F. Hwang, R. H. Hauge, J. E. Fischer, R. E. Smalley, Science 2004, 305, 1447. 2007; 447 2002; 296 2005; 433 2006; 17 2009 2008 2006; 18 2007 2002; 81 2002; 419 2008; 3 2003; 93 2004; 306 2003; 378 2004; 305 2004; 304 1998; 67 2000; 290 2009; 50 1999; 59 2008; 319 2004; 35 2008; 23 2005; 309 2000; 287 1996; 273 2003; 423 2005; 15 2001; 338 2007; 318 2005; 36 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 Cheng Q. F. (e_1_2_1_30_2) 2009 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_1_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science 2000, 290, 1331. – reference: X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, S. S. Fan, Adv. Mater. 2006, 18, 1505. – reference: P. M. Ajayan, J. M. Tour, Nature 2007, 447, 1066. – reference: Y. L. Li, I. A. Kinloch, A. H. Windle, Science 2004, 304, 276. – reference: J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 1999, 59, R2514. – reference: S. Pegel, P. Pötschke, T. Villmow, D. Stoyan, G. Heinrich, Polymer 2009, 50, 2123. – reference: H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan, Science 2002, 296, 884. – reference: A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman, Nature 2003, 423, 703. – reference: M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, M. Terrones, M. S. Dresselhaus, Nature 2005, 433, 476. – reference: M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358. – reference: T. Liu, S. Kumar, Chem. Phys. Lett. 2003, 378, 257. – reference: L. Liu, A. H. Barber, S. Nuriel, H. D. Wagner, Adv. Funct. Mater. 2005, 15, 975. – reference: K. Jiang, Q. Li, S. Fan, Nature 2002, 419, 801. – reference: S. R. Wang, Z. Y. Liang, T. Liu, B. Wang, C. Zhang, Nanotechnology 2006, 17, 1551. – reference: A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483. – reference: J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy, R. Haggenmueller, M. J. Casavant, D. E. Walters, R. E. Smalley, J. Appl. Phys. 2003, 93, 2157. – reference: B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier, Appl. Phys. Lett. 2002, 81, 1210. – reference: J. Gou, Z. Liang, C. Zhang, B. Wang, Compos. Part. B-Eng. 2005, 36, 524-533. – reference: Z. Wang, Z. Y. Liang, B. Wang, C. Zhang, L. Kramer, Compos. Part. A-Appl. S 2004, 35, 1225. – reference: N. Behabtu, M. J. Green, M. Pasquali, Nano Today 2008, 3, 24. – reference: M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 2000, 287, 637. – reference: H. G. Chae, S. Kumar, Science 2008, 319, 908. – reference: M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, Science 2005, 309, 1215. – reference: A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley, Appl. Phys. A-Mater. 1998, 67, 29. – reference: Q. F. Cheng, J. W. Bao, X. P. Wang, R. Liang, C. Zhang, B. Wang, SAMPE 09, Baltimore, USA 2009, Paper ID 201. – reference: Q. F. Cheng, J. P. Wang, K. L. Jiang, Q. Q. Li, S. S. Fan, J. Mater. Res. 2008, 23, 2975. – reference: L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W.-F. Hwang, R. H. Hauge, J. E. Fischer, R. E. Smalley, Science 2004, 305, 1447. – reference: K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, Science 2007, 318, 1892. – reference: D. A. Walters, M. J. Casavant, X. C. Qin, C. B. Huffman, P. J. Boul, L. M. Ericson, E. H. Haroz, M. J. O'Connell, K. Smith, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 2001, 338, 14. – year: 2009 – volume: 419 start-page: 801 year: 2002 publication-title: Nature – volume: 306 start-page: 1358 year: 2004 publication-title: Science – volume: 309 start-page: 1215 year: 2005 publication-title: Science – volume: 81 start-page: 1210 year: 2002 publication-title: Appl. Phys. Lett. – volume: 338 start-page: 14 year: 2001 publication-title: Chem. Phys. Lett. – volume: 35 start-page: 1225 year: 2004 publication-title: Compos. Part. A‐Appl. S – year: 2007 – volume: 93 start-page: 2157 year: 2003 publication-title: J. Appl. Phys. – volume: 447 start-page: 1066 year: 2007 publication-title: Nature – volume: 23 start-page: 2975 year: 2008 publication-title: J. Mater. Res. – volume: 59 start-page: R2514 year: 1999 publication-title: Phys. Rev. B – volume: 378 start-page: 257 year: 2003 publication-title: Chem. Phys. Lett. – volume: 296 start-page: 884 year: 2002 publication-title: Science – volume: 17 start-page: 1551 year: 2006 publication-title: Nanotechnology – volume: 423 start-page: 703 year: 2003 publication-title: Nature – volume: 3 start-page: 24 year: 2008 publication-title: Nano Today – volume: 319 start-page: 908 year: 2008 publication-title: Science – volume: 305 start-page: 1447 year: 2004 publication-title: Science – volume: 290 start-page: 1331 year: 2000 publication-title: Science – volume: 18 start-page: 1505 year: 2006 publication-title: Adv. Mater. – volume: 287 start-page: 637 year: 2000 publication-title: Science – volume: 36 start-page: 524 year: 2005 end-page: 533 publication-title: Compos. Part. B‐Eng. – year: 2008 – volume: 67 start-page: 29 year: 1998 publication-title: Appl. Phys. A‐Mater. – volume: 50 start-page: 2123 year: 2009 publication-title: Polymer – volume: 433 start-page: 476 year: 2005 publication-title: Nature – volume: 273 start-page: 483 year: 1996 publication-title: Science – volume: 15 start-page: 975 year: 2005 publication-title: Adv. Funct. Mater. – volume: 318 start-page: 1892 year: 2007 publication-title: Science – volume: 304 start-page: 276 year: 2004 publication-title: Science – ident: e_1_2_1_12_2 doi: 10.1126/science.1104276 – ident: e_1_2_1_28_2 doi: 10.1002/adfm.200400525 – ident: e_1_2_1_8_2 doi: 10.1038/423703a – ident: e_1_2_1_4_2 doi: 10.1016/S1748-0132(08)70062-8 – ident: e_1_2_1_1_2 doi: 10.1126/science.287.5453.637 – volume-title: SAMPE 09 year: 2009 ident: e_1_2_1_30_2 – ident: e_1_2_1_5_2 doi: 10.1126/science.1153911 – ident: e_1_2_1_22_2 doi: 10.1038/433476a – ident: e_1_2_1_20_2 doi: 10.1016/S0009-2614(03)01287-9 – ident: e_1_2_1_29_2 doi: 10.1088/0957-4484/17/6/003 – ident: e_1_2_1_27_2 doi: 10.1038/4471066a – ident: e_1_2_1_6_2 doi: 10.1126/science.290.5495.1331 – ident: e_1_2_1_2_2 doi: 10.1126/science.273.5274.483 – ident: e_1_2_1_17_2 doi: 10.1016/S0009-2614(01)00072-0 – ident: e_1_2_1_33_2 – ident: e_1_2_1_21_2 doi: 10.1007/s003390050734 – ident: e_1_2_1_9_2 doi: 10.1038/419801a – ident: e_1_2_1_32_2 – ident: e_1_2_1_26_2 doi: 10.1557/jmr.2008.0356 – ident: e_1_2_1_31_2 doi: 10.1016/j.compositesb.2005.02.004 – ident: e_1_2_1_10_2 doi: 10.1002/adma.200502528 – ident: e_1_2_1_25_2 doi: 10.1016/j.compositesa.2003.09.029 – ident: e_1_2_1_3_2 doi: 10.1103/PhysRevB.59.R2514 – ident: e_1_2_1_15_2 doi: 10.1126/science.1147635 – ident: e_1_2_1_16_2 – ident: e_1_2_1_18_2 doi: 10.1063/1.1536733 – ident: e_1_2_1_24_2 doi: 10.1016/j.polymer.2009.02.030 – ident: e_1_2_1_7_2 doi: 10.1063/1.1497706 – ident: e_1_2_1_19_2 – ident: e_1_2_1_23_2 doi: 10.1126/science.1115311 – ident: e_1_2_1_11_2 doi: 10.1126/science.1066996 – ident: e_1_2_1_13_2 doi: 10.1126/science.1101398 – ident: e_1_2_1_14_2 doi: 10.1126/science.1094982 |
SSID | ssj0017734 |
Score | 2.480541 |
Snippet | Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (∼60 wt%) of aligned MWNTs are... Multi-walled carbon nanotube (MWNT)-sheet-reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (60 wt%) of aligned MWNTs are... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3219 |
SubjectTerms | Bismaleimide resin Carbon nanotubes Composites Electrical conductivity Mechanical properties Nanotube alignment |
Title | High Mechanical Performance Composite Conductor: Multi-Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites |
URI | https://api.istex.fr/ark:/67375/WNG-NVT107QR-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.200900663 https://www.proquest.com/docview/743687643 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQXOCw_GvLn3xAyyk0sZs44VYKBSG1YllYerNsxxEVkECbSogTj8Az8iR4nCa0SGilRbkkih0nHs_MF3vmM0K7ETWHUMwRQZQ4DR1QR4SBEUhMtBtC8J-C3OFONzi9apz1_N5EFn_BD1FNuIFmWHsNCi7ksP5BGirixGaSR9ZrGiMMAVuAii4q_iiPsWJZOfAgwMvrlayNLqlPV5_ySnPQwU9TkHMSuFrP015EonznIuDkdn-Uy331_InO8TsftYR-jGEpbhbjaBnN6HQFLUyQFa6iRwgJwR0NqcIgWXz-kXOAwaxA-BecpUAhmw0OsE3ufXt5hcl6HeOWGMgsxcaeZ_lIavznRuu8ftgf3hsn1b_vx9reU-Wjhmvoqn182Tp1xhs2OMqoPnWU8YZMkzjRshGHMgi1VJFHkjiiMgKuPynAXshYiYYrhEupEp4gRCmqolBKuo5m0yzVPxFmNGGBNHDPp8Anw0Lls0RBYlJCXOX5NeSUAuNqzGYOm2rc8YKHmXDoSl51ZQ3tVeUfCh6PL0v-svKvionBLUS_MZ9fd0949--l-WP-fcGjGsLlAOFGJ2GhRaQ6Gw05A1p_ZrBeDREr7X80yZtH7U51tfE_lTbRvF3nMl6V0C00mw9GetvApVzuWJV4B9YEDeI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD4a8AA87D6tsIsf0HgKTewmTvbG2LoyaAWsDN4s23FEBSSjTaVpT_sJ-437JfNxmkAnoUmgvCSKnYuPz8X2dz4DbCTMHlJzT0ZJ5nVMxDwZR1YgKTV-jOA_jbnD_UHUO-58OQ1rNCHmwlT8EM2EG2qGs9eo4Dgh3b5mDZVp5lLJE-c2F2AJt_V2o6qjhkEq4LxaWI4ChHgFpzVvo0_b8_Xn_NISNvGPuaDzZujqfE_3Eaj6qyvIyfnWtFRb-uc_hI73-q3H8HAWmZLtqis9gQcmfwqrN_gKn8EVokJI32C2MAqXHFynHRC0LIgAw7McWWSL8Xvi8nv__PqN8_UmJTtyrIqcWJNelFNlyNczY8r2h9Hk0vqp0eUoNe6erh81eQ7H3U_DnZ4327PB01b7maetQ-SGpplRnTRWUWyUTgKapQlTCdL9KYkmQ6Vadnwpfca0DCSlWjOdxEqxF7CYF7l5CYSzjEfKRnwhQ0oZHuuQZxpzkzLq6yBsgVdLTOgZoTnuq3EhKipmKrApRdOULdhsyn-vqDxuLfnOdYCmmByfIwCOh-Jk8FkMvg3toPnwSCQtIHUPEVYtca1F5qaYTgRHZn9uw70WUCfu_7xSbH_s9purtbtUegvLvWF_X-zvDvbWYcUte1knS9krWCzHU_PaRk-leuP04y-pGBH9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CTULwwB3RcfMDgqesiZ3ECW9jpYxLqzE21jfLt4hqWzLaVEI88RP4jfwSfJwma5EQEigviWLHiY_PJfb5PgM8zZk7pOaBTPMiiG3KApmlTiCG2jDD5D-N2OHRON07it9OkskKir_hh-gm3FAzvL1GBT83Rf-CNFSawiPJc-81L8NmnIYZjuvBQUcgFXHerCunEWZ4RZOWtjGk_fX6a25pE3v461rMuRq5etczvAGyfekm4-Rke1Grbf3tNz7H__mqm3B9GZeSnWYg3YJLtrwN11bYCu_AF8wJISOLWGEULdm_AB0QtCuY_4VnJXLIVrMXxKN7f37_gbP11pBdOVNVSZxBr-qFsuTjZ2vr_svp_Mx5qenZ1Fh_T7ePmt-Fo-Grw929YLljQ6Cd7rNAO3fILTWFVbHJVJpZpfOIFiZnKkeyPyXRYCijZRxKGTKmZSQp1ZrpPFOK3YONsirtfSCcFTxVLt5LGBLK8EwnvNCITCpoqKOkB0ErMKGXdOa4q8apaIiYqcCuFF1X9uB5V_68IfL4Y8lnXv5dMTk7wfQ3nojj8Wsx_nTofpk_HIi8B6QdIMIpJa60yNJWi7ngyOvPXbDXA-ql_Zcmxc5gOOqutv6l0hO4sj8Yivdvxu8ewFW_5uU8LGUPYaOeLewjFzrV6rHXjl-A2hC1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Mechanical+Performance+Composite+Conductor%3A+Multi-Walled+Carbon+Nanotube+Sheet%2FBismaleimide+Nanocomposites&rft.jtitle=Advanced+functional+materials&rft.au=Cheng%2C+Qunfeng&rft.au=Bao%2C+Jianwen&rft.au=Park%2C+JinGyu&rft.au=Liang%2C+Zhiyong&rft.date=2009-10-23&rft.pub=WILEY-VCH+Verlag&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=19&rft.issue=20&rft.spage=3219&rft.epage=3225&rft_id=info:doi/10.1002%2Fadfm.200900663&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NVT107QR_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |