High Mechanical Performance Composite Conductor: Multi-Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites

Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (∼60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre‐resin impregnation) processes on initially randomly dispersed, comm...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 19; no. 20; pp. 3219 - 3225
Main Authors Cheng, Qunfeng, Bao, Jianwen, Park, JinGyu, Liang, Zhiyong, Zhang, Chuck, Wang, Ben
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 23.10.2009
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (∼60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre‐resin impregnation) processes on initially randomly dispersed, commercially available sheets of millimeter‐long MWNTs leads to substantial alignment enhancement, good dispersion, and high packing density of nanotubes in the resultant nanocomposites. The tensile strength and Young's modulus of the nanocomposites reaches 2 088 MPa and 169 GPa, respectively, which are very high experimental results and comparable to the state‐of‐the‐art unidirectional IM7 carbon‐fiber‐reinforced composites for high‐performance structural applications. The nanocomposites demonstrate unprecedentedly high electrical conductivity of 5 500 S cm−1 along the alignment direction. Such unique integration of high mechanical properties and electrical conductance opens the door for developing polymeric composite conductors and eventually structural composites with multifunctionalities. New fracture morphology and failure modes due to self‐assembly and spreading of MWNT bundles are also observed. High concentration (∼60wt%) multi‐walled carbon nanotube sheet/bismaleimide composites are fabricated using simple mechanical stretching and prepregging methods, resulting in unprecedentedly high electrical conductivity (5 500 S cm−1) and mechanical properties (strength of 2 088 MPa and modulus of 169 GPa) comparable to those of unidirectional carbon fiber‐reinforced composites for high‐performance structural and multifunctional applications.
AbstractList Multi-walled carbon nanotube (MWNT)-sheet-reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre-resin impregnation) processes on initially randomly dispersed, commercially available sheets of millimeter-long MWNTs leads to substantial alignment enhancement, good dispersion, and high packing density of nanotubes in the resultant nanocomposites. The tensile strength and Young's modulus of the nanocomposites reaches 2 088 MPa and 169 GPa, respectively, which are very high experimental results and comparable to the state-of-the-art unidirectional IM7 carbon-fiber-reinforced composites for high-performance structural applications. The nanocomposites demonstrate unprecedentedly high electrical conductivity of 5 500 S cm-1 along the alignment direction. Such unique integration of high mechanical properties and electrical conductance opens the door for developing polymeric composite conductors and eventually structural composites with multifunctionalities. New fracture morphology and failure modes due to self-assembly and spreading of MWNT bundles are also observed.
Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (∼60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre‐resin impregnation) processes on initially randomly dispersed, commercially available sheets of millimeter‐long MWNTs leads to substantial alignment enhancement, good dispersion, and high packing density of nanotubes in the resultant nanocomposites. The tensile strength and Young's modulus of the nanocomposites reaches 2 088 MPa and 169 GPa, respectively, which are very high experimental results and comparable to the state‐of‐the‐art unidirectional IM7 carbon‐fiber‐reinforced composites for high‐performance structural applications. The nanocomposites demonstrate unprecedentedly high electrical conductivity of 5 500 S cm−1 along the alignment direction. Such unique integration of high mechanical properties and electrical conductance opens the door for developing polymeric composite conductors and eventually structural composites with multifunctionalities. New fracture morphology and failure modes due to self‐assembly and spreading of MWNT bundles are also observed. High concentration (∼60wt%) multi‐walled carbon nanotube sheet/bismaleimide composites are fabricated using simple mechanical stretching and prepregging methods, resulting in unprecedentedly high electrical conductivity (5 500 S cm−1) and mechanical properties (strength of 2 088 MPa and modulus of 169 GPa) comparable to those of unidirectional carbon fiber‐reinforced composites for high‐performance structural and multifunctional applications.
Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (∼60 wt%) of aligned MWNTs are successfully fabricated. Applying simple mechanical stretching and prepregging (pre‐resin impregnation) processes on initially randomly dispersed, commercially available sheets of millimeter‐long MWNTs leads to substantial alignment enhancement, good dispersion, and high packing density of nanotubes in the resultant nanocomposites. The tensile strength and Young's modulus of the nanocomposites reaches 2 088 MPa and 169 GPa, respectively, which are very high experimental results and comparable to the state‐of‐the‐art unidirectional IM7 carbon‐fiber‐reinforced composites for high‐performance structural applications. The nanocomposites demonstrate unprecedentedly high electrical conductivity of 5 500 S cm −1 along the alignment direction. Such unique integration of high mechanical properties and electrical conductance opens the door for developing polymeric composite conductors and eventually structural composites with multifunctionalities. New fracture morphology and failure modes due to self‐assembly and spreading of MWNT bundles are also observed.
Author Cheng, Qunfeng
Liang, Zhiyong
Bao, Jianwen
Wang, Ben
Park, JinGyu
Zhang, Chuck
Author_xml – sequence: 1
  givenname: Qunfeng
  surname: Cheng
  fullname: Cheng, Qunfeng
  organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA)
– sequence: 2
  givenname: Jianwen
  surname: Bao
  fullname: Bao, Jianwen
  organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA)
– sequence: 3
  givenname: JinGyu
  surname: Park
  fullname: Park, JinGyu
  organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA)
– sequence: 4
  givenname: Zhiyong
  surname: Liang
  fullname: Liang, Zhiyong
  email: liang@eng.fsu.edu
  organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA)
– sequence: 5
  givenname: Chuck
  surname: Zhang
  fullname: Zhang, Chuck
  organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA)
– sequence: 6
  givenname: Ben
  surname: Wang
  fullname: Wang, Ben
  organization: High-Performance Materials Institute (HPMI) Florida State University Tallahassee, FL 32310 (USA)
BookMark eNqFkEtvEzEUhS1UJNrClvXsWE3qVzwz7EqgLVITXoWys649d4jBYwfbo7b_noZAhJAQq3uk-31ncY7IQYgBCXnK6IxRyk-gH8YZp7SjVCnxgBwyxVQtKG8P9pl9fkSOcv5KKWsaIQ9JvHBf1tUS7RqCs-Crt5iGmEYIFqtFHDcxu7JNoZ9siel5tZx8cfU1eI99tYBkYqhWEGKZDFYf1ojl5IXLI3h0o-vx58_-LsqPycMBfMYnv-4x-Xj26mpxUV--OX-9OL2sreRzUVuheIO8H9DIvjWqRWM7xoe-E6ajci4NyLalprcgKQAVwgIDzq0VtmuNEcfk2a53k-L3CXPRo8sWvYeAccq6kUK1jZLinpQ70qaYc8JBW1eguBhKAuc1o3o7r97Oq_fz3muzv7RNciOku38L3U64cR7v_kPr05dnyz_deue6XPB270L6plUjmrm-Xp3r1acrRpt373UnfgDDuqFq
CitedBy_id crossref_primary_10_1016_j_matdes_2016_12_085
crossref_primary_10_1155_2014_356273
crossref_primary_10_1177_18479804211001140
crossref_primary_10_1002_smll_201401465
crossref_primary_10_1039_c3ra00116d
crossref_primary_10_1039_C8RA04718A
crossref_primary_10_1016_j_carbon_2012_04_029
crossref_primary_10_1016_j_apsusc_2010_04_033
crossref_primary_10_5004_dwt_2017_21341
crossref_primary_10_1016_j_compscitech_2009_10_004
crossref_primary_10_1039_C4RA12026D
crossref_primary_10_1557_mrs_2015_228
crossref_primary_10_1007_s10854_018_0368_3
crossref_primary_10_1007_s13233_014_2171_1
crossref_primary_10_1177_0731684415610919
crossref_primary_10_1016_j_compscitech_2013_08_034
crossref_primary_10_1016_j_matdes_2016_07_045
crossref_primary_10_1039_C5RA04043D
crossref_primary_10_1109_TASE_2016_2599023
crossref_primary_10_1016_j_compositesa_2021_106409
crossref_primary_10_1155_2016_1052478
crossref_primary_10_1021_am402077d
crossref_primary_10_1021_acs_langmuir_1c01800
crossref_primary_10_1177_0021998320981134
crossref_primary_10_1007_s12540_011_1001_7
crossref_primary_10_3390_nano12152558
crossref_primary_10_1002_adem_201500034
crossref_primary_10_1002_adem_201700647
crossref_primary_10_1002_pi_4256
crossref_primary_10_1016_j_compscitech_2017_07_021
crossref_primary_10_1016_j_ijsolstr_2016_11_020
crossref_primary_10_3390_coatings11020138
crossref_primary_10_1021_acsanm_3c01575
crossref_primary_10_1016_j_apsusc_2015_05_015
crossref_primary_10_1016_j_polymer_2019_01_031
crossref_primary_10_1002_app_48667
crossref_primary_10_1007_s00289_014_1096_3
crossref_primary_10_1016_j_carbon_2013_10_001
crossref_primary_10_1016_j_matdes_2017_08_035
crossref_primary_10_1002_adem_201900895
crossref_primary_10_1002_pat_1872
crossref_primary_10_1016_j_tsf_2013_02_010
crossref_primary_10_3390_nano13162339
crossref_primary_10_1038_srep11533
crossref_primary_10_1016_j_compscitech_2021_109136
crossref_primary_10_1088_0022_3727_47_40_405103
crossref_primary_10_1016_j_compscitech_2015_03_012
crossref_primary_10_1177_0954008320968917
crossref_primary_10_1016_j_mtcomm_2018_07_004
crossref_primary_10_1002_adfm_201703459
crossref_primary_10_1002_admi_201800107
crossref_primary_10_1007_s12274_023_6099_7
crossref_primary_10_1039_C3RA44777D
crossref_primary_10_1016_j_compstruct_2020_112744
crossref_primary_10_1016_j_jeurceramsoc_2016_02_045
crossref_primary_10_1016_j_carbon_2024_118909
crossref_primary_10_1021_acsanm_0c03013
crossref_primary_10_1016_j_carbon_2014_08_082
crossref_primary_10_1039_C3RA45769A
crossref_primary_10_1002_pc_23344
crossref_primary_10_1002_aelm_201800811
crossref_primary_10_1039_C5RA06009E
crossref_primary_10_1177_0954008314533578
crossref_primary_10_1021_acsnano_5b00170
crossref_primary_10_1155_2012_365062
crossref_primary_10_1021_acsanm_0c03141
crossref_primary_10_1063_1_4919719
crossref_primary_10_1088_1361_6528_ab127f
crossref_primary_10_1016_j_physb_2012_03_045
crossref_primary_10_1016_j_powtec_2011_11_004
crossref_primary_10_1016_j_carbon_2017_04_072
crossref_primary_10_1016_j_compositesb_2018_10_012
crossref_primary_10_1039_c3cc46150e
crossref_primary_10_1038_s41427_023_00490_z
crossref_primary_10_3390_polym5020847
crossref_primary_10_1155_2015_945091
crossref_primary_10_1007_s00366_021_01538_w
crossref_primary_10_1002_adma_201200179
crossref_primary_10_1016_j_electacta_2019_135233
crossref_primary_10_1002_adem_201600130
crossref_primary_10_1016_j_carbon_2020_11_055
crossref_primary_10_1016_j_compscitech_2014_08_015
crossref_primary_10_1186_s10033_022_00826_w
crossref_primary_10_1088_2053_1591_ab4385
crossref_primary_10_1016_j_compscitech_2018_04_003
crossref_primary_10_1038_s41563_020_00892_2
crossref_primary_10_1557_adv_2019_386
crossref_primary_10_1016_j_compscitech_2022_109501
crossref_primary_10_1016_j_compositesa_2016_02_003
crossref_primary_10_1021_acsami_5b12303
crossref_primary_10_1002_smll_201203252
crossref_primary_10_1016_j_carbon_2023_118530
crossref_primary_10_1016_j_compscitech_2023_110016
crossref_primary_10_1557_opl_2012_255
crossref_primary_10_1002_app_41557
crossref_primary_10_1061__ASCE_AS_1943_5525_0000558
crossref_primary_10_1016_j_carbon_2015_09_026
crossref_primary_10_3390_mi13111863
crossref_primary_10_1021_am403936n
crossref_primary_10_6089_jscm_39_240
crossref_primary_10_1007_s41061_017_0102_2
crossref_primary_10_1016_j_compscitech_2013_01_003
crossref_primary_10_1016_j_carbon_2016_01_005
crossref_primary_10_2139_ssrn_4075459
crossref_primary_10_1016_j_carbon_2021_12_034
crossref_primary_10_1016_j_compscitech_2018_05_028
crossref_primary_10_1016_j_tsf_2018_02_016
crossref_primary_10_1016_j_compositesa_2014_07_004
crossref_primary_10_1088_1757_899X_87_1_012052
crossref_primary_10_1002_admi_201600352
crossref_primary_10_1016_j_carbon_2011_07_028
crossref_primary_10_1021_nn200201u
crossref_primary_10_1039_C5RA10961B
crossref_primary_10_1039_D1NJ05807J
crossref_primary_10_1088_1674_1056_26_2_028802
crossref_primary_10_1016_j_compscitech_2011_07_023
crossref_primary_10_1002_marc_201400706
crossref_primary_10_1002_macp_201800328
crossref_primary_10_1016_j_compositesa_2016_06_001
crossref_primary_10_1016_j_mtchem_2022_101301
crossref_primary_10_1080_00401706_2019_1592783
crossref_primary_10_1134_S1063783415020031
crossref_primary_10_1016_j_compstruct_2016_12_014
crossref_primary_10_1016_j_progpolymsci_2016_12_002
crossref_primary_10_1016_j_carbon_2019_07_002
crossref_primary_10_3390_c5030035
crossref_primary_10_1088_2053_1591_aa55a4
crossref_primary_10_1002_adma_202201046
crossref_primary_10_1016_j_carbon_2016_09_010
crossref_primary_10_1002_adem_201400045
crossref_primary_10_1007_s11595_021_2465_z
crossref_primary_10_1021_acsami_8b13643
crossref_primary_10_1039_c3tb00448a
crossref_primary_10_1016_j_ceramint_2017_06_090
crossref_primary_10_1016_j_jmbbm_2019_02_023
crossref_primary_10_1016_j_addma_2016_06_008
crossref_primary_10_1016_j_compositesa_2011_11_003
crossref_primary_10_1016_j_compstruct_2018_01_033
crossref_primary_10_1080_21663831_2012_686586
crossref_primary_10_1039_C8RA01212A
crossref_primary_10_1016_j_compositesa_2019_03_015
crossref_primary_10_1016_j_carbon_2019_01_073
crossref_primary_10_1021_acsanm_3c01266
crossref_primary_10_1016_j_carbon_2017_09_089
crossref_primary_10_1016_j_synthmet_2011_07_021
crossref_primary_10_1021_acs_nanolett_3c02707
crossref_primary_10_1103_PhysRevMaterials_1_056001
crossref_primary_10_1016_j_compositesa_2015_06_009
crossref_primary_10_1016_j_carbon_2015_04_026
crossref_primary_10_1016_j_carbon_2015_12_042
crossref_primary_10_1039_C3NR06704A
crossref_primary_10_1007_s10853_015_8969_1
crossref_primary_10_1073_pnas_1719111115
crossref_primary_10_1017_S1431927616000805
crossref_primary_10_1016_j_colsurfa_2015_07_005
crossref_primary_10_1039_C6RA04513H
crossref_primary_10_1039_C5RA13771C
crossref_primary_10_1016_j_carbon_2011_12_046
crossref_primary_10_1080_0740817X_2011_649385
crossref_primary_10_1016_j_coco_2022_101198
crossref_primary_10_1002_adfm_201002442
crossref_primary_10_1039_C4TA06080F
crossref_primary_10_1088_0957_4484_23_22_225701
crossref_primary_10_1016_j_polymer_2018_09_053
crossref_primary_10_1179_1753555715Y_0000000046
crossref_primary_10_1016_j_jhazmat_2019_121069
crossref_primary_10_1021_acsami_8b07556
crossref_primary_10_1016_j_compscitech_2019_107795
crossref_primary_10_1039_C5TA06169E
crossref_primary_10_1039_C6TC02546C
crossref_primary_10_1002_adfm_200902207
crossref_primary_10_1016_j_matdes_2016_11_109
crossref_primary_10_1016_j_compositesa_2023_107448
crossref_primary_10_1039_C4TA03183K
crossref_primary_10_1002_smll_200901957
crossref_primary_10_1016_j_fuel_2018_03_034
crossref_primary_10_1021_acs_jpcc_0c03509
crossref_primary_10_1021_nn301321j
crossref_primary_10_1002_adma_202008432
crossref_primary_10_1002_smll_201500111
crossref_primary_10_3390_ma14010106
crossref_primary_10_1016_j_compositesa_2010_04_018
crossref_primary_10_3390_jmmp1020022
crossref_primary_10_1177_0021998320960774
crossref_primary_10_1016_j_carbon_2015_01_014
crossref_primary_10_1016_j_carbon_2010_07_037
crossref_primary_10_1038_srep34632
crossref_primary_10_1016_j_compscitech_2018_06_002
crossref_primary_10_3390_nano12081251
crossref_primary_10_1016_j_compscitech_2011_08_009
crossref_primary_10_1016_j_carbon_2019_04_118
crossref_primary_10_1016_j_carbon_2014_02_068
crossref_primary_10_1088_0957_4484_22_48_485708
crossref_primary_10_1016_j_carbon_2019_04_113
crossref_primary_10_1016_j_compositesa_2011_12_029
crossref_primary_10_1021_nn504927e
crossref_primary_10_1016_j_ceramint_2016_05_078
crossref_primary_10_1080_15376494_2020_1842950
crossref_primary_10_4028_www_scientific_net_MSF_817_803
crossref_primary_10_1016_j_carbon_2011_06_089
crossref_primary_10_1016_j_cej_2021_130655
crossref_primary_10_1088_2053_1591_aaa0b2
crossref_primary_10_1016_j_pnsc_2022_01_005
crossref_primary_10_1177_0021998316667541
crossref_primary_10_1186_s11671_024_04087_5
crossref_primary_10_1021_acsnano_0c03268
crossref_primary_10_1016_j_coco_2019_06_001
crossref_primary_10_1039_c3ra41990h
crossref_primary_10_1088_0957_4484_23_7_075501
crossref_primary_10_1016_j_eml_2023_102108
crossref_primary_10_1016_j_compscitech_2015_06_014
crossref_primary_10_1016_j_compositesb_2024_111770
crossref_primary_10_1109_TNANO_2020_2989397
crossref_primary_10_1016_j_compscitech_2010_07_020
crossref_primary_10_1016_j_compscitech_2011_11_007
crossref_primary_10_1177_0731684416684020
crossref_primary_10_1039_C7RA06328H
crossref_primary_10_1177_0954008316673418
crossref_primary_10_1016_j_compositesa_2014_05_009
crossref_primary_10_5714_CL_2012_13_4_243
crossref_primary_10_1002_app_36366
crossref_primary_10_1016_j_compscitech_2018_02_009
crossref_primary_10_1002_adem_201400306
crossref_primary_10_1021_cm101785t
crossref_primary_10_1002_bkcs_11104
crossref_primary_10_1007_s10854_020_03097_0
crossref_primary_10_1116_1_4861370
crossref_primary_10_1016_j_tws_2020_107264
crossref_primary_10_1021_acsanm_3c00832
crossref_primary_10_1039_c3ra42065e
crossref_primary_10_3390_polym11060977
crossref_primary_10_1039_c2ra23179d
crossref_primary_10_1016_j_carbon_2017_06_028
crossref_primary_10_1021_am5046718
crossref_primary_10_1016_j_synthmet_2015_03_005
crossref_primary_10_1021_acsami_1c20491
crossref_primary_10_1002_pc_22861
crossref_primary_10_1021_acs_nanolett_5b03863
crossref_primary_10_1007_s10854_021_05475_8
crossref_primary_10_1016_j_compositesb_2015_09_012
crossref_primary_10_1002_adma_201902028
crossref_primary_10_1080_03602559_2017_1289407
crossref_primary_10_1016_j_compositesa_2021_106359
crossref_primary_10_1039_C6RA10397A
crossref_primary_10_1016_j_compositesa_2014_05_013
crossref_primary_10_1088_0957_4484_23_43_435706
crossref_primary_10_1016_j_mser_2014_08_002
crossref_primary_10_3390_nano10020365
crossref_primary_10_1039_c2jm15359a
crossref_primary_10_1039_C4NR06401A
crossref_primary_10_1016_j_compositesa_2013_08_011
crossref_primary_10_1016_j_porgcoat_2016_02_009
crossref_primary_10_1016_j_compscitech_2020_108472
crossref_primary_10_1177_0731684412468799
crossref_primary_10_1002_pc_22298
crossref_primary_10_1557_jmr_2015_160
crossref_primary_10_3390_polym13071047
Cites_doi 10.1126/science.1104276
10.1002/adfm.200400525
10.1038/423703a
10.1016/S1748-0132(08)70062-8
10.1126/science.287.5453.637
10.1126/science.1153911
10.1038/433476a
10.1016/S0009-2614(03)01287-9
10.1088/0957-4484/17/6/003
10.1038/4471066a
10.1126/science.290.5495.1331
10.1126/science.273.5274.483
10.1016/S0009-2614(01)00072-0
10.1007/s003390050734
10.1038/419801a
10.1557/jmr.2008.0356
10.1016/j.compositesb.2005.02.004
10.1002/adma.200502528
10.1016/j.compositesa.2003.09.029
10.1103/PhysRevB.59.R2514
10.1126/science.1147635
10.1063/1.1536733
10.1016/j.polymer.2009.02.030
10.1063/1.1497706
10.1126/science.1115311
10.1126/science.1066996
10.1126/science.1101398
10.1126/science.1094982
ContentType Journal Article
Copyright Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.200900663
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 3225
ExternalDocumentID 10_1002_adfm_200900663
ADFM200900663
ark_67375_WNG_NVT107QR_9
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4253-c3627e2dfeb4d8b68ebc912fd93b90454ba4880bdca40aa033ca1a22cc3c98bb3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 03:39:49 EDT 2025
Tue Jul 01 01:29:52 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Wed Jan 22 16:21:12 EST 2025
Wed Oct 30 09:57:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4253-c3627e2dfeb4d8b68ebc912fd93b90454ba4880bdca40aa033ca1a22cc3c98bb3
Notes istex:38231112CC259559F90716A492CF5813434C5A04
ark:/67375/WNG-NVT107QR-9
ArticleID:ADFM200900663
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 743687643
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_743687643
crossref_citationtrail_10_1002_adfm_200900663
crossref_primary_10_1002_adfm_200900663
wiley_primary_10_1002_adfm_200900663_ADFM200900663
istex_primary_ark_67375_WNG_NVT107QR_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 23, 2009
PublicationDateYYYYMMDD 2009-10-23
PublicationDate_xml – month: 10
  year: 2009
  text: October 23, 2009
  day: 23
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2009
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 1999, 59, R2514.
H. G. Chae, S. Kumar, Science 2008, 319, 908.
S. Pegel, P. Pötschke, T. Villmow, D. Stoyan, G. Heinrich, Polymer 2009, 50, 2123.
M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358.
Q. F. Cheng, J. W. Bao, X. P. Wang, R. Liang, C. Zhang, B. Wang, SAMPE 09, Baltimore, USA 2009, Paper ID 201.
K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, Science 2007, 318, 1892.
D. A. Walters, M. J. Casavant, X. C. Qin, C. B. Huffman, P. J. Boul, L. M. Ericson, E. H. Haroz, M. J. O'Connell, K. Smith, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 2001, 338, 14.
M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 2000, 287, 637.
S. R. Wang, Z. Y. Liang, T. Liu, B. Wang, C. Zhang, Nanotechnology 2006, 17, 1551.
X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, S. S. Fan, Adv. Mater. 2006, 18, 1505.
J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy, R. Haggenmueller, M. J. Casavant, D. E. Walters, R. E. Smalley, J. Appl. Phys. 2003, 93, 2157.
L. Liu, A. H. Barber, S. Nuriel, H. D. Wagner, Adv. Funct. Mater. 2005, 15, 975.
M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, Science 2005, 309, 1215.
P. M. Ajayan, J. M. Tour, Nature 2007, 447, 1066.
A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman, Nature 2003, 423, 703.
Q. F. Cheng, J. P. Wang, K. L. Jiang, Q. Q. Li, S. S. Fan, J. Mater. Res. 2008, 23, 2975.
H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan, Science 2002, 296, 884.
Y. L. Li, I. A. Kinloch, A. H. Windle, Science 2004, 304, 276.
K. Jiang, Q. Li, S. Fan, Nature 2002, 419, 801.
J. Gou, Z. Liang, C. Zhang, B. Wang, Compos. Part. B-Eng. 2005, 36, 524-533.
M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, M. Terrones, M. S. Dresselhaus, Nature 2005, 433, 476.
A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483.
T. Liu, S. Kumar, Chem. Phys. Lett. 2003, 378, 257.
B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier, Appl. Phys. Lett. 2002, 81, 1210.
A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley, Appl. Phys. A-Mater. 1998, 67, 29.
B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science 2000, 290, 1331.
Z. Wang, Z. Y. Liang, B. Wang, C. Zhang, L. Kramer, Compos. Part. A-Appl. S 2004, 35, 1225.
N. Behabtu, M. J. Green, M. Pasquali, Nano Today 2008, 3, 24.
L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W.-F. Hwang, R. H. Hauge, J. E. Fischer, R. E. Smalley, Science 2004, 305, 1447.
2007; 447
2002; 296
2005; 433
2006; 17
2009
2008
2006; 18
2007
2002; 81
2002; 419
2008; 3
2003; 93
2004; 306
2003; 378
2004; 305
2004; 304
1998; 67
2000; 290
2009; 50
1999; 59
2008; 319
2004; 35
2008; 23
2005; 309
2000; 287
1996; 273
2003; 423
2005; 15
2001; 338
2007; 318
2005; 36
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
Cheng Q. F. (e_1_2_1_30_2) 2009
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_1_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science 2000, 290, 1331.
– reference: X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, S. S. Fan, Adv. Mater. 2006, 18, 1505.
– reference: P. M. Ajayan, J. M. Tour, Nature 2007, 447, 1066.
– reference: Y. L. Li, I. A. Kinloch, A. H. Windle, Science 2004, 304, 276.
– reference: J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 1999, 59, R2514.
– reference: S. Pegel, P. Pötschke, T. Villmow, D. Stoyan, G. Heinrich, Polymer 2009, 50, 2123.
– reference: H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan, Science 2002, 296, 884.
– reference: A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman, Nature 2003, 423, 703.
– reference: M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, M. Terrones, M. S. Dresselhaus, Nature 2005, 433, 476.
– reference: M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358.
– reference: T. Liu, S. Kumar, Chem. Phys. Lett. 2003, 378, 257.
– reference: L. Liu, A. H. Barber, S. Nuriel, H. D. Wagner, Adv. Funct. Mater. 2005, 15, 975.
– reference: K. Jiang, Q. Li, S. Fan, Nature 2002, 419, 801.
– reference: S. R. Wang, Z. Y. Liang, T. Liu, B. Wang, C. Zhang, Nanotechnology 2006, 17, 1551.
– reference: A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483.
– reference: J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy, R. Haggenmueller, M. J. Casavant, D. E. Walters, R. E. Smalley, J. Appl. Phys. 2003, 93, 2157.
– reference: B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier, Appl. Phys. Lett. 2002, 81, 1210.
– reference: J. Gou, Z. Liang, C. Zhang, B. Wang, Compos. Part. B-Eng. 2005, 36, 524-533.
– reference: Z. Wang, Z. Y. Liang, B. Wang, C. Zhang, L. Kramer, Compos. Part. A-Appl. S 2004, 35, 1225.
– reference: N. Behabtu, M. J. Green, M. Pasquali, Nano Today 2008, 3, 24.
– reference: M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 2000, 287, 637.
– reference: H. G. Chae, S. Kumar, Science 2008, 319, 908.
– reference: M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, Science 2005, 309, 1215.
– reference: A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley, Appl. Phys. A-Mater. 1998, 67, 29.
– reference: Q. F. Cheng, J. W. Bao, X. P. Wang, R. Liang, C. Zhang, B. Wang, SAMPE 09, Baltimore, USA 2009, Paper ID 201.
– reference: Q. F. Cheng, J. P. Wang, K. L. Jiang, Q. Q. Li, S. S. Fan, J. Mater. Res. 2008, 23, 2975.
– reference: L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W.-F. Hwang, R. H. Hauge, J. E. Fischer, R. E. Smalley, Science 2004, 305, 1447.
– reference: K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, Science 2007, 318, 1892.
– reference: D. A. Walters, M. J. Casavant, X. C. Qin, C. B. Huffman, P. J. Boul, L. M. Ericson, E. H. Haroz, M. J. O'Connell, K. Smith, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 2001, 338, 14.
– year: 2009
– volume: 419
  start-page: 801
  year: 2002
  publication-title: Nature
– volume: 306
  start-page: 1358
  year: 2004
  publication-title: Science
– volume: 309
  start-page: 1215
  year: 2005
  publication-title: Science
– volume: 81
  start-page: 1210
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 338
  start-page: 14
  year: 2001
  publication-title: Chem. Phys. Lett.
– volume: 35
  start-page: 1225
  year: 2004
  publication-title: Compos. Part. A‐Appl. S
– year: 2007
– volume: 93
  start-page: 2157
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 447
  start-page: 1066
  year: 2007
  publication-title: Nature
– volume: 23
  start-page: 2975
  year: 2008
  publication-title: J. Mater. Res.
– volume: 59
  start-page: R2514
  year: 1999
  publication-title: Phys. Rev. B
– volume: 378
  start-page: 257
  year: 2003
  publication-title: Chem. Phys. Lett.
– volume: 296
  start-page: 884
  year: 2002
  publication-title: Science
– volume: 17
  start-page: 1551
  year: 2006
  publication-title: Nanotechnology
– volume: 423
  start-page: 703
  year: 2003
  publication-title: Nature
– volume: 3
  start-page: 24
  year: 2008
  publication-title: Nano Today
– volume: 319
  start-page: 908
  year: 2008
  publication-title: Science
– volume: 305
  start-page: 1447
  year: 2004
  publication-title: Science
– volume: 290
  start-page: 1331
  year: 2000
  publication-title: Science
– volume: 18
  start-page: 1505
  year: 2006
  publication-title: Adv. Mater.
– volume: 287
  start-page: 637
  year: 2000
  publication-title: Science
– volume: 36
  start-page: 524
  year: 2005
  end-page: 533
  publication-title: Compos. Part. B‐Eng.
– year: 2008
– volume: 67
  start-page: 29
  year: 1998
  publication-title: Appl. Phys. A‐Mater.
– volume: 50
  start-page: 2123
  year: 2009
  publication-title: Polymer
– volume: 433
  start-page: 476
  year: 2005
  publication-title: Nature
– volume: 273
  start-page: 483
  year: 1996
  publication-title: Science
– volume: 15
  start-page: 975
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 318
  start-page: 1892
  year: 2007
  publication-title: Science
– volume: 304
  start-page: 276
  year: 2004
  publication-title: Science
– ident: e_1_2_1_12_2
  doi: 10.1126/science.1104276
– ident: e_1_2_1_28_2
  doi: 10.1002/adfm.200400525
– ident: e_1_2_1_8_2
  doi: 10.1038/423703a
– ident: e_1_2_1_4_2
  doi: 10.1016/S1748-0132(08)70062-8
– ident: e_1_2_1_1_2
  doi: 10.1126/science.287.5453.637
– volume-title: SAMPE 09
  year: 2009
  ident: e_1_2_1_30_2
– ident: e_1_2_1_5_2
  doi: 10.1126/science.1153911
– ident: e_1_2_1_22_2
  doi: 10.1038/433476a
– ident: e_1_2_1_20_2
  doi: 10.1016/S0009-2614(03)01287-9
– ident: e_1_2_1_29_2
  doi: 10.1088/0957-4484/17/6/003
– ident: e_1_2_1_27_2
  doi: 10.1038/4471066a
– ident: e_1_2_1_6_2
  doi: 10.1126/science.290.5495.1331
– ident: e_1_2_1_2_2
  doi: 10.1126/science.273.5274.483
– ident: e_1_2_1_17_2
  doi: 10.1016/S0009-2614(01)00072-0
– ident: e_1_2_1_33_2
– ident: e_1_2_1_21_2
  doi: 10.1007/s003390050734
– ident: e_1_2_1_9_2
  doi: 10.1038/419801a
– ident: e_1_2_1_32_2
– ident: e_1_2_1_26_2
  doi: 10.1557/jmr.2008.0356
– ident: e_1_2_1_31_2
  doi: 10.1016/j.compositesb.2005.02.004
– ident: e_1_2_1_10_2
  doi: 10.1002/adma.200502528
– ident: e_1_2_1_25_2
  doi: 10.1016/j.compositesa.2003.09.029
– ident: e_1_2_1_3_2
  doi: 10.1103/PhysRevB.59.R2514
– ident: e_1_2_1_15_2
  doi: 10.1126/science.1147635
– ident: e_1_2_1_16_2
– ident: e_1_2_1_18_2
  doi: 10.1063/1.1536733
– ident: e_1_2_1_24_2
  doi: 10.1016/j.polymer.2009.02.030
– ident: e_1_2_1_7_2
  doi: 10.1063/1.1497706
– ident: e_1_2_1_19_2
– ident: e_1_2_1_23_2
  doi: 10.1126/science.1115311
– ident: e_1_2_1_11_2
  doi: 10.1126/science.1066996
– ident: e_1_2_1_13_2
  doi: 10.1126/science.1101398
– ident: e_1_2_1_14_2
  doi: 10.1126/science.1094982
SSID ssj0017734
Score 2.480541
Snippet Multi‐walled carbon nanotube (MWNT)‐sheet‐reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (∼60 wt%) of aligned MWNTs are...
Multi-walled carbon nanotube (MWNT)-sheet-reinforced bismaleimide (BMI) resin nanocomposites with high concentrations (60 wt%) of aligned MWNTs are...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3219
SubjectTerms Bismaleimide resin
Carbon nanotubes
Composites
Electrical conductivity
Mechanical properties
Nanotube alignment
Title High Mechanical Performance Composite Conductor: Multi-Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites
URI https://api.istex.fr/ark:/67375/WNG-NVT107QR-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.200900663
https://www.proquest.com/docview/743687643
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQXOCw_GvLn3xAyyk0sZs44VYKBSG1YllYerNsxxEVkECbSogTj8Az8iR4nCa0SGilRbkkih0nHs_MF3vmM0K7ETWHUMwRQZQ4DR1QR4SBEUhMtBtC8J-C3OFONzi9apz1_N5EFn_BD1FNuIFmWHsNCi7ksP5BGirixGaSR9ZrGiMMAVuAii4q_iiPsWJZOfAgwMvrlayNLqlPV5_ySnPQwU9TkHMSuFrP015EonznIuDkdn-Uy331_InO8TsftYR-jGEpbhbjaBnN6HQFLUyQFa6iRwgJwR0NqcIgWXz-kXOAwaxA-BecpUAhmw0OsE3ufXt5hcl6HeOWGMgsxcaeZ_lIavznRuu8ftgf3hsn1b_vx9reU-Wjhmvoqn182Tp1xhs2OMqoPnWU8YZMkzjRshGHMgi1VJFHkjiiMgKuPynAXshYiYYrhEupEp4gRCmqolBKuo5m0yzVPxFmNGGBNHDPp8Anw0Lls0RBYlJCXOX5NeSUAuNqzGYOm2rc8YKHmXDoSl51ZQ3tVeUfCh6PL0v-svKvionBLUS_MZ9fd0949--l-WP-fcGjGsLlAOFGJ2GhRaQ6Gw05A1p_ZrBeDREr7X80yZtH7U51tfE_lTbRvF3nMl6V0C00mw9GetvApVzuWJV4B9YEDeI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD4a8AA87D6tsIsf0HgKTewmTvbG2LoyaAWsDN4s23FEBSSjTaVpT_sJ-437JfNxmkAnoUmgvCSKnYuPz8X2dz4DbCTMHlJzT0ZJ5nVMxDwZR1YgKTV-jOA_jbnD_UHUO-58OQ1rNCHmwlT8EM2EG2qGs9eo4Dgh3b5mDZVp5lLJE-c2F2AJt_V2o6qjhkEq4LxaWI4ChHgFpzVvo0_b8_Xn_NISNvGPuaDzZujqfE_3Eaj6qyvIyfnWtFRb-uc_hI73-q3H8HAWmZLtqis9gQcmfwqrN_gKn8EVokJI32C2MAqXHFynHRC0LIgAw7McWWSL8Xvi8nv__PqN8_UmJTtyrIqcWJNelFNlyNczY8r2h9Hk0vqp0eUoNe6erh81eQ7H3U_DnZ4327PB01b7maetQ-SGpplRnTRWUWyUTgKapQlTCdL9KYkmQ6Vadnwpfca0DCSlWjOdxEqxF7CYF7l5CYSzjEfKRnwhQ0oZHuuQZxpzkzLq6yBsgVdLTOgZoTnuq3EhKipmKrApRdOULdhsyn-vqDxuLfnOdYCmmByfIwCOh-Jk8FkMvg3toPnwSCQtIHUPEVYtca1F5qaYTgRHZn9uw70WUCfu_7xSbH_s9purtbtUegvLvWF_X-zvDvbWYcUte1knS9krWCzHU_PaRk-leuP04y-pGBH9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CTULwwB3RcfMDgqesiZ3ECW9jpYxLqzE21jfLt4hqWzLaVEI88RP4jfwSfJwma5EQEigviWLHiY_PJfb5PgM8zZk7pOaBTPMiiG3KApmlTiCG2jDD5D-N2OHRON07it9OkskKir_hh-gm3FAzvL1GBT83Rf-CNFSawiPJc-81L8NmnIYZjuvBQUcgFXHerCunEWZ4RZOWtjGk_fX6a25pE3v461rMuRq5etczvAGyfekm4-Rke1Grbf3tNz7H__mqm3B9GZeSnWYg3YJLtrwN11bYCu_AF8wJISOLWGEULdm_AB0QtCuY_4VnJXLIVrMXxKN7f37_gbP11pBdOVNVSZxBr-qFsuTjZ2vr_svp_Mx5qenZ1Fh_T7ePmt-Fo-Grw929YLljQ6Cd7rNAO3fILTWFVbHJVJpZpfOIFiZnKkeyPyXRYCijZRxKGTKmZSQp1ZrpPFOK3YONsirtfSCcFTxVLt5LGBLK8EwnvNCITCpoqKOkB0ErMKGXdOa4q8apaIiYqcCuFF1X9uB5V_68IfL4Y8lnXv5dMTk7wfQ3nojj8Wsx_nTofpk_HIi8B6QdIMIpJa60yNJWi7ngyOvPXbDXA-ql_Zcmxc5gOOqutv6l0hO4sj8Yivdvxu8ewFW_5uU8LGUPYaOeLewjFzrV6rHXjl-A2hC1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Mechanical+Performance+Composite+Conductor%3A+Multi-Walled+Carbon+Nanotube+Sheet%2FBismaleimide+Nanocomposites&rft.jtitle=Advanced+functional+materials&rft.au=Cheng%2C+Qunfeng&rft.au=Bao%2C+Jianwen&rft.au=Park%2C+JinGyu&rft.au=Liang%2C+Zhiyong&rft.date=2009-10-23&rft.pub=WILEY-VCH+Verlag&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=19&rft.issue=20&rft.spage=3219&rft.epage=3225&rft_id=info:doi/10.1002%2Fadfm.200900663&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NVT107QR_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon