Review of advanced physical and data‐driven models for dynamic bioprocess simulation: Case study of algae–bacteria consortium wastewater treatment
Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constru...
Saved in:
Published in | Biotechnology and bioengineering Vol. 116; no. 2; pp. 342 - 353 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.02.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-3592 1097-0290 1097-0290 |
DOI | 10.1002/bit.26881 |
Cover
Loading…
Abstract | Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constructing physical models remains a challenge due to the extreme complexity of process biological mechanisms. Data‐driven models also encounter severe limitations because datasets from large‐scale bioprocesses are often scarce without complete information and on a restricted operational space. To fill this gap, the current research compares the performance of advanced physical and data‐driven models for dynamic bioprocess simulations subject to incomplete and scarce datasets, which to the best of our knowledge has never been addressed before. In specific, kinetic models were constructed by integrating different classic models, and state‐of‐the‐art hyperparameter selection frameworks were developed to design artificial neural networks and Gaussian process regression models. An algae–bacteria consortium wastewater treatment process was selected to test the accuracy of these modeling strategies, as it is one of the most sophisticated biosystems due to the intricate mutualistic and competitive interactions. Based on the current results and available data, a heuristic model selection procedure is provided. This study paves the way to facilitate future bioprocess modeling.
Undertaking mathematical modelling and optimization of algae‐bacteria consortium wastewater treatment process is essential to guarantee its efficiency, but remains a challenge due to its complex biological mechanisms. The authors adopted rigorous physical and advanced data‐driven models to simulate the dynamics of this system subject to incomplete and scarce datasets (imitating industrial situations). Performance of these modelling approaches was compared and previously proposed algae‐bacteria interactions were successfully verified. Finally, a heuristic model selection procedure was provided for future complex bioprocess modelling. |
---|---|
AbstractList | Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constructing physical models remains a challenge due to the extreme complexity of process biological mechanisms. Data‐driven models also encounter severe limitations because datasets from large‐scale bioprocesses are often scarce without complete information and on a restricted operational space. To fill this gap, the current research compares the performance of advanced physical and data‐driven models for dynamic bioprocess simulations subject to incomplete and scarce datasets, which to the best of our knowledge has never been addressed before. In specific, kinetic models were constructed by integrating different classic models, and state‐of‐the‐art hyperparameter selection frameworks were developed to design artificial neural networks and Gaussian process regression models. An algae–bacteria consortium wastewater treatment process was selected to test the accuracy of these modeling strategies, as it is one of the most sophisticated biosystems due to the intricate mutualistic and competitive interactions. Based on the current results and available data, a heuristic model selection procedure is provided. This study paves the way to facilitate future bioprocess modeling. Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constructing physical models remains a challenge due to the extreme complexity of process biological mechanisms. Data-driven models also encounter severe limitations because datasets from large-scale bioprocesses are often scarce without complete information and on a restricted operational space. To fill this gap, the current research compares the performance of advanced physical and data-driven models for dynamic bioprocess simulations subject to incomplete and scarce datasets, which to the best of our knowledge has never been addressed before. In specific, kinetic models were constructed by integrating different classic models, and state-of-the-art hyperparameter selection frameworks were developed to design artificial neural networks and Gaussian process regression models. An algae-bacteria consortium wastewater treatment process was selected to test the accuracy of these modeling strategies, as it is one of the most sophisticated biosystems due to the intricate mutualistic and competitive interactions. Based on the current results and available data, a heuristic model selection procedure is provided. This study paves the way to facilitate future bioprocess modeling.Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constructing physical models remains a challenge due to the extreme complexity of process biological mechanisms. Data-driven models also encounter severe limitations because datasets from large-scale bioprocesses are often scarce without complete information and on a restricted operational space. To fill this gap, the current research compares the performance of advanced physical and data-driven models for dynamic bioprocess simulations subject to incomplete and scarce datasets, which to the best of our knowledge has never been addressed before. In specific, kinetic models were constructed by integrating different classic models, and state-of-the-art hyperparameter selection frameworks were developed to design artificial neural networks and Gaussian process regression models. An algae-bacteria consortium wastewater treatment process was selected to test the accuracy of these modeling strategies, as it is one of the most sophisticated biosystems due to the intricate mutualistic and competitive interactions. Based on the current results and available data, a heuristic model selection procedure is provided. This study paves the way to facilitate future bioprocess modeling. Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constructing physical models remains a challenge due to the extreme complexity of process biological mechanisms. Data‐driven models also encounter severe limitations because datasets from large‐scale bioprocesses are often scarce without complete information and on a restricted operational space. To fill this gap, the current research compares the performance of advanced physical and data‐driven models for dynamic bioprocess simulations subject to incomplete and scarce datasets, which to the best of our knowledge has never been addressed before. In specific, kinetic models were constructed by integrating different classic models, and state‐of‐the‐art hyperparameter selection frameworks were developed to design artificial neural networks and Gaussian process regression models. An algae–bacteria consortium wastewater treatment process was selected to test the accuracy of these modeling strategies, as it is one of the most sophisticated biosystems due to the intricate mutualistic and competitive interactions. Based on the current results and available data, a heuristic model selection procedure is provided. This study paves the way to facilitate future bioprocess modeling. Undertaking mathematical modelling and optimization of algae‐bacteria consortium wastewater treatment process is essential to guarantee its efficiency, but remains a challenge due to its complex biological mechanisms. The authors adopted rigorous physical and advanced data‐driven models to simulate the dynamics of this system subject to incomplete and scarce datasets (imitating industrial situations). Performance of these modelling approaches was compared and previously proposed algae‐bacteria interactions were successfully verified. Finally, a heuristic model selection procedure was provided for future complex bioprocess modelling. |
Author | Bradford, Eric Cong, Xiaoyan Jing, Keju Del Rio‐Chanona, Ehecatl Antonio Zhang, Dongda |
Author_xml | – sequence: 1 givenname: Ehecatl Antonio orcidid: 0000-0003-0274-2852 surname: Del Rio‐Chanona fullname: Del Rio‐Chanona, Ehecatl Antonio organization: Centre for Process Systems Engineering, Imperial College London, South Kensington Campus – sequence: 2 givenname: Xiaoyan surname: Cong fullname: Cong, Xiaoyan organization: College of Chemistry and Chemical Engineering, Xiamen University – sequence: 3 givenname: Eric surname: Bradford fullname: Bradford, Eric organization: Engineering Cybernetics, Norwegian University of Science and Technology – sequence: 4 givenname: Dongda orcidid: 0000-0001-5956-4618 surname: Zhang fullname: Zhang, Dongda email: dongda.zhang@manchester.ac.uk organization: Centre for Process Integration, University of Manchester, Oxford Road – sequence: 5 givenname: Keju surname: Jing fullname: Jing, Keju email: jkj@xmu.edu.cn organization: College of Chemistry and Chemical Engineering, Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30475404$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc2KFDEUhYOMOD2jC19AAm50UTNJKpVOudPGn4EBQcZ1cSu5pRmqkjZJddO7eQRB8AHnSYzdo4sBXYUk3znce84JOfLBIyFPOTvjjInz3uUzobTmD8iCs3ZZMdGyI7JgjKmqblpxTE5Sui7XpVbqETmumVw2kskF-fkJNw63NAwU7Aa8QUvXX3fJGRgpeEstZLi9-W6j26CnU7A4JjqESO3Ow-QM7V1Yx2AwJZrcNI-QXfCv6AoS0pRnu9t7j18Ab29-9GAyRgfUBJ9CzG6e6BZSxi2Ud5ojQp7Q58fk4QBjwid35yn5_O7t1epDdfnx_cXq9WVlpGh4NVjOm0FwzaSWjWC21rI2SwZWSV0rwVujG8EVlt-2FlppGJhpG4DetnKQ9Sl5cfAtK3ybMeVucsngOILHMKdO8FqzhkmpCvr8Hnod5ujLdIVSkteyZFuoZ3fU3E9ou3V0E8Rd9yfxArw8ACaGlCIOfxHOut9tdqXNbt9mYc_vscblfb45ghv_p9i6EXf_tu7eXFwdFL8A6F6zPg |
CitedBy_id | crossref_primary_10_1016_j_bej_2020_107819 crossref_primary_10_1039_D3DD00212H crossref_primary_10_3390_environments10120215 crossref_primary_10_3389_fceng_2022_812140 crossref_primary_10_1002_bit_27131 crossref_primary_10_1016_j_watres_2025_123216 crossref_primary_10_1007_s12532_021_00204_y crossref_primary_10_1016_j_dche_2022_100071 crossref_primary_10_1016_j_ifacol_2022_09_127 crossref_primary_10_1016_j_chemosphere_2021_129878 crossref_primary_10_1080_07388551_2019_1709796 crossref_primary_10_1016_j_compbiomed_2024_108248 crossref_primary_10_1016_j_jenvman_2025_125018 crossref_primary_10_1002_bit_27617 crossref_primary_10_3390_app13031868 crossref_primary_10_1016_j_envpol_2023_121363 crossref_primary_10_1007_s10098_020_01993_x crossref_primary_10_1021_acs_iecr_9b06511 crossref_primary_10_1016_j_ces_2024_120606 crossref_primary_10_1016_j_energy_2021_122529 crossref_primary_10_1016_j_applthermaleng_2024_124690 crossref_primary_10_1002_bit_27120 crossref_primary_10_1002_aic_18110 crossref_primary_10_1007_s11269_022_03248_4 crossref_primary_10_1007_s11696_023_03149_9 crossref_primary_10_1080_10643389_2022_2052704 crossref_primary_10_1016_j_compchemeng_2019_106671 crossref_primary_10_1016_j_coche_2021_100702 crossref_primary_10_1016_j_compchemeng_2024_108585 crossref_primary_10_1016_j_algal_2021_102390 crossref_primary_10_1016_j_btre_2021_e00588 crossref_primary_10_1016_j_memsci_2020_118208 crossref_primary_10_1002_cjce_24752 crossref_primary_10_1016_j_biortech_2023_130148 |
Cites_doi | 10.1021/acs.iecr.5b00612 10.1021/acs.iecr.5b02034 10.1016/j.biortech.2014.01.032 10.1016/j.ces.2015.01.059 10.1007/s10589-007-9098-9 10.1007/s10068-014-0027-2 10.1002/aic.15667 10.1016/j.compchemeng.2018.07.015 10.1016/j.btre.2016.04.003 10.1186/s13068-017-0855-4 10.1016/j.ejsobi.2008.08.004 10.1002/bit.26605 10.1080/23311843.2016.1275089 10.1007/s10107-004-0559-y 10.1007/978-1-4614-3226-5 10.1016/j.biortech.2013.07.111 10.1002/bit.26398 10.1016/j.algal.2015.11.004 10.1016/j.biortech.2011.01.019 10.1007/s00449-002-0296-7 10.1002/bit.26373 10.1021/acs.iecr.8b02509 10.1093/bioinformatics/btp139 10.1016/j.chemosphere.2013.05.014 10.1016/j.artint.2005.11.001 10.1016/j.algal.2015.03.015 10.1016/j.biotechadv.2011.07.009 10.1016/j.algal.2014.11.010 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/bit.26881 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 353 |
ExternalDocumentID | 30475404 10_1002_bit_26881 BIT26881 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: EPSRC funderid: EP/P016650/1 – fundername: National Natural Science Foundation of China funderid: 21776232 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c4251-fd115f2180484520d3843c70ad64836219c85216e845932868af0c95aabd94f43 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Thu Jul 10 17:55:44 EDT 2025 Fri Jul 25 10:34:45 EDT 2025 Wed Feb 19 02:31:37 EST 2025 Tue Jul 01 01:09:01 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 Wed Jan 22 16:46:48 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | artificial neural network algae-bacteria consortium scarce dataset Gaussian processes kinetic modeling |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4251-fd115f2180484520d3843c70ad64836219c85216e845932868af0c95aabd94f43 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0274-2852 0000-0001-5956-4618 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bit.26881 |
PMID | 30475404 |
PQID | 2164134866 |
PQPubID | 48814 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2138050446 proquest_journals_2164134866 pubmed_primary_30475404 crossref_primary_10_1002_bit_26881 crossref_citationtrail_10_1002_bit_26881 wiley_primary_10_1002_bit_26881_BIT26881 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol Bioeng |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_7_1_10_1 e_1_2_7_1_33_1 e_1_2_7_1_11_1 e_1_2_7_1_32_1 e_1_2_7_1_12_1 e_1_2_7_1_13_1 e_1_2_7_1_31_1 Wood L. (e_1_2_7_1_30_1) 2018 Rasmussen C. E. (e_1_2_7_1_21_1) 2006 e_1_2_7_1_5_1 e_1_2_7_1_6_1 e_1_2_7_1_7_1 e_1_2_7_1_8_1 e_1_2_7_1_25_1 e_1_2_7_1_2_1 e_1_2_7_1_26_1 e_1_2_7_1_3_1 e_1_2_7_1_27_1 e_1_2_7_1_4_1 e_1_2_7_1_28_1 e_1_2_7_1_22_1 e_1_2_7_1_23_1 e_1_2_7_1_24_1 e_1_2_7_1_9_1 Wang J. (e_1_2_7_1_29_1) 2015 e_1_2_7_1_20_1 e_1_2_7_1_18_1 e_1_2_7_1_19_1 e_1_2_7_1_14_1 e_1_2_7_1_15_1 e_1_2_7_1_16_1 e_1_2_7_1_17_1 |
References_xml | – volume-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) year: 2006 ident: e_1_2_7_1_21_1 – ident: e_1_2_7_1_22_1 doi: 10.1021/acs.iecr.5b00612 – ident: e_1_2_7_1_33_1 doi: 10.1021/acs.iecr.5b02034 – volume-title: Algae Products Market by Type, Application, Source, Form, and Region ‐ Global Forecast to 2023 year: 2018 ident: e_1_2_7_1_30_1 – ident: e_1_2_7_1_2_1 doi: 10.1016/j.biortech.2014.01.032 – ident: e_1_2_7_1_32_1 doi: 10.1016/j.ces.2015.01.059 – ident: e_1_2_7_1_17_1 doi: 10.1007/s10589-007-9098-9 – ident: e_1_2_7_1_3_1 doi: 10.1007/s10068-014-0027-2 – ident: e_1_2_7_1_5_1 doi: 10.1002/aic.15667 – ident: e_1_2_7_1_4_1 doi: 10.1016/j.compchemeng.2018.07.015 – ident: e_1_2_7_1_7_1 doi: 10.1016/j.btre.2016.04.003 – ident: e_1_2_7_1_15_1 doi: 10.1186/s13068-017-0855-4 – ident: e_1_2_7_1_12_1 doi: 10.1016/j.ejsobi.2008.08.004 – ident: e_1_2_7_1_25_1 doi: 10.1002/bit.26605 – ident: e_1_2_7_1_14_1 doi: 10.1080/23311843.2016.1275089 – ident: e_1_2_7_1_28_1 doi: 10.1007/s10107-004-0559-y – ident: e_1_2_7_1_9_1 doi: 10.1007/978-1-4614-3226-5 – ident: e_1_2_7_1_11_1 doi: 10.1016/j.biortech.2013.07.111 – start-page: 323 year: 2015 ident: e_1_2_7_1_29_1 article-title: Anaerobic fermentation for production of carboxylic acids as bulk chemicals from renewable biomass publication-title: Advances in Biochemical Engineering/Biotechnology – ident: e_1_2_7_1_16_1 doi: 10.1002/bit.26398 – ident: e_1_2_7_1_23_1 doi: 10.1016/j.algal.2015.11.004 – ident: e_1_2_7_1_20_1 doi: 10.1016/j.biortech.2011.01.019 – ident: e_1_2_7_1_26_1 doi: 10.1007/s00449-002-0296-7 – ident: e_1_2_7_1_6_1 doi: 10.1002/bit.26373 – ident: e_1_2_7_1_10_1 doi: 10.1021/acs.iecr.8b02509 – ident: e_1_2_7_1_18_1 doi: 10.1093/bioinformatics/btp139 – ident: e_1_2_7_1_13_1 – ident: e_1_2_7_1_19_1 doi: 10.1016/j.chemosphere.2013.05.014 – ident: e_1_2_7_1_27_1 doi: 10.1016/j.artint.2005.11.001 – ident: e_1_2_7_1_31_1 doi: 10.1016/j.algal.2015.03.015 – ident: e_1_2_7_1_24_1 doi: 10.1016/j.biotechadv.2011.07.009 – ident: e_1_2_7_1_8_1 doi: 10.1016/j.algal.2014.11.010 |
SSID | ssj0007866 |
Score | 2.4767604 |
Snippet | Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 342 |
SubjectTerms | Algae algae–bacteria consortium artificial neural network Artificial neural networks Bacillus subtilis - growth & development Bacillus subtilis - metabolism Bacteria Biological activity Biological models (mathematics) Chlorella vulgaris - growth & development Chlorella vulgaris - metabolism Computer simulation Consortia Datasets Gaussian process Gaussian processes kinetic modeling Mathematical models Microbial Consortia Model accuracy Models, Theoretical Neural networks Regression analysis Regression models scarce dataset Waste Water - microbiology Wastewater treatment Water Purification - methods Water treatment |
Title | Review of advanced physical and data‐driven models for dynamic bioprocess simulation: Case study of algae–bacteria consortium wastewater treatment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.26881 https://www.ncbi.nlm.nih.gov/pubmed/30475404 https://www.proquest.com/docview/2164134866 https://www.proquest.com/docview/2138050446 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UgqgPXrZeVqscRcSXbLPJJDvRp3axVEEfpIU-CGGuJdjNLs0uUp_6EwTBH9hf4pmZJLVeQHwbMpPMhDlz5jtzznwH4JlK9dhmRkWxTWXELLdRISYsIihCcF5oOfYXad-9z_cO2NvD7HANXnV3YQI_RH_g5laG19dugQvZbF2QhspqOUpy7q9du1gtB4g-XFBHTXjwUzqLOc2KpGMVipOt_s3Le9FvAPMyXvUbzu5N-NgNNcSZfBqtlnKkvvzC4vif_3ILbrRAFLeD5NyGNVMPYGO7JiN8dorP0YeG-jP3AVzZ6UpXp12CuAFc_4nLcAO-By8Dzi12cQW4aIUARa3RxaKen33VJ06_os_A0yBBZtSntZhVCmU1X4RrC9hUszat2Euc0j6LngXXf_v4SJjzs28ysEwLJHu-IROiWs3ws2jcUSA9xz5-_g4c7L7en-5FbdKHSJH6GEdWE0a1BDxItbAsiXXKWaomJDY547TbjgvFCXLkhmoJe_KcCxurIhNC6oJZlt6F9Xpem_uABCZjbRMmCFYyVRhhdFbkMiPhsCJWeggvuukvVcuI7hJzHJeByzkpaV5KPy9DeNo3XQQakD812uxkqGw1QVPSUAknMJLGITzpq2mmnGNG1Ga-cm1SHmfOtT6Ee0H2-l6cW5RQNaPBegn6e_flzpt9X3jw700fwjVCgEUIQ9-E9eXJyjwilLWUj_1y-gEffiXz |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRahw4LEFulBgQAhxyTabONkEcWkXqi20PaCt1EsV-RGjqN3sqtkVKqf-BCQkfmB_CWM7SSkPCXGzYid25PH488z4G4AXMlR9HeXS83UoPKYT7aV8wDyCIgTnuRJ9e5F2bz8eHbD3h9HhErxp7sI4fojW4GZWhtXXZoEbg_TGJWuoKOa9IE7MvetrJqO3WZZvP16SRw0S56k0Z-YwSoOGV8gPNtpXr-5Gv0HMq4jVbjnbt-GoGayLNDnuLeaiJ7_8wuP4v39zB27VWBQ3nfDchaW87MDqZknn8MkZvkQbHWrN7h24vtWUVoZNjrgO3PyJznAVvjtHA041NqEFOKvlAHmp0ISjXpx_VadGxaJNwlMhoWZUZyWfFBJFMZ25mwtYFZM6s9hrHNJWi5YI13775BPPL86_CUc0zZGO9BWdIorFBD_zylgD6Tm2IfT34GD73Xg48uq8D54kDdL3tCKYqgl7kHZhUeCrMGGhHJDkxCyhDbefyoRQR5xTLcHPJE649mUacS5UyjQL78NyOS3zNUDCk77SAeOELJlMc56rKI1FRNKhuS9VF14185_JmhTd5OY4yRydc5DRvGR2XrrwvG06c0wgf2q03ghRViuDKqOhElRgJI5deNZW00wZ3wwv8-nCtAkTPzLe9S48cMLX9mI8owSsGQ3WitDfu8-2dsa28PDfmz6FldF4bzfb3dn_8AhuECBMXVT6OizPTxf5YwJdc_HErq0fUe0qDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CSl-HPjZ9bJq201JKLt54bdkrt6dk0yXpI5SSQA4FI0tWMc16l3iXkJ7yEwKB_sD8ko4k22n6gNKbsGRLRqPRN5rRNwAvZKj6Osql5-sw85jm2kvEgHkERQjOC5X17UXaDzvx1h57ux_tL8Dr5i6M44doD9zMyrD62izwqdJrF6ShWTHrBTE3166vsNjnxvLa_HTBHTXgzlFpTOYwSoKGVsgP1tpXL29GvyHMy4DV7jij2_C5GasLNPnam8-ynvz2C43jf_7MHbhVI1Fcd6JzFxbysgNL6yVZ4eNjfIk2NtQeunfg6kZTuj5sMsR14OZPZIZL8N25GXCisQkswGktBShKhSYY9fzkVB0aBYs2BU-FhJlRHZdiXEjMisnU3VvAqhjXecVe4ZA2WrQ0uPbbB19Efn5yljmaaYFk0FdkQxTzMR6JypwF0nNsA-jvwd7oze5wy6uzPniS9Eff04pAqibkQbqFRYGvQs5COSC5iRmn7bafSE6YI86plsAnj7nQvkwiITKVMM3C-7BYTsr8ISChSV_pgAnClUwmuchVlMRZRMKhhS9VF1ab6U9lTYluMnMcpI7MOUhpXlI7L1143jadOh6QPzVaaWQorVVBldJQCSgwksYuPGuraaaMZ0aU-WRu2oTcj4xvvQsPnOy1vRi_KMFqRoO1EvT37tON7V1bWP73pk_h2sfNUfp-e-fdI7hBaDBxIekrsDg7nOePCXHNsid2Zf0A2-IoxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+advanced+physical+and+data-driven+models+for+dynamic+bioprocess+simulation%3A+Case+study+of+algae-bacteria+consortium+wastewater+treatment&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Del+Rio-Chanona%2C+Ehecatl+Antonio&rft.au=Cong%2C+Xiaoyan&rft.au=Bradford%2C+Eric&rft.au=Zhang%2C+Dongda&rft.date=2019-02-01&rft.eissn=1097-0290&rft.volume=116&rft.issue=2&rft.spage=342&rft_id=info:doi/10.1002%2Fbit.26881&rft_id=info%3Apmid%2F30475404&rft.externalDocID=30475404 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |