Review of advanced physical and data‐driven models for dynamic bioprocess simulation: Case study of algae–bacteria consortium wastewater treatment

Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constru...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 116; no. 2; pp. 342 - 353
Main Authors Del Rio‐Chanona, Ehecatl Antonio, Cong, Xiaoyan, Bradford, Eric, Zhang, Dongda, Jing, Keju
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2019
Subjects
Online AccessGet full text
ISSN0006-3592
1097-0290
1097-0290
DOI10.1002/bit.26881

Cover

Loading…
Abstract Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constructing physical models remains a challenge due to the extreme complexity of process biological mechanisms. Data‐driven models also encounter severe limitations because datasets from large‐scale bioprocesses are often scarce without complete information and on a restricted operational space. To fill this gap, the current research compares the performance of advanced physical and data‐driven models for dynamic bioprocess simulations subject to incomplete and scarce datasets, which to the best of our knowledge has never been addressed before. In specific, kinetic models were constructed by integrating different classic models, and state‐of‐the‐art hyperparameter selection frameworks were developed to design artificial neural networks and Gaussian process regression models. An algae–bacteria consortium wastewater treatment process was selected to test the accuracy of these modeling strategies, as it is one of the most sophisticated biosystems due to the intricate mutualistic and competitive interactions. Based on the current results and available data, a heuristic model selection procedure is provided. This study paves the way to facilitate future bioprocess modeling. Undertaking mathematical modelling and optimization of algae‐bacteria consortium wastewater treatment process is essential to guarantee its efficiency, but remains a challenge due to its complex biological mechanisms. The authors adopted rigorous physical and advanced data‐driven models to simulate the dynamics of this system subject to incomplete and scarce datasets (imitating industrial situations). Performance of these modelling approaches was compared and previously proposed algae‐bacteria interactions were successfully verified. Finally, a heuristic model selection procedure was provided for future complex bioprocess modelling.
AbstractList Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constructing physical models remains a challenge due to the extreme complexity of process biological mechanisms. Data‐driven models also encounter severe limitations because datasets from large‐scale bioprocesses are often scarce without complete information and on a restricted operational space. To fill this gap, the current research compares the performance of advanced physical and data‐driven models for dynamic bioprocess simulations subject to incomplete and scarce datasets, which to the best of our knowledge has never been addressed before. In specific, kinetic models were constructed by integrating different classic models, and state‐of‐the‐art hyperparameter selection frameworks were developed to design artificial neural networks and Gaussian process regression models. An algae–bacteria consortium wastewater treatment process was selected to test the accuracy of these modeling strategies, as it is one of the most sophisticated biosystems due to the intricate mutualistic and competitive interactions. Based on the current results and available data, a heuristic model selection procedure is provided. This study paves the way to facilitate future bioprocess modeling.
Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constructing physical models remains a challenge due to the extreme complexity of process biological mechanisms. Data-driven models also encounter severe limitations because datasets from large-scale bioprocesses are often scarce without complete information and on a restricted operational space. To fill this gap, the current research compares the performance of advanced physical and data-driven models for dynamic bioprocess simulations subject to incomplete and scarce datasets, which to the best of our knowledge has never been addressed before. In specific, kinetic models were constructed by integrating different classic models, and state-of-the-art hyperparameter selection frameworks were developed to design artificial neural networks and Gaussian process regression models. An algae-bacteria consortium wastewater treatment process was selected to test the accuracy of these modeling strategies, as it is one of the most sophisticated biosystems due to the intricate mutualistic and competitive interactions. Based on the current results and available data, a heuristic model selection procedure is provided. This study paves the way to facilitate future bioprocess modeling.Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constructing physical models remains a challenge due to the extreme complexity of process biological mechanisms. Data-driven models also encounter severe limitations because datasets from large-scale bioprocesses are often scarce without complete information and on a restricted operational space. To fill this gap, the current research compares the performance of advanced physical and data-driven models for dynamic bioprocess simulations subject to incomplete and scarce datasets, which to the best of our knowledge has never been addressed before. In specific, kinetic models were constructed by integrating different classic models, and state-of-the-art hyperparameter selection frameworks were developed to design artificial neural networks and Gaussian process regression models. An algae-bacteria consortium wastewater treatment process was selected to test the accuracy of these modeling strategies, as it is one of the most sophisticated biosystems due to the intricate mutualistic and competitive interactions. Based on the current results and available data, a heuristic model selection procedure is provided. This study paves the way to facilitate future bioprocess modeling.
Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constructing physical models remains a challenge due to the extreme complexity of process biological mechanisms. Data‐driven models also encounter severe limitations because datasets from large‐scale bioprocesses are often scarce without complete information and on a restricted operational space. To fill this gap, the current research compares the performance of advanced physical and data‐driven models for dynamic bioprocess simulations subject to incomplete and scarce datasets, which to the best of our knowledge has never been addressed before. In specific, kinetic models were constructed by integrating different classic models, and state‐of‐the‐art hyperparameter selection frameworks were developed to design artificial neural networks and Gaussian process regression models. An algae–bacteria consortium wastewater treatment process was selected to test the accuracy of these modeling strategies, as it is one of the most sophisticated biosystems due to the intricate mutualistic and competitive interactions. Based on the current results and available data, a heuristic model selection procedure is provided. This study paves the way to facilitate future bioprocess modeling. Undertaking mathematical modelling and optimization of algae‐bacteria consortium wastewater treatment process is essential to guarantee its efficiency, but remains a challenge due to its complex biological mechanisms. The authors adopted rigorous physical and advanced data‐driven models to simulate the dynamics of this system subject to incomplete and scarce datasets (imitating industrial situations). Performance of these modelling approaches was compared and previously proposed algae‐bacteria interactions were successfully verified. Finally, a heuristic model selection procedure was provided for future complex bioprocess modelling.
Author Bradford, Eric
Cong, Xiaoyan
Jing, Keju
Del Rio‐Chanona, Ehecatl Antonio
Zhang, Dongda
Author_xml – sequence: 1
  givenname: Ehecatl Antonio
  orcidid: 0000-0003-0274-2852
  surname: Del Rio‐Chanona
  fullname: Del Rio‐Chanona, Ehecatl Antonio
  organization: Centre for Process Systems Engineering, Imperial College London, South Kensington Campus
– sequence: 2
  givenname: Xiaoyan
  surname: Cong
  fullname: Cong, Xiaoyan
  organization: College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 3
  givenname: Eric
  surname: Bradford
  fullname: Bradford, Eric
  organization: Engineering Cybernetics, Norwegian University of Science and Technology
– sequence: 4
  givenname: Dongda
  orcidid: 0000-0001-5956-4618
  surname: Zhang
  fullname: Zhang, Dongda
  email: dongda.zhang@manchester.ac.uk
  organization: Centre for Process Integration, University of Manchester, Oxford Road
– sequence: 5
  givenname: Keju
  surname: Jing
  fullname: Jing, Keju
  email: jkj@xmu.edu.cn
  organization: College of Chemistry and Chemical Engineering, Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30475404$$D View this record in MEDLINE/PubMed
BookMark eNp9kc2KFDEUhYOMOD2jC19AAm50UTNJKpVOudPGn4EBQcZ1cSu5pRmqkjZJddO7eQRB8AHnSYzdo4sBXYUk3znce84JOfLBIyFPOTvjjInz3uUzobTmD8iCs3ZZMdGyI7JgjKmqblpxTE5Sui7XpVbqETmumVw2kskF-fkJNw63NAwU7Aa8QUvXX3fJGRgpeEstZLi9-W6j26CnU7A4JjqESO3Ow-QM7V1Yx2AwJZrcNI-QXfCv6AoS0pRnu9t7j18Ab29-9GAyRgfUBJ9CzG6e6BZSxi2Ud5ojQp7Q58fk4QBjwid35yn5_O7t1epDdfnx_cXq9WVlpGh4NVjOm0FwzaSWjWC21rI2SwZWSV0rwVujG8EVlt-2FlppGJhpG4DetnKQ9Sl5cfAtK3ybMeVucsngOILHMKdO8FqzhkmpCvr8Hnod5ujLdIVSkteyZFuoZ3fU3E9ou3V0E8Rd9yfxArw8ACaGlCIOfxHOut9tdqXNbt9mYc_vscblfb45ghv_p9i6EXf_tu7eXFwdFL8A6F6zPg
CitedBy_id crossref_primary_10_1016_j_bej_2020_107819
crossref_primary_10_1039_D3DD00212H
crossref_primary_10_3390_environments10120215
crossref_primary_10_3389_fceng_2022_812140
crossref_primary_10_1002_bit_27131
crossref_primary_10_1016_j_watres_2025_123216
crossref_primary_10_1007_s12532_021_00204_y
crossref_primary_10_1016_j_dche_2022_100071
crossref_primary_10_1016_j_ifacol_2022_09_127
crossref_primary_10_1016_j_chemosphere_2021_129878
crossref_primary_10_1080_07388551_2019_1709796
crossref_primary_10_1016_j_compbiomed_2024_108248
crossref_primary_10_1016_j_jenvman_2025_125018
crossref_primary_10_1002_bit_27617
crossref_primary_10_3390_app13031868
crossref_primary_10_1016_j_envpol_2023_121363
crossref_primary_10_1007_s10098_020_01993_x
crossref_primary_10_1021_acs_iecr_9b06511
crossref_primary_10_1016_j_ces_2024_120606
crossref_primary_10_1016_j_energy_2021_122529
crossref_primary_10_1016_j_applthermaleng_2024_124690
crossref_primary_10_1002_bit_27120
crossref_primary_10_1002_aic_18110
crossref_primary_10_1007_s11269_022_03248_4
crossref_primary_10_1007_s11696_023_03149_9
crossref_primary_10_1080_10643389_2022_2052704
crossref_primary_10_1016_j_compchemeng_2019_106671
crossref_primary_10_1016_j_coche_2021_100702
crossref_primary_10_1016_j_compchemeng_2024_108585
crossref_primary_10_1016_j_algal_2021_102390
crossref_primary_10_1016_j_btre_2021_e00588
crossref_primary_10_1016_j_memsci_2020_118208
crossref_primary_10_1002_cjce_24752
crossref_primary_10_1016_j_biortech_2023_130148
Cites_doi 10.1021/acs.iecr.5b00612
10.1021/acs.iecr.5b02034
10.1016/j.biortech.2014.01.032
10.1016/j.ces.2015.01.059
10.1007/s10589-007-9098-9
10.1007/s10068-014-0027-2
10.1002/aic.15667
10.1016/j.compchemeng.2018.07.015
10.1016/j.btre.2016.04.003
10.1186/s13068-017-0855-4
10.1016/j.ejsobi.2008.08.004
10.1002/bit.26605
10.1080/23311843.2016.1275089
10.1007/s10107-004-0559-y
10.1007/978-1-4614-3226-5
10.1016/j.biortech.2013.07.111
10.1002/bit.26398
10.1016/j.algal.2015.11.004
10.1016/j.biortech.2011.01.019
10.1007/s00449-002-0296-7
10.1002/bit.26373
10.1021/acs.iecr.8b02509
10.1093/bioinformatics/btp139
10.1016/j.chemosphere.2013.05.014
10.1016/j.artint.2005.11.001
10.1016/j.algal.2015.03.015
10.1016/j.biotechadv.2011.07.009
10.1016/j.algal.2014.11.010
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/bit.26881
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 353
ExternalDocumentID 30475404
10_1002_bit_26881
BIT26881
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EPSRC
  funderid: EP/P016650/1
– fundername: National Natural Science Foundation of China
  funderid: 21776232
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c4251-fd115f2180484520d3843c70ad64836219c85216e845932868af0c95aabd94f43
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Thu Jul 10 17:55:44 EDT 2025
Fri Jul 25 10:34:45 EDT 2025
Wed Feb 19 02:31:37 EST 2025
Tue Jul 01 01:09:01 EDT 2025
Thu Apr 24 22:56:48 EDT 2025
Wed Jan 22 16:46:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords artificial neural network
algae-bacteria consortium
scarce dataset
Gaussian processes
kinetic modeling
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4251-fd115f2180484520d3843c70ad64836219c85216e845932868af0c95aabd94f43
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0274-2852
0000-0001-5956-4618
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/bit.26881
PMID 30475404
PQID 2164134866
PQPubID 48814
PageCount 12
ParticipantIDs proquest_miscellaneous_2138050446
proquest_journals_2164134866
pubmed_primary_30475404
crossref_primary_10_1002_bit_26881
crossref_citationtrail_10_1002_bit_26881
wiley_primary_10_1002_bit_26881_BIT26881
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol Bioeng
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_1_10_1
e_1_2_7_1_33_1
e_1_2_7_1_11_1
e_1_2_7_1_32_1
e_1_2_7_1_12_1
e_1_2_7_1_13_1
e_1_2_7_1_31_1
Wood L. (e_1_2_7_1_30_1) 2018
Rasmussen C. E. (e_1_2_7_1_21_1) 2006
e_1_2_7_1_5_1
e_1_2_7_1_6_1
e_1_2_7_1_7_1
e_1_2_7_1_8_1
e_1_2_7_1_25_1
e_1_2_7_1_2_1
e_1_2_7_1_26_1
e_1_2_7_1_3_1
e_1_2_7_1_27_1
e_1_2_7_1_4_1
e_1_2_7_1_28_1
e_1_2_7_1_22_1
e_1_2_7_1_23_1
e_1_2_7_1_24_1
e_1_2_7_1_9_1
Wang J. (e_1_2_7_1_29_1) 2015
e_1_2_7_1_20_1
e_1_2_7_1_18_1
e_1_2_7_1_19_1
e_1_2_7_1_14_1
e_1_2_7_1_15_1
e_1_2_7_1_16_1
e_1_2_7_1_17_1
References_xml – volume-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
  year: 2006
  ident: e_1_2_7_1_21_1
– ident: e_1_2_7_1_22_1
  doi: 10.1021/acs.iecr.5b00612
– ident: e_1_2_7_1_33_1
  doi: 10.1021/acs.iecr.5b02034
– volume-title: Algae Products Market by Type, Application, Source, Form, and Region ‐ Global Forecast to 2023
  year: 2018
  ident: e_1_2_7_1_30_1
– ident: e_1_2_7_1_2_1
  doi: 10.1016/j.biortech.2014.01.032
– ident: e_1_2_7_1_32_1
  doi: 10.1016/j.ces.2015.01.059
– ident: e_1_2_7_1_17_1
  doi: 10.1007/s10589-007-9098-9
– ident: e_1_2_7_1_3_1
  doi: 10.1007/s10068-014-0027-2
– ident: e_1_2_7_1_5_1
  doi: 10.1002/aic.15667
– ident: e_1_2_7_1_4_1
  doi: 10.1016/j.compchemeng.2018.07.015
– ident: e_1_2_7_1_7_1
  doi: 10.1016/j.btre.2016.04.003
– ident: e_1_2_7_1_15_1
  doi: 10.1186/s13068-017-0855-4
– ident: e_1_2_7_1_12_1
  doi: 10.1016/j.ejsobi.2008.08.004
– ident: e_1_2_7_1_25_1
  doi: 10.1002/bit.26605
– ident: e_1_2_7_1_14_1
  doi: 10.1080/23311843.2016.1275089
– ident: e_1_2_7_1_28_1
  doi: 10.1007/s10107-004-0559-y
– ident: e_1_2_7_1_9_1
  doi: 10.1007/978-1-4614-3226-5
– ident: e_1_2_7_1_11_1
  doi: 10.1016/j.biortech.2013.07.111
– start-page: 323
  year: 2015
  ident: e_1_2_7_1_29_1
  article-title: Anaerobic fermentation for production of carboxylic acids as bulk chemicals from renewable biomass
  publication-title: Advances in Biochemical Engineering/Biotechnology
– ident: e_1_2_7_1_16_1
  doi: 10.1002/bit.26398
– ident: e_1_2_7_1_23_1
  doi: 10.1016/j.algal.2015.11.004
– ident: e_1_2_7_1_20_1
  doi: 10.1016/j.biortech.2011.01.019
– ident: e_1_2_7_1_26_1
  doi: 10.1007/s00449-002-0296-7
– ident: e_1_2_7_1_6_1
  doi: 10.1002/bit.26373
– ident: e_1_2_7_1_10_1
  doi: 10.1021/acs.iecr.8b02509
– ident: e_1_2_7_1_18_1
  doi: 10.1093/bioinformatics/btp139
– ident: e_1_2_7_1_13_1
– ident: e_1_2_7_1_19_1
  doi: 10.1016/j.chemosphere.2013.05.014
– ident: e_1_2_7_1_27_1
  doi: 10.1016/j.artint.2005.11.001
– ident: e_1_2_7_1_31_1
  doi: 10.1016/j.algal.2015.03.015
– ident: e_1_2_7_1_24_1
  doi: 10.1016/j.biotechadv.2011.07.009
– ident: e_1_2_7_1_8_1
  doi: 10.1016/j.algal.2014.11.010
SSID ssj0007866
Score 2.4767604
Snippet Microorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 342
SubjectTerms Algae
algae–bacteria consortium
artificial neural network
Artificial neural networks
Bacillus subtilis - growth & development
Bacillus subtilis - metabolism
Bacteria
Biological activity
Biological models (mathematics)
Chlorella vulgaris - growth & development
Chlorella vulgaris - metabolism
Computer simulation
Consortia
Datasets
Gaussian process
Gaussian processes
kinetic modeling
Mathematical models
Microbial Consortia
Model accuracy
Models, Theoretical
Neural networks
Regression analysis
Regression models
scarce dataset
Waste Water - microbiology
Wastewater treatment
Water Purification - methods
Water treatment
Title Review of advanced physical and data‐driven models for dynamic bioprocess simulation: Case study of algae–bacteria consortium wastewater treatment
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.26881
https://www.ncbi.nlm.nih.gov/pubmed/30475404
https://www.proquest.com/docview/2164134866
https://www.proquest.com/docview/2138050446
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UgqgPXrZeVqscRcSXbLPJJDvRp3axVEEfpIU-CGGuJdjNLs0uUp_6EwTBH9hf4pmZJLVeQHwbMpPMhDlz5jtzznwH4JlK9dhmRkWxTWXELLdRISYsIihCcF5oOfYXad-9z_cO2NvD7HANXnV3YQI_RH_g5laG19dugQvZbF2QhspqOUpy7q9du1gtB4g-XFBHTXjwUzqLOc2KpGMVipOt_s3Le9FvAPMyXvUbzu5N-NgNNcSZfBqtlnKkvvzC4vif_3ILbrRAFLeD5NyGNVMPYGO7JiN8dorP0YeG-jP3AVzZ6UpXp12CuAFc_4nLcAO-By8Dzi12cQW4aIUARa3RxaKen33VJ06_os_A0yBBZtSntZhVCmU1X4RrC9hUszat2Euc0j6LngXXf_v4SJjzs28ysEwLJHu-IROiWs3ws2jcUSA9xz5-_g4c7L7en-5FbdKHSJH6GEdWE0a1BDxItbAsiXXKWaomJDY547TbjgvFCXLkhmoJe_KcCxurIhNC6oJZlt6F9Xpem_uABCZjbRMmCFYyVRhhdFbkMiPhsCJWeggvuukvVcuI7hJzHJeByzkpaV5KPy9DeNo3XQQakD812uxkqGw1QVPSUAknMJLGITzpq2mmnGNG1Ga-cm1SHmfOtT6Ee0H2-l6cW5RQNaPBegn6e_flzpt9X3jw700fwjVCgEUIQ9-E9eXJyjwilLWUj_1y-gEffiXz
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRahw4LEFulBgQAhxyTabONkEcWkXqi20PaCt1EsV-RGjqN3sqtkVKqf-BCQkfmB_CWM7SSkPCXGzYid25PH488z4G4AXMlR9HeXS83UoPKYT7aV8wDyCIgTnuRJ9e5F2bz8eHbD3h9HhErxp7sI4fojW4GZWhtXXZoEbg_TGJWuoKOa9IE7MvetrJqO3WZZvP16SRw0S56k0Z-YwSoOGV8gPNtpXr-5Gv0HMq4jVbjnbt-GoGayLNDnuLeaiJ7_8wuP4v39zB27VWBQ3nfDchaW87MDqZknn8MkZvkQbHWrN7h24vtWUVoZNjrgO3PyJznAVvjtHA041NqEFOKvlAHmp0ISjXpx_VadGxaJNwlMhoWZUZyWfFBJFMZ25mwtYFZM6s9hrHNJWi5YI13775BPPL86_CUc0zZGO9BWdIorFBD_zylgD6Tm2IfT34GD73Xg48uq8D54kDdL3tCKYqgl7kHZhUeCrMGGhHJDkxCyhDbefyoRQR5xTLcHPJE649mUacS5UyjQL78NyOS3zNUDCk77SAeOELJlMc56rKI1FRNKhuS9VF14185_JmhTd5OY4yRydc5DRvGR2XrrwvG06c0wgf2q03ghRViuDKqOhElRgJI5deNZW00wZ3wwv8-nCtAkTPzLe9S48cMLX9mI8owSsGQ3WitDfu8-2dsa28PDfmz6FldF4bzfb3dn_8AhuECBMXVT6OizPTxf5YwJdc_HErq0fUe0qDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CSl-HPjZ9bJq201JKLt54bdkrt6dk0yXpI5SSQA4FI0tWMc16l3iXkJ7yEwKB_sD8ko4k22n6gNKbsGRLRqPRN5rRNwAvZKj6Osql5-sw85jm2kvEgHkERQjOC5X17UXaDzvx1h57ux_tL8Dr5i6M44doD9zMyrD62izwqdJrF6ShWTHrBTE3166vsNjnxvLa_HTBHTXgzlFpTOYwSoKGVsgP1tpXL29GvyHMy4DV7jij2_C5GasLNPnam8-ynvz2C43jf_7MHbhVI1Fcd6JzFxbysgNL6yVZ4eNjfIk2NtQeunfg6kZTuj5sMsR14OZPZIZL8N25GXCisQkswGktBShKhSYY9fzkVB0aBYs2BU-FhJlRHZdiXEjMisnU3VvAqhjXecVe4ZA2WrQ0uPbbB19Efn5yljmaaYFk0FdkQxTzMR6JypwF0nNsA-jvwd7oze5wy6uzPniS9Eff04pAqibkQbqFRYGvQs5COSC5iRmn7bafSE6YI86plsAnj7nQvkwiITKVMM3C-7BYTsr8ISChSV_pgAnClUwmuchVlMRZRMKhhS9VF1ab6U9lTYluMnMcpI7MOUhpXlI7L1143jadOh6QPzVaaWQorVVBldJQCSgwksYuPGuraaaMZ0aU-WRu2oTcj4xvvQsPnOy1vRi_KMFqRoO1EvT37tON7V1bWP73pk_h2sfNUfp-e-fdI7hBaDBxIekrsDg7nOePCXHNsid2Zf0A2-IoxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+advanced+physical+and+data-driven+models+for+dynamic+bioprocess+simulation%3A+Case+study+of+algae-bacteria+consortium+wastewater+treatment&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Del+Rio-Chanona%2C+Ehecatl+Antonio&rft.au=Cong%2C+Xiaoyan&rft.au=Bradford%2C+Eric&rft.au=Zhang%2C+Dongda&rft.date=2019-02-01&rft.eissn=1097-0290&rft.volume=116&rft.issue=2&rft.spage=342&rft_id=info:doi/10.1002%2Fbit.26881&rft_id=info%3Apmid%2F30475404&rft.externalDocID=30475404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon