Quantification of tumor tissue populations by multispectral analysis
Tumor heterogeneity complicates the quantification of a therapeutic response by MRI. To address this issue, a novel approach has been developed that combines MR diffusion imaging with multispectral (MS) analysis to quantify tumor tissue populations. K‐means (KM) clustering of the apparent diffusion...
Saved in:
Published in | Magnetic resonance in medicine Vol. 51; no. 3; pp. 542 - 551 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.03.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumor heterogeneity complicates the quantification of a therapeutic response by MRI. To address this issue, a novel approach has been developed that combines MR diffusion imaging with multispectral (MS) analysis to quantify tumor tissue populations. K‐means (KM) clustering of the apparent diffusion coefficient (ADC), T2, and proton density (M0) was employed to estimate the volumes of viable tumor tissue, necrosis, and neighboring subcutaneous adipose tissue in a human colorectal tumor xenograft mouse model. In a second set of experiments, the temporal evolution of the MS tissue classes in response to therapeutic intervention Apo2L/TRAIL and CPT‐11 was observed. The multiple parameters played complementary roles in identifying the various tissues. The ADC was the dominant parameter for identifying regions of necrosis, whereas T2 identified two necrotic subpopulations, and M0 contributed to the differentiation of viable tumor from subcutaneous adipose tissue. MS viable tumor estimates (mean volume = 275 ± 147 mm3) were highly correlated (r = 0.81, P < 0.01) with histological estimates (117 ± 51 mm3). In the treatment study, MS viable tumor volume (at day 10) was 77 ± 67 mm3 for the Apo2L/TRAIL+CPT‐11 group, and was significantly reduced relative to the control group (292 ± 127 mm3, P < 0.01). This method shows promise as a means of detecting an early therapeutic response in vivo. Magn Reson Med 51:542–551, 2004. © 2004 Wiley‐Liss, Inc. |
---|---|
AbstractList | Tumor heterogeneity complicates the quantification of a therapeutic response by MRI. To address this issue, a novel approach has been developed that combines MR diffusion imaging with multispectral (MS) analysis to quantify tumor tissue populations. K‐means (KM) clustering of the apparent diffusion coefficient (ADC), T2, and proton density (M0) was employed to estimate the volumes of viable tumor tissue, necrosis, and neighboring subcutaneous adipose tissue in a human colorectal tumor xenograft mouse model. In a second set of experiments, the temporal evolution of the MS tissue classes in response to therapeutic intervention Apo2L/TRAIL and CPT‐11 was observed. The multiple parameters played complementary roles in identifying the various tissues. The ADC was the dominant parameter for identifying regions of necrosis, whereas T2 identified two necrotic subpopulations, and M0 contributed to the differentiation of viable tumor from subcutaneous adipose tissue. MS viable tumor estimates (mean volume = 275 ± 147 mm3) were highly correlated (r = 0.81, P < 0.01) with histological estimates (117 ± 51 mm3). In the treatment study, MS viable tumor volume (at day 10) was 77 ± 67 mm3 for the Apo2L/TRAIL+CPT‐11 group, and was significantly reduced relative to the control group (292 ± 127 mm3, P < 0.01). This method shows promise as a means of detecting an early therapeutic response in vivo. Magn Reson Med 51:542–551, 2004. © 2004 Wiley‐Liss, Inc. Abstract Tumor heterogeneity complicates the quantification of a therapeutic response by MRI. To address this issue, a novel approach has been developed that combines MR diffusion imaging with multispectral (MS) analysis to quantify tumor tissue populations. K‐means (KM) clustering of the apparent diffusion coefficient (ADC), T 2 , and proton density ( M 0 ) was employed to estimate the volumes of viable tumor tissue, necrosis, and neighboring subcutaneous adipose tissue in a human colorectal tumor xenograft mouse model. In a second set of experiments, the temporal evolution of the MS tissue classes in response to therapeutic intervention Apo2L/TRAIL and CPT‐11 was observed. The multiple parameters played complementary roles in identifying the various tissues. The ADC was the dominant parameter for identifying regions of necrosis, whereas T 2 identified two necrotic subpopulations, and M 0 contributed to the differentiation of viable tumor from subcutaneous adipose tissue. MS viable tumor estimates (mean volume = 275 ± 147 mm 3 ) were highly correlated (r = 0.81, P < 0.01) with histological estimates (117 ± 51 mm 3 ). In the treatment study, MS viable tumor volume (at day 10) was 77 ± 67 mm 3 for the Apo2L/TRAIL+CPT‐11 group, and was significantly reduced relative to the control group (292 ± 127 mm 3 , P < 0.01). This method shows promise as a means of detecting an early therapeutic response in vivo. Magn Reson Med 51:542–551, 2004. © 2004 Wiley‐Liss, Inc. Tumor heterogeneity complicates the quantification of a therapeutic response by MRI. To address this issue, a novel approach has been developed that combines MR diffusion imaging with multispectral (MS) analysis to quantify tumor tissue populations. K-means (KM) clustering of the apparent diffusion coefficient (ADC), T2, and proton density (M0) was employed to estimate the volumes of viable tumor tissue, necrosis, and neighboring subcutaneous adipose tissue in a human colorectal tumor xenograft mouse model. In a second set of experiments, the temporal evolution of the MS tissue classes in response to therapeutic intervention Apo2L/TRAIL and CPT-11 was observed. The multiple parameters played complementary roles in identifying the various tissues. The ADC was the dominant parameter for identifying regions of necrosis, whereas T2 identified two necrotic subpopulations, and M0 contributed to the differentiation of viable tumor from subcutaneous adipose tissue. MS viable tumor estimates (mean volume = 275 +/- 147 mm(3)) were highly correlated (r = 0.81, P < 0.01) with histological estimates (117 +/- 51 mm(3)). In the treatment study, MS viable tumor volume (at day 10) was 77 +/- 67 mm(3) for the Apo2L/TRAIL+CPT-11 group, and was significantly reduced relative to the control group (292 +/- 127 mm(3), P < 0.01). This method shows promise as a means of detecting an early therapeutic response in vivo. Tumor heterogeneity complicates the quantification of a therapeutic response by MRI. To address this issue, a novel approach has been developed that combines MR diffusion imaging with multispectral (MS) analysis to quantify tumor tissue populations. K-means (KM) clustering of the apparent diffusion coefficient (ADC), T2, and proton density (M0) was employed to estimate the volumes of viable tumor tissue, necrosis, and neighboring subcutaneous adipose tissue in a human colorectal tumor xenograft mouse model. In a second set of experiments, the temporal evolution of the MS tissue classes in response to therapeutic intervention Apo2L/TRAIL and CPT-11 was observed. The multiple parameters played complementary roles in identifying the various tissues. The ADC was the dominant parameter for identifying regions of necrosis, whereas T2 identified two necrotic subpopulations, and M0 contributed to the differentiation of viable tumor from subcutaneous adipose tissue. MS viable tumor estimates (mean volume = 275 +/- 147 mm(3)) were highly correlated (r = 0.81, P < 0.01) with histological estimates (117 +/- 51 mm(3)). In the treatment study, MS viable tumor volume (at day 10) was 77 +/- 67 mm(3) for the Apo2L/TRAIL+CPT-11 group, and was significantly reduced relative to the control group (292 +/- 127 mm(3), P < 0.01). This method shows promise as a means of detecting an early therapeutic response in vivo. Tumor heterogeneity complicates the quantification of a therapeutic response by MRI. To address this issue, a novel approach has been developed that combines MR diffusion imaging with multispectral (MS) analysis to quantify tumor tissue populations. K-means (KM) clustering of the apparent diffusion coefficient (ADC), T sub(2), and proton density (M sub(0)) was employed to estimate the volumes of viable tumor tissue, necrosis, and neighboring subcutaneous adipose tissue in a human colorectal tumor xenograft mouse model. In a second set of experiments, the temporal evolution of the MS tissue classes in response to therapeutic intervention Apo2L/TRAIL and CPT-11 was observed. The multiple parameters played complementary roles in identifying the various tissues. The ADC was the dominant parameter for identifying regions of necrosis, whereas T sub(2) identified two necrotic subpopulations, and M sub(0) contributed to the differentiation of viable tumor from subcutaneous adipose tissue. MS viable tumor estimates (mean volume = 275 plus or minus 147 mm super(3)) were highly correlated (r = 0.81, P < 0.01) with histological estimates (117 plus or minus 51 mm super(3)). In the treatment study, MS viable tumor volume (at day 10) was 77 plus or minus 67 mm super(3) for the Apo2L/TRAIL+CPT-11 group, and was significantly reduced relative to the control group (292 plus or minus 127 mm super(3), P < 0.01). This method shows promise as a means of detecting an early therapeutic response in vivo. |
Author | Koeppen, Hartmut Carano, Richard A.D. Ross, Adrienne L. Van Bruggen, Nicholas Ross, Jed Schwall, Ralph H. Williams, Simon P. |
Author_xml | – sequence: 1 givenname: Richard A.D. surname: Carano fullname: Carano, Richard A.D. email: rcarano@gene.com organization: Department of Physiology, Genentech, Inc., South San Francisco, California – sequence: 2 givenname: Adrienne L. surname: Ross fullname: Ross, Adrienne L. organization: Department of Physiology, Genentech, Inc., South San Francisco, California – sequence: 3 givenname: Jed surname: Ross fullname: Ross, Jed organization: Department of Physiology, Genentech, Inc., South San Francisco, California – sequence: 4 givenname: Simon P. surname: Williams fullname: Williams, Simon P. organization: Department of Physiology, Genentech, Inc., South San Francisco, California – sequence: 5 givenname: Hartmut surname: Koeppen fullname: Koeppen, Hartmut organization: Department of Pathology, Genentech, Inc., South San Francisco, California – sequence: 6 givenname: Ralph H. surname: Schwall fullname: Schwall, Ralph H. organization: Department of Molecular Oncology, Genentech, Inc., South San Francisco, California – sequence: 7 givenname: Nicholas surname: Van Bruggen fullname: Van Bruggen, Nicholas organization: Department of Physiology, Genentech, Inc., South San Francisco, California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15004796$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkElPwzAQhS1URBc48AdQTkgcQr0ksX2EAgWphRaKOFpOYkuGbNiJIP-edAFOiNOM9L73NPOGoFeUhQLgGMFzBCEe5zbvFkrQHhigEGMfhzzogQGkAfQJ4kEfDJ17hRByToMD0EchhAHl0QBcLRtZ1EabRNamLLxSe3WTl9arjXON8qqyarKN5Ly49fIm64RKJbWVmScLmbXOuEOwr2Xm1NFujsDzzfVqcuvPHqZ3k4uZnwQ4RL5mCWEIMoRkqmjAdRKzqLs7jTSKWKQlRp0U0TCgcRITwjVOUcpZzBmOSarJCJxucytbvjfK1SI3LlFZJgtVNk5QRCHtvvwXRJQwTvEaPNuCiS2ds0qLyppc2lYgKNbdiq5bsem2Y092oU2cq_SX3JXZAeMt8GEy1f6dJOaP8-9If-swrlafPw5p30RECQ3Fy_1ULOHTYrW4ZIKSLzsylE0 |
CitedBy_id | crossref_primary_10_1016_j_placenta_2014_12_010 crossref_primary_10_1016_j_ejca_2011_12_025 crossref_primary_10_1016_j_jvir_2007_07_008 crossref_primary_10_1097_01_rct_0000175498_57083_80 crossref_primary_10_2967_jnumed_115_163972 crossref_primary_10_1038_s41598_021_83271_4 crossref_primary_10_1200_PO_18_00410 crossref_primary_10_1158_0008_5472_CAN_19_0213 crossref_primary_10_5334_jbr_btr_1223 crossref_primary_10_1002_mrm_22880 crossref_primary_10_1002_mrm_21470 crossref_primary_10_1002_mrm_26167 crossref_primary_10_1002_mrm_22442 crossref_primary_10_1016_j_compmedimag_2005_09_003 crossref_primary_10_1177_1748301816668024 crossref_primary_10_1371_journal_pone_0099936 crossref_primary_10_1002_nbm_981 crossref_primary_10_1038_s41551_023_01047_9 crossref_primary_10_2310_7290_2010_00040 crossref_primary_10_1002_jmri_24513 crossref_primary_10_1016_j_neo_2017_07_010 crossref_primary_10_1088_0031_9155_59_2_R65 crossref_primary_10_1002_jmri_22138 crossref_primary_10_1002_jmri_21327 crossref_primary_10_1002_nbm_4000 crossref_primary_10_1016_j_copbio_2004_11_004 crossref_primary_10_1007_s00247_022_05540_2 crossref_primary_10_1002_cncr_31630 crossref_primary_10_1016_j_mri_2006_11_004 crossref_primary_10_1016_j_neo_2019_08_003 crossref_primary_10_1158_0008_5472_CAN_15_0642 crossref_primary_10_1080_02841860802290516 crossref_primary_10_1080_02841860600570465 crossref_primary_10_1002_jmri_21878 crossref_primary_10_1002_nbm_4597 crossref_primary_10_1111_j_1524_4741_2011_01160_x crossref_primary_10_1158_1078_0432_CCR_14_0990 crossref_primary_10_1038_s41598_020_64912_6 crossref_primary_10_3174_ajnr_A8148 crossref_primary_10_1593_neo_13470 crossref_primary_10_1097_RLI_0b013e31819dcc84 crossref_primary_10_1002_mrm_21178 crossref_primary_10_1002_nbm_1127 crossref_primary_10_1016_j_media_2008_06_014 crossref_primary_10_1007_s11307_016_1009_y crossref_primary_10_1002_pros_20511 crossref_primary_10_1002_jbio_200910075 crossref_primary_10_1002_nbm_1804 crossref_primary_10_1007_s11307_010_0320_2 crossref_primary_10_1002_mrm_22109 crossref_primary_10_1593_neo_131468 crossref_primary_10_1002_ijc_28006 crossref_primary_10_1593_neo_05130 crossref_primary_10_3389_fonc_2022_892620 crossref_primary_10_1002_jmri_20615 crossref_primary_10_1007_s00330_016_4629_3 crossref_primary_10_1002_mrm_21161 crossref_primary_10_1007_s11060_016_2243_5 crossref_primary_10_1002_mrm_28196 crossref_primary_10_1007_s10456_005_9025_6 crossref_primary_10_1016_j_semcdb_2016_10_001 crossref_primary_10_1002_mrm_22572 crossref_primary_10_1002_mrm_27820 crossref_primary_10_1002_mrm_22014 crossref_primary_10_1002_mrm_21525 crossref_primary_10_1118_1_4819815 crossref_primary_10_1002_mrm_22810 crossref_primary_10_1007_s10456_010_9198_5 |
Cites_doi | 10.1007/s002340050450 10.1097/00004728-199207000-00003 10.1002/mrm.1910370417 10.1007/BF02426396 10.1016/S0730-725X(99)00090-9 10.1126/science.281.5381.1305 10.1172/JCI6926 10.1016/S0955-0674(99)80034-9 10.1073/pnas.030545097 10.1021/ja00968a057 10.1016/0730-725X(95)00012-6 10.1097/00004424-199011000-00015 10.1016/1074-7613(95)90057-8 10.1038/sj.neo.7900009 10.1002/jmri.1880080614 10.1002/(SICI)1099-1492(199805)11:3<120::AID-NBM506>3.0.CO;2-# 10.1148/radiology.161.2.3763909 10.1109/42.700729 10.1002/nbm.1940080705 10.1002/mrm.1910230108 10.1118/1.597000 10.1093/jnci/92.24.2029 10.1042/bj1800037 10.1074/jbc.271.22.12687 10.1002/1522-2586(200012)12:6<842::AID-JMRI7>3.0.CO;2-5 10.1002/jmri.1880050502 10.1016/0304-4165(82)90333-6 |
ContentType | Journal Article |
Copyright | Copyright © 2004 Wiley‐Liss, Inc. Copyright 2004 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2004 Wiley‐Liss, Inc. – notice: Copyright 2004 Wiley-Liss, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/mrm.10731 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 551 |
ExternalDocumentID | 10_1002_mrm_10731 15004796 MRM10731 ark_67375_WNG_Q0SPTPB8_7 |
Genre | article Journal Article |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF G8K NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4251-f8c3810811ade749fcb86107d6f1686fa2111a67547bcb339f2d1d98b982b3df3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Sat Aug 17 02:03:42 EDT 2024 Sat Aug 17 00:15:20 EDT 2024 Fri Aug 23 00:56:06 EDT 2024 Sat Sep 28 07:38:12 EDT 2024 Tue Oct 22 03:03:36 EDT 2024 Wed Oct 30 09:49:14 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Copyright 2004 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4251-f8c3810811ade749fcb86107d6f1686fa2111a67547bcb339f2d1d98b982b3df3 |
Notes | ark:/67375/WNG-Q0SPTPB8-7 ArticleID:MRM10731 istex:1466C95B7F0B4A9B8E30F5D61EEE2CEAEC0FEB30 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.10731 |
PMID | 15004796 |
PQID | 17389720 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_71707000 proquest_miscellaneous_17389720 crossref_primary_10_1002_mrm_10731 pubmed_primary_15004796 wiley_primary_10_1002_mrm_10731_MRM10731 istex_primary_ark_67375_WNG_Q0SPTPB8_7 |
PublicationCentury | 2000 |
PublicationDate | March 2004 |
PublicationDateYYYYMMDD | 2004-03-01 |
PublicationDate_xml | – month: 03 year: 2004 text: March 2004 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2004 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Vaidyanathan M, Clarke LP, Velthuizen RP, Phuphanich S, Bensaid AM, Hall LO, Bezdek JC, Greenberg H, Trotti A, Silbiger M. Comparison of supervised MRI segmentation methods for tumor volume determination during therapy. Magn Reson Imaging 1995; 13: 719-728. Brinkmann BH, Manduca A, Robb RA. Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction. IEEE Trans Med Imaging 1998; 17: 161-171. Chenevert TL, McKeever PE, Ross BD. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 1997; 3: 1457-1466. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161: 401-407. Els T, Eis M, Hoehn-Berlage M, Hossmann KA. Diffusion-weighted MR imaging of experimental brain tumors in rats. MAGMA 1995; 3: 13-20. Hsiang YH, Liu LF. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 1988; 48: 1722-1726. Maeda M, Kawamura Y, Tamagawa Y, Matsuda T, Itoh S, Kimura H, Iwasaki T, Hayashi N, Yamamoto K, Ishii Y. Intravoxel incoherent motion (IVIM) MRI in intracranial, extraaxial tumors and cysts. J Comput Assist Tomogr 1992; 16: 514-518. Galons JP, Altbach MI, Paine-Murrieta GD, Taylor CW, Gillies RJ. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia 1999; 1: 113-117. McClain KJ, Zhu Y, Hazle JD. Selection of MR images for automated segmentation. J Magn Reson Imaging 1995; 5: 485-492. Duda RO, Hart PE. Pattern classification and scene analysis. New York: John Wiley & Sons; 1973. Tou T, Gonzalez RC. Pattern recognition principles. Reading, MA: Addison-Wesley; 1974. Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 2000; 92: 2029-2036. Kelley SK, Harris LA, Xie D, Deforge L, Totpal K, Bussiere J, Fox JA. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 2001; 299: 31-38. Bass J, Sostman HD, Boyko O, Koepke JA. Effects of cell membrane disruption on the relaxation rates of blood and clot with various methemoglobin concentrations. Invest Radiol 1990; 25: 1232-1237. Gordon J, Mohamed F, Vinitski S, Knobler RL, Curtis M, Faro S, Khalili K. Utililization of experimental animal model for correlative multispectral MRI and pathological analysis of brain tumors. Magn Reson Imaging 1999; 17: 1495-1502. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, Goodwin RG. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673-682. Houghton PJ, Cheshire PJ, Hallman JC, Bissery MC, Mathieu-Boue A, Houghton JA. Therapeutic efficacy of the topoisomerase I inhibitor 7-ethyl-10-(4-[1-piperidino)-1-piperidino)-carbonyloxy-camptothecin against human tumor xenografts: lack of cross-resistance in vivo in tumors with acquired resistance to the topoisomerase I inhibitor 9-dimethylaminomethyl-10-hydroxycamptothecin. Cancer Res 1993; 53: 2823-2829. Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11: 255-260. Jain AK, Dubes RC. Algorithms for clustering data. Englewood Cliffs, NJ: Prentice Hall; 1988. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996; 271: 12687-12690. Vannier MW, Butterfield RL, Rickman DL, Jordan DM, Murphy WA, Biondetti PR. Multispectral magnetic resonance image analysis. Crit Rev Biomed Eng 1987; 15: 117-144. Wall ME, Wani MC, Cook CE. Plant anti-tumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 1966; 88: 3888-3890. Brindle KM, Brown FF, Campbell ID, Grathwohl C, Kuchel PW. Application of spin-echo nuclear magnetic resonance to whole-cell systems. Membrane transport. Biochem J 1979; 180: 37-44. Helmer KG, Han S, Sotak CH. On the correlation between the water diffusion coefficient and oxygen tension in RIF-1 tumors. NMR Biomed 1998; 11: 120-130. Taxt T, Lundervold A, Fuglaas B, Lien H, Abeler V. Multispectral analysis of uterine corpus tumors in magnetic resonance imaging. Magn Reson Med 1992; 23: 55-76. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281: 1305-1308. Helmer KG, Dardzinski BJ, Sotak CH. The application of porous-media theory to the investigation of time-dependent diffusion in in vivo systems. NMR Biomed 1995; 8: 297-306. Brunberg JA, Chenevert TL, McKeever PE, Ross DA, Junck LR, Muraszko KM, Dauser R, Pipe JG, Betley AT. In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR Am J Neuroradiol 1995; 16: 361-371. Bezdek JC, Hall LO, Clarke LP. Review of MR image segmentation techniques using pattern recognition. Med Phys 1993; 20: 1033-1048. Carano RA, Li F, Irie K, Helmer KG, Silva MD, Fisher M, Sotak CH. Multispectral analysis of the temporal evolution of cerebral ischemia in the rat brain. J Magn Reson Imaging 2000; 12: 842-858. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155-162. Maier CF, Paran Y, Bendel P, Rutt BK, Degani H. Quantitative diffusion imaging in implanted human breast tumors. Magn Reson Med 1997; 37: 576-581. Krabbe K, Gideon P, Wagn P, Hansen U, Thomsen C, Madsen F. MR diffusion imaging of human intracranial tumours. Neuroradiology 1997; 39: 483-489. Carano RA, Takano K, Helmer KG, Tatlisumak T, Irie K, Petruccelli JD, Fisher M, Sotak CH. Determination of focal ischemic lesion volume in the rat brain using multispectral analysis. J Magn Reson Imaging 1998; 8: 1266-1278. Gliniak B, Le T. Tumor necrosis factor-related apoptosis-inducing ligand's antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res 1999; 59: 6153-6158. Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL, Ross BD, Rehemtulla A. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 2000; 97: 1754-1759. Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 1982; 714: 265-270. Poptani H, Puumalainen AM, Grohn OH, Loimas S, Kainulainen R, Yla-Herttuala S, Kauppinen RA. Monitoring thymidine kinase and ganciclovir-induced changes in rat malignant glioma in vivo by nuclear magnetic resonance imaging. Cancer Gene Ther 1998; 5: 101-109. 1998; 281 1995; 16 1995; 13 1993; 20 2000; 92 1974 1973 1992; 16 1999; 1 1997; 3 1999; 104 1995; 3 1995; 5 1995; 8 1987; 15 1999 2001; 299 1998; 17 1990; 25 1982; 714 2000; 12 1986; 161 1997; 37 1999; 17 1988; 48 1993; 53 1999; 59 2000; 97 1996; 271 1997; 39 1999; 11 1998; 5 1992; 23 1966; 88 1998; 11 1998; 8 1988 1979; 180 Poptani H (e_1_2_5_10_2) 1998; 5 e_1_2_5_26_2 e_1_2_5_27_2 e_1_2_5_24_2 e_1_2_5_25_2 e_1_2_5_22_2 e_1_2_5_23_2 Vannier MW (e_1_2_5_16_2) 1987; 15 e_1_2_5_20_2 Jain AK (e_1_2_5_36_2) 1988 e_1_2_5_28_2 e_1_2_5_29_2 Brunberg JA (e_1_2_5_5_2) 1995; 16 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_13_2 Tou T (e_1_2_5_21_2) 1974 e_1_2_5_38_2 e_1_2_5_35_2 e_1_2_5_8_2 e_1_2_5_7_2 e_1_2_5_6_2 e_1_2_5_12_2 e_1_2_5_31_2 Hsiang YH (e_1_2_5_32_2) 1988; 48 e_1_2_5_4_2 e_1_2_5_11_2 Kelley SK (e_1_2_5_30_2) 2001; 299 e_1_2_5_3_2 Stark DD (e_1_2_5_40_2) 1999 e_1_2_5_2_2 Chenevert TL (e_1_2_5_9_2) 1997; 3 e_1_2_5_18_2 e_1_2_5_17_2 e_1_2_5_39_2 e_1_2_5_19_2 Gliniak B (e_1_2_5_34_2) 1999; 59 Duda RO (e_1_2_5_15_2) 1973 Houghton PJ (e_1_2_5_33_2) 1993; 53 |
References_xml | – volume: 299 start-page: 31 year: 2001 end-page: 38 article-title: Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor‐related apoptosis‐inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety publication-title: J Pharmacol Exp Ther – volume: 12 start-page: 842 year: 2000 end-page: 858 article-title: Multispectral analysis of the temporal evolution of cerebral ischemia in the rat brain publication-title: J Magn Reson Imaging – volume: 281 start-page: 1305 year: 1998 end-page: 1308 article-title: Death receptors: signaling and modulation publication-title: Science – volume: 59 start-page: 6153 year: 1999 end-page: 6158 article-title: Tumor necrosis factor‐related apoptosis‐inducing ligand's antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT‐11 publication-title: Cancer Res – volume: 17 start-page: 161 year: 1998 end-page: 171 article-title: Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction publication-title: IEEE Trans Med Imaging – volume: 11 start-page: 120 year: 1998 end-page: 130 article-title: On the correlation between the water diffusion coefficient and oxygen tension in RIF‐1 tumors publication-title: NMR Biomed – volume: 8 start-page: 297 year: 1995 end-page: 306 article-title: The application of porous‐media theory to the investigation of time‐dependent diffusion in in vivo systems publication-title: NMR Biomed – volume: 16 start-page: 361 year: 1995 end-page: 371 article-title: In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres publication-title: AJNR Am J Neuroradiol – year: 1973 – start-page: 369 year: 1999 – volume: 8 start-page: 1266 year: 1998 end-page: 1278 article-title: Determination of focal ischemic lesion volume in the rat brain using multispectral analysis publication-title: J Magn Reson Imaging – volume: 3 start-page: 673 year: 1995 end-page: 682 article-title: Identification and characterization of a new member of the TNF family that induces apoptosis publication-title: Immunity – volume: 97 start-page: 1754 year: 2000 end-page: 1759 article-title: Combined effect of tumor necrosis factor‐related apoptosis‐inducing ligand and ionizing radiation in breast cancer therapy publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 101 year: 1998 end-page: 109 article-title: Monitoring thymidine kinase and ganciclovir‐induced changes in rat malignant glioma in vivo by nuclear magnetic resonance imaging publication-title: Cancer Gene Ther – volume: 92 start-page: 2029 year: 2000 end-page: 2036 article-title: Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors publication-title: J Natl Cancer Inst – volume: 37 start-page: 576 year: 1997 end-page: 581 article-title: Quantitative diffusion imaging in implanted human breast tumors publication-title: Magn Reson Med – volume: 3 start-page: 1457 year: 1997 end-page: 1466 article-title: Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging publication-title: Clin Cancer Res – volume: 39 start-page: 483 year: 1997 end-page: 489 article-title: MR diffusion imaging of human intracranial tumours publication-title: Neuroradiology – volume: 53 start-page: 2823 year: 1993 end-page: 2829 article-title: Therapeutic efficacy of the topoisomerase I inhibitor 7‐ethyl‐10‐(4‐[1‐piperidino)‐1‐piperidino)‐carbonyloxy‐camptothecin against human tumor xenografts: lack of cross‐resistance in vivo in tumors with acquired resistance to the topoisomerase I inhibitor 9‐dimethylaminomethyl‐10‐hydroxycamptothecin publication-title: Cancer Res – volume: 48 start-page: 1722 year: 1988 end-page: 1726 article-title: Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin publication-title: Cancer Res – volume: 104 start-page: 155 year: 1999 end-page: 162 article-title: Safety and antitumor activity of recombinant soluble Apo2 ligand publication-title: J Clin Invest – volume: 180 start-page: 37 year: 1979 end-page: 44 article-title: Application of spin‐echo nuclear magnetic resonance to whole‐cell systems. Membrane transport publication-title: Biochem J – volume: 15 start-page: 117 year: 1987 end-page: 144 article-title: Multispectral magnetic resonance image analysis publication-title: Crit Rev Biomed Eng – volume: 1 start-page: 113 year: 1999 end-page: 117 article-title: Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non‐invasive diffusion magnetic resonance imaging publication-title: Neoplasia – volume: 20 start-page: 1033 year: 1993 end-page: 1048 article-title: Review of MR image segmentation techniques using pattern recognition publication-title: Med Phys – year: 1988 – volume: 3 start-page: 13 year: 1995 end-page: 20 article-title: Diffusion‐weighted MR imaging of experimental brain tumors in rats publication-title: MAGMA – volume: 23 start-page: 55 year: 1992 end-page: 76 article-title: Multispectral analysis of uterine corpus tumors in magnetic resonance imaging publication-title: Magn Reson Med – volume: 11 start-page: 255 year: 1999 end-page: 260 article-title: Apoptosis control by death and decoy receptors publication-title: Curr Opin Cell Biol – year: 1974 – volume: 714 start-page: 265 year: 1982 end-page: 270 article-title: Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field publication-title: Biochim Biophys Acta – volume: 161 start-page: 401 year: 1986 end-page: 407 article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders publication-title: Radiology – volume: 16 start-page: 514 year: 1992 end-page: 518 article-title: Intravoxel incoherent motion (IVIM) MRI in intracranial, extraaxial tumors and cysts publication-title: J Comput Assist Tomogr – volume: 271 start-page: 12687 year: 1996 end-page: 12690 article-title: Induction of apoptosis by Apo‐2 ligand, a new member of the tumor necrosis factor cytokine family publication-title: J Biol Chem – volume: 17 start-page: 1495 year: 1999 end-page: 1502 article-title: Utililization of experimental animal model for correlative multispectral MRI and pathological analysis of brain tumors publication-title: Magn Reson Imaging – volume: 13 start-page: 719 year: 1995 end-page: 728 article-title: Comparison of supervised MRI segmentation methods for tumor volume determination during therapy publication-title: Magn Reson Imaging – volume: 25 start-page: 1232 year: 1990 end-page: 1237 article-title: Effects of cell membrane disruption on the relaxation rates of blood and clot with various methemoglobin concentrations publication-title: Invest Radiol – volume: 88 start-page: 3888 year: 1966 end-page: 3890 article-title: Plant anti‐tumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from publication-title: J Am Chem Soc – volume: 5 start-page: 485 year: 1995 end-page: 492 article-title: Selection of MR images for automated segmentation publication-title: J Magn Reson Imaging – ident: e_1_2_5_7_2 doi: 10.1007/s002340050450 – volume: 299 start-page: 31 year: 2001 ident: e_1_2_5_30_2 article-title: Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor‐related apoptosis‐inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety publication-title: J Pharmacol Exp Ther contributor: fullname: Kelley SK – ident: e_1_2_5_3_2 doi: 10.1097/00004728-199207000-00003 – ident: e_1_2_5_6_2 doi: 10.1002/mrm.1910370417 – start-page: 369 volume-title: Magnetic resonance imaging year: 1999 ident: e_1_2_5_40_2 contributor: fullname: Stark DD – ident: e_1_2_5_14_2 doi: 10.1007/BF02426396 – ident: e_1_2_5_19_2 doi: 10.1016/S0730-725X(99)00090-9 – ident: e_1_2_5_27_2 doi: 10.1126/science.281.5381.1305 – ident: e_1_2_5_29_2 doi: 10.1172/JCI6926 – ident: e_1_2_5_28_2 doi: 10.1016/S0955-0674(99)80034-9 – volume: 48 start-page: 1722 year: 1988 ident: e_1_2_5_32_2 article-title: Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin publication-title: Cancer Res contributor: fullname: Hsiang YH – volume-title: Pattern classification and scene analysis year: 1973 ident: e_1_2_5_15_2 contributor: fullname: Duda RO – volume: 53 start-page: 2823 year: 1993 ident: e_1_2_5_33_2 article-title: Therapeutic efficacy of the topoisomerase I inhibitor 7‐ethyl‐10‐(4‐[1‐piperidino)‐1‐piperidino)‐carbonyloxy‐camptothecin against human tumor xenografts: lack of cross‐resistance in vivo in tumors with acquired resistance to the topoisomerase I inhibitor 9‐dimethylaminomethyl‐10‐hydroxycamptothecin publication-title: Cancer Res contributor: fullname: Houghton PJ – volume: 5 start-page: 101 year: 1998 ident: e_1_2_5_10_2 article-title: Monitoring thymidine kinase and ganciclovir‐induced changes in rat malignant glioma in vivo by nuclear magnetic resonance imaging publication-title: Cancer Gene Ther contributor: fullname: Poptani H – ident: e_1_2_5_12_2 doi: 10.1073/pnas.030545097 – ident: e_1_2_5_31_2 doi: 10.1021/ja00968a057 – ident: e_1_2_5_18_2 doi: 10.1016/0730-725X(95)00012-6 – volume: 59 start-page: 6153 year: 1999 ident: e_1_2_5_34_2 article-title: Tumor necrosis factor‐related apoptosis‐inducing ligand's antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT‐11 publication-title: Cancer Res contributor: fullname: Gliniak B – volume: 3 start-page: 1457 year: 1997 ident: e_1_2_5_9_2 article-title: Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging publication-title: Clin Cancer Res contributor: fullname: Chenevert TL – ident: e_1_2_5_39_2 doi: 10.1097/00004424-199011000-00015 – volume: 15 start-page: 117 year: 1987 ident: e_1_2_5_16_2 article-title: Multispectral magnetic resonance image analysis publication-title: Crit Rev Biomed Eng contributor: fullname: Vannier MW – ident: e_1_2_5_25_2 doi: 10.1016/1074-7613(95)90057-8 – ident: e_1_2_5_11_2 doi: 10.1038/sj.neo.7900009 – ident: e_1_2_5_22_2 doi: 10.1002/jmri.1880080614 – volume-title: Algorithms for clustering data year: 1988 ident: e_1_2_5_36_2 contributor: fullname: Jain AK – ident: e_1_2_5_8_2 doi: 10.1002/(SICI)1099-1492(199805)11:3<120::AID-NBM506>3.0.CO;2-# – ident: e_1_2_5_2_2 doi: 10.1148/radiology.161.2.3763909 – ident: e_1_2_5_35_2 doi: 10.1109/42.700729 – ident: e_1_2_5_4_2 doi: 10.1002/nbm.1940080705 – volume-title: Pattern recognition principles year: 1974 ident: e_1_2_5_21_2 contributor: fullname: Tou T – ident: e_1_2_5_17_2 doi: 10.1002/mrm.1910230108 – ident: e_1_2_5_24_2 doi: 10.1118/1.597000 – ident: e_1_2_5_13_2 doi: 10.1093/jnci/92.24.2029 – ident: e_1_2_5_37_2 doi: 10.1042/bj1800037 – ident: e_1_2_5_26_2 doi: 10.1074/jbc.271.22.12687 – ident: e_1_2_5_23_2 doi: 10.1002/1522-2586(200012)12:6<842::AID-JMRI7>3.0.CO;2-5 – ident: e_1_2_5_20_2 doi: 10.1002/jmri.1880050502 – ident: e_1_2_5_38_2 doi: 10.1016/0304-4165(82)90333-6 – volume: 16 start-page: 361 year: 1995 ident: e_1_2_5_5_2 article-title: In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres publication-title: AJNR Am J Neuroradiol contributor: fullname: Brunberg JA |
SSID | ssj0009974 |
Score | 2.1015062 |
Snippet | Tumor heterogeneity complicates the quantification of a therapeutic response by MRI. To address this issue, a novel approach has been developed that combines... Abstract Tumor heterogeneity complicates the quantification of a therapeutic response by MRI. To address this issue, a novel approach has been developed that... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 542 |
SubjectTerms | Adipose Tissue - pathology Animals Antineoplastic Agents, Phytogenic - therapeutic use Apo2L/TRAIL Apoptosis Regulatory Proteins Camptothecin - analogs & derivatives Camptothecin - therapeutic use Cell Line, Tumor Colonic Neoplasms - drug therapy Colonic Neoplasms - pathology diffusion Disease Models, Animal fas Receptor - therapeutic use Female Humans K-means clustering Ligands Magnetic Resonance Imaging - methods Magnetic Resonance Spectroscopy - methods Membrane Glycoproteins - therapeutic use Mice Mice, Nude multispectral analysis Necrosis Neoplasm Transplantation Remission Induction Skin Neoplasms - drug therapy Skin Neoplasms - pathology Time Factors TNF-Related Apoptosis-Inducing Ligand Topoisomerase I Inhibitors Transplantation, Heterologous tumor Tumor Necrosis Factor-alpha - therapeutic use |
Title | Quantification of tumor tissue populations by multispectral analysis |
URI | https://api.istex.fr/ark:/67375/WNG-Q0SPTPB8-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.10731 https://www.ncbi.nlm.nih.gov/pubmed/15004796 https://search.proquest.com/docview/17389720 https://search.proquest.com/docview/71707000 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4hEGgvAzpghcEiNCFeAonj2on2xM8hpFaFgcbDJMt24hfUFqWJxPbXc7abVp1AQnvzw8WyfXf2XfzdZ4BvqTUjmvAwMoqFlDMdSqplKG08SzimJNwWOHd77OqeXj90Hhbge1ML4_khpj_crGe4_do6uFTj4xlp6KAcYJO7Guo44RbOdX47o47KMs_AzKndZzLasApF5Hj65dxZtGSX9fm1QHM-bnUHz-Uq_G6G7PEmj0d1pY7033_YHP9zTmvwcRKQBifegtZhoRi2YKU7uXJvwbLDiOrxJzi_qaWHFjltBiMTVPVgVAaVU17wNH0LbByoP4GDKrpCzhL7lxPykw24v7y4O7sKJ48whBrdOQ5Nqi0JWBrHMi84zYxWKYZcPGcmZikzEjPIWGLaQbnSKkkyQ_I4z1KVpUQluUk2YXE4GhafIUDxxHQkkyRXlBmCHTJMzgumo0gTKduw36hDPHmuDeFZlYnAlRFuZdpw4BQ1lZDlowWn8Y741fshbqKf_bv-aSp4G742mhToMvYeRA6LUT0WMccojZPobQnMcdGGI5TY8iYwG0_HkfKzNhw6Rb49UNG97brG9vtFd-CDRwZZjNsXWKzKutjFoKdSe866XwDucfus |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4h0DZe2GADytiI0DTtJZA4rp1IvMAYdINUwIrGy2TZTvyC2qI0kWC_fme7acU0pGlvfrhYju_OvrO_-wzwIbVmRBMeRkaxkHKmQ0m1DKWNZwnHlITbAue8z3rX9NtN92YBDtpaGM8PMTtws57h1mvr4PZAen_OGjqshtjktoh6Cd09sQ83HF_NyaOyzHMwc2pXmoy2vEIR2Z99-mg3WrITe_-3UPNx5Oq2npOX8LMdtEec3O41tdrTv_7gc_zfv3oFK9OYNDj0RrQKC-VoDZ7n01v3NXjmYKJ68hqOLxvp0UVOocHYBHUzHFdB7fQX3M2eA5sE6iFwaEVXy1lh_3LKf_IGrk--DD73wuk7DKFGj45Dk2rLA5bGsSxKTjOjVYpRFy-YiVnKjMQkMpaYeVCutEqSzJAiLrJUZSlRSWGSdVgcjUflJgQonpiuZJIUijJDsEOG-XnJdBRpImUHdlt9iDtPtyE8sTIRODPCzUwHPjpNzSRkdWvxabwrfvRPxWX0_WJwcZQK3oGdVpUCvcZehchROW4mIuYYqHESPS2BaS6acYQSG94G5uPpOl5-1oFPTpNPD1TkV7lrbP276A686A3yc3H-tX_2FpY9UMhC3rZhsa6a8h3GQLV670z9N5km_8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUBGX0vJolz6IKoS4hE0cr52op7Z0Swu7Wl6CQyXLduIL2oeyidT213dsb3YFAglx82Fi2Z4Z-5t45jPAXmrNiCY8jIxiIeVMh5JqGUqLZwnHkITbAudenx1f0V83nZsl-NzUwnh-iPkPN-sZbr-2Dj7JTXtBGjosh9jktoZ6hTJEvhYRnS-4o7LMUzBzajeajDa0QhFpzz-9cxit2HX98xDSvAtc3cnTXYffzZh9wsntYV2pQ_3vHp3jMyf1Cl7OEGnwxZvQa1gqRhuw2pvduW_AC5ckqqebcHRWS59b5NQZjE1Q1cNxGVROe8Fk_hjYNFB_A5er6Co5S-xfzthPtuCq-_3y23E4e4Uh1OjPcWhSbVnA0jiWecFpZrRKEXPxnJmYpcxIDCFjiXEH5UqrJMkMyeM8S1WWEpXkJtmG5dF4VLyFAMUT05FMklxRZgh2yDA6L5iOIk2kbMGnRh1i4sk2hKdVJgJXRriVacG-U9RcQpa3NjuNd8R1_4c4iy4Gl4OvqeAt2G00KdBn7EWIHBXjeipijjCNk-hxCQxy0YgjlHjjTWAxno5j5WctOHCKfHygonfec42dp4vuwurgqCtOf_ZP3sGazxKy-W7vYbkq6-IDAqBKfXSG_h-eif5z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+tumor+tissue+populations+by+multispectral+analysis&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Carano%2C+Richard+A.D.&rft.au=Ross%2C+Adrienne+L.&rft.au=Ross%2C+Jed&rft.au=Williams%2C+Simon+P.&rft.date=2004-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=51&rft.issue=3&rft.spage=542&rft.epage=551&rft_id=info:doi/10.1002%2Fmrm.10731&rft.externalDBID=10.1002%252Fmrm.10731&rft.externalDocID=MRM10731 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |