Kainate-induced currents in rat cortical neurons in culture are modulated by riluzole
The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture by using the whole‐cell configuration of the patch‐clamp technique. Kainate elicited macroscopic, 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX)‐sensiti...
Saved in:
Published in | Synapse (New York, N.Y.) Vol. 43; no. 4; pp. 244 - 251 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
15.03.2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture by using the whole‐cell configuration of the patch‐clamp technique. Kainate elicited macroscopic, 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX)‐sensitive inward currents in all the patched cells and the amplitude of the current was concentration‐dependent (EC50= 106 μM). Riluzole decreased the inward currents induced by 100 μM kainate at all holding potentials and the reduction was dose‐dependent (IC50= 101 μM). The maximal response to kainate decreased in the presence of 50 μM riluzole, without changing its EC50, indicating a noncompetitive mechanism of inhibition. The amplitude of the responses induced by kainate under control conditions and during riluzole was a linear function of the membrane potential and the reversal potential of the currents was not significantly different in the two experimental conditions. Instead, the total conductance of the cell membrane for the currents induced by 100 μM kainate was significantly reduced in the presence of 50 μM riluzole (P < 0.05). The analysis of the kainate membrane current noise performed under control conditions and during perfusion of 100 μM riluzole revealed that riluzole reduced the probability of kainate‐activated ionic channels to be in the open state. Conversely, the unitary conductance of channels, as well as their characteristic time constant, seemed to be unchanged. These results reveal an additional mechanism by which riluzole can interact with glutamatergic neurotransmission and provides further support for the idea that riluzole may prove beneficial in the treatment of central nervous system injuries involving the excitotoxic actions of glutamate. Synapse 43:244–251, 2002. © 2002 Wiley‐Liss, Inc. |
---|---|
AbstractList | The action of the neuroprotective and anticonvulsant agent riluzole on kainate-induced currents was studied in rat cortical neurons in primary culture by using the whole-cell configuration of the patch-clamp technique. Kainate elicited macroscopic, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive inward currents in all the patched cells and the amplitude of the current was concentration-dependent (EC50= 106 microM). Riluzole decreased the inward currents induced by 100 microM kainate at all holding potentials and the reduction was dose-dependent (IC50= 101 microM). The maximal response to kainate decreased in the presence of 50 microM riluzole, without changing its EC50, indicating a noncompetitive mechanism of inhibition. The amplitude of the responses induced by kainate under control conditions and during riluzole was a linear function of the membrane potential and the reversal potential of the currents was not significantly different in the two experimental conditions. Instead, the total conductance of the cell membrane for the currents induced by 100 microM kainate was significantly reduced in the presence of 50 microM riluzole (P < 0.05). The analysis of the kainate membrane current noise performed under control conditions and during perfusion of 100 microM riluzole revealed that riluzole reduced the probability of kainate-activated ionic channels to be in the open state. Conversely, the unitary conductance of channels, as well as their characteristic time constant, seemed to be unchanged. These results reveal an additional mechanism by which riluzole can interact with glutamatergic neurotransmission and provides further support for the idea that riluzole may prove beneficial in the treatment of central nervous system injuries involving the excitotoxic actions of glutamate. Abstract The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture by using the whole‐cell configuration of the patch‐clamp technique. Kainate elicited macroscopic, 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX)‐sensitive inward currents in all the patched cells and the amplitude of the current was concentration‐dependent (EC 50 = 106 μM). Riluzole decreased the inward currents induced by 100 μM kainate at all holding potentials and the reduction was dose‐dependent (IC 50 = 101 μM). The maximal response to kainate decreased in the presence of 50 μM riluzole, without changing its EC 50 , indicating a noncompetitive mechanism of inhibition. The amplitude of the responses induced by kainate under control conditions and during riluzole was a linear function of the membrane potential and the reversal potential of the currents was not significantly different in the two experimental conditions. Instead, the total conductance of the cell membrane for the currents induced by 100 μM kainate was significantly reduced in the presence of 50 μM riluzole ( P < 0.05). The analysis of the kainate membrane current noise performed under control conditions and during perfusion of 100 μM riluzole revealed that riluzole reduced the probability of kainate‐activated ionic channels to be in the open state. Conversely, the unitary conductance of channels, as well as their characteristic time constant, seemed to be unchanged. These results reveal an additional mechanism by which riluzole can interact with glutamatergic neurotransmission and provides further support for the idea that riluzole may prove beneficial in the treatment of central nervous system injuries involving the excitotoxic actions of glutamate. Synapse 43:244–251, 2002. © 2002 Wiley‐Liss, Inc. The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture by using the whole‐cell configuration of the patch‐clamp technique. Kainate elicited macroscopic, 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX)‐sensitive inward currents in all the patched cells and the amplitude of the current was concentration‐dependent (EC50= 106 μM). Riluzole decreased the inward currents induced by 100 μM kainate at all holding potentials and the reduction was dose‐dependent (IC50= 101 μM). The maximal response to kainate decreased in the presence of 50 μM riluzole, without changing its EC50, indicating a noncompetitive mechanism of inhibition. The amplitude of the responses induced by kainate under control conditions and during riluzole was a linear function of the membrane potential and the reversal potential of the currents was not significantly different in the two experimental conditions. Instead, the total conductance of the cell membrane for the currents induced by 100 μM kainate was significantly reduced in the presence of 50 μM riluzole (P < 0.05). The analysis of the kainate membrane current noise performed under control conditions and during perfusion of 100 μM riluzole revealed that riluzole reduced the probability of kainate‐activated ionic channels to be in the open state. Conversely, the unitary conductance of channels, as well as their characteristic time constant, seemed to be unchanged. These results reveal an additional mechanism by which riluzole can interact with glutamatergic neurotransmission and provides further support for the idea that riluzole may prove beneficial in the treatment of central nervous system injuries involving the excitotoxic actions of glutamate. Synapse 43:244–251, 2002. © 2002 Wiley‐Liss, Inc. |
Author | Cavalcanti, Silvio Mercuri, Nicola Zona, Cristina Marchetti, Caterina Costa, Nicola Siniscalchi, Antonio Gaetti, Chiara De Sarro, Giovanbattista Bernardi, Giorgio |
Author_xml | – sequence: 1 givenname: Cristina surname: Zona fullname: Zona, Cristina email: zona@med.uniroma2.it organization: Fisiologia Umana, Università degli Studi di Roma "Tor Vergata," 00133 Rome, Italy – sequence: 2 givenname: Silvio surname: Cavalcanti fullname: Cavalcanti, Silvio organization: D.E.I.S., Università degli Studi di Bologna, 40136 Bologna, Italy – sequence: 3 givenname: Giovanbattista surname: De Sarro fullname: De Sarro, Giovanbattista organization: Cattedra di Farmacologia, Università degli Studi di Catanzaro "Magna Graecia", 88100 Catanzaro, Italy – sequence: 4 givenname: Antonio surname: Siniscalchi fullname: Siniscalchi, Antonio organization: Cattedra di Farmacologia, Università degli Studi di Catanzaro "Magna Graecia", 88100 Catanzaro, Italy – sequence: 5 givenname: Caterina surname: Marchetti fullname: Marchetti, Caterina organization: IRCCS, Fondazione S. Lucia, 00179 Rome, Italy – sequence: 6 givenname: Chiara surname: Gaetti fullname: Gaetti, Chiara organization: D.E.I.S., Università degli Studi di Bologna, 40136 Bologna, Italy – sequence: 7 givenname: Nicola surname: Costa fullname: Costa, Nicola organization: Cattedra di Farmacologia, Università degli Studi di Catanzaro "Magna Graecia", 88100 Catanzaro, Italy – sequence: 8 givenname: Nicola surname: Mercuri fullname: Mercuri, Nicola organization: IRCCS, Fondazione S. Lucia, 00179 Rome, Italy – sequence: 9 givenname: Giorgio surname: Bernardi fullname: Bernardi, Giorgio organization: IRCCS, Fondazione S. Lucia, 00179 Rome, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11835519$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kL1OwzAURi0Eoj8w8AIoK0Oo7dixM6IKWkRVhKAgJsuxHcmQOpUTC8LTkzYFJoare3V1vjN8I3DoKmcAOEPwEkGIJ3XrtgeBB2CIYMZjnGTpIRhCzllMCEsHYFTXbxDCBEFyDAYI8YRSlA3B6k5aJxsTW6eDMjpSwXvjmjqyLvKyiVTlG6tkGTkTfOV2fxXKJngTyW7WlQ5lJ9BR3kbeluGrKs0JOCpkWZvT_R6D1c3103QeL-5nt9OrRawIpjCWROuCp3mukckhyjHHTBKolCRMYZ5LQiTDqaYp5pJSmamCapZybQjJKObJGFz0XuWruvamEBtv19K3AkGxrUZ01YhdNR173rObkK-N_iP3XXTApAc-bGna_03i8XX5o4z7hK0b8_mbkP5dpCxhVLwsZ4JkbP6woEQ8J981uX-f |
CitedBy_id | crossref_primary_10_1016_j_jad_2019_06_065 crossref_primary_10_2165_00023210_200822090_00004 crossref_primary_10_1016_j_neuroscience_2003_07_003 crossref_primary_10_1007_s12035_020_02059_1 crossref_primary_10_1016_j_neuroscience_2010_10_080 crossref_primary_10_1016_j_ynstr_2022_100442 crossref_primary_10_1093_pnasnexus_pgad166 crossref_primary_10_1016_j_neuroscience_2007_04_018 crossref_primary_10_1016_j_neuropharm_2022_109349 crossref_primary_10_1152_jn_00425_2013 crossref_primary_10_1254_jphs_FP0072095 crossref_primary_10_3390_pharmaceutics15072006 crossref_primary_10_3389_fneur_2019_01205 crossref_primary_10_1523_JNEUROSCI_0124_07_2007 crossref_primary_10_1016_j_neuropharm_2018_09_021 crossref_primary_10_1016_S0006_8993_03_03343_2 crossref_primary_10_1016_j_bcp_2009_04_008 crossref_primary_10_1016_j_expneurol_2011_11_044 crossref_primary_10_1016_j_expneurol_2008_11_002 crossref_primary_10_1002_jnr_20244 crossref_primary_10_3389_fnins_2020_00363 crossref_primary_10_1016_j_crphys_2023_100109 crossref_primary_10_1111_j_1460_9568_2008_06211_x crossref_primary_10_1152_jn_00587_2012 crossref_primary_10_1111_j_1755_5949_2009_00116_x |
Cites_doi | 10.1038/sj.bjp.0703424 10.1126/science.1710829 10.1016/0014-2999(93)90037-I 10.1007/BF00370302 10.1523/JNEUROSCI.09-11-03720.1989 10.2165/00003495-199651010-00004 10.1016/S0014-2999(00)00709-3 10.1016/0896-6273(94)90444-8 10.1016/0006-8993(78)90476-6 10.1073/pnas.90.24.11688 10.1007/BF00656997 10.1046/j.1460-9568.2000.00242.x 10.1007/BF03160577 10.1016/0306-4522(81)90193-7 10.1016/0304-3940(92)90597-Z 10.1002/(SICI)1098-2396(19990601)32:3<147::AID-SYN1>3.0.CO;2-P 10.1038/379078a0 10.1016/S0306-4522(97)00604-0 10.1126/science.1849316 10.1113/jphysiol.1995.sp020738 10.1016/0028-3908(88)90089-5 10.1016/0896-6273(91)90175-Y 10.1111/j.1476-5381.1995.tb15128.x 10.1016/0014-2999(93)90147-A 10.1097/00001756-199404000-00040 10.1016/0028-3908(85)90196-0 10.1038/sj.bjp.0700905 10.1016/0006-8993(92)91701-F 10.1007/BF02684186 10.1016/0304-3940(92)90108-J 10.1016/0006-8993(81)91308-1 10.1016/0165-6147(92)90088-N 10.1113/jphysiol.1995.sp020519 10.1016/0304-3940(95)11284-4 10.1097/00000542-199711000-00021 10.1016/S0140-6736(96)91680-3 10.1016/0304-3940(89)90403-5 10.1016/0006-8993(89)90904-9 10.1016/0306-4522(85)90299-4 10.1212/WNL.47.6_Suppl_4.251S |
ContentType | Journal Article |
Copyright | Copyright © 2002 Wiley‐Liss, Inc. Copyright 2002 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Copyright © 2002 Wiley‐Liss, Inc. – notice: Copyright 2002 Wiley‐Liss, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1002/syn.10040 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1098-2396 |
EndPage | 251 |
ExternalDocumentID | 10_1002_syn_10040 11835519 SYN10040 ark_67375_WNG_497HQL54_V |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Telethon‐Italy funderid: 1185 – fundername: Telethon grantid: 1185 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 YNT ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION |
ID | FETCH-LOGICAL-c4250-a4ddf86bbd1eb01b2827a40cca47c28ba44a726d5628a55a9cf5d768de4495283 |
IEDL.DBID | DR2 |
ISSN | 0887-4476 |
IngestDate | Fri Aug 23 01:04:37 EDT 2024 Sat Sep 28 08:30:07 EDT 2024 Sat Aug 24 00:49:28 EDT 2024 Wed Oct 30 09:47:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright 2002 Wiley‐Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4250-a4ddf86bbd1eb01b2827a40cca47c28ba44a726d5628a55a9cf5d768de4495283 |
Notes | Telethon-Italy - No. 1185 istex:AF43CF84216936DEDA6E408CD5A1C463D17DD7D4 ark:/67375/WNG-497HQL54-V ArticleID:SYN10040 |
PMID | 11835519 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1002_syn_10040 pubmed_primary_11835519 wiley_primary_10_1002_syn_10040_SYN10040 istex_primary_ark_67375_WNG_497HQL54_V |
PublicationCentury | 2000 |
PublicationDate | 15 March 2002 |
PublicationDateYYYYMMDD | 2002-03-15 |
PublicationDate_xml | – month: 03 year: 2002 text: 15 March 2002 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Synapse (New York, N.Y.) |
PublicationTitleAlternate | Synapse |
PublicationYear | 2002 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | Meininger V, Dib M, Aubin F, Jourdain G, Zeisser P. 1997. The riluzole early access profram: descriptive analysis of 844 patients in France. ALS/riluzole Study Group III. J Neurol 244: S22-S25. Siniscalchi A, Bonci A, Mercuri NB, Bernardi G. 1997. Effects of riluzole on rat cortical neurons: an in vitro electrophysiological study. Br J Pharmacol 120: 225-230. Cheramy A, Barbeito L, Godeheu G, Glowinski J. 1992. Riluzole inhibits the release of glutamate in the caudate nucleus of the cat in vivo. Neurosci Lett 147: 209-212. Ben-Ari Y, Tremblay E, Ottersen OP. 1980. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histologic study in relation to the pathology of epilepsy. Neuroscience 7: 1361-1391. Benavides J, Camelin JC, Mitrani N, Flaman F, Uzan A, Legrand JJ, Gueremy C, Le Fur G. 1985. 2-Amino-6-trifluoro-methoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission. II. Biochemical properties. Neuropharmacology 24: 1085-1092. Siniscalchi A, Zona C, Sancesario G, D'Angelo E, Zeng YC, Mercuri NB, Bernardi G. 1999. Neuroprotective effects of riluzole: an electrophysiological and histological analysis in an in vitro model of ischemia. Synapse 32: 147-152. Debono MW, Le Guern J, Canton T, Doble A, Pradier L. 1993. Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol 235: 283-289. Patneanu DK, Mayer ML. 1991. Kinetic analysis of interactions between kainate and AMPA: evidence for activation of a single receptor in mouse hippocampal neurons. Neuron 6: 785-798. Lothman EW, Collins RC. 1981. Kainic acid induced limbic seizures: metabolic, behavioural, electrocorticographic and neuropathological correlates. Brain Res 218: 299-318. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V. 1996. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis/Riluzole Study Group II. Lancet 347: 1425-1431. Burnashev N, Zhou Z, Neher E, Sakmann B. 1995. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485: 403-418. Hubert JP, Doble A. 1989. Ibotenic acid stimulates D-(3H)aspartate release from cultured cerebellar granule cells. Neurosci Lett 96: 345-350. Lerma J, Paternain AV, Naranjo JR, Mellstrom B. 1993. Fuctional kainate-selective glutamate receptors in cultured hippocampal neurons. Proc Natl Acad Sci USA 90: 11688-11692. Dichter MA. 1978. Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology and synapse formation. Brain Res 149: 279-293. Ben-Ari Y. 1985. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lope epilepsy. Neuroscience 14: 375-403. Couratier P, Sindou P, Esclaire F, Louvel E, Hugon J. 1994. Neuroprotective effects of riluzole in ALS CSF toxicity. NeuroReport 5: 1012-1014. Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B. 1991. Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252: 1715-1718. Pratt J, Rataud J, Bardot F, Roux M, Blanchard JC, Laduron PM, Stutzmann JM. 1992. Neuroprotective actions of riluzole in rodent models of global and focal cerebral ischaemia. Neurosci Lett 140: 225-230. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur J Physiol 391: 85-100. Zona C, Siniscalchi A, Mercuri NB, Bernardi G. 1998. Riluzole interacts with voltage-activated sodium and potassium currents in cultured rat cortical neurons. Neuroscience 85: 931-938. Cavalcanti S, Zona C. 1997. Digital processing of the current noise evoked by kainate in cerebellar granule cells. Ann Biomed Eng 25: 452-459. De Sarro GB, Meldrum BS, De Sarro A, Patel S. 1992. Excitatory neurotransmitters in the lateral habenula and peduncolopontine nucleus of rat modulate limbic seizures induced by kainate. Brain Res 591: 209-222. Urbani A, Belluzzi O. 2000. Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 12: 3567-3574. Hebert T, Drapeau P, Pradier L, Dunn RJ. 1994. Block of the rat brain IIA sodium channel α subunit by the neuroprotective drug riluzole. Mol Pharmacol 45: 1055-1060. Hugon J. 1996. ALS therapy: targets for the future. Neurology 47: S251-S254. Ben-Ari Y, Tremblay E, Ricke D, Ghiaini G, Naquet R. 1981. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6: 1361-1391. De Sarro G, Siniscalchi A, Ferreri G, Galleli L, De Sarro A. 2000. NMDA and AMPA/kainate receptors are involved in the anticonvulsant activity in riluzole DBA/2 mice. Eur J Pharmacol 408: 25-34. Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H. 1994. Differences in Ca++ permeability of glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12: 1281-1289. Umemiya M, Berger AJ. 1995. Inhibition by riluzole of glycinergic postsynaptic currents in rat hypoglossal motoneurones. Br J Pharmacol 116: 3227-3230. Chittajallu R, Vignes M, Kumlesh KD, Barnes JM, Collingridge G, Henley JM. 1996. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379: 78-81. Jehle T, Bauer J, Blauth E, Hummel A, Darstein M, Freiman TM, Feuerstein TJ. 2000. Effects of riluzole on electrically evoked neurotransmitter release. Br J Pharmacol 130: 1227-1234. Malgouris C, Bardot F, Daniel M, Pellis F, Rataud J, Uzan A, Blanchard JC, Laduron PM. 1989. Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischaemic gerbils. J Neurosci 9: 3720-3727. Benoit E, Escande D. 1991. Riluzole specifically blocks inactivated Na+ channels in myelinated nerve fibre. Pflug Arch 419: 603-609. Festoff BW. 1996. Amyotrophic lateral sclerosis: current and future treatment strategies. Drugs 51: 28-44. Gilbertson TA, Scobey R, Wilson M. 1991. Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. Science 251: 1613-1615. Wu SN, Li HF. 1999. Characterization of riluzole-induced stimulation of large-conductance calcium-activated potassium channels in rat pituitary GH3 cells. J Invest Med 47: 485-495. Keita H, Lepouse C, Henzel D, Desmonts JM, Mantz J. 1997. Riluzole blocks dopamine release evoked by N-methyl-D-aspartate, kainate, and veratridine in the rat striatum. Anesthesiology 87: 1164-1171. Martin D, Thompson MA, Nadler JV. 1993. The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1. Eur J Pharmacol 250: 473-476. Otis TS, Raman IM, Trussel LO. 1995. AMPA receptors with high Ca++ permeability mediate synaptic transmission in the avian auditory pathway. J Physiol 482: 309-315. Zona C, Ciotti MT, Calissano P. 1995. Human recombinant IGF-I induces the functional expression of AMPA/kainate receptors in cerebellar granule cells. Neurosci Lett 186: 75-78. Sommer B, Seeburg PH. 1992. Glutamate receptor channels: novel properties and new clones. Trends Pharmacol Sci 13: 291-296. Dichter MA, Zona C. 1989. Calcium currents in cultured rat cortical neurons. Brain Res 492: 219-229. Koek W, Woods JH. 1988. 2-Amino-6-trifluoromethoxybenzothiazole (PK 26124), a proposed antagonist of excitatory amino acid neurotransmission, does not produce phencyclidine-like behavioral effects in pigeons, rats and rhesus monkeys. Neuropharmacology 27: 771-775. 1991; 252 1991; 251 1992; 140 1997; 87 1997; 25 1992; 147 1989; 9 1999; 47 1994; 45 1981; 6 1996; 51 2000; 130 1995; 116 1992; 13 1993; 90 1998; 85 1991; 419 1985; 24 1991; 6 1996; 347 1981; 391 2000; 408 1989; 96 1992; 591 2000; 12 1997; 120 1988; 27 1997; 244 1994; 12 1980; 7 1989; 492 1993; 250 1999; 32 1981; 218 1995; 485 1996; 379 1993; 235 1996; 47 1995; 186 1978; 149 1995; 482 1994; 5 1985; 14 Ben‐Ari Y (e_1_2_1_3_1) 1980; 7 e_1_2_1_41_1 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_26_1 e_1_2_1_29_1 Wu SN (e_1_2_1_42_1) 1999; 47 e_1_2_1_7_1 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 Hebert T (e_1_2_1_20_1) 1994; 45 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – volume: 5 start-page: 1012 year: 1994 end-page: 1014 article-title: Neuroprotective effects of riluzole in ALS CSF toxicity publication-title: NeuroReport – volume: 12 start-page: 1281 year: 1994 end-page: 1289 article-title: Differences in Ca permeability of glutamate receptor channels in neocortical neurons caused by differential GluR‐B subunit expression publication-title: Neuron – volume: 252 start-page: 1715 year: 1991 end-page: 1718 article-title: Structural determinants of ion flow through recombinant glutamate receptor channels publication-title: Science – volume: 244 start-page: S22 year: 1997 end-page: S25 article-title: The riluzole early access profram: descriptive analysis of 844 patients in France. ALS/riluzole Study Group III publication-title: J Neurol – volume: 12 start-page: 3567 year: 2000 end-page: 3574 article-title: Riluzole inhibits the persistent sodium current in mammalian CNS neurons publication-title: Eur J Neurosci – volume: 120 start-page: 225 year: 1997 end-page: 230 article-title: Effects of riluzole on rat cortical neurons: an in vitro electrophysiological study publication-title: Br J Pharmacol – volume: 235 start-page: 283 year: 1993 end-page: 289 article-title: Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes publication-title: Eur J Pharmacol – volume: 485 start-page: 403 year: 1995 end-page: 418 article-title: Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes publication-title: J Physiol – volume: 251 start-page: 1613 year: 1991 end-page: 1615 article-title: Permeation of calcium ions through non‐NMDA glutamate channels in retinal bipolar cells publication-title: Science – volume: 6 start-page: 1361 year: 1981 end-page: 1391 article-title: Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy publication-title: Neuroscience – volume: 7 start-page: 1361 year: 1980 end-page: 1391 article-title: Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histologic study in relation to the pathology of epilepsy publication-title: Neuroscience – volume: 90 start-page: 11688 year: 1993 end-page: 11692 article-title: Fuctional kainate‐selective glutamate receptors in cultured hippocampal neurons publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 785 year: 1991 end-page: 798 article-title: Kinetic analysis of interactions between kainate and AMPA: evidence for activation of a single receptor in mouse hippocampal neurons publication-title: Neuron – volume: 96 start-page: 345 year: 1989 end-page: 350 article-title: Ibotenic acid stimulates D‐( H)aspartate release from cultured cerebellar granule cells publication-title: Neurosci Lett – volume: 25 start-page: 452 year: 1997 end-page: 459 article-title: Digital processing of the current noise evoked by kainate in cerebellar granule cells publication-title: Ann Biomed Eng – volume: 13 start-page: 291 year: 1992 end-page: 296 article-title: Glutamate receptor channels: novel properties and new clones publication-title: Trends Pharmacol Sci – volume: 186 start-page: 75 year: 1995 end-page: 78 article-title: Human recombinant IGF‐I induces the functional expression of AMPA/kainate receptors in cerebellar granule cells publication-title: Neurosci Lett – volume: 391 start-page: 85 year: 1981 end-page: 100 article-title: Improved patch‐clamp techniques for high‐resolution current recording from cells and cell‐free membrane patches publication-title: Eur J Physiol – volume: 140 start-page: 225 year: 1992 end-page: 230 article-title: Neuroprotective actions of riluzole in rodent models of global and focal cerebral ischaemia publication-title: Neurosci Lett – volume: 116 start-page: 3227 year: 1995 end-page: 3230 article-title: Inhibition by riluzole of glycinergic postsynaptic currents in rat hypoglossal motoneurones publication-title: Br J Pharmacol – volume: 24 start-page: 1085 year: 1985 end-page: 1092 article-title: 2‐Amino‐6‐trifluoro‐methoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission. II. Biochemical properties publication-title: Neuropharmacology – volume: 27 start-page: 771 year: 1988 end-page: 775 article-title: 2‐Amino‐6‐trifluoromethoxybenzothiazole (PK 26124), a proposed antagonist of excitatory amino acid neurotransmission, does not produce phencyclidine‐like behavioral effects in pigeons, rats and rhesus monkeys publication-title: Neuropharmacology – volume: 32 start-page: 147 year: 1999 end-page: 152 article-title: Neuroprotective effects of riluzole: an electrophysiological and histological analysis in an in vitro model of ischemia publication-title: Synapse – volume: 419 start-page: 603 year: 1991 end-page: 609 article-title: Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre publication-title: Pflug Arch – volume: 147 start-page: 209 year: 1992 end-page: 212 article-title: Riluzole inhibits the release of glutamate in the caudate nucleus of the cat in vivo publication-title: Neurosci Lett – volume: 87 start-page: 1164 year: 1997 end-page: 1171 article-title: Riluzole blocks dopamine release evoked by N‐methyl‐D‐aspartate, kainate, and veratridine in the rat striatum publication-title: Anesthesiology – volume: 250 start-page: 473 year: 1993 end-page: 476 article-title: The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1 publication-title: Eur J Pharmacol – volume: 47 start-page: 485 year: 1999 end-page: 495 article-title: Characterization of riluzole‐induced stimulation of large‐conductance calcium‐activated potassium channels in rat pituitary GH3 cells publication-title: J Invest Med – volume: 9 start-page: 3720 year: 1989 end-page: 3727 article-title: Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischaemic gerbils publication-title: J Neurosci – volume: 85 start-page: 931 year: 1998 end-page: 938 article-title: Riluzole interacts with voltage‐activated sodium and potassium currents in cultured rat cortical neurons publication-title: Neuroscience – volume: 408 start-page: 25 year: 2000 end-page: 34 article-title: NMDA and AMPA/kainate receptors are involved in the anticonvulsant activity in riluzole DBA/2 mice publication-title: Eur J Pharmacol – volume: 149 start-page: 279 year: 1978 end-page: 293 article-title: Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology and synapse formation publication-title: Brain Res – volume: 492 start-page: 219 year: 1989 end-page: 229 article-title: Calcium currents in cultured rat cortical neurons publication-title: Brain Res – volume: 347 start-page: 1425 year: 1996 end-page: 1431 article-title: Dose‐ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis/Riluzole Study Group II publication-title: Lancet – volume: 482 start-page: 309 year: 1995 end-page: 315 article-title: AMPA receptors with high Ca permeability mediate synaptic transmission in the avian auditory pathway publication-title: J Physiol – volume: 379 start-page: 78 year: 1996 end-page: 81 article-title: Regulation of glutamate release by presynaptic kainate receptors in the hippocampus publication-title: Nature – volume: 130 start-page: 1227 year: 2000 end-page: 1234 article-title: Effects of riluzole on electrically evoked neurotransmitter release publication-title: Br J Pharmacol – volume: 45 start-page: 1055 year: 1994 end-page: 1060 article-title: Block of the rat brain IIA sodium channel α subunit by the neuroprotective drug riluzole publication-title: Mol Pharmacol – volume: 591 start-page: 209 year: 1992 end-page: 222 article-title: Excitatory neurotransmitters in the lateral habenula and peduncolopontine nucleus of rat modulate limbic seizures induced by kainate publication-title: Brain Res – volume: 51 start-page: 28 year: 1996 end-page: 44 article-title: Amyotrophic lateral sclerosis: current and future treatment strategies publication-title: Drugs – volume: 47 start-page: S251 year: 1996 end-page: S254 article-title: ALS therapy: targets for the future publication-title: Neurology – volume: 14 start-page: 375 year: 1985 end-page: 403 article-title: Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lope epilepsy publication-title: Neuroscience – volume: 218 start-page: 299 year: 1981 end-page: 318 article-title: Kainic acid induced limbic seizures: metabolic, behavioural, electrocorticographic and neuropathological correlates publication-title: Brain Res – ident: e_1_2_1_23_1 doi: 10.1038/sj.bjp.0703424 – volume: 45 start-page: 1055 year: 1994 ident: e_1_2_1_20_1 article-title: Block of the rat brain IIA sodium channel α subunit by the neuroprotective drug riluzole publication-title: Mol Pharmacol contributor: fullname: Hebert T – ident: e_1_2_1_41_1 doi: 10.1126/science.1710829 – volume: 47 start-page: 485 year: 1999 ident: e_1_2_1_42_1 article-title: Characterization of riluzole‐induced stimulation of large‐conductance calcium‐activated potassium channels in rat pituitary GH3 cells publication-title: J Invest Med contributor: fullname: Wu SN – ident: e_1_2_1_31_1 doi: 10.1016/0014-2999(93)90037-I – ident: e_1_2_1_6_1 doi: 10.1007/BF00370302 – ident: e_1_2_1_30_1 doi: 10.1523/JNEUROSCI.09-11-03720.1989 – volume: 7 start-page: 1361 year: 1980 ident: e_1_2_1_3_1 article-title: Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histologic study in relation to the pathology of epilepsy publication-title: Neuroscience contributor: fullname: Ben‐Ari Y – ident: e_1_2_1_17_1 doi: 10.2165/00003495-199651010-00004 – ident: e_1_2_1_14_1 doi: 10.1016/S0014-2999(00)00709-3 – ident: e_1_2_1_24_1 doi: 10.1016/0896-6273(94)90444-8 – ident: e_1_2_1_15_1 doi: 10.1016/0006-8993(78)90476-6 – ident: e_1_2_1_28_1 doi: 10.1073/pnas.90.24.11688 – ident: e_1_2_1_19_1 doi: 10.1007/BF00656997 – ident: e_1_2_1_40_1 doi: 10.1046/j.1460-9568.2000.00242.x – ident: e_1_2_1_32_1 doi: 10.1007/BF03160577 – ident: e_1_2_1_4_1 doi: 10.1016/0306-4522(81)90193-7 – ident: e_1_2_1_9_1 doi: 10.1016/0304-3940(92)90597-Z – ident: e_1_2_1_37_1 doi: 10.1002/(SICI)1098-2396(19990601)32:3<147::AID-SYN1>3.0.CO;2-P – ident: e_1_2_1_10_1 doi: 10.1038/379078a0 – ident: e_1_2_1_44_1 doi: 10.1016/S0306-4522(97)00604-0 – ident: e_1_2_1_18_1 doi: 10.1126/science.1849316 – ident: e_1_2_1_7_1 doi: 10.1113/jphysiol.1995.sp020738 – ident: e_1_2_1_26_1 doi: 10.1016/0028-3908(88)90089-5 – ident: e_1_2_1_34_1 doi: 10.1016/0896-6273(91)90175-Y – ident: e_1_2_1_39_1 doi: 10.1111/j.1476-5381.1995.tb15128.x – ident: e_1_2_1_12_1 doi: 10.1016/0014-2999(93)90147-A – ident: e_1_2_1_11_1 doi: 10.1097/00001756-199404000-00040 – ident: e_1_2_1_5_1 doi: 10.1016/0028-3908(85)90196-0 – ident: e_1_2_1_36_1 doi: 10.1038/sj.bjp.0700905 – ident: e_1_2_1_13_1 doi: 10.1016/0006-8993(92)91701-F – ident: e_1_2_1_8_1 doi: 10.1007/BF02684186 – ident: e_1_2_1_35_1 doi: 10.1016/0304-3940(92)90108-J – ident: e_1_2_1_29_1 doi: 10.1016/0006-8993(81)91308-1 – ident: e_1_2_1_38_1 doi: 10.1016/0165-6147(92)90088-N – ident: e_1_2_1_33_1 doi: 10.1113/jphysiol.1995.sp020519 – ident: e_1_2_1_43_1 doi: 10.1016/0304-3940(95)11284-4 – ident: e_1_2_1_25_1 doi: 10.1097/00000542-199711000-00021 – ident: e_1_2_1_27_1 doi: 10.1016/S0140-6736(96)91680-3 – ident: e_1_2_1_21_1 doi: 10.1016/0304-3940(89)90403-5 – ident: e_1_2_1_16_1 doi: 10.1016/0006-8993(89)90904-9 – ident: e_1_2_1_2_1 doi: 10.1016/0306-4522(85)90299-4 – ident: e_1_2_1_22_1 doi: 10.1212/WNL.47.6_Suppl_4.251S |
SSID | ssj0003104 |
Score | 1.8136914 |
Snippet | The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture by using... The action of the neuroprotective and anticonvulsant agent riluzole on kainate-induced currents was studied in rat cortical neurons in primary culture by using... Abstract The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture... |
SourceID | crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 244 |
SubjectTerms | Amyotrophic Lateral Sclerosis - drug therapy Amyotrophic Lateral Sclerosis - metabolism Amyotrophic Lateral Sclerosis - physiopathology Animals Cells, Cultured Cerebral Cortex - drug effects Cerebral Cortex - metabolism Cerebral Cortex - physiopathology Epilepsy - drug therapy Epilepsy - metabolism Epilepsy - physiopathology Excitatory Amino Acid Agonists - pharmacology Fetus Ion Channels - drug effects Ion Channels - metabolism kainic acid Kainic Acid - pharmacology neocortical neurons Neurons - drug effects Neurons - metabolism neuroprotection Neuroprotective Agents - pharmacology Neurotoxins - metabolism Neurotoxins - pharmacology patch-clamp Rats Rats, Wistar Receptors, AMPA - drug effects Receptors, AMPA - metabolism Receptors, Kainic Acid - drug effects Receptors, Kainic Acid - metabolism riluzole Riluzole - pharmacology |
Title | Kainate-induced currents in rat cortical neurons in culture are modulated by riluzole |
URI | https://api.istex.fr/ark:/67375/WNG-497HQL54-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsyn.10040 https://www.ncbi.nlm.nih.gov/pubmed/11835519 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL2E7qUv67psXbZ2iFLCXpw4jmRZ9Kl0y8LWBbY1TQcDI1kSlCbOyAcsfepP6G_sL9mVHCfpYDD6YBBG8ofulXTO5eoI4Eja0La51EGLSxZQJXiAqNoEGROGo4uJTLm9w196cbdPP12yywocl3thCn2IVcDNjQw_X7sBLtW0uRYNnS5yV6SOr7fa3KVzvf-2lo5C2EJLlU9KeVyqCoVRc9XywVr0xHXr742FaBOs-tWmswM_y-8skkyuG_OZamQ3f0k4PvJHnsHTJQolJ4Xb7ELF5M-hepIjAx8tSJ34vFAfcK_C4LPbYDUz97d3yN_REzTJClGnKbnKCXoQQQbrQ-LEq2Pm_n4h6WGIxGs01u6UMGypFmRyNZzfjIfmBfQ7H85Pu8HyOIYgw4EdBpJqbZNYKd0yKmwpJGtc0hBdgPIsSpSkVPIo1oioEsmYFJllGtmMNhRZGMKYl7CVj3PzCkgUWQRiKjZJpKmwIsmwpoiVtbodW5bU4LA0TPqrUN1IC33lKMXuSn131aDuTbaqISfXLk2Ns3TQ-5hSwbtfzxhNL2qwV9h0_SycyBAqihq885b590vS7z96vvD6_6u-gW1_ZozL-mP7sDWbzM0BQpeZeut99A8OK-sK |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD6IPtiX1movq1aDFPFldHY2mUzAF6mXta4LrVrtQwnJJAFRZ2Uv4O6TP6G_sb-kJxln1wpC8WEgDMlccs5JvnM4-Q7AZ-Vi1-DKRHWuWES14BGiahvlTFiOKiZy7c8OH7fT5hn9esEupmC7OgtT8kOMA27eMsJ67Q3cB6S3JqyhvWHhmxQd9hk094Yv3LD7fUIehcCFVjyflPK04hWKk63x0H92oxk_sXePtqLHcDXsN_tv4Ff1pWWaydXmoK8389ETEseX_socvH4AomSn1Jy3MGWLeVjYKdAJvxmSdRJSQ0PMfQHOj_wZq779c_8bXXhUBkPyktepRy4LgkpE0IkNUXESCDKLcL9k9bBE4XXTMb5QGI7UQ9K9vB6MOtf2HZzt751-aUYPFRmiHG07jhQ1xmWp1qZudVzX6K9xRWPUAsrzJNOKUsWT1CCoyhRjSuSOGXRojKXoiCGSeQ_TRaewH4EkiUMsplObJYYKJ7Ice4pUO2caqWNZDdYqycjbknhDlhTLicTpkmG6arAeZDbuobpXPlONM3nePpBU8Oa3FqPyRw0-lEKdPAvXMkSLogYbQTTPv0Se_GyHxuL_d12F2ebpcUu2DttHS_AqlJDxSYBsGab73YH9hEimr1eCwv4FsZ_vIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dSxwxFL2IgviiVVvdtmqQIr6Mzo7JZIJPoq5btYvaWi0UQjJJQNRZWXfB9cmf4G_0l3iTcXa1UCh9GAhDMh-5N8k5l5sTgC_KxW6DKxPVuWIR1YJHiKptlDNhObqYyLXfO_ytlTZP6f45Ox-BzWovTKkPMQi4-ZER5ms_wG-MWx-Kht72C1-kyNfHaIrI1yOik6F2FOIWWsl8UsrTSlYoTtYHTd8sRmO-X-9erUSv0WpYbhpT8Lv60DLL5HKt19Vr-f0fGo7_-SfvYPIFhpKt0m-mYcQWMzC7VSAFv-6TFRISQ0PEfRbODvwOq659enhEAo-uYEheqjrdkouCoAsRpLAhJk6CPGYR7peaHpYovK7bxh8Thi11n3Qurnr37Sv7Hk4buz-2m9HLeQxRjiM7jhQ1xmWp1qZudVzXyNa4ojH6AOV5kmlFqeJJahBSZYoxJXLHDNIZYynSMMQxH2C0aBd2HkiSOERiOrVZYqhwIsuxpki1c2YjdSyrwXJlGHlTym7IUmA5kdhdMnRXDVaCyQY1VOfS56lxJs9ae5IK3jw-ZFT-rMFcadPhs3AmQ6woarAaLPP3l8jvv1qh8PHfqy7B-NFOQx5-bR18golwfozPAGSfYbTb6dkFhDFdvRjc9Rn7Yu3R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kainate%E2%80%90induced+currents+in+rat+cortical+neurons+in+culture+are+modulated+by+riluzole&rft.jtitle=Synapse+%28New+York%2C+N.Y.%29&rft.au=Zona%2C+Cristina&rft.au=Cavalcanti%2C+Silvio&rft.au=De+Sarro%2C+Giovanbattista&rft.au=Siniscalchi%2C+Antonio&rft.date=2002-03-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0887-4476&rft.eissn=1098-2396&rft.volume=43&rft.issue=4&rft.spage=244&rft.epage=251&rft_id=info:doi/10.1002%2Fsyn.10040&rft.externalDBID=10.1002%252Fsyn.10040&rft.externalDocID=SYN10040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-4476&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-4476&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-4476&client=summon |