Kainate-induced currents in rat cortical neurons in culture are modulated by riluzole

The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture by using the whole‐cell configuration of the patch‐clamp technique. Kainate elicited macroscopic, 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX)‐sensiti...

Full description

Saved in:
Bibliographic Details
Published inSynapse (New York, N.Y.) Vol. 43; no. 4; pp. 244 - 251
Main Authors Zona, Cristina, Cavalcanti, Silvio, De Sarro, Giovanbattista, Siniscalchi, Antonio, Marchetti, Caterina, Gaetti, Chiara, Costa, Nicola, Mercuri, Nicola, Bernardi, Giorgio
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 15.03.2002
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture by using the whole‐cell configuration of the patch‐clamp technique. Kainate elicited macroscopic, 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX)‐sensitive inward currents in all the patched cells and the amplitude of the current was concentration‐dependent (EC50= 106 μM). Riluzole decreased the inward currents induced by 100 μM kainate at all holding potentials and the reduction was dose‐dependent (IC50= 101 μM). The maximal response to kainate decreased in the presence of 50 μM riluzole, without changing its EC50, indicating a noncompetitive mechanism of inhibition. The amplitude of the responses induced by kainate under control conditions and during riluzole was a linear function of the membrane potential and the reversal potential of the currents was not significantly different in the two experimental conditions. Instead, the total conductance of the cell membrane for the currents induced by 100 μM kainate was significantly reduced in the presence of 50 μM riluzole (P < 0.05). The analysis of the kainate membrane current noise performed under control conditions and during perfusion of 100 μM riluzole revealed that riluzole reduced the probability of kainate‐activated ionic channels to be in the open state. Conversely, the unitary conductance of channels, as well as their characteristic time constant, seemed to be unchanged. These results reveal an additional mechanism by which riluzole can interact with glutamatergic neurotransmission and provides further support for the idea that riluzole may prove beneficial in the treatment of central nervous system injuries involving the excitotoxic actions of glutamate. Synapse 43:244–251, 2002. © 2002 Wiley‐Liss, Inc.
AbstractList The action of the neuroprotective and anticonvulsant agent riluzole on kainate-induced currents was studied in rat cortical neurons in primary culture by using the whole-cell configuration of the patch-clamp technique. Kainate elicited macroscopic, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive inward currents in all the patched cells and the amplitude of the current was concentration-dependent (EC50= 106 microM). Riluzole decreased the inward currents induced by 100 microM kainate at all holding potentials and the reduction was dose-dependent (IC50= 101 microM). The maximal response to kainate decreased in the presence of 50 microM riluzole, without changing its EC50, indicating a noncompetitive mechanism of inhibition. The amplitude of the responses induced by kainate under control conditions and during riluzole was a linear function of the membrane potential and the reversal potential of the currents was not significantly different in the two experimental conditions. Instead, the total conductance of the cell membrane for the currents induced by 100 microM kainate was significantly reduced in the presence of 50 microM riluzole (P < 0.05). The analysis of the kainate membrane current noise performed under control conditions and during perfusion of 100 microM riluzole revealed that riluzole reduced the probability of kainate-activated ionic channels to be in the open state. Conversely, the unitary conductance of channels, as well as their characteristic time constant, seemed to be unchanged. These results reveal an additional mechanism by which riluzole can interact with glutamatergic neurotransmission and provides further support for the idea that riluzole may prove beneficial in the treatment of central nervous system injuries involving the excitotoxic actions of glutamate.
Abstract The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture by using the whole‐cell configuration of the patch‐clamp technique. Kainate elicited macroscopic, 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX)‐sensitive inward currents in all the patched cells and the amplitude of the current was concentration‐dependent (EC 50 = 106 μM). Riluzole decreased the inward currents induced by 100 μM kainate at all holding potentials and the reduction was dose‐dependent (IC 50 = 101 μM). The maximal response to kainate decreased in the presence of 50 μM riluzole, without changing its EC 50 , indicating a noncompetitive mechanism of inhibition. The amplitude of the responses induced by kainate under control conditions and during riluzole was a linear function of the membrane potential and the reversal potential of the currents was not significantly different in the two experimental conditions. Instead, the total conductance of the cell membrane for the currents induced by 100 μM kainate was significantly reduced in the presence of 50 μM riluzole ( P < 0.05). The analysis of the kainate membrane current noise performed under control conditions and during perfusion of 100 μM riluzole revealed that riluzole reduced the probability of kainate‐activated ionic channels to be in the open state. Conversely, the unitary conductance of channels, as well as their characteristic time constant, seemed to be unchanged. These results reveal an additional mechanism by which riluzole can interact with glutamatergic neurotransmission and provides further support for the idea that riluzole may prove beneficial in the treatment of central nervous system injuries involving the excitotoxic actions of glutamate. Synapse 43:244–251, 2002. © 2002 Wiley‐Liss, Inc.
The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture by using the whole‐cell configuration of the patch‐clamp technique. Kainate elicited macroscopic, 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX)‐sensitive inward currents in all the patched cells and the amplitude of the current was concentration‐dependent (EC50= 106 μM). Riluzole decreased the inward currents induced by 100 μM kainate at all holding potentials and the reduction was dose‐dependent (IC50= 101 μM). The maximal response to kainate decreased in the presence of 50 μM riluzole, without changing its EC50, indicating a noncompetitive mechanism of inhibition. The amplitude of the responses induced by kainate under control conditions and during riluzole was a linear function of the membrane potential and the reversal potential of the currents was not significantly different in the two experimental conditions. Instead, the total conductance of the cell membrane for the currents induced by 100 μM kainate was significantly reduced in the presence of 50 μM riluzole (P < 0.05). The analysis of the kainate membrane current noise performed under control conditions and during perfusion of 100 μM riluzole revealed that riluzole reduced the probability of kainate‐activated ionic channels to be in the open state. Conversely, the unitary conductance of channels, as well as their characteristic time constant, seemed to be unchanged. These results reveal an additional mechanism by which riluzole can interact with glutamatergic neurotransmission and provides further support for the idea that riluzole may prove beneficial in the treatment of central nervous system injuries involving the excitotoxic actions of glutamate. Synapse 43:244–251, 2002. © 2002 Wiley‐Liss, Inc.
Author Cavalcanti, Silvio
Mercuri, Nicola
Zona, Cristina
Marchetti, Caterina
Costa, Nicola
Siniscalchi, Antonio
Gaetti, Chiara
De Sarro, Giovanbattista
Bernardi, Giorgio
Author_xml – sequence: 1
  givenname: Cristina
  surname: Zona
  fullname: Zona, Cristina
  email: zona@med.uniroma2.it
  organization: Fisiologia Umana, Università degli Studi di Roma "Tor Vergata," 00133 Rome, Italy
– sequence: 2
  givenname: Silvio
  surname: Cavalcanti
  fullname: Cavalcanti, Silvio
  organization: D.E.I.S., Università degli Studi di Bologna, 40136 Bologna, Italy
– sequence: 3
  givenname: Giovanbattista
  surname: De Sarro
  fullname: De Sarro, Giovanbattista
  organization: Cattedra di Farmacologia, Università degli Studi di Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
– sequence: 4
  givenname: Antonio
  surname: Siniscalchi
  fullname: Siniscalchi, Antonio
  organization: Cattedra di Farmacologia, Università degli Studi di Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
– sequence: 5
  givenname: Caterina
  surname: Marchetti
  fullname: Marchetti, Caterina
  organization: IRCCS, Fondazione S. Lucia, 00179 Rome, Italy
– sequence: 6
  givenname: Chiara
  surname: Gaetti
  fullname: Gaetti, Chiara
  organization: D.E.I.S., Università degli Studi di Bologna, 40136 Bologna, Italy
– sequence: 7
  givenname: Nicola
  surname: Costa
  fullname: Costa, Nicola
  organization: Cattedra di Farmacologia, Università degli Studi di Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
– sequence: 8
  givenname: Nicola
  surname: Mercuri
  fullname: Mercuri, Nicola
  organization: IRCCS, Fondazione S. Lucia, 00179 Rome, Italy
– sequence: 9
  givenname: Giorgio
  surname: Bernardi
  fullname: Bernardi, Giorgio
  organization: IRCCS, Fondazione S. Lucia, 00179 Rome, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11835519$$D View this record in MEDLINE/PubMed
BookMark eNp1kL1OwzAURi0Eoj8w8AIoK0Oo7dixM6IKWkRVhKAgJsuxHcmQOpUTC8LTkzYFJoare3V1vjN8I3DoKmcAOEPwEkGIJ3XrtgeBB2CIYMZjnGTpIRhCzllMCEsHYFTXbxDCBEFyDAYI8YRSlA3B6k5aJxsTW6eDMjpSwXvjmjqyLvKyiVTlG6tkGTkTfOV2fxXKJngTyW7WlQ5lJ9BR3kbeluGrKs0JOCpkWZvT_R6D1c3103QeL-5nt9OrRawIpjCWROuCp3mukckhyjHHTBKolCRMYZ5LQiTDqaYp5pJSmamCapZybQjJKObJGFz0XuWruvamEBtv19K3AkGxrUZ01YhdNR173rObkK-N_iP3XXTApAc-bGna_03i8XX5o4z7hK0b8_mbkP5dpCxhVLwsZ4JkbP6woEQ8J981uX-f
CitedBy_id crossref_primary_10_1016_j_jad_2019_06_065
crossref_primary_10_2165_00023210_200822090_00004
crossref_primary_10_1016_j_neuroscience_2003_07_003
crossref_primary_10_1007_s12035_020_02059_1
crossref_primary_10_1016_j_neuroscience_2010_10_080
crossref_primary_10_1016_j_ynstr_2022_100442
crossref_primary_10_1093_pnasnexus_pgad166
crossref_primary_10_1016_j_neuroscience_2007_04_018
crossref_primary_10_1016_j_neuropharm_2022_109349
crossref_primary_10_1152_jn_00425_2013
crossref_primary_10_1254_jphs_FP0072095
crossref_primary_10_3390_pharmaceutics15072006
crossref_primary_10_3389_fneur_2019_01205
crossref_primary_10_1523_JNEUROSCI_0124_07_2007
crossref_primary_10_1016_j_neuropharm_2018_09_021
crossref_primary_10_1016_S0006_8993_03_03343_2
crossref_primary_10_1016_j_bcp_2009_04_008
crossref_primary_10_1016_j_expneurol_2011_11_044
crossref_primary_10_1016_j_expneurol_2008_11_002
crossref_primary_10_1002_jnr_20244
crossref_primary_10_3389_fnins_2020_00363
crossref_primary_10_1016_j_crphys_2023_100109
crossref_primary_10_1111_j_1460_9568_2008_06211_x
crossref_primary_10_1152_jn_00587_2012
crossref_primary_10_1111_j_1755_5949_2009_00116_x
Cites_doi 10.1038/sj.bjp.0703424
10.1126/science.1710829
10.1016/0014-2999(93)90037-I
10.1007/BF00370302
10.1523/JNEUROSCI.09-11-03720.1989
10.2165/00003495-199651010-00004
10.1016/S0014-2999(00)00709-3
10.1016/0896-6273(94)90444-8
10.1016/0006-8993(78)90476-6
10.1073/pnas.90.24.11688
10.1007/BF00656997
10.1046/j.1460-9568.2000.00242.x
10.1007/BF03160577
10.1016/0306-4522(81)90193-7
10.1016/0304-3940(92)90597-Z
10.1002/(SICI)1098-2396(19990601)32:3<147::AID-SYN1>3.0.CO;2-P
10.1038/379078a0
10.1016/S0306-4522(97)00604-0
10.1126/science.1849316
10.1113/jphysiol.1995.sp020738
10.1016/0028-3908(88)90089-5
10.1016/0896-6273(91)90175-Y
10.1111/j.1476-5381.1995.tb15128.x
10.1016/0014-2999(93)90147-A
10.1097/00001756-199404000-00040
10.1016/0028-3908(85)90196-0
10.1038/sj.bjp.0700905
10.1016/0006-8993(92)91701-F
10.1007/BF02684186
10.1016/0304-3940(92)90108-J
10.1016/0006-8993(81)91308-1
10.1016/0165-6147(92)90088-N
10.1113/jphysiol.1995.sp020519
10.1016/0304-3940(95)11284-4
10.1097/00000542-199711000-00021
10.1016/S0140-6736(96)91680-3
10.1016/0304-3940(89)90403-5
10.1016/0006-8993(89)90904-9
10.1016/0306-4522(85)90299-4
10.1212/WNL.47.6_Suppl_4.251S
ContentType Journal Article
Copyright Copyright © 2002 Wiley‐Liss, Inc.
Copyright 2002 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2002 Wiley‐Liss, Inc.
– notice: Copyright 2002 Wiley‐Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1002/syn.10040
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-2396
EndPage 251
ExternalDocumentID 10_1002_syn_10040
11835519
SYN10040
ark_67375_WNG_497HQL54_V
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Telethon‐Italy
  funderid: 1185
– fundername: Telethon
  grantid: 1185
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XV2
YNT
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ID FETCH-LOGICAL-c4250-a4ddf86bbd1eb01b2827a40cca47c28ba44a726d5628a55a9cf5d768de4495283
IEDL.DBID DR2
ISSN 0887-4476
IngestDate Fri Aug 23 01:04:37 EDT 2024
Sat Sep 28 08:30:07 EDT 2024
Sat Aug 24 00:49:28 EDT 2024
Wed Oct 30 09:47:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright 2002 Wiley‐Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4250-a4ddf86bbd1eb01b2827a40cca47c28ba44a726d5628a55a9cf5d768de4495283
Notes Telethon-Italy - No. 1185
istex:AF43CF84216936DEDA6E408CD5A1C463D17DD7D4
ark:/67375/WNG-497HQL54-V
ArticleID:SYN10040
PMID 11835519
PageCount 8
ParticipantIDs crossref_primary_10_1002_syn_10040
pubmed_primary_11835519
wiley_primary_10_1002_syn_10040_SYN10040
istex_primary_ark_67375_WNG_497HQL54_V
PublicationCentury 2000
PublicationDate 15 March 2002
PublicationDateYYYYMMDD 2002-03-15
PublicationDate_xml – month: 03
  year: 2002
  text: 15 March 2002
  day: 15
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Synapse (New York, N.Y.)
PublicationTitleAlternate Synapse
PublicationYear 2002
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References Meininger V, Dib M, Aubin F, Jourdain G, Zeisser P. 1997. The riluzole early access profram: descriptive analysis of 844 patients in France. ALS/riluzole Study Group III. J Neurol 244: S22-S25.
Siniscalchi A, Bonci A, Mercuri NB, Bernardi G. 1997. Effects of riluzole on rat cortical neurons: an in vitro electrophysiological study. Br J Pharmacol 120: 225-230.
Cheramy A, Barbeito L, Godeheu G, Glowinski J. 1992. Riluzole inhibits the release of glutamate in the caudate nucleus of the cat in vivo. Neurosci Lett 147: 209-212.
Ben-Ari Y, Tremblay E, Ottersen OP. 1980. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histologic study in relation to the pathology of epilepsy. Neuroscience 7: 1361-1391.
Benavides J, Camelin JC, Mitrani N, Flaman F, Uzan A, Legrand JJ, Gueremy C, Le Fur G. 1985. 2-Amino-6-trifluoro-methoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission. II. Biochemical properties. Neuropharmacology 24: 1085-1092.
Siniscalchi A, Zona C, Sancesario G, D'Angelo E, Zeng YC, Mercuri NB, Bernardi G. 1999. Neuroprotective effects of riluzole: an electrophysiological and histological analysis in an in vitro model of ischemia. Synapse 32: 147-152.
Debono MW, Le Guern J, Canton T, Doble A, Pradier L. 1993. Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol 235: 283-289.
Patneanu DK, Mayer ML. 1991. Kinetic analysis of interactions between kainate and AMPA: evidence for activation of a single receptor in mouse hippocampal neurons. Neuron 6: 785-798.
Lothman EW, Collins RC. 1981. Kainic acid induced limbic seizures: metabolic, behavioural, electrocorticographic and neuropathological correlates. Brain Res 218: 299-318.
Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V. 1996. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis/Riluzole Study Group II. Lancet 347: 1425-1431.
Burnashev N, Zhou Z, Neher E, Sakmann B. 1995. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485: 403-418.
Hubert JP, Doble A. 1989. Ibotenic acid stimulates D-(3H)aspartate release from cultured cerebellar granule cells. Neurosci Lett 96: 345-350.
Lerma J, Paternain AV, Naranjo JR, Mellstrom B. 1993. Fuctional kainate-selective glutamate receptors in cultured hippocampal neurons. Proc Natl Acad Sci USA 90: 11688-11692.
Dichter MA. 1978. Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology and synapse formation. Brain Res 149: 279-293.
Ben-Ari Y. 1985. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lope epilepsy. Neuroscience 14: 375-403.
Couratier P, Sindou P, Esclaire F, Louvel E, Hugon J. 1994. Neuroprotective effects of riluzole in ALS CSF toxicity. NeuroReport 5: 1012-1014.
Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B. 1991. Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252: 1715-1718.
Pratt J, Rataud J, Bardot F, Roux M, Blanchard JC, Laduron PM, Stutzmann JM. 1992. Neuroprotective actions of riluzole in rodent models of global and focal cerebral ischaemia. Neurosci Lett 140: 225-230.
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur J Physiol 391: 85-100.
Zona C, Siniscalchi A, Mercuri NB, Bernardi G. 1998. Riluzole interacts with voltage-activated sodium and potassium currents in cultured rat cortical neurons. Neuroscience 85: 931-938.
Cavalcanti S, Zona C. 1997. Digital processing of the current noise evoked by kainate in cerebellar granule cells. Ann Biomed Eng 25: 452-459.
De Sarro GB, Meldrum BS, De Sarro A, Patel S. 1992. Excitatory neurotransmitters in the lateral habenula and peduncolopontine nucleus of rat modulate limbic seizures induced by kainate. Brain Res 591: 209-222.
Urbani A, Belluzzi O. 2000. Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 12: 3567-3574.
Hebert T, Drapeau P, Pradier L, Dunn RJ. 1994. Block of the rat brain IIA sodium channel α subunit by the neuroprotective drug riluzole. Mol Pharmacol 45: 1055-1060.
Hugon J. 1996. ALS therapy: targets for the future. Neurology 47: S251-S254.
Ben-Ari Y, Tremblay E, Ricke D, Ghiaini G, Naquet R. 1981. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6: 1361-1391.
De Sarro G, Siniscalchi A, Ferreri G, Galleli L, De Sarro A. 2000. NMDA and AMPA/kainate receptors are involved in the anticonvulsant activity in riluzole DBA/2 mice. Eur J Pharmacol 408: 25-34.
Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H. 1994. Differences in Ca++ permeability of glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12: 1281-1289.
Umemiya M, Berger AJ. 1995. Inhibition by riluzole of glycinergic postsynaptic currents in rat hypoglossal motoneurones. Br J Pharmacol 116: 3227-3230.
Chittajallu R, Vignes M, Kumlesh KD, Barnes JM, Collingridge G, Henley JM. 1996. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379: 78-81.
Jehle T, Bauer J, Blauth E, Hummel A, Darstein M, Freiman TM, Feuerstein TJ. 2000. Effects of riluzole on electrically evoked neurotransmitter release. Br J Pharmacol 130: 1227-1234.
Malgouris C, Bardot F, Daniel M, Pellis F, Rataud J, Uzan A, Blanchard JC, Laduron PM. 1989. Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischaemic gerbils. J Neurosci 9: 3720-3727.
Benoit E, Escande D. 1991. Riluzole specifically blocks inactivated Na+ channels in myelinated nerve fibre. Pflug Arch 419: 603-609.
Festoff BW. 1996. Amyotrophic lateral sclerosis: current and future treatment strategies. Drugs 51: 28-44.
Gilbertson TA, Scobey R, Wilson M. 1991. Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. Science 251: 1613-1615.
Wu SN, Li HF. 1999. Characterization of riluzole-induced stimulation of large-conductance calcium-activated potassium channels in rat pituitary GH3 cells. J Invest Med 47: 485-495.
Keita H, Lepouse C, Henzel D, Desmonts JM, Mantz J. 1997. Riluzole blocks dopamine release evoked by N-methyl-D-aspartate, kainate, and veratridine in the rat striatum. Anesthesiology 87: 1164-1171.
Martin D, Thompson MA, Nadler JV. 1993. The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1. Eur J Pharmacol 250: 473-476.
Otis TS, Raman IM, Trussel LO. 1995. AMPA receptors with high Ca++ permeability mediate synaptic transmission in the avian auditory pathway. J Physiol 482: 309-315.
Zona C, Ciotti MT, Calissano P. 1995. Human recombinant IGF-I induces the functional expression of AMPA/kainate receptors in cerebellar granule cells. Neurosci Lett 186: 75-78.
Sommer B, Seeburg PH. 1992. Glutamate receptor channels: novel properties and new clones. Trends Pharmacol Sci 13: 291-296.
Dichter MA, Zona C. 1989. Calcium currents in cultured rat cortical neurons. Brain Res 492: 219-229.
Koek W, Woods JH. 1988. 2-Amino-6-trifluoromethoxybenzothiazole (PK 26124), a proposed antagonist of excitatory amino acid neurotransmission, does not produce phencyclidine-like behavioral effects in pigeons, rats and rhesus monkeys. Neuropharmacology 27: 771-775.
1991; 252
1991; 251
1992; 140
1997; 87
1997; 25
1992; 147
1989; 9
1999; 47
1994; 45
1981; 6
1996; 51
2000; 130
1995; 116
1992; 13
1993; 90
1998; 85
1991; 419
1985; 24
1991; 6
1996; 347
1981; 391
2000; 408
1989; 96
1992; 591
2000; 12
1997; 120
1988; 27
1997; 244
1994; 12
1980; 7
1989; 492
1993; 250
1999; 32
1981; 218
1995; 485
1996; 379
1993; 235
1996; 47
1995; 186
1978; 149
1995; 482
1994; 5
1985; 14
Ben‐Ari Y (e_1_2_1_3_1) 1980; 7
e_1_2_1_41_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_29_1
Wu SN (e_1_2_1_42_1) 1999; 47
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
Hebert T (e_1_2_1_20_1) 1994; 45
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – volume: 5
  start-page: 1012
  year: 1994
  end-page: 1014
  article-title: Neuroprotective effects of riluzole in ALS CSF toxicity
  publication-title: NeuroReport
– volume: 12
  start-page: 1281
  year: 1994
  end-page: 1289
  article-title: Differences in Ca permeability of glutamate receptor channels in neocortical neurons caused by differential GluR‐B subunit expression
  publication-title: Neuron
– volume: 252
  start-page: 1715
  year: 1991
  end-page: 1718
  article-title: Structural determinants of ion flow through recombinant glutamate receptor channels
  publication-title: Science
– volume: 244
  start-page: S22
  year: 1997
  end-page: S25
  article-title: The riluzole early access profram: descriptive analysis of 844 patients in France. ALS/riluzole Study Group III
  publication-title: J Neurol
– volume: 12
  start-page: 3567
  year: 2000
  end-page: 3574
  article-title: Riluzole inhibits the persistent sodium current in mammalian CNS neurons
  publication-title: Eur J Neurosci
– volume: 120
  start-page: 225
  year: 1997
  end-page: 230
  article-title: Effects of riluzole on rat cortical neurons: an in vitro electrophysiological study
  publication-title: Br J Pharmacol
– volume: 235
  start-page: 283
  year: 1993
  end-page: 289
  article-title: Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes
  publication-title: Eur J Pharmacol
– volume: 485
  start-page: 403
  year: 1995
  end-page: 418
  article-title: Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes
  publication-title: J Physiol
– volume: 251
  start-page: 1613
  year: 1991
  end-page: 1615
  article-title: Permeation of calcium ions through non‐NMDA glutamate channels in retinal bipolar cells
  publication-title: Science
– volume: 6
  start-page: 1361
  year: 1981
  end-page: 1391
  article-title: Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy
  publication-title: Neuroscience
– volume: 7
  start-page: 1361
  year: 1980
  end-page: 1391
  article-title: Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histologic study in relation to the pathology of epilepsy
  publication-title: Neuroscience
– volume: 90
  start-page: 11688
  year: 1993
  end-page: 11692
  article-title: Fuctional kainate‐selective glutamate receptors in cultured hippocampal neurons
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 785
  year: 1991
  end-page: 798
  article-title: Kinetic analysis of interactions between kainate and AMPA: evidence for activation of a single receptor in mouse hippocampal neurons
  publication-title: Neuron
– volume: 96
  start-page: 345
  year: 1989
  end-page: 350
  article-title: Ibotenic acid stimulates D‐( H)aspartate release from cultured cerebellar granule cells
  publication-title: Neurosci Lett
– volume: 25
  start-page: 452
  year: 1997
  end-page: 459
  article-title: Digital processing of the current noise evoked by kainate in cerebellar granule cells
  publication-title: Ann Biomed Eng
– volume: 13
  start-page: 291
  year: 1992
  end-page: 296
  article-title: Glutamate receptor channels: novel properties and new clones
  publication-title: Trends Pharmacol Sci
– volume: 186
  start-page: 75
  year: 1995
  end-page: 78
  article-title: Human recombinant IGF‐I induces the functional expression of AMPA/kainate receptors in cerebellar granule cells
  publication-title: Neurosci Lett
– volume: 391
  start-page: 85
  year: 1981
  end-page: 100
  article-title: Improved patch‐clamp techniques for high‐resolution current recording from cells and cell‐free membrane patches
  publication-title: Eur J Physiol
– volume: 140
  start-page: 225
  year: 1992
  end-page: 230
  article-title: Neuroprotective actions of riluzole in rodent models of global and focal cerebral ischaemia
  publication-title: Neurosci Lett
– volume: 116
  start-page: 3227
  year: 1995
  end-page: 3230
  article-title: Inhibition by riluzole of glycinergic postsynaptic currents in rat hypoglossal motoneurones
  publication-title: Br J Pharmacol
– volume: 24
  start-page: 1085
  year: 1985
  end-page: 1092
  article-title: 2‐Amino‐6‐trifluoro‐methoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission. II. Biochemical properties
  publication-title: Neuropharmacology
– volume: 27
  start-page: 771
  year: 1988
  end-page: 775
  article-title: 2‐Amino‐6‐trifluoromethoxybenzothiazole (PK 26124), a proposed antagonist of excitatory amino acid neurotransmission, does not produce phencyclidine‐like behavioral effects in pigeons, rats and rhesus monkeys
  publication-title: Neuropharmacology
– volume: 32
  start-page: 147
  year: 1999
  end-page: 152
  article-title: Neuroprotective effects of riluzole: an electrophysiological and histological analysis in an in vitro model of ischemia
  publication-title: Synapse
– volume: 419
  start-page: 603
  year: 1991
  end-page: 609
  article-title: Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre
  publication-title: Pflug Arch
– volume: 147
  start-page: 209
  year: 1992
  end-page: 212
  article-title: Riluzole inhibits the release of glutamate in the caudate nucleus of the cat in vivo
  publication-title: Neurosci Lett
– volume: 87
  start-page: 1164
  year: 1997
  end-page: 1171
  article-title: Riluzole blocks dopamine release evoked by N‐methyl‐D‐aspartate, kainate, and veratridine in the rat striatum
  publication-title: Anesthesiology
– volume: 250
  start-page: 473
  year: 1993
  end-page: 476
  article-title: The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1
  publication-title: Eur J Pharmacol
– volume: 47
  start-page: 485
  year: 1999
  end-page: 495
  article-title: Characterization of riluzole‐induced stimulation of large‐conductance calcium‐activated potassium channels in rat pituitary GH3 cells
  publication-title: J Invest Med
– volume: 9
  start-page: 3720
  year: 1989
  end-page: 3727
  article-title: Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischaemic gerbils
  publication-title: J Neurosci
– volume: 85
  start-page: 931
  year: 1998
  end-page: 938
  article-title: Riluzole interacts with voltage‐activated sodium and potassium currents in cultured rat cortical neurons
  publication-title: Neuroscience
– volume: 408
  start-page: 25
  year: 2000
  end-page: 34
  article-title: NMDA and AMPA/kainate receptors are involved in the anticonvulsant activity in riluzole DBA/2 mice
  publication-title: Eur J Pharmacol
– volume: 149
  start-page: 279
  year: 1978
  end-page: 293
  article-title: Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology and synapse formation
  publication-title: Brain Res
– volume: 492
  start-page: 219
  year: 1989
  end-page: 229
  article-title: Calcium currents in cultured rat cortical neurons
  publication-title: Brain Res
– volume: 347
  start-page: 1425
  year: 1996
  end-page: 1431
  article-title: Dose‐ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis/Riluzole Study Group II
  publication-title: Lancet
– volume: 482
  start-page: 309
  year: 1995
  end-page: 315
  article-title: AMPA receptors with high Ca permeability mediate synaptic transmission in the avian auditory pathway
  publication-title: J Physiol
– volume: 379
  start-page: 78
  year: 1996
  end-page: 81
  article-title: Regulation of glutamate release by presynaptic kainate receptors in the hippocampus
  publication-title: Nature
– volume: 130
  start-page: 1227
  year: 2000
  end-page: 1234
  article-title: Effects of riluzole on electrically evoked neurotransmitter release
  publication-title: Br J Pharmacol
– volume: 45
  start-page: 1055
  year: 1994
  end-page: 1060
  article-title: Block of the rat brain IIA sodium channel α subunit by the neuroprotective drug riluzole
  publication-title: Mol Pharmacol
– volume: 591
  start-page: 209
  year: 1992
  end-page: 222
  article-title: Excitatory neurotransmitters in the lateral habenula and peduncolopontine nucleus of rat modulate limbic seizures induced by kainate
  publication-title: Brain Res
– volume: 51
  start-page: 28
  year: 1996
  end-page: 44
  article-title: Amyotrophic lateral sclerosis: current and future treatment strategies
  publication-title: Drugs
– volume: 47
  start-page: S251
  year: 1996
  end-page: S254
  article-title: ALS therapy: targets for the future
  publication-title: Neurology
– volume: 14
  start-page: 375
  year: 1985
  end-page: 403
  article-title: Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lope epilepsy
  publication-title: Neuroscience
– volume: 218
  start-page: 299
  year: 1981
  end-page: 318
  article-title: Kainic acid induced limbic seizures: metabolic, behavioural, electrocorticographic and neuropathological correlates
  publication-title: Brain Res
– ident: e_1_2_1_23_1
  doi: 10.1038/sj.bjp.0703424
– volume: 45
  start-page: 1055
  year: 1994
  ident: e_1_2_1_20_1
  article-title: Block of the rat brain IIA sodium channel α subunit by the neuroprotective drug riluzole
  publication-title: Mol Pharmacol
  contributor:
    fullname: Hebert T
– ident: e_1_2_1_41_1
  doi: 10.1126/science.1710829
– volume: 47
  start-page: 485
  year: 1999
  ident: e_1_2_1_42_1
  article-title: Characterization of riluzole‐induced stimulation of large‐conductance calcium‐activated potassium channels in rat pituitary GH3 cells
  publication-title: J Invest Med
  contributor:
    fullname: Wu SN
– ident: e_1_2_1_31_1
  doi: 10.1016/0014-2999(93)90037-I
– ident: e_1_2_1_6_1
  doi: 10.1007/BF00370302
– ident: e_1_2_1_30_1
  doi: 10.1523/JNEUROSCI.09-11-03720.1989
– volume: 7
  start-page: 1361
  year: 1980
  ident: e_1_2_1_3_1
  article-title: Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histologic study in relation to the pathology of epilepsy
  publication-title: Neuroscience
  contributor:
    fullname: Ben‐Ari Y
– ident: e_1_2_1_17_1
  doi: 10.2165/00003495-199651010-00004
– ident: e_1_2_1_14_1
  doi: 10.1016/S0014-2999(00)00709-3
– ident: e_1_2_1_24_1
  doi: 10.1016/0896-6273(94)90444-8
– ident: e_1_2_1_15_1
  doi: 10.1016/0006-8993(78)90476-6
– ident: e_1_2_1_28_1
  doi: 10.1073/pnas.90.24.11688
– ident: e_1_2_1_19_1
  doi: 10.1007/BF00656997
– ident: e_1_2_1_40_1
  doi: 10.1046/j.1460-9568.2000.00242.x
– ident: e_1_2_1_32_1
  doi: 10.1007/BF03160577
– ident: e_1_2_1_4_1
  doi: 10.1016/0306-4522(81)90193-7
– ident: e_1_2_1_9_1
  doi: 10.1016/0304-3940(92)90597-Z
– ident: e_1_2_1_37_1
  doi: 10.1002/(SICI)1098-2396(19990601)32:3<147::AID-SYN1>3.0.CO;2-P
– ident: e_1_2_1_10_1
  doi: 10.1038/379078a0
– ident: e_1_2_1_44_1
  doi: 10.1016/S0306-4522(97)00604-0
– ident: e_1_2_1_18_1
  doi: 10.1126/science.1849316
– ident: e_1_2_1_7_1
  doi: 10.1113/jphysiol.1995.sp020738
– ident: e_1_2_1_26_1
  doi: 10.1016/0028-3908(88)90089-5
– ident: e_1_2_1_34_1
  doi: 10.1016/0896-6273(91)90175-Y
– ident: e_1_2_1_39_1
  doi: 10.1111/j.1476-5381.1995.tb15128.x
– ident: e_1_2_1_12_1
  doi: 10.1016/0014-2999(93)90147-A
– ident: e_1_2_1_11_1
  doi: 10.1097/00001756-199404000-00040
– ident: e_1_2_1_5_1
  doi: 10.1016/0028-3908(85)90196-0
– ident: e_1_2_1_36_1
  doi: 10.1038/sj.bjp.0700905
– ident: e_1_2_1_13_1
  doi: 10.1016/0006-8993(92)91701-F
– ident: e_1_2_1_8_1
  doi: 10.1007/BF02684186
– ident: e_1_2_1_35_1
  doi: 10.1016/0304-3940(92)90108-J
– ident: e_1_2_1_29_1
  doi: 10.1016/0006-8993(81)91308-1
– ident: e_1_2_1_38_1
  doi: 10.1016/0165-6147(92)90088-N
– ident: e_1_2_1_33_1
  doi: 10.1113/jphysiol.1995.sp020519
– ident: e_1_2_1_43_1
  doi: 10.1016/0304-3940(95)11284-4
– ident: e_1_2_1_25_1
  doi: 10.1097/00000542-199711000-00021
– ident: e_1_2_1_27_1
  doi: 10.1016/S0140-6736(96)91680-3
– ident: e_1_2_1_21_1
  doi: 10.1016/0304-3940(89)90403-5
– ident: e_1_2_1_16_1
  doi: 10.1016/0006-8993(89)90904-9
– ident: e_1_2_1_2_1
  doi: 10.1016/0306-4522(85)90299-4
– ident: e_1_2_1_22_1
  doi: 10.1212/WNL.47.6_Suppl_4.251S
SSID ssj0003104
Score 1.8136914
Snippet The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture by using...
The action of the neuroprotective and anticonvulsant agent riluzole on kainate-induced currents was studied in rat cortical neurons in primary culture by using...
Abstract The action of the neuroprotective and anticonvulsant agent riluzole on kainate‐induced currents was studied in rat cortical neurons in primary culture...
SourceID crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 244
SubjectTerms Amyotrophic Lateral Sclerosis - drug therapy
Amyotrophic Lateral Sclerosis - metabolism
Amyotrophic Lateral Sclerosis - physiopathology
Animals
Cells, Cultured
Cerebral Cortex - drug effects
Cerebral Cortex - metabolism
Cerebral Cortex - physiopathology
Epilepsy - drug therapy
Epilepsy - metabolism
Epilepsy - physiopathology
Excitatory Amino Acid Agonists - pharmacology
Fetus
Ion Channels - drug effects
Ion Channels - metabolism
kainic acid
Kainic Acid - pharmacology
neocortical neurons
Neurons - drug effects
Neurons - metabolism
neuroprotection
Neuroprotective Agents - pharmacology
Neurotoxins - metabolism
Neurotoxins - pharmacology
patch-clamp
Rats
Rats, Wistar
Receptors, AMPA - drug effects
Receptors, AMPA - metabolism
Receptors, Kainic Acid - drug effects
Receptors, Kainic Acid - metabolism
riluzole
Riluzole - pharmacology
Title Kainate-induced currents in rat cortical neurons in culture are modulated by riluzole
URI https://api.istex.fr/ark:/67375/WNG-497HQL54-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsyn.10040
https://www.ncbi.nlm.nih.gov/pubmed/11835519
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL2E7qUv67psXbZ2iFLCXpw4jmRZ9Kl0y8LWBbY1TQcDI1kSlCbOyAcsfepP6G_sL9mVHCfpYDD6YBBG8ofulXTO5eoI4Eja0La51EGLSxZQJXiAqNoEGROGo4uJTLm9w196cbdPP12yywocl3thCn2IVcDNjQw_X7sBLtW0uRYNnS5yV6SOr7fa3KVzvf-2lo5C2EJLlU9KeVyqCoVRc9XywVr0xHXr742FaBOs-tWmswM_y-8skkyuG_OZamQ3f0k4PvJHnsHTJQolJ4Xb7ELF5M-hepIjAx8tSJ34vFAfcK_C4LPbYDUz97d3yN_REzTJClGnKbnKCXoQQQbrQ-LEq2Pm_n4h6WGIxGs01u6UMGypFmRyNZzfjIfmBfQ7H85Pu8HyOIYgw4EdBpJqbZNYKd0yKmwpJGtc0hBdgPIsSpSkVPIo1oioEsmYFJllGtmMNhRZGMKYl7CVj3PzCkgUWQRiKjZJpKmwIsmwpoiVtbodW5bU4LA0TPqrUN1IC33lKMXuSn131aDuTbaqISfXLk2Ns3TQ-5hSwbtfzxhNL2qwV9h0_SycyBAqihq885b590vS7z96vvD6_6u-gW1_ZozL-mP7sDWbzM0BQpeZeut99A8OK-sK
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD6IPtiX1movq1aDFPFldHY2mUzAF6mXta4LrVrtQwnJJAFRZ2Uv4O6TP6G_sb-kJxln1wpC8WEgDMlccs5JvnM4-Q7AZ-Vi1-DKRHWuWES14BGiahvlTFiOKiZy7c8OH7fT5hn9esEupmC7OgtT8kOMA27eMsJ67Q3cB6S3JqyhvWHhmxQd9hk094Yv3LD7fUIehcCFVjyflPK04hWKk63x0H92oxk_sXePtqLHcDXsN_tv4Ff1pWWaydXmoK8389ETEseX_socvH4AomSn1Jy3MGWLeVjYKdAJvxmSdRJSQ0PMfQHOj_wZq779c_8bXXhUBkPyktepRy4LgkpE0IkNUXESCDKLcL9k9bBE4XXTMb5QGI7UQ9K9vB6MOtf2HZzt751-aUYPFRmiHG07jhQ1xmWp1qZudVzX6K9xRWPUAsrzJNOKUsWT1CCoyhRjSuSOGXRojKXoiCGSeQ_TRaewH4EkiUMsplObJYYKJ7Ice4pUO2caqWNZDdYqycjbknhDlhTLicTpkmG6arAeZDbuobpXPlONM3nePpBU8Oa3FqPyRw0-lEKdPAvXMkSLogYbQTTPv0Se_GyHxuL_d12F2ebpcUu2DttHS_AqlJDxSYBsGab73YH9hEimr1eCwv4FsZ_vIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dSxwxFL2IgviiVVvdtmqQIr6Mzo7JZIJPoq5btYvaWi0UQjJJQNRZWXfB9cmf4G_0l3iTcXa1UCh9GAhDMh-5N8k5l5sTgC_KxW6DKxPVuWIR1YJHiKptlDNhObqYyLXfO_ytlTZP6f45Ox-BzWovTKkPMQi4-ZER5ms_wG-MWx-Kht72C1-kyNfHaIrI1yOik6F2FOIWWsl8UsrTSlYoTtYHTd8sRmO-X-9erUSv0WpYbhpT8Lv60DLL5HKt19Vr-f0fGo7_-SfvYPIFhpKt0m-mYcQWMzC7VSAFv-6TFRISQ0PEfRbODvwOq659enhEAo-uYEheqjrdkouCoAsRpLAhJk6CPGYR7peaHpYovK7bxh8Thi11n3Qurnr37Sv7Hk4buz-2m9HLeQxRjiM7jhQ1xmWp1qZudVzXyNa4ojH6AOV5kmlFqeJJahBSZYoxJXLHDNIZYynSMMQxH2C0aBd2HkiSOERiOrVZYqhwIsuxpki1c2YjdSyrwXJlGHlTym7IUmA5kdhdMnRXDVaCyQY1VOfS56lxJs9ae5IK3jw-ZFT-rMFcadPhs3AmQ6woarAaLPP3l8jvv1qh8PHfqy7B-NFOQx5-bR18golwfozPAGSfYbTb6dkFhDFdvRjc9Rn7Yu3R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kainate%E2%80%90induced+currents+in+rat+cortical+neurons+in+culture+are+modulated+by+riluzole&rft.jtitle=Synapse+%28New+York%2C+N.Y.%29&rft.au=Zona%2C+Cristina&rft.au=Cavalcanti%2C+Silvio&rft.au=De+Sarro%2C+Giovanbattista&rft.au=Siniscalchi%2C+Antonio&rft.date=2002-03-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0887-4476&rft.eissn=1098-2396&rft.volume=43&rft.issue=4&rft.spage=244&rft.epage=251&rft_id=info:doi/10.1002%2Fsyn.10040&rft.externalDBID=10.1002%252Fsyn.10040&rft.externalDocID=SYN10040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-4476&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-4476&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-4476&client=summon